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Abstract. This article introduces the current agent-oriented methodologies. It
discusseswhat approacheshave been followed (mainly extending existing object-
oriented and knowledge engineering methodologies), the suitability of these ap-
proaches for agent modelling, and some conclusions drawn from the survey.

1 Introduction

Agent technology has received a great deal of attention in the last few years and, as a
result, the industry is beginning to get interested in using this technology to develop its
own products. In spite of the different developed agent theories, languages, architec-
tures and the successful agent-based applications, very little work for specifying (and
applying) techniques to develop applications using agent technology has been done.
The role of agent-oriented methodologies is to assist in all the phases of the life cycle
of an agent-based application, including its management.

This article reviews the current approaches to the development of an agent-oriented
(AO) methodology. To avoid building a methodology from scratch, the researchers on
agent-oriented methodologies have followed the approach of extending existing meth-
odologies to include the relevant aspects of the agents. These extensions have been
carried out mainly in two areas: object oriented (OO) methodologies (Section 2) and
knowledge engineering (KE) methodologies (Section 3). We will review (1) why each
area can be relevant for developing an AO methodology, (2) what problems were found
in applying directly the existing methodologies without extending them and (3) what
solutions have been proposed. We will also review some particular approaches (Sec-
tion 4), formal approaches (Section 5) and software-engineering techniques proposed
by agent researchers (Section 6). Finally, some conclusions are drawn (Section 7).
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2 Extensions of Object-Oriented Methodologies

2.1 Advantages of the approach

Several reasons can be cited that justify the approach of extending object-oriented meth-
odologies.

Firstly, there are similarities between the object-oriented paradigm and the agent-
oriented paradigm [5, 27]. Since the early times of distributed artificial intelligence
(DAI), the close relationship between DAI and Object-Based Concurrent Programming
(OBCP) [2, 15] was established. As stated by Shoham [43], the agents can be con-
sidered asactive objects, objects with a mental state. Both paradigms use message
passing for communicating and can use inheritance and aggregation for defining its
architecture. The main difference [43] is the constrained type of messages in the AO
paradigm and the definition of a state in the agent based on its beliefs, desires, inten-
tions, commitments, etc.

Another possible advantage comes from thecommonly usage of object-oriented lan-
guages to implement agent-based systems because they have been considered a natural
framework [2, p. 34].

The popularity of object-oriented methodologies is another potential advantage.
Many object-oriented methodologies are being used in the industry with success such
as Object Modelling Technique (OMT) [41], Object Oriented Software Engineering
(OOSE) [21], Object-Oriented Design [3], RDD (Responsibility Driving Design) [48]
and Unified Modelling Language (UML) [8]. This experience can be a key to facilitate
the integration of agent technology because on the one hand, the software engineers can
be reluctant to use and learn a complete new methodology, and on the other hand, the
managers would prefer to follow methodologies which have been successfully tested.
So we could take advantage of their experience for learning quicker.

The three common views of the system in object-oriented methodologies are also
interesting for describing agents:static for the object structure objects and their struc-
tural relationships;dynamic for describing the object interactions; andfunctional for
describing the data flow of the methods of the objects.

Finally, some of the techniques for object identification can also be used for identify-
ing agents: use cases [21] and classes responsibilities collaborations (CRC) cards [48].

2.2 Aspects not addressed

In spite of the similarities between objects and agents, obviously, agents are not simply
objects. Thus, object-oriented methodologies do not address these different aspects [43,
5, 24].

Firstly, though both objects and agents use message-passing to communicate with
each other, while message-passing for objects is just method invocation, agents distin-
guish different types of messages and model these messages frequently as speech-acts
and use complex protocols to negotiate. In addition, agents analyse these messages and
can decide whether toexecute the requested action.

Another difference consists in that agents can be characterised by their mental state,
and object-oriented methodologies do not define techniques for modelling how the
agents carry out their inferences, their planning process, etc.



Finally, agents are characterised by their social dimension. Procedures for model-
ling these social relationships between agents have to be defined.

2.3 Existing solutions

In this section the followingagent-oriented methodologies are reviewed:Agent-Oriented
Analysis and Design [5], Agent Modelling Technique for Systems of BDI agents [27],
MASB [31, 32] andAgent Oriented Methodology for Enterprise Modelling [24].

Agent-Oriented Analysis and Design by Burmeister

Burmeister [5] defines three models for analysing an agent system: theagent model.
that contains the agents and their internal structure (beliefs, plans, goals,. . . ); theor-
ganisational model, that describes the relationships between agents (inheritance and
roles in the organisation); and thecooperation model, that describes the interactions
between agents.

The process steps for the development of each model are:

– Agent Model: agents and their environment are identified using an extension of
CRC cards for including beliefs, motivations, plans and cooperation attributes.

– Organisational Model: proposes the identification of the roles of each agent and
the elaboration of diagrams using OMT notation for the inheritance hierarchy and
the relationships between the agents.

– Cooperation Model: cooperations and cooperation partners are identified, and the
types of interchanged messages and used protocols are analysed.

Agent Modelling Technique for Systems of BDI agents

This method [27] defines two main levels (external and internal) for modelling BDI
(Belief, Desire and Intention) agents.

Theexternal viewpoint consists of the decomposition of the system into agents and
the definition of their interactions. This is carried out through two models: theagent
model, for describing the hierarchical relationship between agents and relationships
between concrete agents; and theinteraction Model [26], for describing the responsib-
ilities, services and interactions between agents and external systems.

The internal viewpoint carries out the modelling of each BDI agent class through
three models: thebelief model, which describes the beliefs about the environment; the
goal model, which describes the goals and events an agent can adopt or respond to; and
theplan model, which describes the plans an agent can use to achieve its goals.

The development process of theexternal viewpoint starts with the identification of
the roles (functional, organisational, etc.) of the application domain in order to identify
the agents and arrange them in an agent class hierarchy described using OMT like nota-
tion. Then the responsibilities associated to each role are identified, together with the
services provided and used to fulfill the responsibilities. The next step is the identi-
fication of the necessary interactions for each service and both the speech-act and in-
formation content of every interaction. Finally, the information is collected in anagent
instance model.



The development of theinternal viewpoint starts with the analysis of the different
means (plans) of achieving a goal. The plans for responding to an event or achieving
a goal are represented using a graphical notation similar to Harel statecharts [18], but
adding the notion of failure of the plan. Finally, the beliefs of the agent about the objects
of the environment are modelled and represented using OMT notation.

Multi-Agent Scenario-Based Method (MASB method)

This method [31, 32] is intended to be applied for MAS in the field of cooperative work
(CSCW). The analysis phase consists of the following activities:

– Scenario description: identification using natural language of the main roles played
by both the human and the software agents, objects of the environment and the
typical scenarios.

– Role functional description: description of the agent roles usingbehaviour dia-
grams, which describe the processes, the relevant information and the interactions
between the agents.

– Data and world conceptual modelling: modelling of the data and knowledge used
by the agent using entity-relationship diagrams (or object-oriented diagrams) and
entity life-cycle diagrams.

– System-user interaction modelling: simulation and definition of different suitable
interfaces for human-machine interaction in every scenario.

The design phase consists of the following activities:

– MAS architecture and scenario description: selection of the scenarios to be imple-
mented and the roles played by the agents in these scenarios.

– Object modelling: refines the world modelling of the analysis, defining hierarchies,
attributes and procedures.

– Agent modelling: specification of the elements defined in the data conceptual mod-
elling step of the analysis as belief structures. A graphical notation is proposed for
describing the decision process of a agent, taking into account beliefs, plans, goals
and interactions.

– Finally, two steps are stated though not developed:conversation modelling and
system design overall validation.

Agent oriented methodology for Enterprise modelling

This methodology [24] proposes the combination of object-oriented methodologies (OOSE)
and enterprise modelling methodologies IDEF (Integration DEfinition for Function
modelling) [12] and CIMOSA (Computer Integrated Manufacturing Open System Ar-
chitecture) [28]). The identified models are:

– Function Model: describes the functions (inputs, outputs, mechanisms and control)
usingIDEF0 diagrams that include the selection of the possible methods depend-
ing on the input and the control.



– Use Case Model: describes the actors involved in each function, using OOSE use
case notation.

– Dynamic Model: this model is intended for analysing object interactions. The use
cases are represented in event trace diagrams.

– The Agent Oriented System: is a compound of:
� Agent Identification: the actors of the use cases are identified as agents. The

main functions of an agent are its goals and the possibilities described in the
IDEF0 diagrams.

� Coordination protocols or scripts: they are described in state diagrams.
� Plan invocation: sequence diagrams extend event trace diagrams to include

conditions for indicating when a plan is invoked.
� Beliefs, Sensors and Effectors: inputs of the functions should be modelled as

beliefs or obtained from objects via sensors, and achieved goals should be mod-
elled as changes to beliefs or modifications via effectors.

3 Extensions of Knowledge Engineering Methodologies

3.1 Advantages of the approach

Knowledge engineering methodologies can provide a good basis for MAS modelling
since they deal with the development of knowledge based systems. Since the agents
have cognitive characteristics, these methodologies can provide the techniques for mod-
elling this agent knowledge.

The definition of the knowledge of an agent can be considered as aknowledge ac-
quisition process, and only this process is addressed in these methodologies.

The extension of current knowledge engineering methodologies can take advant-
age of the acquired experience in these methodologies. In addition, both the existing
tools and the developed ontology libraries and problem solving method libraries can be
reused.

Although these methodologies are not as extendable as the object-oriented ones,
they have been applied to several projects with success.

3.2 Aspects not addressed

Most of the problems subject to knowledge engineering methodologies are present
in designing MAS: knowledge acquisition, modelling and reuse. Nevertheless, these
methodologies conceive a knowledge based system as a centralised one. Thus, they do
not address the distributed or social aspects of the agents, or their reflective and goal-
oriented attitudes.

3.3 Existing solutions

Several solutions have been proposed for multi-agent systems modelling extending
CommonKADS [42]. The main reason of the selection of this methodology among the
knowledge engineering methodologies is that it can be seen as a European standard



for knowledge modelling.CommonKADS defines the modelling activity as the build-
ing of a number of separate models that capture salient features of the system and its
environment.

We will review the extensionsCoMoMAS [16] andMAS-CommonKADS [19], though
there have been other preliminary works [9, 25, 37, 47].

The CoMoMAS methodology

Glaser [16] proposes an extension to the methodologyCommonKADS [42] for MAS
modelling. The following models are defined:

– Agent Model: this is the main model of the methodology and define the agent ar-
chitecture and the agent knowledge, that is classified as social, cooperative, control,
cognitive and reactive knowledge.

– Expertise Model: describes the cognitive and reactive competences of the agent. It
distinguishes between task, problem solving (PSM) and reactive knowledge. The
task knowledge contains the task decomposition knowledge described in the task
model. Theproblem-solving knowledge describes the problem solving methods and
the strategies to select them. Thereactive knowledge describes the procedures for
responding to stimuli.

– Task Model: describes the task decomposition, and details if the task are solved by
a user or an agent.

– Cooperation Model: describes the cooperation between the agents. using conflict
resolution methods and cooperation knowledge (communication primitives, proto-
cols ad interaction terminology).

– System Model: defines the organisational aspects of the agent society together with
the architectural aspects of the agents.

– Design Model: collects the previous models in order to operationalisate them, to-
gether with the non-functional requirements.

The MAS-CommonKADS methodology

This methodology [19] extends the models defined inCommonKADS, adding tech-
niques from object-oriented methodologies (OOSE, OMT) and from protocol engin-
eering for describing the agent protocols (SDL [20] and MSC96 [40]).

The methodology starts with aconceptualisation phase that is an informal phase for
collecting the user requirements and obtaining a first description of the system from the
user point of view. For this purpose, the use cases technique from OOSE [40] is used,
and the interactions of these use cases are formalised with MSC (Message Sequence
Charts) [39]. The methodology defines the models described below for the analysis
and the design of the system, that are developed following a risk-driven life cycle. For
each model, the methodology defines the constituents (entities to be modelled) and the
relationships between the constituents. The methodology defines a textual template for
describing every constituent and a set of activities for building every model, based on
the development state of every constituent (empty, identified, described or validated).
These activities facilitate the management of the project.

This extension defines the following models:



– Agent Model: describes the main characteristics of the agents, including reasoning
capabilities, skills (sensors/effectors), services, goals, etc. Several techniques are
proposed for agent identification, such as analysis of the actors of the conceptual-
isation phase, syntactic analysis of the problem statement, application of heuristics
for agent identification, reuse of components (agents) developed previously or us-
age of CRC cards, which have been adapted for agent oriented development.

– Task Model: describes the tasks (goals) carried out by agents, and task decomposi-
tion, using textual templates and diagrams.

– Expertise Model: describes the knowledge needed by the agents to carry out the
tasks. The knowledge structure follows the KADS approach, and distinguishes do-
main, task, inference and problem solving knowledge. Several instances of this
model are developed for modelling the inferences on the domain, on the agent itself
and on the rest of agents. The authors propose the distinction betweenautonomous
problem solving methods, that decompose a goal into subgoals that can be directly
carried out by the agent itself andcooperative problem solving methods, that de-
compose a goal into subgoals that are carried out by the agent in cooperation with
other agents.

– Coordination Model: describes the conversations between agents, that is, their in-
teractions, protocols and required capabilities. The development of the model defines
two milestones. The first milestone is intended to identify the conversations and the
interactions. The second milestone is intended to improve these conversation with
more flexible protocols such as negotiation and identification of groups and coali-
tions. The interactions are modelled using the formal description techniques MSC
(Message Sequence Charts) and SDL (Specification and Description Language).

– Organisation Model: describes the organisation in which the MAS is going to be
introduced and the organisation of the agent society. The description of the multia-
gent society uses an extension of the object model of OMT, and describes the agent
hierarchy, the relationship between the agents and their environment, and the agent
society structure.

– Communication Model: details the human-software agent interactions, and the hu-
man factors for developing these user interfaces.

– Design model: collects the previous models and is subdivided into three submodels:
application design: composition or decomposition of the agents of the analysis,
according to pragmatic criteria and selection of the most suitable agent architecture
for each agent;architecture design: designing of the relevant aspects of the agent
network: required network, knowledge and telematic facilities andplatform design:
selection of the agent development platform for each agent architecture.

This methodology has been successfully applied in several research projects in dif-
ferent fields, as intelligent network management (project CICYT TIC94-9139PRO-
TEGER: Multi-Agent System for Network and Service Management) and development
of hybrid systems with multiagent systems (project ESPRIT-9119 MIX, Modular Integ-
ration of Symbolic and Connectionist Knowledge Based Systems).



4 Other approaches

The methodologyCassiopeia

The methodological approach calledCassiopeia [7], distinguishes three main steps for
designing a MAS, applied to the robot soccer teams domain. Firstly, the elemental agent
behaviours are listed using functional or object oriented techniques. Then the relational
behaviours are analysed, that is, the dependencies between the agents are studied using
a coupling graph. Finally, the dynamics of the organisation are described, that is, who
can start or end a coalition, by analysing the coupling graph.

Cooperative Information Agents design

Verharen [46] proposes a methodology from a business process perspective. The meth-
odology proposes the following models:

– Authorisationmodel: describes the authorised communication and obligationsbetween
the organisation and the environment and the internal communications using au-
thorisation diagrams. After identifying the current situation, it is redesigned for
improving the efficiency of the business processes.

– Communication model: refines the previous model describing in detail the contracts
between the agents, using petri nets. The transactions between the agents are mod-
elled using transaction diagrams that describe the relationship between speech-acts
and goals.

– Task model: specifies the task decomposition using task diagrams.
– Universe of Discourse model: concerns the modelling of the content of the mes-

sages exchanged between the agents, using object-oriented techniques.

5 Formal Approaches

Several formal approaches have tried to bridge the gap between formal theories and
implementations [10]. Formal agent theories are [10]agent specifications that allow the
complete specification of the system. Though formal methods are not easily scalable in
practice [13], there are specially useful for verifying and analysing critical applications,
prototypes and complex cooperating systems.

Traditional formal languages such as Z have been used [30], providing an elegant
framework for describing a system at different levels of abstractions. Since there is no
notion of time in Z [30, 10, 13], it is less well suited to specifying agent interactions.

Another approach has been the use of temporal modal logics [49] that allows the
representation of dynamic aspects of the agents and a basis for specifying, implement-
ing and verifying agent based systems. The implementation of the specification can be
done [49] by directly executing the agent specification with a language such asConcur-
rent Metatem [14] or by compiling the agent specification.

The usage of formal languages for multi-agent specification such asDESIRE [4]
are a very interesting alternative to be used as detailed design language in any meth-
odology.DESIRE (framework for DEsign and Specification of Interacting REasoning
components) proposes a component-based perspective based on a task decomposition.



6 Techniques based on the experience of agent developers

The definition of methodologies for developing multiagent systems is a recent devel-
opment. Nevertheless, multiagent systems have been successfully applied to different
fields using different multiagent platforms. During this application, some agent de-
velopers have taken a software engineering perspective. Although they have not “form-
ally” defined an AO methodology, they have given general guidance for MAS develop-
ment. In this section, some of these recommendations are reviewed. Another important
contribution is a collection of common mistakes of agent system developers [50].

The ARCHON experience

ARCHON [6, 45] is a complete development environment for MAS, which proposes a
methodology for analysing and designing MAS.

The analysis combines atop-down approach, that identifies the system goals, the
main tasks and their decomposition and abottom-up approach, that allows the reuse of
preexisting systems, constraining the top-down approach.

Thedesign is subdivided into agent community design and agent design. Theagent
community design defines the agent granularity and the role of each agent. Then the
authors propose the design of the user interfaces. Finally, the skills and interchanged
messages are listed. Theagent design encodes the skills for each agent (plans, rules,
etc.).

The MADE experience

MADE [51, 36] is a development environment for rapid prototyping of MAS. It pro-
poses a development methodology for designing MAS, extending the five stages for
knowledge acquisition proposed by Buchananet al [11]: Identification, Conceptual-
isation, Decomposition (added for agent identification), Formalisation, Implementation
and Testing (here the integration of the MAS is added).

Coordination languages

There are several coordination languages that can be an alternative to interaction model-
ling and included in an AO methodology: (1) usingfinite state representation for conver-
sations such as COOL [1] andAgentTalk [29]; (2) using aformal language which takes
advantage of formal description techniques of protocol engineering such asYubarta [38].

The AWIC Method

TheAWIC method [34] proposes an iterative design approach. In every cycle, five mod-
els are developed, an agent is added to the system, and the overall system is tested. The
proposed models are:



– A: The agent model. The developing of this model consists of the identification of
the active agents of the problem, the specification of their tasks, sensors, actuators,
world knowledge and planning abilities. Then a suitable agent architecture should
be specified for each agent.

– W: The world model. This model represents the environment the agents operate in,
detailing the world laws that minimise the coordination between agents and testing
if the agent tasks are feasible in the world.

– I: The interoperability model. This model defines how the world reflects the actions
of the agents and how the agents perceive the world.

– C: The coordination model. This models specify the protocols and interchanged
messages among agents and study the suitability of joint planning or social struc-
turing.

The decentralising refinement method

An interesting approach to bridge the gap among theory and practice is the decentral-
ising refinement method [44]. This method proposes to start with a centralised solution
to the problem. Then a general problem-solving method is abstracted out. The next step
is the identification of the assumptions made on the agents’ knowledge and capabilities,
and the relaxation of these assumptions in order to obtain more realistic versions of the
distributed system. Finally, the system is specified with a formal language. The method
takes into account the reuse of the problem-solvingmethods, by identifyingconnections
among parts of the problems and the agents that solve them.

7 Conclusions

This article has shown that there are several emerging agent-oriented methodologies.
The reviewed methodologies are mainly extensions to known object-oriented or know-
ledge engineering methodologies. Which relevant aspects of object-oriented and know-
ledge engineering can be reused and which aspects are not covered have been discussed.
In addition, the models and modelling process of these agent-oriented methodologies
have been shown.

Several open issues not included in the reviewed methodologies can be cited, such
as mobile agents design and user interface design [17] that is mentioned but not partic-
ularly developed in any methodology.

After the reviewing of these agent-oriented methodologies, several questions can
arise:

– Why are AO methodologies necessary? The question of the need of AO methodo-
logies have been mentioned previously in [22, 23, 33, 13]. Obviously, the engin-
eering approach [13] to agent-based systems development is a key factor for their
introduction in industry. This principled development will be specially needed as
the number of agents in a system increases. The standard advantages of an engin-
eering approach, such as management, testing and reuse should be applied in the
development of agent-based systems.



– Is agent technology mature enough for defining agent-oriented methodologies? As
long as there are no standard definitions of an agent, an agent architecture, or an
agent language, we could think that the methodologies presented here will only be
used by individual researchers to program their agent based application using their
own agent language, architectures and theories. The methodologies reviewed here
have shown that there is a conceptual level for analysing the agent-based systems,
no matter the agent theory, agent architecture or agent language they are supported
by. This conceptual level should describe:

� Agent Models: the characteristics of each agent should be described, including
skills (sensors and effectors), reasoning capabilities and tasks.

� Group/Society Models: the relationships and interactions between the agents.
The lack of standard agent architectures and agent programming languages is actu-
ally the main problem for operationalising the models, or providing useful “stand-
ard” code generation. Since there is no standard agent architecture, the design of
the agents needs to be customised to each agent architecture. Nevertheless, the
analysis models are independent of the agent architectures, they describe what the
agent-based system has to do, but not how this is done.

– What is the relationship between AO methodologies and agent architectures
Agent architectures are taken into account in different ways in two of the reviewed
methodologies.CoMoMAS selects the agent architecture during the analysis, while
MAS-CommonKADS considers that it is a design issue, and the agent architecture
should be selected depending on the requirements of the analysis. In addition,MAS-
CommonKADS proposes an expertise model of a generic agent architecture that
guides the knowledge acquisition process.
A first solution to the problem of the selection of an agent architecture is addressed
by Müller [35], that presents some guidelines about which type of architecture is
best suited for which type of application.

– Are the reviewed AO methodologies just individual efforts, or are they converging
efforts?
As we have stated previously, the reviewed AO methodologies can be compared
since they use the same key concepts: mental state, tasks, interactions and group
modelling. They propose complementary modelling techniques, though the degree
of elaboration of these methodologies is quite different.
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