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Abstract

This paper analyzes the necessity and feasibility of designing a protocol for Active Networks that sup-
ports multicasting applications with different characteristics in terms of data loss tolerance. The paper
begins with a presentation of the service elements required by multicast applications, and from this study
a Network Service description is given. The advantages of providing this service over Active Networks
are studied. The service description is then used as the set of requirements for the design of the RMANP
protocol, which is capable of providing the service over Active Network technology. Then, a prototype
implementation of RMANP over the Active Node Transport System (ANTS) is presented, and some data
for the evaluation of its performance is provided. Finally, the main conclusions are that Active Networks
provide a flexible support for the development of new network services, but further improvements in run-
time efficiency are required.
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Introduction

Traditional teleservices were divided into telecommunications services (e.g. telephone, TV or radio) and
data services (e.g. remote terminal, file transfer or e-mail) each one with different requirements in terms
of transfer rate, data loss probability, transit delay, delay-jitter specifications and relation between session
participants. These different requirements led to the design of network technologies tailored (down to the
physical layer) for the specific service to be supported. Throughout the recent past, different technological
advances in signal digitization, data compression, data processing and data transmission have resulted in
the design of new classes of teleservices. Mobility, portability, multipoint to multipoint, multipoint to
point, guaranteed variable transfer rates, flow synchronization, and a continuous range of throughput,
transit delay and delay-jitter values are some examples of the requirements placed on the network by
teleservices existing today. This situation is leading to the design of an integrated network based on tech-
nologies providing an “open” network service, as a means to support a broad range of teleservices while
being prepared to integrate new technologies in order to adapt to changing requirements. Much effort has
been made in developing a packet (and cell) switched networking technology that provides multiple
classes of guaranteed transfer rates, while at the same time providing a low transit delay and delay-jitter.
However, considerably less effort has been placed in devel oping a networking technology that supports a
broad range of functional requirements.

In this sense, Active Networks [TW96, TSS'97] represent a major breakthrough since they introduce a
technology that will provide an integrated open network, not only in terms of QoS, but also in terms of
functional behavior. Per-packet and per-session specific processing at each network node enables new
network services to be deployed across the network as soon as the teleservices that require them are
ready. However, this flexibility provided by Active Network technology should not lead to a situation in
which each implementation, or each teleservice, uses its own specifically designed packets and associated
procedures on the Active Network platform.

In this context, the purpose of this paper is to define a network service appropriate for the requirements of
multicast applications, design a protocol based on Active Networks that provides this service, and present
an implementation prototype over ANTS [WGT98] that has been used to validate the concept. The sec-
ond section describes the attributes of the applications considered to share network requirements, and the
service elements supporting these requirements. The third section discusses the advantages of using Ac-
tive Network technology, justifying the convenience and feasibility of designing an integrated network
protocol. The fourth section presents RMANP, a protocol designed on Active Networks capable of pro-
viding the services defined in the second section. The fifth section covers the most relevant aspects of the
implementation prototype carried out on ANTS and provides performance evaluation data. In the last
section we describe the conclusions that are derived from this work.



Description of Service Elements for Multicast Applications

We have analyzed a series of characteristics or attributes in order to identify the elements composing an
adequate communications service for multicast applications. The characteristics chosen to determine the
network requirements and therefore, the network service are:

1) Number of senders and receiversin the multicast application session.

2) Mix Reliable & Unréliable. This attribute indicates whether the multicast application needs to send
both reliable data and unreliable data in the same multicast application session.

3) Reliability Time. This is the tolerable delay from the expected arrival time of a packet. It is closely
related to delay-jitter. Some applications process data with a certain lifetime, after which the infor-
mation becomes irrelevant to them. Although this type of applications would rather receive every-
thing, they tolerate some probability of losing data. Examples are most real-time applications and
those applications that send state updates and periodically resynchronize sending the full state

4) Delay Bound. Thisisan upper limit on end-to-end data transfer delay imposed by applications.

5) Open/Closed Session. If the session is closed the application indicates the identity of the participants.
On the other hand, if the session is an open one, the application does not indicate who the participants
are going to be, and in principle allows any system to join the session.

6) Known Receivers. This attribute indicates whether the application needs to know the identity of its
receivers. Some applications need to know their receivers, for example, the case where a single re-
ceiver failure is sufficiently important for the whole session to be interrupted.

7) Synchronized Sart. Some applications require that all participants (sender(s) and receivers) be pres-
ent at start time.

8) Ordering. The most usual ordering types required by applications are sender-based and total.

In order to produce a network service description, we attempt to relate the different application attributes,
and generalize their implications. Firstly, the number of receivers is dependant on the type of session. In
open sessions the protocol should support a very large number (up to hundreds of thousands) of receivers,
but in closed sessions the number might be much lower. Secondly, we consider that providing three types
of per-packet reliability might cover most cases. These types are unreliable, time-constrained reliable and
reliable. Thirdly, all applications have a certain delay bound. This delay bound should be preserved even
for large and/or sparse groups. Finally, we have abstracted the requirements relating to open/closed ses-
sion, known receivers and synchronized start into three session types described bel ow.

In addition to the previous aspects there are some general service regquirements needed by multicast appli-
cations. The absence of duplicated packets is generally desirable. A flow-control mechanism that adapts
to the effective network bandwidth is necessary in order to minimize packet losses. A related problem is
that receivers can be heterogeneous regarding their processing capabilities and the characteristics (band-
width and delay) of the path that connects them to the sender. The existence of just one slow receiver can
slow down the communication to an extent that is unacceptable for the application.

Based on these considerations, we propose a generic multicast service, supplied by a service provider by
means of a specific protocol, to support multicast applications with the following service elements:

e Data Service. This element alows an application to choose between three types of reliability for
each data packet sent: unreliable, time-constrained reliable, and reliable. In the unreliable packet
service, the service provider does not guarantee in any way the delivery of that packet. In the time-
congtrained reliable service, the service provider guarantees that it will do its best (store the packet,
request retransmissions, retransmit packets, etc.) in order to ensure that all receivers get that packet
before the associated time expires. Finally, in the reliable service, the provider assures that the packet
will be delivered to al receivers. In this case, if the service provider is unable to deliver datato a spe-
cific receiver, it will notify the application of this fact.

e Session Service. This service element provides primitives to establish, manage and terminate ses-
sions. These can be of the following three modes, open group, controlled open group and closed
group. In an Open Group any receiver is alowed to join the session and the application is not in-
formed of the identity of receivers. In a Controlled Open Group any receiver is alowed to join and
the service provider will notify the application on every receiver that joins or leaves the multicast
session. In both of the previously mentioned session modes, if a receiver joins a session after it has
been initiated, the service provider will not resend it data previously sent. In a Closed Group the ap-
plication indicates to the service provider the identity of the receivers that must join the session. If
one or more of the authorized receivers does not join the session, the service provider will notify its



identit(y/ies) to the application. The provider will aso inform of any receiver that leaves the session.
Packets sent in the open group should have a time-constrained reliability or no reliability at al. Pack-
ets sent in the controlled open group or in the closed group can be of any of the three reliability types.

e Flow Control Service. This service element will alow the source to adapt to the available end-to-
end bandwidth of all receivers. Additionally this service element is in charge of identifying the re-
ceiver(s) that are slowing down the throughput of the session in case where this situation arises. This
is done only in controlled open group or closed group service modes. In case this event occurs, the
application will be notified of the identity of the slower receivers, and it may choose to request their
expulsion or to slow down the flow of datato accommodate it to the speed these receivers support.

Advantages of Active Networks to Support the Service Ele-
ments

The traditional approach has consisted in implementing at the application layer tailored solutions for each
specific application. Another approach has been the provision of the reliable multicast service by means
of an end-to-end protocol [DDC97, LG98]. In this paper we propose to provide the required service using
Active Network support. The idea of a network that provides additional services that simplify the tasks
needed to achieve reliable multicast has already been proposed in the past [AC95, LG97, PPV 98]. Bene-
fits of using intermediate processing have already been quantitatively evaluated. Published simulation
studies have shown that 1) if some intermediate points perform ACK aggregation and buffering, implo-
sion problems are avoided and protocol throughput is increased [Cal96], 2) It is better to do local recov-
ery from intermediate systems than from other end systems that participate in a multicast session
[ACS97].

With the introduction of Active Networks the development of complex enhanced networking services, to
provide a reliable multicast service, for example, becomes feasible. In the following paragraphs we will
justify that Active Networks can greatly simplify the provision of some of the service elements required
by multicast applications.

The fact that the number of receivers is high causes two associated problems: ACK implosion and/or
NACK implosion. Focusing on the ACK implosion problem, Active Networks can perform ACK fusing
at active nodes between the receivers and the source. ACK fusing consists of the sending of just one ACK
from a given active node towards the source of each “n” ACKs received. The new ACK carries the fused
information of all “n” ACKs. In respect to the NACK implosion problem, Active Networks can perform
NACK filtering at active nodes between the receivers and the source. NACK filtering consists of the
recording in active nodes of the NACK capsules (see [TSS'97] for the definition of “capsule”) already
sent towards the sender. Thisis, they remember the data already requested, and when a NACK is received
itisforwarded only if it asks for different data.

In relation to reliability time and delay bound Active Networks offer two possibilities: 1) they perform
soft state caching of multicast data at some intermediate active nodes, 2) they perform intermediate se-
guence control. Data caching alows the implementation of alocal recovery scheme that avoids all re-
transmissions having to be made from the sender. When an active node receives a NACK traveling to-
wards the source, and has the requested multicast data in its cache, the node filters the NACK and re-
transmits the requested data. | nter mediate sequence control consists of each active node controlling the
multicast data it processes. When a sequence number gap is detected, a NACK capsule is generated to-
wards the source.

Finally, the support of Active Networks in relation to the knowledge of the identity of receivers at the
sender is based on an aggregation function. Receivers can inform about their identity sending ACK (or
some other type of status) towards the sender. Given the possibility in Active Networks of carrying out
the aggregation of these capsules, the sender can be aware of his receiversidentity without the problem of
capsule implosion. Instead of processing one capsule from each receiver the sender will process a reduced
number of capsules, each with information related to many receivers.

Besides the specific requisites of multicast applications, in multicast communication protocols the objec-
tive of optimizing network resources is important, and Active Networks offer, in this aspect, the possibil-
ity of performing recovery with restricted scope and retransmission filtering. Recovery with restricted
scope avoids the retransmission of a requested data capsule through all outgoing interfaces of a given
active node. In this case, Active Network support consists of recording through which interfacesa NACK
capsule for a given packet has arrived, and retransmission of that data capsule can be restricted to only
these interfaces. Active nodes use retransmission filtering to prevent multiple retransmissions of the



same capsule if it has been requested in parallel by a given set of receivers or active nodes which can be
reached via the same network interface.

Reliable Multicast Active Network Protocol (RMANP)

The network service outlined in the second section will be partially provided by the RMANP protocol
described below. It provides the data service element and the session service element. The flow control
service element is not supported. This protocol is designed for Active Network technology.

We assume that RMANP works on top of an unreliable network in which packets can be lost, duplicated
or reordered. RMANP relies on the existence of an active multicast routing service that handles receiver
subscriptions from the group, and creates and maintains the multicast distribution tree. The current design
of RMANP has the restriction that multicast routes from the source to the receivers, and unicast routes
from the receivers to the source must be coincident (at least) at the active nodes. No assumption on the
size of memory available at active nodes is made. RMANP is designed so that state information stored at
active nodes can be flushed at anytime, as the “soft state” concept implied by [Wat81, Clag8].

Capsule Types

Each capsule has an associated code to be executed in the active nodes when the capsules arrives at them.
We have defined one type of capsule for each independent processing unit in the protocol. We have cre-
ated different types of capsules for original and retransmitted data, even though they have the same for-
mat, in order to load the code needed to process retransmissions when the arrival of a negative acknowl-
edgment (NACK capsule) occurs. We have defined an independent capsule for the UnReliable data (UR
capsule) because the only processing to be done with these data are replication and forwarding. We have
the same capsule type (Data capsule) for REliable data (RE flow) and Time-constrained REliable data (T-
RE flow) as their processing is very similar. The flow type is identified by the Flow field of the Data
capsule. The Flow field is aso present in Retransmission, ACK, MACK (Multiple ACK) and NACK
capsules. The term direct descendants of a given active node will be used to denote al receivers or active
nodes that can be reached downstream from the given node without passing through other active nodes.

A brief explanation of most relevant capsule types follows:
UR Capsule— This capsule carries data that the application wants to send unreliably.

Data and Retransmission Capsules— These capsules contain data that the application wants to send
reliably (RE flow) or reliably but restricted to a certain reliability time (T-RE flow). The Mack Required
field is used by the source to ask those active nodes that have receivers as their direct descendants to send
aMACK capsule. The Data_RT field contains the reliability time to be used by active nodes and receiv-
ersinaT-RE flow.

ACK Capsule— This capsule carries accumul ative acknowledgments for RE or T-RE data.

MACK Capsule.— This capsule carries multiple accumulative acknowledgments. They are generated
when the source requests it by setting the Mack Required flag in a data or retransmission capsule. This
capsule carries the number of receivers that are direct descendants of the active node that generated this
capsule, and for each receiver its address and highest sequence number (RE or T-RE flow) acknowledged.

NACK Capsule— This capsule requests retransmission of RE or T-RE data. The Sequence_number field
contains the base value used to calculate which capsules are requested. The Fields_number field indicates
the number of Seq Individ_ NACK fields inside this capsule. Each Seq Individ NACK field is used to
calculate the range of individual sequence numbers that are requested by the sender of this capsule. It has
three subfields: Offset, Seq n_NACK and nack c. The Offset subfield indicates the offset from the last
sequence number of the preceding field. The Seq n NACK subfield contains the number of consecutive
capsules requested (negatively acknowledged) starting with the next one indicated by the offset field. The
nack_c subfield contains how many NACK s have already been sent for this range of sequence numbers.

Sequence_ number Felds_number Seq_Individ NACK Seq_Individ_NACK

1419 2 0 13 3 7 | 1 , 2

Figure1l. NACK Capsule



The design of this capsule is based on the one described in [Hof97]. In order to clarify this capsule for-
mat, figure 1 shows the NACK fields used to request the retransmission of capsules with sequence num-
bers from 1420 to 1432 for the third time, and capsule 1440 for the second time.

RRL Capsule— The Rejected Receivers List capsule is multicast from the source and contains the ad-
dresses of the receiversto be rejected from the RMANP session.

Elements that Participate in an RMANP Session

RE and T-RE data capsules generated in the same session will be treated by RMANP as two data flows
with independent sequence numbers and state information. The only difference between the processing of
RE and T-RE data capsules is that the removal of a T-RE data capsule can be triggered by the expiration
of its associated reliability time (Data_RT). From now on, all the processing will be explained for RE data
capsules, and T-RE processing will only be highlighted when differences appear.

Source

The source stores RE and T-RE data capsules generated until the corresponding MACK capsules have
been received with information from all receivers. In the case of T-RE data capsules, they are removed
also when their Data_RT expires (the reliability time of the session). The application is responsible for
choosing the type of session service it requires for each RMANP session opened. The characteristics of
the three session services are:

Open Group.- Only UR and T-RE data capsules are used. In this kind of session the source does not have
any information related to the receivers connected to the session.

Controlled Open Group.- All types of capsules (UR, RE and T-RE data) are alowed in this session
type. The source controls the receivers that are connected during the session by periodically requesting
receiver statusinformation. Thisrequest is done by setting the Mack Required flag in RE or T-RE data or
retransmission capsules. The source entity will inform the application on which receiversjoin or leave the
session. If the application requests it, the source can promote the expulsion of any receiver by multicast-
ing a RRL capsule.

Closed Group.- The application indicates the list of receivers that should participate in the session. When
the RMANP session isinitiated, the source entity unicasts invitations to each of those receivers. If one (or
more) receivers has not answered positively, the source entity will notify this fact to the application which
decides between aborting or continuing the session. Then, if new receivers connect they are automatically
expulsed (using RRL Capsule). In other aspects, this session type is similar to the controlled open group.

Receiver

Receivers send towards the source ACK capsules with the sequence numbers they have correctly re-
ceived. ACK capsules are generated every certain number of data capsules received, or after agiven ACK
timer expires. Each time a capsule loss is detected the receiver unicasts a NACK capsule containing the
range of lost sequence numbers to the source. When a loss occurs, a NACK timer is started (unlessiit is
aready running) in order to periodically generate a NACK capsule containing the sequence numbers
(each range with its associated nack count) of all those capsules whose retransmission is being expected.
The nack count (nack_c field) associated to each sequence number range is used to indicate how many
times the NACK-time has elapsed while waiting for this range. In the case of T-RE data capsules, the
same process takes place, save for the fact that after their associated Data_RT has elapsed their retrans-
mission is not requested any more.

Active Node

Active nodes maintain state information for each multicast session (source and group) and for each of
their direct descendants. Active nodes perform the following tasks.

Data Caching and buffer release

In addition to the state information corresponding to its direct descendants, the active node keeps infor-
mation for itself. It records the highest RE and T-RE accumulated sequence numbers that it has buffered
or have been acknowledged by all its direct descendants, and the RE and T-RE sequence numbers buff-
ered above the accumulated number. When a multicast RE or T-RE data capsule is received, the active
node storesiit if there is space available (data caching).



When a certain number of data capsules have been received, the active node unicasts an ACK capsule
towards the source (ACK fusing) with the accumulative sequence number that has already been ac-
knowledged by all its direct descendants or have been stored by the active node itself. The generation of
acknowledgments for capsules not yet acknowledged by all direct descendants, but stored in the active
node, triesto avoid storing a given capsule in al active nodes that exist between a receiver and the source.

When an ACK capsule is received from one of its direct descendants, it is processed (in order to actualize
the corresponding RE and T-RE sequence humbers of the direct descendants and of the active node itself)
and it is not forwarded. An ACK capsule has different meanings depending on whether it was generated
by a receiver or by an active node. If areceiver generates it, the ACK means that the receiver itself has
received the capsule. If an active node generates the ACK, it means either that the active node has stored
the corresponding data capsule, or that all its direct descendants have acknowledged that capsule. Each
data capsule is stored at an active node until all its direct descendants have acknowledged it, or until the
soft state storage time for that capsule has expired.

An active node will generate one MACK capsule towards the source upon the arrival of a data or re-
transmission capsule with the Mack Required field set. Each MACK capsule carries the current acknow-
ledgement information regarding all direct descendants of the active node that are receivers of the session
(aggregation function). Only active nodes that have receivers as direct descendants will generate MACK
capsules. MACK capsules are not processed at any intermediate active node as they travel to the source.

Retransmissions.

Retransmissions in RMANP are based on the mechanisms proposed in [LGT98]. Here we will use “inter-
face” to denote an interface of the active nodes that leads to direct descendants. Active nodes use two type
of records with state information that supports the retransmission process. One retransmission_info record
is created for each retransmitted data capsule. This record holds a NACK count value (nack c) for each
network interface through which the capsule was retransmitted. It is used to filter unnecessary retransmis-
sions that may occur when many receivers, that can be accessed through a given interface, do request
retransmissions for a given capsule. One nack _supression_info record is created for each sequence num-
ber requested by the active node. It holds the nack _c value of the last NACK sent for this sequence num-
ber and a bitmap with as many entries as the number of interfaces of the active node. The bitmap indi-
cates through which interfaces NACK capsules for this sequence number were received.

Active nodes or receivers start the retransmission process when they detect the loss of data capsules (in-
termediate sequence control), and they generate a NACK capsule with the requested sequence numbers
and their associated nack _c. NACK capsules are processed at the first active node they visit on their way
towards the source, and are not necessarily forwarded. When an active node receives a NACK capsule, it
analyzes al the sequence numbers and nack c fields contained in it. For each pair (sequence number,
nack c) the node carries out the following functions:

1. It checks if the retransmission request for the sequence number has already been attended to (re-
transmission filtering) or not. If it has been attended, no more processing is done. Otherwise, the
processing proceeds in point 2). To check if the retransmission has been attended to, it verifies that
the retransmision_info record (associated to this sequence number and incoming interface) exists,
and that the nack _c in the record is higher than or equal to the nack ¢ being processed.

2. It checksif it has the requested data locally stored. In this case, it performs the retransmission (local
recovery), and no more processing is done. Otherwise the processing proceeds in point 3). The re-
transmission is performed by sending (in multicast) the data capsule only through the specific inter-
face where the NACK capsule arrived (recovery with restricted scope) and actualizes its retrans-
mission_info record to filter further retransmissions.

3. It checks if a negative acknowledgment has not already been sent. In this case, a NACK has to be
sent for sequence number and nack_c being processed, and it writes the nack _c being processed into
the nack _c of the nack_supression_info record. Otherwise no NACK has to be sent (NACK filter-
ing). In either case, it has to set the bit of the nack supression_info record corresponding to the inter-
face through which this NACK was received. To check if the negative acknowledgement has already
been sent, it verifies that the nack_supression_info record (associated to this sequence number) exists
and the nack_c in the record is higher than or equal to the nack c being processed.

When the processing of al the sequence numbers is finished, it will generate a single (or none) NACK
capsule to request all the sequence numbers needed.



When a retransmission capsule arrives at an active node, if the nack supression_info record correspond-
ing to the capsule exists it forwards the capsule only through the interfaces which are set in the associated
bitmap (recovery with restricted scope). After that, it updates the retransmission_info record for that
sequence number. If no nack supression_info record is found (cache space is low, active node drops, etc.)
the active node caches the data in the retransmission capsule. If no cache space is available, the capsuleis
forwarded in normal multicast mode and its associated retransmission_info record is updated.

Management of Receiver gActive Nodes

RMANP does not need specific procedures to treat neither distribution tree joins, leaves and modifica-
tions of receivers/nodes, nor active node information losses. If a descendant of an active node leaves a
given RMANP session, its associated state information at its active node ancestor will disappear when its
time to live expires. When a new direct descendant joins the current session, ACKs and NACKs are re-
ceived from it, and the active node creates the new necessary information accordingly. If as a result of
reorganizations of the distribution tree an active node or receiver changes its relative position within the
tree, the protocol will treat it as a session leave and a subsequent session join.

Implementation of RMANP over ANTS

The ANTS platform

Active Node Transport System (ANTS [WGT98, Wet97]) is a Java-based toolkit for experimenting with
Active Networks. It provides a node runtime and a protocol programming model that allows users to
customise the processing of their capsules. The main features of ANTS version 1.2 are:

e Each capsule carries a protocol and capsule identifiers that point to the Java code required to process
the capsule at each active node. The code is demand loaded at active nodes when the first capsule of
agiven type arrives. Therefore, an active node will never load protocol code that it does not need.

e Inorder to load the code, it is requested to the previous active node that processed the capsule. The
objective is to receive the code from the closest possible place. The code is retained for some time at
the node in order to reduce the number of requests for code-loading. All capsules of the same proto-
col and type share the same code at the node.

e Each active node has an LRU cache memory to implement a soft-state information repository. A
time to live value is associated to each stored item. Items are removed when their associated time to
live expires. In case there is not enough memory to store a new item, the oldest item is automatically
removed to free enough space to store the new one.

e ANTS uses UDP to communicate active nodes with one another, and both the platform and capsule
code are executed as a user-level process.

One advantage of being coded in Java is portability, but it has the drawback of reduced execution per-
formance. Based on our work over the ANTS platform, we judge that it is a user-friendly and powerful
support environment. However, we have introduced two modifications over ANTS that we have found
useful for the development of RMANP. First, we have incorporated a method that allows checking at any
given moment whether there is cache space available. This is useful in memory shortage situations in
which it is better to discard the new item instead of erasing an old one. For example, in RMANP it is
better to avoid caching a new data capsule instead of erasing protocol state information. Also, we have
added a method that explicitly removes an item from the cache. In RMANP this allows to free memory
used by cached data capsules that have been acknowledged without having to wait for their timeto live.

RMANP Prototype and Evaluation Test-bed

An RMANP prototype has been implemented in Java using the primitives supplied by ANTS v1.2 (the
code is available at http://escorpio.ls.fi.upm.esRMANP.html). The current version implements the reli-
able delivery data service (RE flow) and the unreliable delivery data service (UR flow). The capsules that
have been implemented are therefore the ones that are required for these two services (see the fourth sec-
tion). Related capsules are bound in groups in order to reduce the delay caused by demand loading of
code. The following three groups have been defined: [DATA, ACK and MACK Capsuleg], [Retransmis-
sion and NACK Capsules], and [UR Capsule]. The Java code has been byte-code compiled using Java
DevelopersKit (JDK) version 1.1.3.




To test the performance of the system and to understand its limitations and strengths we have conducted
an experiment running ANTS over the Javainterpreter (JVM) of JDK v1.1.3. The Active Network topol-
ogy of the RMANP session used is shown in Figure 2.

In the experiment, the source sent one 3,000 Kbytes file using RE data capsules, each with 1024 bytes of
data. The source injected RE data capsules into the Active Network at a rate of 20 capsules/sec. UR cap-
sules were sent, interleaved with RE data capsules, at an average rate of 4 capsules/sec. The processing
measurements have been made at the active node labelled AN, The AN, node was running alone on a
Pentium MM X 166 Mhz with 128 Mbytes of RAM under Linux. The other nodes of the experiment were
running on different machines connected by 10 Mbps Ethernet.

Source
|
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% ActiveHost (Receiver)
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Figure 2. RMANP session topology ‘

Memory Requirements

Our first performance study has consisted of analysing the memory requirements at the active nodes. We
have measured the memory required to store the code associated to RMANP capsules and the memory
required to store the state information associated to the RMANP session. Table 2 shows the byte-code
sizes for RMANP capsules. The table presents the three capsule groups, and also the byte-code size of
auxiliary objects shared by the capsules. As a reference value, the TCP object code in a Linux-kernel
version 2.0.3is 42,392 bytes.

Notice that each capsule group will only be loaded at an active node when required. For example, the
retransmission capsule group will not be loaded at active nodes where no NACKSs are being processed.
These performance implications were taken into account during the design of RMANP (e.g. for the defi-
nition of two different capsules for data and retransmission, in spite of them both having the same fields).

Byte-Code Size (bytes)
UR Capsule 2,127
Data Capsule 4,242
ACK Capsule 3,115
MACK Capsule 1,983
Retransmission Capsule 4,708
NACK Capsule 4,730
Objects shared by capsules 4,505
TOTAL 25,410
| TCP Linux object code (bytes) | 42,392 |

Table 2: Byte-code sizes of RM ANP capsulesand TCP object code

The memory required at active nodes to keep the associated RMANP state information is dependent on
the session topology. Each active node requires 49 bytes per RMANP session in which it isinvolved. In
addition to that, 21 bytes are required for each of its direct descendants. Ten additional bytes are needed
for each capsule lost and each group of 8 network interfaces being used at the active node. Finally, stor-
age for cached data and data in transit is required. This is not differential to any network based retrans-
mission technique, as the nodes will only be able to retransmit locally the data that they are storing. No-
tice that the byte-code stored at the active nodes is shared by all RMANP sessions, and the state informa-
tion values grow linearly (with low factors) with session size. Based on these results we consider that the
memory requirements of the RMANP implementation over Active Networks are acceptable.



Capsule Processing Time

Our second performance study has consisted of analysing the processing times needed to process the
RMANP capsules in active nodes. We estimated the average processing time associate to capsules by
recording the real time values using a Java native method invoking the gettimeofday() system call. Table 3
shows the average real time used at an active node for processing the different capsule types. Notice that
the CPU time must be below that of the figures. Notice also that these figures do not include all the proc-
essing carried out on the capsule, as the OS and the ANTS platform perform standard processing over
each incoming capsul e before invoking the specific code required to processit.

RMANP Capsule Type Processing Time (ms)
UR Capsule 0.946
Data Capsule (not-generating aMACK capsule) 1.227
Data Capsule (generating aMACK capsule) 1.593
ACK Capsule 0.284
NACK Capsule 0.757
Retransmission Capsule 1.175
MACK Capsule 0.259

Table 3: Processing times of RM ANP capsules

These processing times are considered unacceptably high in relation to the processing power of the sup-
porting machine. Still, we judge them as very promising results because the execution performance can be
improved in different ways. In addition to fine-tuning the implementation, an improvement can be ob-
tained by machine-code compilation of Active Networking platforms. As capsule code can not be com-
piled (one might not expect all active nodes to be homogeneous in terms of OS and Hardware), improve-
ments in Java interpretation and/or in Java fast compilation are required to have acceptable performance.
Performance improvements can also obtained by introducing in the architecture of Active Networks stan-
dard fields in the capsule header to request processing shortcuts. This suggestion is similar to the idea of
hop-by-hop vs. end-to-end options in IPv6. As an application example, the MACK capsules of RMANP
only require processing at the destination. If they could be tagged for just forwarding at intermediate
nodes this would result in overall performance improvements.

Finally, we consider the combination of two approaches to capsule code distribution, demand-loading and
capsule-carrying, to be convenient. Demand-loading is appropriate for the protocol code modules which
must be available at the node along al the session, and these modules are reused by sessions of different
users of this specific protocol. Capsule-carrying is convenient for procedures or capsule types seldomly
used, in which the delay caused by demand-loading is not worth the saving in bandwidth and reusability.
Although not explicitly addressed in the experiment, an example in RMANP is the code associated to
session establishment and release. This code could be carried only in the capsules used for session estab-
lishment and release, and not demand loaded, because it is not required along the session.

Conclusion

We believe that our definition of a multicast network service that supports different classes of packet loss
tolerances will simplify and accelerate the development of new multicast applications and teleservices. It
has been shown that the design of a protocol that provides this service is feasible: RMANP provides a
range of multicast session and data transfer services to its user applications, while keeping protocol com-
plexity at areasonably low level.

Based on our work on the ANTS platform, we judge that it is a user-friendly and powerful support envi-
ronment. We have also pointed out areas in which ANTS could be improved, such as its cache manage-
ment features, capsule processing shortcuts and the support for protocol software structuring. The
RMANP prototype has acceptable capsule code sizes and data-segment memory requirements. However,
the figures for execution time are not acceptable. As described in the fifth section, we do not believe that
thisis caused by an intrinsic drawback of either RMANP or Active Networking. Future versions of Ac-
tive Networking platforms should take into account that run-time performance is an important require-
ment in order to support high data rates and/or alarge number of protocol instancesin an active node.

In relation to Active Network technology itself we believe that, based on the work described in this arti-
cle, it provides the capability needed for fast development and deployment of sophisticated network pro-
tocols and services. The case study presented is considered a difficult problem to deal with, and in spite of
this, the currently available Active Network support has proved quite valuable for the design and imple-
mentation of a prototype solution.
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