
Submission 1

Special Issue

Multicast Congestion Control for Active
Network Services*

ARTURO AZCORRA
Area de Ingeniería Telemática, Univ. Carlos III de Madrid, 28911 Leganés (Madrid), Spain

azcorra@it.uc3m.es

MARÍA CALDERÓN
Facultad de Informática, Univ. Politécnica de Madrid, 28660 Boadilla del Monte (Madrid), Spain

mcalderon@fi.upm.es

MARIFELI SEDANO
Escuela Universitaria Politécnica, Univ. De Alcalá de Henares, 28871 Alcalá de Henares (Madrid), Spain

marifeli@aut.alcala.es

JOSE IGNACIO MORENO
Area de Ingeniería Telemática, Univ. Carlos III de Madrid, 28911 Leganés (Madrid), Spain

jmoreno@it.uc3m.es

Abstract. The growing interest in multicast applications for the Internet, that will increase with the introduction of
active network technology, brings out the need for providing effective congestion control mechanisms. This paper stud-
ies the problems and specific requirements for multicast congestion control. From this study, a general mechanism is
proposed and its advantages and compliance with the requirements are described. The general mechanism is then applied
in detail to the Reliable Multicast Active Network Protocol implementation. We conclude that active networks provide
good support for congestion control mechanism and that the proposed approach satisfies the stated requirements. How-
ever, further work is needed to optimize the values of the system parameters.

1 INTRODUCTION

Active network technology is based on specific proc-
essing of packets at network nodes. There are two main
approaches for active networks [1]. The first one is the
programmable switch, characterized by maintaining the
existing packet/cell format, and providing a standard
mechanism to support the downloading of programs at
routers. The second one is the capsule approach that goes
somewhat further. In the capsule approach it is possible to
define packets, called capsules, each of which identifies
the code to process it. This approach has two variants de-
pending on how the code is installed at the routers. Under
the embedded code variant, the code is sent within the
capsule itself. Under the demand load variant, if the code
is not already in the router, it is requested to the previous
router, i.e., the one from which the capsule has been re-
ceived.

 * This work has been partly supported by CICYT (the Government

Commission of Science and Technology) under project TIC97-0929.

Active networks seek to address the problem of slow
network service evolution by building programmability
into the network infrastructure itself, thus allowing many
new network services to be introduced much more rapidly
[2]. An active node runs one (or more) execution envi-
ronment(s) that interpret received active packets by means
of an associated virtual machine [3]. Active network tech-
nology does not, at this moment, address some relevant
areas in a satisfactory way. Examples of such areas are
resource consumption control, network management, se-
curity considerations, and in particular, congestion con-
trol.

Congestion control is recognized as a conceptual
function of the network layer. However, in the Internet the
original Source Quench mechanism at the IP layer has not
been used. The situation is that each protocol on top of IP
may, or may not, implement some congestion control pro-
cedure. Currently, most TCP implementations provide a
fair and effective technique, but most other protocols on
top of IP (UDP, routing protocols, ...) do not incorporate
congestion control at all. With the introduction of “unfair”

A.Azcorra, M.Calderon, M.Sedano, J.I.Moreno

ETT2

TCP implementations, the increase in nonTCP traffic (e.g.
internet telephony), and growing usage of multicast IP
(e.g. real audio, mbone), the approach of placing conges-
tion control only in TCP is insufficient. The expected
situation for active networks is more severe in that their
flexibility means that the variety of applications and serv-
ices will be wider than in the current Internet. For this rea-
son, it seems clear that an appropriate treatment of con-
gestion control is essential for active network services and
applications.

Services and applications that require multicast com-
munication are considered an especially relevant problem
to study. On the one hand, availability of multicast appli-
cations is growing fast. Some examples that may be cited
are Software Distribution, Newspaper/Financial Distribu-
tion, Online Auctions, Video/Teleconference, Chats, In-
teractive Group Games, Whiteboard, Computer Supported
Cooperative Work, Application sharing or Distri-buted
Interactive Simulation. On the other hand, congestion
control solutions for multicast traffic are still in a very
preliminary stage, while at the same time IETF has ex-
plicitly required that any proposal must incorporate con-
gestion control [4]. It is foreseen that the flexibility intro-
duced by active network technology will accelerate the
introduction of multicast applications, thus making con-
gestion control a crucial issue.

What we propose is that congestion control be incor-
porated within active networks instead of being provided
end-to-end as is done on the current Internet. We show
that active networks allow the implementation of hop-by-
hop congestion control mechanisms that will show a better
behavior than end-to-end solutions. This is particu-larly
true for the case of multicast applications, in which end-
to-end congestion control solutions suffer from different
drawbacks. We have designed and formally specified a
congestion control mechanism for multicast data over ac-
tive networks. This mechanism has been applied to the
Reliable Multicast Active Network Protocol (RMANP)
implementation in order to show its application to a con-
crete case. An overview of its main functions is presented.

2 MULTICAST CONGESTION CONTROL
REQUIREMENTS

 Any congestion control mechanism must satisfy gen-
eral requirements, such as reacting to congestion as soon
as possible or minimizing the number of lost packets
while reacting to congestion. The characteristics of multi-
cast communication imply some additional specific re-
quirements:

 Scalability to large numbers of receivers. Some
mechanisms suffer from implosion problems when receiv-
ers send back to the source congestion indications.

 Selective reaction. In multicast, a single loss in a
LAN or router will be perceived as n losses (one at each

of the n downstream receivers). It is important that the
congestion control distinguishes whether two indications
correspond to a single loss or whether they really corre-
spond to two different losses.

 Loss-tolerance. A single packet loss, or a set of iso-
lated losses, should not be treated as conventional con-
gestion [5]. Existing studies over Mbone [6] have shown
that the probability of each and every packet being lost at
some point of the distribution tree is very large for groups
of sparse receivers.

 Fast response. Because the network multiplies the
traffic injected by the source along the distribution tree,
the fast response requirement is particularly relevant in
multicast traffic.

 Heterogeneity. In multicast communications there is
diversity in the type and capabilities of receivers, and in
the characteristics of the paths (bandwidth and delay) that
communicate the source with the receivers. This situation
brings up the problem of internal-fairness, in which it is
considered unfair to the group that a slow receiver, or a
receiver connected through a slow path, slows down
throughput to all the receivers.

 Multiple data sources. When multicast communica-
tion is combined with some degree of reliability, most
solutions propose local recovery at other points besides
the source. This implies that retransmitting systems should
also be congestion controlled, in addition to the source.

 Reaction time estimation. Most congestion control
algorithms need an estimation of the round trip time in
order to parameterize different transitions of the protocol
entity. An estimation of the time under which the network
should react to congestion actions is needed, for example,
to distinguish congestion from a deadline or receiver that
left the group. The estimation of the Round Trip Time
(RTT), either average or to the most distant receiver, is
more difficult to obtain in multicast than in the unicast
case.

 Any congestion control proposal for multicast com-
munication should satisfy the above requirements, in ad-
dition to the general ones established for unicast. Under
the functional point of view, there are no known differ-
ences between the multicast and unicast case, the same
basic functions being required:
• How an entity increases throughput to provide the

maximum available bandwidth to the application, un-
der no congestion.

• Why an entity decides that there is congestion. This
may be detected by its own local information, or be-
cause it receives an explicit indication from another
entity.

• How an entity communicates to other entities that it
has detected congestion.

• What actions does an entity take to recover the con-
gestion situation.

Multicast Congestion Control for Active Network Services

Submission 3

• How an entity decides that the congestion situation
has been tackled with.

 The hop-by-hop congestion control mechanism that we
propose will fulfill these functions at the different entities
of the active network, attempting to satisfy the general
congestion control requirements as well as the ones spe-
cific to multicast communications.

3 CURRENT APPROACHES TO MULTICAST

CONGESTION CONTROL

One of the most difficult problems encountered in the
design of end-to-end multicast congestion control is sca-
lability. Currently, there are two main approaches to pro-
vide acceptable scalability: 1) sender-oriented algo-
rithms, in which the source controls the rate of injected
traffic based on indications sent by the receivers. 2) re-
ceiver-oriented algorithms, in which the receivers control
the rate at which they accept data.

Among the sender-oriented algorithms the many dif-
ferent proposals may be roughly divided in three types.
The first type consists of selecting a set of representative
receivers (e.g. [7]) that will send immediate indications,
while the non-representative ones will perform probabil-
istic suppression. This approach will expose different re-
action times depending on the number of selected repre-
sentatives, and their topological location. The second type
proposes the construction of a tree, where some receivers
act as tree nodes and others as tree leaves. Each node acts
as an intermediate retransmission point, serving the re-
quests received from its descendants. Nodes also perform
congestion control by monitoring the congestion level of
its descendants. In [8] this is done using a dynamic con-
gestion window (TCP like) updated with received ACKs
and NACKs from the descendants. A summary of the
congestion reports is aggregated along the tree in order to
inform the sender. The main drawbacks are: 1) the delay
from the congestion detection instant at the SA to the in-
stant at which the sender reduces its rate may be too long.
2) the construction of a tree of end-systems will not in
general make advantage of the topol-º ogy of the physical
distribution tree. The third type consists on a collection of
independent techniques to reduce the implosion of con-
gestion notifications. A fairly interesting one is [5] based
on that the receiver performs probabilistic suppression of
the indications sent towards the source, in order to avoid

implosion. The drawback of this approach is that conges-
tion indication is delayed, increasing the reaction time to
cope with the congestion.

Receiver-oriented algorithms organize transmitted data
into layers, associating one multicast address to each
layer. Every receiver may control the accepted rate by
subscribing to more or less multicast addresses. The re-
ceiver will monitor the loss rate. When losses are de-
tected, the receiver will leave a multicast group, and if
there are no losses the receiver will join an additional
group. Notice that it is required that all receivers in a con-
gested subtree agree on what group should be abandoned
and at what instant. The main drawbacks of this technique
are that the reaction time is dependant on the propagation
of control information at the multicast routing level, and
that it is not possible to control the rate of the source (i.e.
the source could be creating congestion in the first trans-
mission hop). Some proposals ([9,10,11]) apply this ap-
proach to unreliable data distribution, satisfying the het-
erogeneity requirement by allowing receivers with differ-
ent characteristics to get different quality. Other authors
[12, 13] apply it to reliable data distribution. In this case,
all data must be received and therefore it is only useful for
bulk transfers in which receivers with higher throughput
will complete the transfer in shorter time.

Work reported on in a recent paper [14] has begun to
exploit the advantages of active networks to support con-
gestion control, although restricted to the simpler unicast
case. In his article, Faber shows how the throughput of a
TCP connection may be improved 18% under bursty traf-
fic conditions. Some limitations of his approach are that it
generates one congestion indication for each lost data
packet, and that it does not react to losses in the non-
active nodes.

4 MULTICAST CONGESTION CONTROL OVER
ACTIVE NETWORKS

The congestion control mechanism proposed is de-
signed for an active network formed by a set of active
systems interconnected by non-active internetworks. A
non-active internetwork may be a direct link, a LAN or a
WAN that provides unreliable unicast and multicast cap-
sule delivery. Therefore, the mechanism is designed to
work under the situation in which not all the network
nodes are active, and it is prepared to react to losses
within the connecting internetworks.

A.Azcorra, M.Calderon, M.Sedano, J.I.Moreno

4 ETT

A c t iv e N o d e

N o n _ A c t iv e N o d e

A c t iv e R e c e iv e r

A c t iv e S o u rc e

Figure 1. Control Tree Structure

 A multicast session is structured as a tree of active
nodes formed by the multicast routing algorithm. The tree
root is the session active source and the tree leaves are the
session active receivers (see Figure 1). Each active node
has one upstream interface and one or more downstream
interfaces. Through each downstream interface, an active
node may reach one or more direct descendants (either
active nodes or receivers).

 The proposed congestion control works hop-by-hop.
An overview of the functions performed by each system
under the proposed mechanism follows:

 The Source

• Controls the value of the session transmission data
rate, stamping each outgoing data capsule its the
current value.

• Periodically multicasts the value of the session
minimum_rate (fixed by the application).

• Periodically requests through all the tree feedback
state information (RTT and highest acknowledged
sequence number). The source will receive state
information from all its direct descendants and
from all active nodes that have receivers as direct
descendants.

• When it receives a feedback state information an-
swer, it updates its state information registers. If
the highest acknowledged sequence number re-
ceived increments the global one, then the source
will increase its output rate.

• Whenever it receives congestion indications, it
applies congestion control actions.

• Whenever it detects that feedback state informa-
tion is not flowing (severe congestion), it reduces
the output rate to the minimum defined value.

 Each Active Node

• Forwards capsules downstream (as well as cach-
ing them for potential retransmission), in the no-
congestion situation.

• When it receives a state information request, it
immediately sends a state information report to-
wards the source and also forwards the request to
all its direct descendants.

• When it receives a feedback state information an-
swer, it updates its state information registers.

• When it receives a retransmission request, it re-
transmits the capsules from its cache.

• Whenever it detects severe capsule loss (in its
queue or in the preceding internetwork) it notifies
the congestion upstream.

• In a congestion situation, it controls the value of
the session transmission data rate, stamping each
outgoing data capsule with its current value.

• Whenever it receives congestion indications, it
applies congestion control actions and forwards
the indication upstream.

• When it detects that feedback state information is
not flowing (severe congestion), it reduces its
output rate to the minimum defined value and in-
dicates this situation towards the source.

Multicast Congestion Control for Active Network Services

Submission 5

• When congested, it retransmits lost capsules from
its cache (through the appropriate downstream
interface) at a controlled rate, and holds newly-
received capsules in a queue for subsequent for-
warding.

• When congestion decreases it will forward new
capsules (from its cache) at an increasing output
rate, until the cache is empty.

 Each Receiver

• Controls the reception rate. If it is below the ses-
sion minimum_rate, it notifies a “leave” and quits
the session.

• It controls received capsule sequence numbers. In
case of loss, it requests retransmission from a pre-
vious node and if loss is severe additionally indi-
cates congestion.

• When it receives a feedback state information re-
quest, it immediately sends an answer towards the
source.

 An important aspect of the proposed mechanism is that
congestion indications contain the requested rate. This
allows all incoming congestion indications to be filtered
(both to forward them, and to locally react to them) with a
rate higher or equal to the one currently in use in the node.
Therefore, a node will decrease its transmission rate when
a more restrictive congestion indication is received. A
node will gradually increase its transmission rate while no
congestion symptoms are detected.

 The advantages of the proposed mechanism over ac-
tive networks, as related to the requirements from section
2, are:

 1. Congestion indications are filtered by the active
nodes based on the stamped rate. This avoids multiple re-
actions to a single congestion instance as well as an im-
plosion of congestion indications.

 2. Isolated capsule losses are not interpreted as con-
ventional congestion, and are locally recovered by the
closest upstream active node that has cached the lost cap-
sules.

 3. Congestion is detected at the closest downstream
active node by sequence number control.

 4. Explicit congestion indications are used in order to
propagate reaction to all nodes, from the congestion point
towards the source, as fast as possible.

 5. Each active node reacts locally to congestion by re-
ducing its output rate, and sending an explicit congestion
indication upstream. Therefore, each node will only need
to queue packets received from the instant of its own re-
action up to the instant of reaction of its parent active

node. In this way, all active nodes try to collaborate to ab-
sorb the overflow that occurs from the congestion detec-
tion instant up to the congestion reaction instant at the
source.

 6. Retransmitted data is subject to congestion control
both at the source and at intermediate active nodes.

 7. The feedback state information requests allows a
calculation of the highest RTT, in an integrated manner,
while avoiding implosion.

 8. The absence of feedback state information allows
the detection of congestion even in the case in which con-
gestion itself causes the loss of congestion indications.

In order to make the behavior of the proposed mecha-
nism more concrete it has been applied to provide conges-
tion control in the RMANP implementation . In order to
give an understanding of the complete system, a brief de-
scription of the RMANP protocol is given below (a more
detailed description of RMANP may be found in [15]).

5 OVERVIEW OF THE RMANP PROTOCOL

RMANP provides different multicast distribution
services over active networks. It provides reliable, time-
restricted reliable, and unreliable transfer modes for open,
controlled and closed receiver groups. RMANP is essen-
tially a sender-oriented protocol, but receivers are also
responsible for requesting data retransmissions (NACKs).
Each RMANP session provides a multicast communica-
tion between one sender and many receivers.

The main features of RMANP are: ACK fusing.– Con-
sists of the sending of just one ACK from a given active
node towards the source of each “n” ACKs received. The
new ACK carries the fused information of all “n” ACKs;
NACK Filtering.– Is performed at active nodes in order to
send just one NACK towards the source per data capsule
lost. This is, they remember the data already requested,
and when a NACK is received it is forwarded only if it
asks for different data; Data caching.– If there is space
available, active nodes store capsules in addition to for-
warding them across the network. Removal of stored cap-
sules in an active node is triggered when all the direct de-
scendants of the node have confirmed the reception of the
capsule, or after a given time has passed; Intermediate se-
quence control.– Active nodes detect gaps in capsule se-
quence numbers and they generate retransmission requests
accordingly. This mechanism is intended to anticipate re-
transmission requests that would anyway be generated
later on at receiver sites; Local recovery.– When a capsule
loss occurs, retransmission will be executed at the nearest
active node that has cached the lost capsule in order to
bring retransmission points closer to the place where the
loss occurs; Retransmissions with restricted scope.– Ac-
tive nodes forward a retransmission capsule only on inter-
faces for which retransmission requests for that capsule

A.Azcorra, M.Calderon, M.Sedano, J.I.Moreno

6 ETT

were received. This feature reduces bandwidth waste and
prevents the use of resources at nodes and receivers that
did not have trouble receiving this capsule; Retransmis-
sion Filtering.– Active nodes use filtering techniques to
prevent multiple retransmissions of the same capsule, if it
has been requested in parallel by a given set of receivers
or active nodes which can be reached via the same net-
work interface.

6 APPLICATION OF THE PROPOSED
MECHANISM TO RMANP

The mechanism is formally specified using Statecharts
[16], but a thorough presentation is not possible in this
article. For this reason we present an overview of the main
functions. We will begin by describing the behavior of an
active node, to discuss afterwards the functions specific to
the source and to the receivers. Finally, the algorithm used
to compute an estimation of the Round Trip Time to the
most distance receiver is presented.

Congestion Control at Active Nodes
A node implements a cache to attempt to store all for-
warded capsules that have not been acknowledged by all
its direct descendants. The node implements one input
FIFO queue, new_queue, associated to the upstream inter-
face. The node implements one FIFO queue, ret_queuei,
associated to each downstream interface. Figure 2 repre-
sents these flow structures at the node and the paths fol-
lowed by data capsules. The usage of these queues will be
described when studying the behavior of the node.

Here the node behavior is formalized using extended
automata. There is one automaton for the node global
state (new_automaton), depicted in Figure 3, and one
automaton for each downstream interface
(ret_automaton), depicted in Figure 4. The initial state of
the new_automaton is No_congestion, and the initial state
of each ret_automaton is No_retransmission_pending.

Downtream

new_queue

Interface j

ret_queue i

ret_queue j

Upstream
Interface

Interface i

Downtream

Active Node

Figure 2. Flow Structure of an Active Node

Multicast Congestion Control for Active Network Services

Submission 7

Because of the design of the transitions, not all the state
combinations are reachable. When the new_automaton is
in the No_congestion state or in the Leaving_congestion
state, all the ret_automaton will be in the
No_retransmission_pending state. Conversely, when any
ret_automaton is in the Retransmission_pending state, the
new_automaton will be in the Congestion state.

In the No_congestion state, the node will forward (and try
to cache) all received data capsules to all downstream in-
terfaces. Before forwarding, the node will check if its se-
quence number is one more than the previous capsule (to
send a NACK) and it will also record the Stamped-Rate of
the last forwarded capsule. If the received capsule does

not have the expected sequence number, the node will
also send a NACK upstream to request retransmission of
all lost capsules. If the number of lost capsules is higher
than the G parameter (and the received capsule is not
marked), the node will also send a piggybacked conges-
tion indication upstream, and will mark the forwarded
data capsule as having already indicated congestion. The
G parameter is used to select the threshold of the loss-
tolerance requirement. The congestion indication is used
to satisfy the fast reaction requirement. The mark of the
forwarded data capsule is used to avoid a reaction to con-
gestion downstream of the point where congestion is actu-
ally occurring.

Figure 3. Extended Automaton of the new_automaton

When a node in the No_congestion state receives a re-
transmission request, but no congestion indication, it will
pass to the Congestion state and the incoming downstream
interface will pass to the Retransmission_pending state. In
this case, the retransmission is made at the current data
rate (the one registered at the node) in order to empty the
ret_queue, but without worsening a possible congestion
situation.

While in the Congestion state the node does not forward
new data capsules but queues them in the new_queue. It
only serves retransmissions that are locally cached, or that
are received while in this state. In this state, the node clas-
sifies a received capsule as new if its sequence number is
higher than the highest which has previously been proc-
essed at the node. Otherwise, the capsule is classified as a
retransmission, and is queued to the appropriate
ret_queue(s) based on the standard RMANP retransmis-
sion records.

Drop G capsules / CI to Source with Rref*D

Rref = Rnew

Inc_ret / RC = 1; Rref = Rsta

Dec_ret / RC = RC - 1

Inc_ret / RC = RC + 1

NACK or CI with Rind / If Rind < Rref

Inc-ret / RC = 1;

Rsta Rref, RC

Rnew, Rsta, N

Leaving_congestion

CongestionNo_congestion

(new_queue = 0) and
Rsta <= Rnew

Rind = Rsta*E
NACK to Source with Rind
Mark Data Capsule

Drop G capsules / CI to Source with Rnew*D

Shift acumulative ack / Rnew = Rnew + K*N

(Detected Gap > G) and (Data Capsule no Marked)/
Rind = Rsta*E
NACK to Source with Rind
Mark Data Capsule

Con_ind (Rind) / If Rind < Rref

(Rref = Rind;
CI to Source with Rind*D)

(Rref = Rind;
CI to Source with Rind*D)

RC = 0 / Rnew = Rref

(Detected Gap > G) and (Data Capsule no Marked)/

CI to Source with Rind*D)
(Rnew = Rind;

If Rind < Rnew
NACK or CI with Rind / D = Decrement; 0<D<=1

Rsta = Stamped_Rate
Rind = Indicated_Rate
Rref = Reference_Rate

RC = Retransmission_Count

Rnew = New_Rate

E = Exponential Decrement
G = Capsules Gap

N = Acknowleged Capsules Numbers

NACK or CI with Rind /
If Rind < Rsta

(Rnew = Rind;
CI to Source with Rind*D)

TblockingDD /
Rnew = Low_Rate
CI to Source with Rnew

TblockingDD /
Rnew = Low_Rate
CI to Source with Rnew

TblockingDD = Blocking Timer
Direct Descendent

A.Azcorra, M.Calderon, M.Sedano, J.I.Moreno

Submission 8

Direct Descendant

_pending _pending
No_retransmission

ret_queue > 0 / Rint = Rref

ret_queue = 0

Retransmission

Rint

Dec_ret

Inc_ret

Con_ind (Rind)

Con_ind (Rint)

(NACK or CI with Rind) and (Rind < Rint)/
Rint = Rind

TblockingDD /
Rint = Low_Rate

Rind = Indicated_Rate
Rref = Reference_Rate
Rint = Interface_Rate

TblockingDD = Blocking Timer

Internal Events:
Inc_ret = Increment Retransmision_pending
Dec_ret = Decrement Retransmision_pending
Con_ind = Congestion indication

Figure 4. Extended Automaton of the ret_automaton

Once all the ret_queues are empty, the node passes to
Leaving_congestion. In this state, the behavior is similar
to the Congestion state, but as no retransmissions are
pending, the node will proceed to forward the data from
the new_queue through all the downstream interfaces. In
the Leaving_congestion state, the rate is increased, begin-
ning at the rate in use when the state was entered, in an
additive fashion proportional to the sequence number ac-
knowledged by all the descendants. The objective is to
empty the new_queue and reach a balance between the
arrival and the transmission rates.
Notice that the sporadic loss causes the node to go into the
Congestion state, but it does not indicate congestion up-
stream, and it does not reduce its output rate. This means
that it will attempt to perform a local fast recovery of the
loss and then return to the No_congestion state (through
the Leaving_congestion state). The objective is to recover
the sporadic loss but without reacting as it would in a
conventional congestion situation.
The congestion indication always contain a rate (Indi-
cated_Rate) which informs the receiving node about the
highest rate that it should use. The transmission of a con-
gestion indication may be caused by four different situa-
tions:
• The node detects a gap (by an incoming non-marked

data capsule) in the sequence numbering higher than
G capsules. Notice that this may only occur in the
No_congestion or Leaving_congestion states. In this
case, the Indicated_Rate is the stamped rate (the one

stamped on the last received capsule, not on the cur-
rent one) multiplied by an exponential parameter E
(lesser than 1, possibly 0.5).

• The node is discarding incoming new data capsules
due to overflow of the new_queue. In this case, the
Indicated_Rate will be the current rate (depending on
the state, it is the Reference_Rate, or the New_Rate)
multiplied by an adjusting parameter D (lesser than or
equal to 1, possibly 0.95).

• The node receives a congestion indication with an
Indicated_Rate below the current rate (depending on
the state, it is the Stamped_Rate, the Reference_Rate,
the New_Rate, or the Interface_Rate). In this case,
the forwarded Indicated_Rate will be the received
one multiplied by the adjusting parameter D.

• One of the TblockingDD timers elapses. Each active
node maintains one TblockingDD timer for each of its
direct descendants. Each timer is reset when the node
receives feedback state information from the associ-
ated direct descendant. If one of these timer elapses,
the active node will decrease its current rate to the
minimum_rate, and this is the value included in the
congestion indication sent. The reason for this reac-
tion is that the absence of feedback state information
is interpreted as severe congestion.

When a node receives a congestion indication it will be
ignored if the Indicated_Rate is below the current rate
(see the previous point). Otherwise, the node will fix its
current rate (Interface_Rate of the incoming interface or

Multicast Congestion Control for Active Network Services

Submission 9

New_Rate if in the Leaving_congestion state) to the indi-
cated rate.

Congestion Control at Receivers
Receivers do not have descendants, and therefore do not
incorporate any of the node functions associated to down-
stream interfaces. However, an RMANP receiver controls
(by time-out) if a retransmission request has been served
in order to resend it, and also controls the number of suc-
cessive retransmission requests (nack_c) issued for a
given capsule. This introduces another situation in which
a congestion indication is sent: a receiver will send a pig-
gybacked congestion indication for each successive re-
transmission request sent. The Indicated_Rate will be cal-
culated based on the Stamped_Rate of the last capsule re-
ceived in sequence before the first loss, using the expres-
sion: Indicated_Rate = Stamped_Rate * E nack_c.
The receivers also control their sustained average received
rate, in order to satisfy the heterogeneity requirement. The
receiver self-imposes an internal fairness policy by leav-
ing the session if the measured rate is below the session
minimum_rate.

Congestion Control at the Source
The source does not have an ancestor, and therefore it
does not incorporate any of the node functions associated
to the upstream interface. The source will exert backpres-
sure on the application to balance the Data_Request
primitive rate and the current output rate.
Under very severe congestion, the congestion indications
will be lost. This situation will by detected because feed-
back state information is not received from one, or more,
of its direct descendants (like active nodes do). Its reac-
tion will be to reduce its output rate to the minimum_rate
parameter (fixed by the application).

Estimation of Round Trip Time
Multicast protocols for large groups need an estimation of
the RTT in order to distinguish between a spurious con-
gestion situation, and a permanent situation (receiver
leave, down link, ...). The removal of dead receivers (or
subtrees) for “long” silences is already included in the
RMANP protocol, although the calculation of the RTT
was not performed.
The proposed mechanism to calculate the RTT is based on
cumulative hop-by-hop requests/responses of an estima-
tion of the RTT. This is done using the feedback proce-
dure used to detect severe congestion. The source periodi-
cally requests feedback by setting a flag in data capsules.
When a node receives such a request, it will respond with
an ACK capsule containing (in addition to the current
highest sequence number), the current estimation of the
node RTT. As the data capsule is also forwarded down-
stream, the node will later receive responses from its de-
scendants. Each node (and the source) will add the re-

sponse time of each descendant to its incoming indication
of RTT, and will store the highest resulting value. Receiv-
ers will always send their responses with RTT set to 0.

Notice that in order to associate requests and their cor-
responding responses in order to calculate the response
time, requests and responses carry sequence numbers.

7 CONCLUSION AND FUTURE WORK

It is considered essential to provide robust and fair
congestion control mechanisms for active network serv-
ices, to avoid the problems that are foreseen in the Inter-
net. This is particularly true for the case of multicast ap-
plications and services, because of the multiplication of
injected traffic by the network itself.

Active network technology has several advantages in
the implementation of multicast congestion control
mechanisms. It has been show how these advantages can
be exploited by presenting a congestion control mecha-
nism for multicast traffic over active networks that does
not suffer from the drawbacks found with end-to-end ap-
proaches. The mechanism has been applied to the
RMANP implementation, showing the feasibility of its
detailed design. The mechanism works in the presence of
non-active internetworks and is resilient to severe con-
gestion that causes loss of all congestion indications.

Further work is required to provide appropriate values
for the different configuration parameters. Computer
simulations would be useful to predict the system behav-
ior under different circumstances in order to tune the pro-
posed mechanism.

Finally, this mechanism has been designed for a source
based tree, overlaid over the routing tree set up by the
conventional multicast routing algorithm used. It would be
more convenient for group communications that the con-
gestion control used instead an overlaid shared acyclic
graph (e.g. as is used by RSVP). The modifications re-
quired on the mechanism for this improvement appear to
be minor, but thourough research and testing would be
required before reaching a final result.

8 REFERENCES

[1] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J.
Wetherall and G.J. Minden. A Survey of Active network
Research. IEEE Comunications Magazine, pp. 80-86, Janu-
ary 1997.

[2] D. Wetherall, U. Legedza and J. Guttag. Introducing New
Internet Services: Why and How. IEEE Network, Special
Issue: Active and Programmable Networks, 12(3):12-19,
May/June 1998.

[3] K. Calvert, ed. Architectural Framework for Active Net-
works Draft. AN Architecture Working Group, July 1998.

A.Azcorra, M.Calderon, M.Sedano, J.I.Moreno

10 ETT

[4] A. Mankin, A. Romanow, S. Bradner and V. Paxson. IETF
Criteria for Evaluating Reliable Multi-cast Transport and
Application Protocols. RFC 2357, June 1998.

[5] C T. Montgomery. A Loss Tolerant Rate Controller for Re-
liable Multicast. Technical Report: NASA-IVV-97-011,
August 1997.

[6] Yajnik, J. Kurose and D. Towsley. Packet Loss Correlation
in the Mbone Multicast Network. IEEE Global Internet
Conference, December 1996.

[7] D. DeLucia and K. Obraczka. A Multicast Congestion
Control Mechanism for Reliable Multicast. IEEE ISCC'98,
Athens, Greece, June-July 1998.

[8] I. Rhee, N. Ballaguru and G. N. Rouskas. MTCP: Scalable
TCP-like Congestion Control for Reli-able Multicast.
Technical Report TR-98-01, Department of Computer Sci-
ence, North Carolina State University, January 1998.

[9] S. McCanne, V. Jacobson and M. Vetterli. Receiver-driven
Layered Multicast. Proc. of SIGCOMM’96, pp. 117-130,
August 1996.

[10] L. Wu, R. Sharma and B. Smith. Thin Streams: An Archi-
tecture for Multicasting Layered Video. Proc. of
NOSSDAV '97, 1997.

[11] T. Turletti, S. Parisis and J. Bolot. Experiments with a Lay-
ered Transmission Scheme over the Internet. Technical re-
port RR-3296, INRIA, November 1997.

[12] L. Vicisano, L. Rizzo and J. Crowcroft. TCP-like conges-
tion control for layered multicast data transfer. Proc. of
INFOCOM'98, San Francisco, California, p. 996,
March/April 1998.

[13] S. Bhattacharyya, J. Kurose, D. Towsley and R. Nagarajan.
Efficient Multicast Flow Control using Multiple Multicast
Groups. Proc. of INFOCOM'98, San Francisco, California,
April 1998.

[14] T. Faber. ACC: Using Active Networking to Enhance
Feedback Congestion Control Mechanisms. IEEE Network,
Special Issue: Active and Programmable Networks,
12(3):61-65, May/June 1998.

[15] M. Calderón, M. Sedano, A Azcorra and C. Alonso. Active
network Support for Multicast Appli-cations. IEEE Net-
work, Special Issue: Active and Programmable Networks,
12(3):46-52, May/June 1998.

[16] D. Harel. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Program-ming, Vol. 8, pp.
231-274, 1987.

