
 1

ROSA: Realistic Open Security Architecture for active
networks1

Marcelo Bagnulo1, Bernardo Alarcos2, María Calderón3, Marifeli Sedano4

1,3 Departamento de Ingeniería Telemática. Universidad Carlos III de Madrid.
Av. Universidad 30 - 28911 LEGANES (MADRID)

2,4 Área de Ingeniería Telemática. Universidad de Alcalá
28871 Alcalá de Henares (MADRID)

{marcelo,maria}@it.uc3m.es, {bernardo,marifeli}@aut.uah.es

Abstract. Active network technology enables fast deployment of new network

services tailored to the specific needs of end users, among other features.

Nevertheless, security is still a main concern when considering the industrial

adoption of this technology. In this article we describe an open security

architecture for active network platforms that follow the discrete approach. The

proposed solution provides all the required security features, and it also grants

proper scalability of the overall system, by using a distributed key-generation

algorithm. The performance of the proposal is validated with experimental data

obtained from a prototype implementation of the solution.

1. Introduction.

Active networking technology[1] has already proven to be a powerful approach when

fast deployment of new protocols and services is needed. However, security risks

introduced by its own nature are a major concern when evaluating the usage of this

technology in public environments. Furthermore, heavy security measures can

preclude deployment in real scenarios because of the imposed overhead in terms of

1 IWAN 2002, Lecture Notes in Computer Science 2546, pp 204-215. December 2002. This work has
been funded by CICYT under project AURAS.

 2

processing, bandwidth and/or latency. So, in order to achieve a deployable active

network architecture, the security solution must not only provide protection from all

the detected threats but it must also grant the scalability of the system. In this article,

we will present ROSA, a Realistic Open Security Architecture for active network

platforms that follow the discrete approach [2], which can fulfill both requirements

thanks to a distributed key-generation algorithm and to architectural features of the

discrete approach platforms.

The remainder of this article is structured as follows. In section 2 an introduction to

discrete approach to active networks is presented. In section 3, the security solution

requirements are detailed, including threats assessment and scalability requirements.

Next, section 4 provides an overall description of the proposed security architecture.

In section 5, implementation is described and performance results are discussed.

Section 6 is dedicated to related works. Finally, section 7 is devoted to conclusions.

2. Active networks: the discrete approach

There are two different approaches to provide dynamic network programmability to

active networks. Some active network platforms follow a discrete approach. This

means, packets do not include the code to be executed in the Active Routers, but a

separate mechanism exists for injecting programs into an Active Router, such as a

Code Server. Other active network platforms follow an integrated approach, and

packets (called capsules) include not only user data but the code used for the

forwarding of the packet as well. We will next present three active networks that

follow the discrete approach: DAN, SARA and ASP. These platforms are compatible

 3

with ROSA. Finally, we will describe the active packet exchange.

2.1. Discrete Approach platforms

DAN[3], which stands for Distributed Code Caching for active networks, has been

developed by the Washington University of St Louis and by the Computer

Engineering and Network Laboratory of Zurich. DAN is an Execution Environment

(EE) that is running in the high performance Active Network Node, ANN [4]. The

proposed framework mainly includes the following components: an Active Module

Loader which loads the active modules authenticated and digitally signed by their

developers from well known code servers using a lightweight network protocol (e.g.

UDP/IP); a Policy Controller which maintains a table of policy rules set up by an

administrator, e.g. restrict the set of supported modules; a Security Gateway which

allows/denies active modules based on their origin and developer by analyzing their

digital signatures/authentication information; a Function Dispatcher which identifies

references to active modules in data packets and passes these packets to their

corresponding function implementations; and a Resource Controller for fair CPU time

sharing among active functions.

The next active network platform considered is SARA (Simple Active Router

Assistant) [5] which is an active router prototype developed by the University Carlos

III de Madrid in the context of the IST project GCAP [6]. It is based on the router-

assistant paradigm, meaning that active code does not run directly on the router

processor but on a different device, called assistant, which is directly attached to the

router through a high-speed LAN. Hence, the router only has to identify and divert

active packets to its assistant. Active packets are identified by the router alert option,

 4

enabling active router location transparency, since active packets need not be

addressed to the active router in order to be processed by it. After requested

processing is performed by the assistant, the packets are returned to the router in order

to be forwarded. The active code needed to process active packets is dynamically

downloaded from Code Servers when it is not locally available in the assistant. In this

way, safety can be checked in advance, since only registered code proved harmless is

stored in code servers. SARA is available in two platforms: One fully based on linux

[7] (playing both roles: router and assistant as a development scenario) and a hybrid

platform where the router used is an Ericsson-Telebit AXI462 running a kernel

adapted to work with an active assistant.

Finally, we will consider one of the principal EEs running within ABone [8]

which is ASP [9] from the University of the Southern California/Information Sciences

Institute. In the implementation proposed in this EE, the active code is downloaded

from a set of known secure code servers. An important contribution of ASP is the

support of persistent active applications that may have long-lived execution threads.

2.2. Discrete platform packet exchange

In order to present the security architecture, we will first introduce the packet

exchange performed, so we can detect the requirements imposed by security and

scalability concerns.

The elements involved in the packet exchange are:

Source: User terminal that generates traffic and uses the active services.

Destination: It is the terminal that Source addresses its traffic to.

Active Router: It is a router capable of processing active packets. It is also able to

 5

obtain the active code needed.

Code Server: It is the active code repository that serves the Active Routers.

The packet exchange description depicted in figure 1 is described next. When Source

needs special active processing for a flow of packets between itself and Destination, it

must send packets (msg1), addressed to Destination, containing the identification of

the active code that it desires to be executed. When a packet reaches the first Active

Router, it is inspected and the identification of the active code is extracted. If the

active code is locally available at the Active Router, it performs the requested process

and then forwards the packet (msg4). If the needed active code is not locally available

the Active Router requests it from the Code Server (msg2). The Code Server then

sends the requested code to the Active Router (msg3), which now processes the packet

and forwards it to the next hop. The same procedure is executed by all the Active

Routers along the path (msg5, msg6), until the packet reaches Destination, where the

packet is received (msg7). Next active packets of this flow will presumably follow the

same path, so the Active Routers will be capable of processing them without needing

to request the code from Code Servers again.

msg2

Figure 1. Services Network Architecture.

R Router
AR Active Router
CS Code server

 Data flow
 Code Download

msg1
msg3

AR AR

R R

CS

Source Destination

msg6

msg5

msg4 msg4
msg7

 6

3. Security Architecture requirements.

In this section we will present the different requirements imposed on the security

architecture. We will first start by stating the security requirements and then we will

describe other general requirements, specially emphasizing the scalability aspects.

3.1. Security Requirements

Security requirements imposed by active networks have already been detailed in

several documents [10]. So, we will not perform an exhaustive analysis here, but we

will only present the final security requirements from each element´s perspective.

From the Active Router´s perspective, authorization is a key requirement. It is

relevant that the active code loaded into the routers is provided by an authorized Code

Server and not from an unauthorized source. In addition, the code integrity must be

preserved while it is transmitted from the Code Server to the Active Router. In

addition, the Active Router must be able to verify that the user that is requesting the

code (i.e. Source) is authorized to execute it at this moment.

From the Code Server´s perspective, it must be able to authen ticate Active Routers

that are requesting active code, since not all the code will be available to all routers.

Furthermore, the security solution must provide confidential code transfer, in order to

prevent unauthorized parties from inspecting the delivered code.

From the Source´s perspective, it must be able to be certain no other user is

requesting active services on its behalf. It must also be the only one capable of

controlling its active services, meaning that no other user is capable of introducing

new active packets or modifying active packets sent by Source, interfering with the

requested active service. In addition to authentication features, it is also important to

 7

provide non-repudiation; this is specially important when active services will be

provided in a commercial fashion.

From the Destination´s perspective, there are no requirements since it does not

demand active services from the network. It should be noted that end-to-end security

is out of the scope of this security solution.

3.2 Other general requirements

Besides security requirements, the security architecture must also meet scalability and

performance requirements, which are reflected next:

1. Zero user knowledge at the Active Routers: In order to build a manageable

solution, user management must not be performed on each and every Active

Router. A database containing all the users information, including access rights

would be the preferred solution.

2. Path transparency: It must not be required that the Source be aware of which

Active Routers are in the path used to transport packet towards the Destination. In

addition, it must not be required that each node in the path has knowledge of its

active neighbors. These requirements are needed to grant the scalability,

performance and flexibility of the active network, since, hop-by-hop

authentication is considered to be incapable of providing the mentioned features.

4. ROSA Security Architecture

In this section we will present the proposed security architecture. We will first

consider Source authorization issues, evaluating the different authorization paradigms

available and then infering which one is the most appropriate for this particular

 8

problem. Then we will consider the code downloading security and non-repudiation

issues. Finally, we will present the overall solution step by step.

4.1 Source Authorization

4.1.1. Authorization paradigm

A key feature that must be provided by the security architecture is authorization, i.e.

Sources must be authorized to execute the solicited code on Active Routers. There are

two authorization paradigms that can be used: authorization based on access control

lists or authorization based on credentials. The first paradigm is based on the

existence of an access control list (locally available or in a remote location) that must

be queried every time an Active Router receives an active packet sent by Source, in

order to validate the Source´s permissions. In this case the identity of the requesting

party must be authenticated in order to prevent impersonation. This approach then

requires that the requested device (Active Router) has information about Sources and

permissions, or it imposes a communication with an authorization server every time a

Source sends an active packet. The second paradigm demands that every time Source

sends a packet, a credential that proves the Source´s permissions must be presented.

Then the requested device (Active Router) only needs to verify the credential.

However, credential generation and distribution may be more than a trivial task.

The solution proposed in this paper will be designed based on the second

paradigm, since we consider that it provides better scalability attributes.

4.1.2. Considering the usage of public key cryptography.

In order to allow the intended use, a credential must contain verifiable authorization

 9

information, i.e. the permissions granted to the holder of the credential. In addition, it

must be possible to verify that the issuer of the credential is a Valid Issuer, i.e. that it

has the authority to grant these permissions. It is also critical to validate that the user

that is presenting the credential is the same user that the credential was granted to.

In order to fulfill the above stated characteristics of a credential, public key

encryption can be used. So, a credential containing the Source´s permission and the

Source´s public key is signed by the Valid Issuer. Then, the Active Router must be

capable of verifying the authenticity of the credential and also it must be capable of

verifying that the requesting user has the private key that corresponds to the public

key included in the credential. This mechanism provides all the required features, but

the usage of public key cryptography is very demanding in terms of processing.

4.1.3. Authorization and key generation solution

In order to obtain a less demanding solution, symmetric key cryptography can be

used. However, building a similar system using symmetric key would require the

usage of two different symmetric keys (a first one shared by the Valid Issuer and the

Active Routers and another key shared by Source and the Active Routers). This system

would still demand two cryptographic verifications and it would present the additional

problem of key distribution. So, in order to improve the scalability of the solution, we

will next explore the possibility of using only one symmetric key, shared by the Valid

Issuer, Source and the Active Routers.

The requirements imposed on this key are:

− Different keys for different Sources. (i.e. the key must be linked to a Source)

− Different keys for the same Source at different moments (i.e. the key must have a

 10

validity period)

− Different keys for different active codes requested by the same Source (i.e. the key

must be linked to an active code/active service)

Therefore, the key K issued by the Valid Issuer is linked to a Source, an active code

and a validity period.

Then, if K is used for generating an HMAC [11] included in active packets that

requests the execution of a particular active code, the active packets themselves play

the role of credentials. Basically, an Active Router receives an active packet that

includes the requested code identification, the Source identity, the time when the

active service was requested, the requested period and an HMAC. Then, if the Active

Router has a valid key K linked to the Source, the requested code identification and

the validity period, it can verify the authenticity of the active packet, without any

further information. This mechanism imposes the usage of an Authorization Server

(the Valid Issuer role), that generates the keys (K). So, in order to execute a code in

the network, Source must obtain the correspondent key (K) from the Authorization

Server in a secure way. This is not a time critical task, since it is only performed when

the service is requested and it is possible to be executed in advance. However, once

the service is authorized and the key K is generated, the Authorization Server must

communicate it to all Active Routers in the network, so they are aware of the new

authorization. This does not seems to be the most scalable solution, because of the

amount of communications needed between the Authorization Server and the Active

Routers.

We will next present an improved solution that minimizes the required interactions

between these elements. The basic idea is that the key, K, can be almost

 11

autonomously generated in every Active Router when it is needed. In order to achieve

this, we will associate a key (Kci) to every active code (Ci) that can be loaded in the

Active Routers. These keys, Kci, are known by the Code Server and by the

Authorization Server. Then, when a Source, S, requests authorization for the

execution of code Ci at a moment T and for a period P, the Authorization Server

generates the secret key K as the HMAC of the concatenation of the parameters Kci,

S, T, P and Ci.

K = HMAC(Kci, S, T, P, Ci)

The key K is then transmitted to the Source, so it can generate the HMAC that will

be included in active packets with it. If we analyze the characteristics of K we can see

that: K is linked to an active code (Ci, Kci); K is linked to a Source (S); K has a

validity period (T, T+P); K can not be generated by the Source, since it does not have

Kci. In addition, the Code Server can attach Kci to the active code when this is

confidentially downloaded to the Active Routers. So, the Active Routers are capable of

regenerating K without contacting the Authorization Server every time an active

packet arrives or when a new Source requests an already downloaded code. The

Active Routers have all the information needed to generate K, i.e. S, T, P and Ci are

included in all active packets and Kci is obtained when they download the code from

de Code Server.

Note that since the solution is based on shared secret keys, the security level of the

solution can be defined by setting the number of parties that share the Kci keys

(authorized Active Routers for a given code Ci) and the frequency with which Kci

keys are changed. A re-keying procedure based on the usage of multiple overlapped

keys has been defined, which can be easily tuned to obtain the requested security

 12

level. It should also be noted that, since Kci are stored in routers, it is assumed that

routers have some form of secure storage capabilities.

4.2. Code downloading.

Another key feature that must also be provided is a secure way to download code (and

Kci keys) from the Code Server into the Active Routers. However, this is not as time

critical as user authorization since it is only performed once, when the first packet

arrives to an Active Router. The subsequent packets will benefit from a cached copy

of the code and the Kci. So, a protocol that allows a secure communication between

two parties is needed. We will use TLS [12] since it provides all the needed features.

Then both Code Server and Active router must have a digital certificate (public key

cryptography is used), and a TLS session is established between the Code Server and

the Active Router, before the code is downloaded.

4.3.- Non-repudiation.

When the user is requesting a service, commercial and legal issues may be involved,

so non-repudiation is relevant. Furthermore, the security architecture can be used to

enable charging mechanisms. In this case non-repudiation is considered as an

important asset. In order to assure non-repudiation, public key cryptography must be

used when the user requests authorization to the Authorization Server, as will be

described in the following section.

4.4.- The security solution: step by step.

In this section we will describe the complete mechanism, illustrated in figure 2. First

 13

(step 1 in figure 2), the Source requests authorization (to the Authorization Server) to

execute an active code Ci in the network (getting an active service). This request is

done in a secure way, meaning that public key cryptography and digital certificates

are used by both parties. Therefore, Source´s request is signed with the private key of

Source and its digital certificate is also included. This request is encrypted with the

public key of the Authorization Server. Then the Authorization Server after receiving

and verifying the request, it generates K as the HMAC of the Source´s identification

(S), the requested code’s identification (Ci), the key associated to this code (Kci), the

service request time (T) and the validity period requested by Source (P), as we

presented in section 4.1.3. Then, the Authorization Server sends a signed message

containing K. The message is encrypted with the public key of Source.

The Source decrypts the message and obtains K. Then (step 2 in figure 2), it

generates active packets, that include its own identification S, the service request time

T, the validity period P and an identifier of the requested active code Ci. This message

includes an HMAC of the message using K.

ActivePacket = (Ci, S, T, P, Payload, hmacK[Ci, S, T, P, Payload])

CS

Destination

Figure 2. The diferent steps.

R Router
AR Active Router
CS Code server
AS Authorization Server

Data flow
Code Download
Service Request

Step 2

AR AR

R R
Source

AS

Step 1

Step 3

Step 2

Step 3

Step 2

Step 2

 14

When an Active Router receives the message, it first verifies that the message is not

obsolete, i.e. it is within the validity period, and then it verifies the solicited active

code availability. In case the code (and Kci) is not locally available, it downloads it,

using a secure (TLS) connection from the Code Server (step 3 in figure 2). Then the

Active Router generates K, using Ci, S, T and P extracted from the active packet and

Kci obtained from the Code Server when the code was downloaded. If the HMAC is

verified, it means that Source has been authorized to execute the requested code, so

the Active Router processes the packet using the requested code and forwards it to the

next hop. The same procedure is repeated on every Active Router along the path until

the packet reaches Destination. The subsequent active packets of the flow will benefit

from cached copies of the active code and Kci in every Active Router. It must be

noted that the presented solution is limited to one security domain, i.e. one

Authorization Server providing keys. It is possible to extend the solution to multiple

domains, but this is more than a trivial task and it will be presented in future works.

5. Implementation and tests.

In order to evaluate the viability of ROSA, the security architecture has been

implemented and its influence on the end-to-end delay has been measured. Two main

processes have been evaluated: active packets protection and secure active code

downloads. We have not considered the service request phase, because it has a similar

cost to a code download and it is only executed once.

In order to enable a simple integration of the developed prototype with available

active network platforms, this implementation has been developed in Java, even

 15

though we are fully aware of the performance penalty of this choice.

5.1. Active packets protection cost.

In ROSA, active packets protection is provided by HMAC, so performance of

HMAC Java implementation has been measured. Tests have been done using a PIII

1.1Ghz, 256MB, Linux Kernel 2.4.17 and JSKD 1.4.0. We have measured the time

needed for performing an HMAC and its verification. Two different algorithms were

considered, MD5 and SHA1, and the data block size ranged from 0 to 64KB. The

results are that HMAC delay is between 0.38 ms and 4.55 ms.

5.2. Secure code downloads cost.

The test-bed used for this set of trials is as follows: a PIII-600 MHz, 64MB has been

used as Active Router and a PIII-1.1GHz, 256MB has been used as Code Server; both

systems have been directly connected via a Fast-Ethernet. The Code Server is a web

server Apache v.1.3.24 with the SSL module. The code has been downloaded opening

a TLS connection inside a previously established TLS session between the Code

Server and the Active Router. The delay of the code download has been measured for

non-secure connections (http) and secure connections (https). Different code sizes

(from 1KB to 16 KB) have been used in the tests. The obtained delay is 3-5ms for

http and 32-37 ms for https. In our scenario, the Code Server and the Active Router

will be in the same domain so we estimate an additional delay of 10ms, which would

be the mean delay introduced by 3 hops. Hence, for instance the estimated delay for

2KB code size would be 14 ms for http and 42 ms for https.

 16

5.3 Security cost of an end-to-end typical communication.

In this section, we will evaluate the cost of providing security to the active network

inside a typical Internet scenario, composed of 15 routers, four of which are Active

Routers, with an average end-to-end delay of 60ms2. We will state the following

additional suppositions: average packet size 512B; average active code size 2KB and

all Active Routers modify active packets (so they must compute HMAC twice, one

time to verify the received packet and another time to send the packet). Obviously, the

active packet modification delay will be the same for the secure or non-secure

solution, and therefore it will not be considered in the end-to-end delay.

In a non-secure scenario (NON-SECURE/CD in figure 3), the first active packet

suffers a delay of 116ms (60ms end-to-end delay plus 4*14ms for code download).

Note that the final CD indicates that this packet has led each Active Router to do a

code download. In the ROSA scenario with code download (ROSA/CD in figure 3),

delay increases to 234.4ms because of: https code download (4*42ms), key generation

in Active Routers (4*0.46ms), HMAC in Active Routers, Source and Destination

(10*0.46ms).

2 Data obtained from http://www.caida.org.

Figure 3. Comparison of end-to-end delay.

0 50 100 150 200 250 300

ROSA/CD

ROSA

end-to-end delay (ms)

End to End Delay
HMAC
Code Download (CD)
Key Generation

NON-SECURE

NON-SECURE/CD

 17

Next, we will analyze the cost when the active code is already in the Active

Routers, which will be the situation in most cases . The delay introduced by ROSA is

of 4.6ms (from 60ms in NON-SECURE solution to 64.6ms) because of the HMAC

processed in Active Routers, Source and Destination.

The obtained results show that ROSA introduces a small increase to the non-

secure end-to-end delay (7.6%) in most cases, that is, when code downloads are not

needed. And, only the first active packet of the session experiences a higher delay. So,

we conclude that the delay cost introduced by ROSA is reasonable and the proposed

architecture is feasible.

6. Related work

In this section, we will perform a comparative analysis of the proposed solution,

ROSA, and other security architectures proposed for other platforms. In particular, we

will study the security solutions presented for ANTS, DAN and SANE.

ANTS [13] and ASP are the two main EEs running on Abone. ASP specification

does not define a security architecture but SANTS [15] is an ANSA based proposal

for ANTS. ANSA is an Active Network Security Architecture (ANSA) [14] proposed

by the research community to be used in Abone [16]. ANSA uses symmetric key

techniques (i.e. HMAC) over the variable part of the packet [17], in order to provide

inter-node protection, and digital signature over the fixed part of the packet, to

provide authentication and authorization of the principal. In ROSA we avoid

asymmetric key with the purpose of improving the performance. That is possible

because we do not need the non-repudiation service over the active packets flow,

 18

since we provide it during service request. Furthermore, since a topology independent

solution is required, the mechanism to share the keys based on the neighboring

relationship proposed in the ANSA based EEs [18] is not acceptable. Then, ROSA

proposes a more sophisticated mechanism to distribute the key between the trusted

components of SARA.

In DAN the security issues are addressed through policy and cryptography. The

security problem is reduced to the implementation of a simple policy rule on the node

which lets it choose the right code server and a database of public keys to check the

developer’s signature of the plug-in and the code server’s authentication. DAN simply

does not address additional security issues considered in the design of ROSA.

SANE [19] is a layered architecture developed in the University of Pennsylvania.

The lower layer of the architecture use a secure bootstrap mechanism called AEGIS

[20] that ensures that the system starts in an expected and safe state. SANE allows

users to run their own modules on active nodes. In order to ensure the proper usage of

network resources, it authenticates and authorizes requesting users through the usage

of a modified version the Station To Station protocol (STS) [21] between the user and

each active node along the path that packets will follow. Once the STS protocol has

concluded, and a security association is established between the user and each active

node, so that user´s packets can be authenticated. This scheme imposes the usage of a

different authenticator for each active node in the path, which must be carried in each

active packet. The proposed solution for this issue is that a common secret key is

distributed among every active node using the established security association. The

main drawback detected is the time needed for path establishment, since a STS

exchange and a secret key exchange are needed. Moreover, when the path changes,

 19

these operations must be performed over the new path. ROSA has a reduced path

establishment time since only one key exchange (with the Code Server) is needed in

the worst case.

7.- Conclusions

We have presented a security solution for active network platforms that follow the

discrete approach. Key features of the solution include: The solution performance is

guaranteed by the usage of symmetric key cryptography. The scalability of the

solution is assured by the authorization model, based on credentials, and the key

distribution mechanism, that minimizes key exchanges by allowing key generation at

every Active Router in an autonomous fashion. The security level of the solution is

determined by the re-keying frequency i.e. how often Kci keys are changed. Essential

features of the solution such as performance and scalability have been validated with

measures obtained from a prototype implementation of the solution. Furthermore, it

must be stressed that the proposed architecture is open since it is valid for any active

network platform as long it follows the discrete approach using a Code Server.

References.

1 Wetherall, D. J., Legedza, U., Guttag, J.: Introducing new Internet services: Why and How.

IEEE Network Magazine, 1998.

2 Tennenhouse, D. L., Wetherall, D. J.: Towards an Active Network Architecture Computer

Communication Review. Vol. 26, No. 2, April 1996.

3 Decasper, D., Plattner, B.: DAN: Distributed Code Caching for Active Networks. IEEE

Infocom’98. San Francisco, California, March/April 1998.

4 Decasper, D., Parulkar, G., Choi, S., DeHart, J., Wolf, T., Plattner, B.: A Scalable, High

Performance Active Network Node. IEEE Network, Jan 1999. Vol.13, num.1, pag 8-19.

5 Larrabeiti, D., Calderón, M., Azcorra, A., Urueña, M.: A practical approach to network-

 20

based processing. 4th International Workshop on Active Middleware Services, July 2002.

6 GCAP IST project home page. http://www.laas.fr/GCAP

7 SARA home site. http://enjambre.it.uc3m.es/~sara.

8 Berson, S., Braden, B., Ricciulli, L.: Introduction to the Abone. February 11, 2002. URL:

http://www.isi.edu/abone/DOCUMENTS/ABarch/

9 Braden, B., Cerpa, A., Faber, T., Lindell, B., Pillips, G., Kann, J., Shenoy, V.: Introduction

to the ASP Execution Environment (v1.5). November 30, 2001.

10 IST-FAIN Project, Deliverable “Initial Active Network and Active Node Architecture”

Editor Spyros Denazis, 2001.

11 Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message

Authentication. RFC 2104, April 1997.

12 Dierks, T., Allen, C.: The TLS protocol Version 1.0. RFC2246. January 1999.

13 Wetherall, D., Guttag, J., Tennenhouse D. L.: ANTS: A Toolkit for Building and

Dynamically Deploying Network Protocols. Proceedings IEEE OPENARCH98, April 1998.

14 AN Security Working Group. Security Architecture for Active Nets. November 13, 2001.

15 NAI Labs ANETS Group, SANTS Security Overview (May 18, 2000),

URL:ftp://ftp.tislabs.com/pub/activenets/SANTSsecurityoverview.doc.

16 Faber, T., Braden, B., Lindell, B., Berson, S., Bhaskar, K.: Active Network Security for the

ABone. November 30, 2001.

17 Lindell, B.: Protocol Specification for Hop-By-Hop Message Authentication and Integrity.

Dec. 1999.

18 Murphy, S., Lewis, E., Puga, R., Watson, R., Yee, R.: Strong Security for Active Networks.

Proceedings IEEE OPENARCH01. April, 27 2001.

19 Scott Alexander, D., Arbaugh, W., Keromytis, A., Smith, J. A Secure Active network

architecture: Realization in the SwitchWare. IEEE Network, special issue on Active and

Programmable Networks, May/June 1998, vol 12, no. 3, pp. 37-45.

20 Arbaugh, W. et al. Automated Recovery in a Secure Bootstrap Process. Network and

Distributed Systems Symposium, Internet Society, March 1998.

21 Diffie, W., van Oorschot, P., Wiener, M.: Authentication and Authenticated Key Exchanges.

Design, Codes and Cryptography, vol. 2, 1992.

