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This paper proposes a generic security architecture 
designed for a multidomain and multiservice network 
based on programmable networks. The multiservice 
network allows users of an IP network to run 
programmable services using programmable nodes 
located in the architecture of the network. The 
programmable nodes execute codes to process active 
packets, which can carry user data and control 
information. The multiservice network model defined 
here considers the more pragmatic trends in 
programmable networks. In this scenario, new security 
risks that do not appear in traditional IP networks become 
visible. These new risks are as a result of the execution of 
code in the programmable nodes and the processing of the 
active packets. The proposed security architecture is based 
on symmetric cryptography in the critical process, 
combined with an efficient manner of distributing the 
symmetric keys. Another important contribution has been 
to scale the security architecture to a multidomain 
scenario in a single and efficient way. 
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I. Introduction 

The enormous growth of the Internet in the last few years has 
brought about new problems and needs that have triggered the 
creation of new services on the edge of the network [1]. Some 
examples of these services are security components introduced 
into the network such as firewall or intrusion detection systems, 
caching devices, translation of IP address (NAT), the 
transcoding of multimedia flows to adapt them to the network, 
or link requirements. 

In this scenario, multiple services can be offered to users. 
The scientific community has been working on the 
introduction of new services in a flexible and dynamic manner. 
In this direction, new technologies based on introducing 
programmability into the nodes have been proposed, opening 
the node interfaces, and developing technologies to introduce 
the services.      

A programmable network is made up of programmable 
nodes within an execution environment to process special 
packets called active packets, to offer programmable services. 
The active packets are sent by end systems (sources) to other 
end systems (destinations). The active packets can carry data 
and control information. The control information is able to 
configure the behavior of the programmable nodes, allowing 
the data to be processed (and even modified) by the 
programmable nodes, before progressing towards the 
destination. Thus, programmable nodes offer programmable 
services to users. Depending on the approach towards the 
programmable network, the code to execute the active packets 
can be loaded into the execution environment from a code 
server, or carried in the active packet itself. If the code is 
downloaded from a code server, the active packets will carry a 
code reference.  
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In this article, we define a pragmatic scenario of a 
multiservice network based on programmable network 
technologies and propose a security architecture for this 
scenario.  

Focusing on this subject pragmatically, we have considered 
that the multiservice network will be deployed on the Internet, 
and that the programmable services will be offered by service 
providers. In this scenario, the service provider should be 
capable of obtaining benefits provided by the services; hence, 
commercial aspects must be taken into account. We must bear 
in mind that the users of a service must be authorized 
beforehand, and when they have used the service, they must 
not be able to deny that they have requested it. In this scenario, 
the security risk must be analyzed in order to avoid illegal uses 
of programmable services. 

Another important aspect of a pragmatic multiservice 
network is the multidomain feature. A service would imply the 
cooperation between different service providers, every one of 
which has a different administrative domain. The multidomain 
scenarios introduce scalability challenges into the security 
architecture. 

The security risks in this scenario have been analyzed by 
focusing on the security from the service provider point of view, 
looking at how the service provider can be protected from 
attacks originated by malicious users. In this respect, the main 
components to be protected in the programmable network are 
the programmable nodes, and the main security risk would be 
caused by malicious active packets or malevolent code. 

False active packets could cause an attack on the 
programmable nodes, changing their behavior or consuming 
resources in an unauthorized manner. The security architecture 
must verify that the active packets are authentic and authorized 
before processing them in the programmable nodes. The 
programmable node must not waste too many resources on the 
security processing of an active packet because the flow of 
active packets can be high. 

The code that is introduced into the programmable nodes to 
process the active packets must be controlled to avoid 
programmable nodes executing malicious or uncontrolled 
codes.  

Therefore, the security architecture must protect the 
programmable network from malevolent codes and active 
packets as well as bearing in mind that some active packets 
could proceed from other domains. The security solution must 
be scalable. 

As we will see later in this paper, the main contributions of 
this article are the pragmatic vision of the multiservice network 
model and the efficient manner of introducing security into 
programmable nodes.  

First, we introduce the programmable network technologies. 

Then, in section III we define a pragmatic multiservice 
network based on programmable networks as well as 
analyzing the security requirements of the multiservice 
network. After that, we describe previous works in 
programmable network security accomplished by other 
research groups. Next, in section V, we present the architecture 
of security. In section VI, we present an analysis of the tests 
carried out on the implementation of the security architecture. 
And finally, section VII details our conclusions.      

II. Programmable Networks 

Programmable networks introduce programmability in the 
network. There are two different trends in introducing the 
computation plane inside the nodes: Opensign1) and Active 
Networks [2], [3].  

The concept of Opensign emerged from the 
telecommunications companies and standardization 
organizations in order to introduce programmability into the 
nodes of the network. The Opensign community advocates that 
programmability can be achieved by means of defining a series 
of open network interfaces that represent physical network 
devices and network services as distributed objects. Opening 
the interface of the nodes, third party applications can control 
the resources of them. Some examples of the proposals are a 
generic framework for providing programmability, IEEE P1520 
[4], and the general switch management protocol (GSMP) applied 
to ATM switches, q-GSMP [5], or to IP routers, e-GSMP [6]. 
FORces [7] is a working group of the Internet Engineering Task 
Force that proposes a generic architecture based on the Opensign 
ideas, applied to Internet routers.  

The concept of active networks emerged from discussions 
within the Defense Advanced Research Projects Agency 
(DARPA) research community in 1994 and 1995 on the future 
direction of networking systems. The active network community 
advocates a dynamic approach through which active packets 
can offer services on demand as they carry the executable code. 
In some active network proposals, the active packet carries the 
user data and executable code that must process them. In other 
proposals, the active packet carries a reference to the 
executable code, which is downloaded onto the programmable 
node separated from the user data. 

There are different approaches in active network 
technologies. In the programmable switch approach, the 
packets keep the existing format and provide discrete 
mechanisms for supporting the downloading of the code that 
processes the packet. In contrast, the capsule approach 
introduces a new type of packet called an active packet, which 
                                                               

1) Open Signalling Working Group. http://www.comet.columbia.edu/opensig/ 
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can carry user data and the code to process it. In some 
proposals (in-band) the active packets carry the code, and in 
others (out-of-band) the active packets carry a reference to the 
code. In the latter case, the code can be downloaded from 
another programmable node or from a code server.   

DARPA has been the main promoter of the active network 
technologies2) [8], developing an experimental network called 
ABone [9]. Some Information Society Technologies (IST) 
projects such as Global Communication Architecture and 
Protocols (GCAP) [10], and Future Active IP Networks (FAIN) 
[11], have been developed to propose different programmable 
network technologies. These projects follow some pragmatic 
ideas: allow the network administrator to control the codes used 
to process the active packets, define a business model, and create 
a mix of the Opensign and active network ideas.  

III. The Security Problem of Multiservice Networks 
Based on Programmable Networks 

1. A Pragmatic Vision of Multiservice Networks Based on 
Programmable Networks 

In this section, we describe the scenario of a multiservice 
network based on programmable network technology. We will 
use pragmatic trends in programmable networks to define the 
generic features of the multiservice network.  

Basically, a programmable network is made up of a number 
of programmable routers (called programmable or active 
nodes) inside an IP network. The programmable nodes identify 
special packets called active packets and load a specific code to 
process them. Active packets go from an end-system source to 
an end-system destination, and the programmable nodes in the 
path between the source and the destination processes the 
active packets, as shown in Fig. 1, with a specific code.  

In some programmable networks, the users can introduce 
their executable codes into the programmable nodes, but this is 
not a pragmatic solution because of the risk of introducing 
malicious codes. So, in order to obtain controlled codes from 
the network administrator, we propose using code servers. 
Every active packet carries the code identifier that executes the 
programmable nodes to process the active packet itself. When 
a programmable node receives an active packet, if it does not 
have the code to process it, it will download the code from a 
code server.  

The programmable nodes consume resources when the 
multiservice network offers the services demanded by the users. 
We will define a service model that forces the users to request a 
service before using it, so the multiservice network can accept  

                                                               
2) Darpa Active Networks Program, 1996. http://www.sds.lcs.mit.edu/darpa-activenet/ 
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or refuse the service according to the available resources. These 
services must be controlled in order to offer just the authorized 
services. So, the programmable nodes must only process the 
active packets that belong to an authorized service. 

There are some approaches towards a programmable 
network in which the programmable nodes need to know who 
its closest programmable nodes are in order to send them the 
active packets, while in other approaches the programmable 
nodes that process active packets do not need to know this 
information (its IP address). In this case, the active packets are 
sent to the destination and are intercepted by the programmable 
nodes in the path. We suppose that in a generic scenario of 
programmable networks, the programmable nodes do not need 
to know the topology (the other programmable nodes). This 
supposition allows us to propose a generic security solution, 
valid for both programmable network technology approaches. 
In addition, it is a pragmatic requirement that the users (end 
systems) do not need to know the topology of the 
programmable network, which means that the users do not 
need to know the programmable nodes (its IP address) in order 
to send them the active packets.  

A programmable network could experience changes in 
topology that can be produced by changes in the network 
routes by new programmable nodes that appear in the network 
or when a programmable node is down. The changes in 
topology can cause the changes to take place suddenly, as new 
programmable nodes start to process the active packets of a 
programmable service, or when other programmable nodes 
suspend the processing of active packets. The security 
architecture must be immune to the changes of topology.  

A pragmatic network should be capable of deployment in a 
network such as the Internet in order to reach the end users. 
The topology of the Internet network is made up of networks 
belonging to interconnected ISPs. Every network belonging to 
an ISP has its own administrative domain that could have 
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programmable network technology. When a multiservice 
network comprises various programmable networks of 
different administrative domains, the multiservice network will 
be a multidomain network.   

It is assumed by the scientific community that the 
programmable nodes will be located on the edge of the 
network, where the number of flows to be processed is fewer 
than at the core. Thus, we consider that the programmable 
nodes will be located in the networks of the ISPs that are on the 
edge of the Internet, which offer services directly to the users. 
In Fig. 2, we can see the multidomain scenario of the 
multiservice network.  
 

 

Fig. 2. Multidomain scenario. 
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2. Security Requirements of the Multiservice Network 

The goal of this article is to propose a security architecture to 
protect the programmable network from malicious users. 
Another possibility that is not being dealt with here is the 
protection of users from malicious programmable nodes. This 
is an interesting point of view, but in real scenarios it is 
reasonable to trust the programmable nodes of the service 
provider. In this sense, it is sufficient to guarantee that the 
programmable nodes that modify the active packets belong to a 
trusted service provider.  

The programmable nodes are especially sensitive to the 
denegation of service attacks (DoS), since they must carry out a 
larger process on the packets, than the forwarding process 
carried out by the traditional routers. Furthermore, the 
processing of the packets implies the introduction of code into 
the programmable node, which could be malicious. The active 
packets carry information that would change the behaviour of 
the programmable node, so the active packets could be 
especially dangerous.  

The authorization is fundamental in a scenario like this, 
because of the need to process only the authorized active 
packets. Therefore, a user must request authorization from the 
network before sending active packets, and the programmable 

nodes must verify that the active packets are authorized before 
processing them.  

The user might need to pay for the programmable service 
received from the multiservice network [12]. To avoid the user 
denying his responsibility for payment, the authorization 
request must include the non-repudiation service. 

The authentication must be verified in the following 
situations:  

•When a user requests a service from the multiservice 
network, the multiservice network and the user must both 
verify that his interlocutor is authentic.    

•In the download process of a code from a code server to a 
programmable node, the code server must verify that the 
programmable node is authentic. And the programmable 
node must verify that the received code is authentic.  

•When a programmable node receives an active packet, it 
must verify that the source of the active packet is authentic. 
The source could be an end system or a programmable 
node. 

The programmable nodes can modify a part of the active 
packets, called the dynamic part. This situation introduces new 
security challenges to allow only the modifications made by 
the authorized programmable nodes. The mechanisms that 
offer the authentication of the active packets must also offer the 
integrity service, in order to make sure that the dynamic part of 
the active packet has not been modified by unauthorized 
entities. The integrity mechanism must also be applied to the 
codes exchanged between code servers and programmable 
nodes, and to the information exchanged to request a service. 

An attack that consists of injecting authentic previously 
stolen active packets would cause an error in the service or 
simply in the consumption of resources (DoS attack). The 
authentication and integrity mechanisms do not offer anti-
replay services. We must apply anti-replay protection to the 
active packets in order to avoid degradation of the service.  

The definition of the trust relationship in a scenario with 
programmable nodes is necessary to focus on the security 
solution properly. The content of the active packets can be 
modified by the programmable nodes (for example, an audio 
flow carried by the active packets can be modified by a 
transcoding process that runs in a programmable node). In 
addition, a programmable node could generate a new active 
packet towards the source or destination as the result of 
processing incoming active packets (that is, if it is multicasting). 
Programmable nodes must rely on the active packets inserted 
or modified by other trusted programmable nodes. But we 
must restrict the scope of the trust relationship between the 
components of a programmable network. A reasonable 
limitation includes the programmable nodes and code servers 
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of the same administrative domain. But in the multidomain 
network, some services require the cooperation between 
programmable nodes of different domains. Therefore, dynamic 
trust relationships between programmable nodes of different 
domains must be established.   

The security association between the end system and 
programmable nodes or between two nearby programmable 
nodes would be established in a similar way to the security 
associations between the end systems in IPSec or transport 
layer security (TLS) protocols. But in the generic and 
pragmatic scenario of a programmable network, it is not 
realistic to establish security associations between 
programmable nodes or between programmable nodes and end 
systems because of the knowledge implications of the topology.   

IV. Related Works 

We must protect the active packets using an authentication 
and integrity mechanism. This protection could be 
implemented using asymmetric or symmetric cryptography. 
Asymmetric cryptography (digital signature) has better 
scalability in a multidomain environment because it uses a 
scalable public key infrastructure to distribute the public keys. 
However, the asymmetric cryptographic algorithms require 
more processing and memory than the symmetric 
cryptographic algorithms (HMAC). On the other hand, 
symmetric cryptography introduces the challenge of how to 
obtain an efficient mechanism for key distribution. We now 
describe the solution adopted by the main security architectures 
of programmable networks.          

The Secure Active Network Environment (SANE) [13] is a 
security architecture developed by a research group from the 
University of Pennsylvania. This architecture uses a 
mechanism to protect the dynamic and static part of the active 
packets, using a method based on symmetric cryptography 
(more efficient). However, they propose a complex system of 
key distribution made up of different keys: one shared key 
between the end system and every programmable node, and 
another shared key between the end system and all the 
programmable nodes. Furthermore, the mechanism to 
distribute the keys requires the end users and the 
programmable nodes to know the topology of the network.  

The Active Network Security Architecture (ANSA) [14] is a 
generic security architecture proposed by a group of 
researchers inside DARPA. This architecture proposes the use 
of symmetric cryptography to protect the dynamic part of the 
packets as well as using asymmetric cryptography to protect 
the static part of the active packets. ANSA has been proposed 
to offer security in Abone [15]. An interesting implementation 
of ANSA is SANTS [16], a security architecture for the main 

proposal for an active network applied in ABone, called ANTS 
(active node transfer system) [17]. In ANSA, multidomain 
security is dealt with using various credentials that carry 
authorization information to the different domains. 

This proposal requires a high CPU consumption and large 
bandwidth because of the use of asymmetric cryptography. In 
addition, a hop-by-hop security mechanism is proposed, using 
a shared symmetric key between nearby programmable nodes. 
This solution requires both the programmable nodes and the 
end systems to know the network topology.  

Another security architecture [18] based on ANSA has been 
developed within the IST FAIN project. The difference with 
SANTS is that the communication between the end system and 
the first programmable node is based on asymmetric 
cryptography. Therefore, it is not necessary for the user to 
know the network topology, but the use of asymmetric 
cryptography is less efficient.  

Some security proposals study the security from the user 
point of view. They define procedures that allow the user to 
control the nodes that can modify [19] the active packets. 

We can conclude that the state-of-art security proposals do 
not define the multidomain extension of the security in a 
complete manner, and that the security solutions depend on the 
knowledge of the topology. In addition, we have seen that the 
state-of-art proposals use asymmetric cryptography (as well as 
symmetric) in the protection of the active packet.  However, 
this solution requires a greater consumption of resources by the 
programmable nodes. 

V. Security Architecture 

Preliminary ideas on the proposed security architecture have 
been published in [20]. In this article, we present a number of 
improvements on the solution, the multidomain extension, and 
the tests carried out on a real platform in section VI. 

The main contributions of this security architecture to the 
state of the art are as follows: the pragmatic approach of the 
multiservice network model, the considerations of efficiency in 
the solution, and the multidomain architecture. The solution is 
based on the use of a symmetric key in the critical processes, 
proposing an efficient way of distributing the symmetric key.     

First, we describe the security architecture in a scenario made 
up of one administrative domain. Then, we will describe how 
to extend this solution to a multidomain scenario. 

1. Security in an Administrative Domain 

A. Authorization of Preliminary Definitions  

The first problem that we must solve is the authorization of 
the user to access a programmable service. The user must 
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negotiate with the programmable network to request the 
service. We define a new component, the authorization server, 
which represents a programmable network domain in the 
negotiation process. All the service requests in the same 
domain are centralized in a single authorization server, which is 
implemented like a high availability server. 

When a user requests a service, the authorization server will 
generate a response. This response can be positive or negative, 
depending on whether the user is authorized or not. 

We define a single set of authorization parameters that define 
the programmable service. These parameters are as follows: 

• Ci: identification of the executable code that must process 
the active packets to offer the service in the programmable 
nodes. Because every programmable service is associated 
with a different executable code, Ci is really a value that 
identifies the programmable service that the user requests.   

• SST: time in which the programmable service starts. The 
programmable nodes must not process the incoming active 
packets before the time indicated by SST. 

• SET: time in which the programmable service ends. The 
programmable nodes must not process the incoming active 
packets after the time indicated by SET.  

• S: IP address of the end system that is the source of the 
active packets.  

• D: IP address of the end system that is the destination of the 
active packets. S and D allow verification that the active 
packets are sent between the end systems that have been 
negotiated. 

• U: user identifier. This parameter identifies the user who has 
requested the programmable service, which is responsible 
for the proper use of the service.    

All these parameters define a programmable service 
requested by a user. By using them, the programmable nodes 
can verify whether an active packet has authorization to be 
processed or not.  

This single and generic set of parameters can be increased in 
some cases, with a specific parameter (SP) that depends on the 
programmable service. The programmable service is 
responsible for verifying the SP.      

The programmable nodes must apply the authorization 
policy to the incoming active packets. In order to make this 
possible, the authorization parameters (Ci, SST, SET, S, D, U, 
and SP) must arrive at the programmable nodes. So we must 
define an efficient manner to transport the authorization 
parameters to the programmable nodes.  

In similar scenarios, the authorization information is usually 
transported in credentials carried by the active packets. The 
credentials are based on public cryptography (signed by the 
authorization server or a trusted entity), which requires more 

processing than symmetric cryptography. Furthermore, because 
of the dynamism of the network topology, it is recommended 
that the credential travels within all the active packets.  

The use of a credential protected by a digital signature in all 
the active packets implies large bandwidth consumption. 
Therefore, we must define a procedure to transport the 
authorization parameters in the active packets not based on the 
use of public cryptography (digital signature).           

B. Authentication and Integrity of Active Packets   

The active packets that arrive at the programmable node 
must be authentic; meaning that the active packets must have 
been generated by the user or by a programmable node on 
behalf of the user. In addition, the active packets must be 
integral, meaning that the active packets must not have been 
modified by an unauthorized entity. Only the programmable 
nodes and end systems are authorized to generate and modify 
the active packets.  

To offer the authentication and integrity of the active packets, 
we can use symmetric cryptography mechanisms (such as 
HMAC) or asymmetric cryptography mechanisms (such as a 
digital signature). 

Symmetric cryptography requires the use of a secret key 
shared among all the programmable nodes and the end systems 
that process the flow of the active packets. The system based 
on symmetric cryptography usually requires a great effort in 
key distribution, which is difficult to scale if the number of 
components sharing the key increases. However, the use of 
symmetric cryptography (based on HMAC) is a good solution 
because of the low resource consumption.  

The user and programmable nodes can sign the active packet 
using a digital signature (asymmetric cryptography). If this 
solution is accompanied by a public key infrastructure that 
facilitates the public key distribution through certificates, it will 
have good scalability in large systems because, in this case, a 
secret key distribution is not needed. However, the verification 
of the digital signature implies a large consumption of 
processing and bandwidth. Furthermore, if a programmable 
node modifies the active packet, it must sign the active packet 
as well, and the consumption of resources increases.  

The most popular solution adopted in the sate of the art 
consists of the protection of the static part of the active packet 
(the one that is not modified by the programmable nodes) using a 
digital signature generated by the user. Therefore, the 
programmable nodes can identify the user that has generated the 
active packet. In addition, the dynamic part of the active packet 
(the one that can be modified by the programmable nodes) is 
protected using symmetric cryptography (HMAC). The problem 
of the key distribution is usually resolved by using a different key 
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between every two adjacent programmable nodes, and between 
the end systems and the adjacent programmable node. This is 
called a hop-by-hop solution. But this solution requires the 
programmable nodes and end systems to know the topology, 
because in order to exchange the symmetric key, adjacent 
systems must know themselves.               

We propose a solution that does not use the digital signature 
in order to reduce the consumption of resources. The proposal 
consists of protecting the active packets via symmetric 
cryptography (HMAC), but using a unique key shared between 
the programmable nodes and the end systems. The use of a 
unique shared key facilitates the distribution of the key without 
knowing the network topology. To solve the problem of the 
efficient distribution of the key to the end systems and the 
programmable nodes, we propose a scalable and efficient 
procedure. This procedure is based on the regeneration of the 
key in the trusted programmable nodes using an efficient 
procedure based on hash.    

C. Mechanisms of Protection against Processing Illicit Active 
Packets 

The key used to protect the active packet is generated by the 
authorization server and is sent to the user upon requesting a 
programmable service. As this key is used only to protect the 
active packets associated to this programmable service request, 
it is limited in time by the authorization parameters: service 
start time (SST) and the service end time (SET). So we will call 
this key the session key.  

The process starts when a user requests a service sending the 
authorization parameters (Ci, SST, SET, D, S, U, and SP) to the 
authorization server (AS). When the AS verifies that the user 
has authorization, it will send him a response allocating the 
session key (K) and the authorization parameters. The 
authorization server can modify the value of some 
authorization parameters (for example, the value of the SET) 
before generating the response.  

The session key is used to send active packets to the destination. 
The packets are protected by using an algorithm based on 
HMAC and K; however, this occurs before the user introduces 
the authorization parameters inside the active packet. Thus, these 
authorization parameters are sent to the programmable nodes with 
integrity protection. The programmable nodes verify the active 
packet integrity by using the same session key (K). 

A malicious user would modify the authorization parameters. 
For example, a user would increase the SET value to send 
packets within a period of time higher than that which has been 
negotiated. To avoid a user being able to modify the 
authorization parameters, the session key will be generated by 
the authorization server using (1). 

K = hash(Kci, Ci, SST, SET, D, S, U, SP)      (1) 
 
Key Kci is a secret key that is only shared among the 

components of the programmable network (authorization 
server, code servers, and programmable nodes). Therefore, the 
user cannot generate a session key because he does not know 
Kci. When an active packet arrives at a programmable node, 
this programmable node can generate the session key using the 
authorization parameters carried by the active packet and the 
value of Kci. Thus, if the user modifies the authorization 
parameters, the session key generated by the programmable 
nodes will be different to the one generated by the 
authorization server, and the integrity verification of the active 
packet will fail.  

There is a different Kci for every kind of programmable 
service (Ci value). The Kci values are generated by the 
authorization server and sent to the code servers. Therefore, the 
programmable nodes can download Kci at the same time as 
they download the code from the code server. The values of 
Kci

’s are refreshed periodically in order to avoid the excessive 
use of the cryptographic material. The authorization server is 
responsible for initiating the refreshment process. 

Now, we will describe the process step by step in order to 
clarify the compression, as shown in Fig. 3: 

 

 

Fig. 3. Security solution. 
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1. The user requests authorization from the authorization 
server: sending the authorization parameters Ci, SST, SET, 
D, S, U, and SP.  

2. The authorization server generates the session key and 
sends it to the user using (1). 

3. The user generates an active packet by introducing the 
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authorization parameters and protecting it (using the 
session key and HMAC). Finally, the user sends the active 
packet towards the destination. 

4. When a programmable node receives an active packet, if it 
does not have the executable code identified by Ci and/or 
the associated Kci, it will download it from the code server 
(usually for the first active packet of a new programmable 
service). Then, the programmable node generates the 
session key by using Kci and the authorization parameters 
that carry the active packet, and verifies the integrity and 
authentication of the active packet. The programmable 
node also verifies the authorization to process the packet by 
using the authorization parameters. 

5. Once the active packet is processed, if it has been modified, 
the programmable node protects it by using the session key. 
Finally, the programmable node sends the active packet 
towards the destination.  

The verification of authorization to process the packet is 
carried out by the programmable node and consists of the 
following:  

1. The parameters of S and D that correspond to the IP source 
and IP destination respectively of the active packets are 
used to verify that the active packet goes between the two 
end systems.  

2. The parameters SST and SET are used to verify that the 
active packet arrives at the programmable node within a 
valid period of time. 

3. The identifier of the programmable service (Ci) is used to 
verify that the user does not request a different service to 
the one negotiated with the authorization server. 

4. The parameter U would be used by the programmable 
node to identify the user that requests the service, for 
example, for charging purposes.  

The programmable nodes can generate the session key, so 
they are authorized to generate new active packets on behalf of 
the user, or to modify incoming active packets.  

Note that the transport of the authorization parameters to the 
programmable nodes is single and efficient in resource 
consumption. In other proposals of the state of the art, the 
authorization parameters are transported as a credential generated 
and signed by a trusted authority (for example, the authorization 
server). The use of a digital signature requires the active packets 
to transport a larger amount of information and requires too 
much processing to verify the authenticity of the credential.    

In this explanation, we have assumed that the active packet 
goes from an end system called the source towards an end 
system called the destination. If the destination needs to send 
active packets towards the source, it uses the same session key 

as the source. In general we can say that the end systems 
(source or destination), from which the user has requested the 
programmable service, sends the session key to the other end 
system if necessary.  

The authorization parameters S and D are respectively the IP 
source address and IP destination address of the active packet. 
To generate the same session key to both directions of the 
active packet (from S to D, and from D to S), we must generate 
the session key using the S and D ordered parameters; first, the 
minor value and then the major value. Therefore, we avoid the 
use of two session keys, one for each direction.  

D. Anti-replay Protection of Active Packets  

The HMAC algorithm provides protection against integrity 
and authentication attacks on the active packet. But an 
aggressor would provoke denegation of service attacks (DoS), 
stealing active packets and injecting the packets into the session 
at a later time. The programmable nodes process the injected 
active packet because the HMAC verification is right. 

Therefore, we must define a mechanism to verify whether an 
active packet has already been processed by the same 
programmable node before processing it.  

An anti-replay procedure based on IPSec is usually used in 
IP networks, which consists of identifying every active packet 
using a different sequence number. As an IP network does not 
guarantee the ordering of the packets, it is necessary to 
implement it in the receptors of the active packets’ sliding 
windows. The sliding window will have a constant size and 
represents a range of sequence numbers.  

In a programmable network, the programmable nodes must 
carry out the anti-replay verification every time a new active 
packet is received. The mechanism used in IPSec is 
implemented between two end points. The security proposals 
in the state of the art define a mechanism based on 
implementing the IPsec anti-replay procedure between every 
two neighboring programmable nodes [21]. The proposals that 
follow this approach are dependent on changes in topology. In 
addition, the users and programmable nodes need to know the 
topology of the programmable network. We will propose a 
variation in the solution that avoids the need to know the 
topology and that supports changes in topology. 

We must consider that a programmable node would insert 
new active packets into a flow of active packets from a source 
to a destination, and that the active packets would pass through 
different programmable nodes when a change of topology is 
produced.  

Every session of a programmable service could have 
different sources of active packets: the end system (end source) 
and the programmable nodes (intermediary sources). If we use 
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the same sequence to enumerate all the active packets, 
situations of inconsistency in the numeration would be created. 
This situation consists of different sources of active packets of 
the same programmable service generating new active packets 
using the same sequence number.  

To avoid this problem, we will use a different numeration for 
every source (end source and intermediates sources) that 
generates active packets in the same session. Thus, we will 
distinguish whether an active packet has already been 
processed by a programmable node when it has passed an 
active packet before with the same following parameters: 

1. Session of programmable service (identified by Ci, SST, 
SET, D, S, U and SP). 

2. Source: IP address of the programmable node or end 
system that has generated the active packet. 

3. Sequence number.  

Therefore, the active packets must carry the authorization 
parameters, the IP address of the source that has generated the 
active packet, and the sequence number generated by this 
source (end system or programmable node). 

We must note that if the source of an active packet is a 
programmable node, the active packet will carry the IP address 
of the end system in the IP header. So appending a field to carry 
the IP address of the programmable node is necessary. 

To implement this procedure, the programmable nodes that 
receive the active packets must implement one sliding window 
for every source of active packets corresponding to the same 
session. 

Therefore, by using more resources to implement different 
sliding windows and carrying the IP address of the generator of 
the active packet we avoid the inconsistency of the number of 
sequences.   

When a programmable node generating active packets 
reboots, it will reset the value of the sequence number, and the 
active packets could be rejected by the receivers because the 
sequence number is reused. To avoid this problem, the 
programmable nodes save the higher bits of the sequence 
number in non-volatile memory. When the programmable 
node reboots, the portion of the sequence number that has been 
saved is recovered and incremented. Thus, the sequence 
number will start with a higher value than the last one used 
before the reboot. 

E. Others Security Processes 

Now we will briefly describe other less critical processes 
involved in the security solution. 

The programmable nodes download the Kci
 values and 

programmable service codes from the code server. This 
procedure requires security services for mutual authentication 

and confidentiality of the codes and the Kci. To provide both 
services, we propose to carry out the downloading process 
through a secure TLS [22] connection. 

The end systems request services from the authorization 
server. This process requires security services of mutual 
authentication and confidentiality for the session key. To make 
this possible we can also use a TLS connection. 

Finally, the refreshment process of the Kci
’s (keys associated 

to the programmable services) between the authorization server 
and the code servers requires security services for mutual 
authentication and confidentiality. In addition, we must take 
into account that a programmable network would have a 
considerable number of code servers (for example, 40 code 
servers), and this fact must not bring about scalability problems 
in terms of the requirement for processing by the authorization 
server.  

The refreshment of the keys (Kci
’s) is initiated by the 

authorization server that sends a message, the refreshment 
request in Fig. 4, to all the code servers of the programmable 
network. The Kci

’s are valid for a predefined period of time (for 
example, 24 hours), so the authorization server must initiate this 
process every period of time equal to the duration of the key. 

This message carries a random and secret seed, which is 
used by the authorization server and the code servers to 
generate all the new Kci

’s. They make a computation based on 
a hash function in order to be fast, even if the amount of 
programmable services (Ci) is high. The procedure is as 
follows: The authorization server and code servers use the seed 
to generate a master secret (MSj) for the refreshment period j 
using (2). The MSj value depends on the seed, the period of 
validity of the keys generated (VP), and the master secret 
generated in the last refreshment process (MSj-1).  

 
MSj= hash [seed, VP, MSj-1]          (2) 

 
Finally, they use the master secret to generate the Kci

j of 
every programmable service identified by Ci, and for the period 
of refreshment j, as shown in (3). 

 
Kci

j =hash(MSj, Ci)              (3) 
 

 

Fig. 4. Kci refreshment. 
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The refreshment request message must be confidential and 
authentic. To avoid the consumed time to generate the 
messages depending on the amount of code servers, the 
protection of confidentiality applied to the seed will be carried 
out using symmetric cryptography, instead of asymmetric 
cryptography.  For authentication purposes, we use a digital 
signature.  

When sending the response message, Response in Fig. 4, the 
code servers confirm that it has received the refreshment 
properly. This message must be protected by authentication and 
integrity procedures. The response message would provoke a 
processing overload in the authorization server if the number of 
response messages (code servers) is high. Thus, the 
authentication mechanism is implemented by using a hash 
function, which requires less processing than a digital signature.  

2. Multidomain Security 

A. Introduction 

The proposal of the security architecture inside an 
administrative domain requires a relationship of trust between 
the components of the same administrative domain of a 
programmable network. These components are the 
programmable nodes, the code servers, and the authorization 
server. The relationship between these components makes it 
possible for them to share a secret. In this case, the secret is the 
programmable key associated to the programmable services 
(Kci

’s). But, it is not reasonable to extend this trust relationship 
out of a domain. This means that the Kci keys must not be 
shared between components of different domains. So, every 
administrative domain j will have its own Kcij values for every 
programmable service.  

Then, if an active packet changes domain, the programmable 
nodes of the new domain j will use different Kcij values and 
thus a different session key (Kj). Therefore, the verification of 
the packet will fail.  

To resolve this problem, it is necessary to establish a 
dynamic security association between the different domains 
that take part in a session. These security associations do not 
require the Kci

’s of every domain to be shared. However, it is 
possible to share a secret value that has the validity period of 
the session: these are the dominion session keys (Kj). 

In a multidomain scenario there are a lot of domains, the 
active packets that belong to the same session will cross some 
of them. The first question that we must answer is which 
domains will be crossed by the active packets. The user must 
negotiate with the service over these domains (their 
authorization servers). Therefore, we give the opportunity to all 
the domains to decide whether the user is authorized to receive 
the requested programmable service.  

Once it has been decided which domains will offer the 
programmable service, the domains will exchange a session 
key. This session key is used by the end system user and the 
programmable nodes to protect the active packets. We propose 
to use a unique multidomain session key (Km) in order to 
simplify the security processing in the programmable node.      

 Now, we will explain the security solution in a multidomain 
programmable network. The following phases will be 
highlighted in the solution: 

1. The process of finding out which domains take part in a 
session of a programmable service. 

2. The negotiation process for the session with the 
encountered domains.  

3. The protection process for the active packets.  

The multidomain solution must fulfill the requirements on 
the topology. This means that the user and the programmable 
nodes do not need know the topology of the programmable 
network. Furthermore, the solution must support changes in the 
topology.  

The most important requirement is that the solution must be 
scalable; this means that the processing carried out by the 
programmable nodes does not increase when the active packets 
cross various domains. Additionally, the amount of information 
related to the security, which is carried by the active packet, 
must be reasonable as the number of domains increases. 

We must take into account that programmable networks 
must be on the edge of the network, so this technology will be 
offered usually by the ISPs that give direct service to the users. 
Therefore, a multidomain session will generally imply two 
domains, and in some extreme situations, could be up to four 
domains; that is, when two ISPs that give service to two 
intranets, the end systems are situated within the intranets that 
have programmable service technology, as we can see in Fig. 5. 
 

 

Fig. 5. Multidomain scenario. 
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Now, we describe the different phases of the multi-domain 
solution. 

B. Domain Discovery 

To discover the programmable domains that participate in a 
session, we will use the programmable network technology 
itself, sending an active packet called a scout from the source to 
the destination. The scout carries the IP address of the 
authorization server (AS) that belongs to the domain from 
which it originated. When the scout reaches the first 
programmable node of a new domain, this programmable node 
will inform its AS of the IP address of the previous AS. Then, a 
new scout is sent by this programmable node to the destination, 
carrying the IP address of the last AS. So, at the end of this 
process every authorization server will know the previous 
authorization server along the path of the active packets. When 
an AS knows its nearby AS, it will negotiate with it. 

In Fig. 6, we can see the messages exchanged in the 
discovery and negotiation phases applied to a scenario with 
three domains represented by AS1, AS2 and AS3.    

When S requests the session from its AS, the AS verifies that 
the destination belongs to a foreign domain, and S will then 
send a scout active packet towards the destination that carries 
the IP address of the authorization server. When the scout 
packet reaches a programmable node of a new domain, the 
programmable node detects that the IP address of the 
authorization server, which carries the scout packet, does not 
correspond to its authorization server.  

Then, the programmable node sends a request of identity 
message to its authorization server, indicating the IP address 
and the IP address of the previous authorization server. The 
 

 

Fig. 6. Discovering and negotiation. 
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authorization server of the new domain sends a notification of 
identity message to the previous authorization server. Then, the 
first authorization server knows the IP address of the new one, 
and can follow the negotiation process of the session. 

The new authorization server initiates a repetition, made up 
of the four messages, request of discovery, scout, request of 
identity, and notification of identity. But in this case (when it is 
not the first AS) the first message (request of discovery) is not 
sent to S; instead, it is sent to the programmable node that had 
sent him the request of identity in the previous iteration. After 
the repetition, every authorization server will know the IP 
address of the next authorization server in the path from S to D.  

If the last authorization server detects that the destination 
belongs to its domain, it will finish the search process. If the 
domain of the destination does not have the programmable 
network technology, then the authorization server of the last 
programmable domain will not be able to detect that is the last 
programmable domain. In this case, the previous authorization 
server will continue the search process. Then, when the 
authorization server does not receive a response to the request 
of the discovery message, it will suppose that it is the last 
programmable domain (after three attempts). 

C. Multidomain Session Negotiation 

Once an authorization server receives a notification of 
identity message from the next server, it sends the server a 
request of session message, as shown in Fig. 6. So, this 
message is extended in a telescopic way up to the last 
authorization server. The authorization servers would change 
the authorization parameters in this process. For example, an 
authorization server would reduce the SET parameter to reduce 
the service time if the requested time is higher than the one 
supported by its domain. 

Then, the last authorization server sends a response message 
to the previous one. This message carries the final authorization 
parameters (Ci, SST, SET, D, S, U, SP) and is sent by passing 
through all the authorization severs from the last to the first. 
Every authorization server that accepts the session inserts the 
following into the response message: 

• Its IP address. These values are sent back to the source (S). 
• Its session key (Kj for the domain j) confidentially. The 

session key (Kj) for the domain j is generated using (5). This 
value is sent on to the next authorization server, where Kcij 
is the assigned key in the domain j to the programmable 
service identified by Ci. 

• Its interdomain session key (Kij) between the current and 
previous domain. The interdomain session key (Kij) 
generated by the authorization server of the domain j is a 
value generated as shown in (6), where Kj and Ki are the 
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session keys of domains j and i, respectively. The 
interdomain session keys (Kij) are public values, so they do 
not need confidentiality. These values are sent up to the 
source.  

  
Kj = hash(Kcij, Ci, SST, SET, D, S, U, SP),       (4) 

 
Kij=Ki XOR Kj .                       (5) 

 
Therefore, when the first authorization server (that is, the 

nearest S) receives the response message, it can generate the 
multidomain session key (Km) using the session keys of all the 
domains, as shown in 

 
Km = hash(Kj,Ki,...,K1).              (6) 

 
However, the first authorization server must know all the 

session keys (K1,…,Kj) to generate Km. It generates the session 
key (Kj) of the other domains using the session key of its 
domain and the interdomain session keys (Ki,j), as we can see 
in  

 
     K2 = K12 XOR K1,               (7) 

K3 = K23 XOR K2, 
K4 = K34 XOR K3. 

  

Finally, the first authorization server sends a response to S 
that carries the following information:  

• The multidomain session key (Km) 
• The definitive authorization parameters used to generate the 

session keys (SST, SET, D, S, U, SP) 
• The interdomain session keys: Kij,…, K12 
• The IP address of the authorization servers that are along the 

path of the active packets and that have accepted the session  

D. Active Packet Processing 

The source (S) sends active packets to the destination (D) 
protected as we have explained in a domain scenario, but using 
the multidomain session key (Km) instead the session key of its 
domain (Kj). 

In addition, the active packets carry a multidomain header 
with the following information:  

• The amount of programmable domains taking part in the 
session 

• IP address of the authorization servers 
• Interdomain session keys (remember that these keys are 

public parameters and therefore do not require 
confidentiality service) 

When a programmable node receives an active packet, it will 
generate the session key (Kd) of its domain d. Then, the 
programmable node uses this session key (Kd) and the 
interdomain keys (Kij) carried in the active packet to generate 
the other session keys (K1, K2,…, Kd-1, Kd+1,…,Kj). Then, the 
programmable node generates the multidomain session key 
(Km) using the session keys of all the domains (K1,…, Kj).     

For example, if a session has four domains, there are four 
session keys (K1, K2, K3, and K4) and three interdomain keys 
K12, K23, and K34. When a programmable node of domain 2 
receives an active packet, it generates the session key of its 
domain using (8). 

 
K2 = hash(Kci2, Ci, SST, SET, D, S, U, SP)       (8) 

 
Then, using the interdomain keys, (Kij) generates the session 

keys of the rest of the domains (Kj), as we can see in  
 

              K1 = K2 XOR K12,                       (9) 
K3 = K2 XOR K23, 
K4 = K3 XOR K34. 

 
Finally, using the session keys (Kj) of all the domains, the 

programmable node generates the multidomain session key 
(Km) using (10). 

 
Km= hash(K1 ,K2, K3 ,K4).           (10) 

 
We must note that a programmable node can only generate 

the multidomain session key if it is capable of generating a 
session key of one of the four domains. Therefore, only a 
programmable node of one of the domains 1, 2, 3, or 4 can 
generate the multidomain session key.  

We can conclude that the procedure to process the active 
packets is similar to the one described in a single domain. Here, 
the procedure only changes to generate the multidomain 
session key (Km), which is a bit more complex but does not 
require many more resources for the programmable nodes. 

Finally, we must say that all the messages in the phase of 
discovering and session negotiation are protected using 
authentications and anti-replay mechanisms. Furthermore, 
when it is necessary to send the multidomain session keys (Km) 
or a domain session key (Kj), we will use the confidentiality 
service. 

VI. Tests Carried Out 

We have implemented the main mechanisms of the proposed 
security architecture. The implementation has been carried out 
on the programmable networks platform called Simple Active 
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Router-Assistant Architecture (SARA) [23], which has been 
developed in the IST project, GCAP. The SARA 
implementation is carried out mainly in Java language. So the 
security implementation has been carried out in Java. 

The more critical procedures are those that carry out the 
programmable node when an active packet is received. We 
have measured the cost of the different procedures carried out 
by the programmable node on an active packet.  

We have used a single programmable service called 
NameTrace that copies the node IP address in the active packet. 
The destination forwards the active packet toward the source. 
When the active packet arrives at the source, it carries the IP 
address of all the programmable nodes in the path. Because the 
programmable nodes must modify the active packet, they must 
also protect the active packets before forwarding them. 

The tests have been carried out using the SARA 
implementation of programmable networks with an AMD XP 
2400+ CPU with 256 MB of RAM and Linux kernel 2.4.21. 
We have used the security solution JDK 1.4.2. to develop it. 

Figure 7 shows the results of the measurements. We can see 
that the time needed to process an active packet is divided into 
verification time, programmable service processing time 
(TraceName in this case), and protection processing time 
because the active packet has been modified by the 
programmable node.  

We have seen that for one domain, the total processing time 
of an active packet was 1.0523 ms. The HMAC and 
authentication verification process of the active packet take up 
17.58%, the anti-replay verification process takes up 4.97%, 
and the protection of the packet takes up 9.09%. The rest of the 
time (68.35%) is dedicated to the programmable service. 

We must note that the percentage of security processing is 
reduced even using a single programmable service. If we use a 
 

 

Fig. 7. Time needed to process an active packet. 
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more complex service, this percentage will decrease.  
If the number of domains is 1, 2, 3, or 4, the processing time 

is 1.052, 1.058, 1.063, and 1.064 ms, respectively. So the 
increase in the processing time with the number of domains is 
so insignificant that we can say that the system is scalable. This 
is because the multidomain solution only introduces changes 
into the session key generation procedure, which is a procedure 
with a very low cost. 

The measurements have been carried out assuming that the 
code and the key Kci are in the programmable node. Only the 
first active packet of a session will usually bring about the 
download of the code and the Kci. The download time is great 
compared to the processing time, but its influence on the process 
throughout the life of the programmable service will be reduced. 

We have evaluated the overload of the active packets that 
transport the security information: authentication code of the 
message (mac), authorization parameters, anti-replay 
information, interdomain keys, and IP address of the 
authorization servers. By using the implementation of SARA, 
we can see the overload for different packet sizes, and for a 
different number of domains between 1 and 4 shown in Fig. 8. 
So, for an active packet of 500 bytes, for instance, all the 
security information takes up 15.20% of the packet size for a 
typical scenario of two domains. In an extreme case of four 
domains, the overload increase up to 24.80%.   

We have compared the solution proposal in this article with a 
solution based on asymmetric cryptography, like that proposed in 
ANSA. If the active packet carries a digital signature, in addition 
to the HMAC authenticator, the processing overload in the 
programmable node will increase. We have measured the cost of 
verifying the digital signature in the programmable node using 
an RSA algorithm and a key of 1024 bits. The time needed to 
verify the digital signature was 1.4 ms. Thus, if we use a digital 
signature, the delay in the security process increases from 0,333 
to 1,733 ms. In addition, if we transport the digital signature in 
the active packet, the overload in the security information will be 
increased. In the case of a domain and for a packet size of 512 
bytes, the security information takes up 57% of the active packet, 
assuming that the digital signature is 250 bytes. Therefore, we  

 
 

Fig. 8. Overload of the security information. 
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can see that the solution proposed in this article saves resources 
with respect to other solutions presented in the state of the art that 
use a digital signature. 

We have estimated the time that a user must wait for a 
response when requesting a service. The estimations have been 
carried out by measuring the time needed for the cryptographic 
procedures and the delay in the messages in a real scenario. In 
the extreme case of four domains, assuming that the destination 
does not belong to the last domain (worst case), the estimated 
time is 2.6 s. This is a reasonable time because the procedure is 
carried out before starting the service. 

Because SARA is implemented in Java, the cryptographic 
procedures are not optimized in processing consumption. We 
can obtain an improvement in the implementation using more 
efficient cryptographic providers [24]. A better improvement 
may be to create a cryptographic provider based on C language, 
as it is more efficient, and integrating it into SARA by means of 
Java native interface. 

VII. Conclusion 

In this article, we have presented a security proposal applied 
to a multidomain multiservice network based on 
programmable network technology. The security architecture 
presented follows pragmatic ideas in order to be applied in a 
real network. One contribution in this sense consists of a 
pragmatic vision of the scenario, treating the requirement of not 
needing to know the topology.       

We have focused our effort on ensuring that the security does 
not use up a large amount of resources by the programmable 
nodes when they process the active packets. Therefore, we 
have proposed a security protection of the active packets based 
on the symmetric cryptography, as opposed to other proposals 
of the state of the art that use asymmetric cryptography (digital 
signature).  

We have resolved the problem of distribution of the 
symmetric key (session key) to the programmable nodes in an 
efficient and scalable way. The solution defines a single way to 
distribute the session key, to check the authorization of the 
programmable services, and to distribute the authorization 
parameters to the programmable nodes.  

In a multidomain scenario, the programmable nodes follow 
using symmetric cryptography to verify and protect the active 
packets. Furthermore, we have presented an original procedure 
to regenerate a multidomain session key in the programmable 
nodes. The asymmetric cryptography is used in the negotiation 
procedure of the programmable service between the domains 
to establish trust relationships between domains. Therefore, the 
solution is pragmatic and efficient. 

We have proposed an anti-replay protection of active packets 

that deal with the problems derived from the requirement of 
not needing to know the topology. These particular problems 
are not dealt with in other previous works. 

The tests carried out demonstrate that the security proposal 
presented in this article is scalable according to the number of 
domains, and is more efficient than the more representative 
ideas presented in the state of the art. 
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