
ETRI Journal, Volume 27, Number 6, December 2005 Bernardo Alarco et al. 651

This paper proposes a generic security architecture
designed for a multidomain and multiservice network
based on programmable networks. The multiservice
network allows users of an IP network to run
programmable services using programmable nodes
located in the architecture of the network. The
programmable nodes execute codes to process active
packets, which can carry user data and control
information. The multiservice network model defined
here considers the more pragmatic trends in
programmable networks. In this scenario, new security
risks that do not appear in traditional IP networks become
visible. These new risks are as a result of the execution of
code in the programmable nodes and the processing of the
active packets. The proposed security architecture is based
on symmetric cryptography in the critical process,
combined with an efficient manner of distributing the
symmetric keys. Another important contribution has been
to scale the security architecture to a multidomain
scenario in a single and efficient way.

Keywords: Security networks, programmable networks,
authorization, programmable services.

Manuscript received Apr. 8, 2005; revised Nov. 11, 2005.
This work has been funded by CICYT under project AURAS (TIC2001-1650-CO2-01/02).
Bernardo Alarcos (phone: +34 91 885 6628, email: bernardo@aut.uah.es) is with the

Department of Automática, Universidad de Alcalá, Madrid, Spain.
Marifeli Sedano (email: marifeli@gsi.dit.upm.es) is with the Department of Ingeniería de

Sistemas Telemáticos, Universidad Politécnica de Madrid, Madrid, Spain.
Maria Calderon (email: maria@it.uc3m.es) is with the Department of Ingeniería Telemática,

Universidad Carlos III de Madrid, Madrid, Spain.

I. Introduction

The enormous growth of the Internet in the last few years has
brought about new problems and needs that have triggered the
creation of new services on the edge of the network [1]. Some
examples of these services are security components introduced
into the network such as firewall or intrusion detection systems,
caching devices, translation of IP address (NAT), the
transcoding of multimedia flows to adapt them to the network,
or link requirements.

In this scenario, multiple services can be offered to users.
The scientific community has been working on the
introduction of new services in a flexible and dynamic manner.
In this direction, new technologies based on introducing
programmability into the nodes have been proposed, opening
the node interfaces, and developing technologies to introduce
the services.

A programmable network is made up of programmable
nodes within an execution environment to process special
packets called active packets, to offer programmable services.
The active packets are sent by end systems (sources) to other
end systems (destinations). The active packets can carry data
and control information. The control information is able to
configure the behavior of the programmable nodes, allowing
the data to be processed (and even modified) by the
programmable nodes, before progressing towards the
destination. Thus, programmable nodes offer programmable
services to users. Depending on the approach towards the
programmable network, the code to execute the active packets
can be loaded into the execution environment from a code
server, or carried in the active packet itself. If the code is
downloaded from a code server, the active packets will carry a
code reference.

Multidomain Network Based on Programmable
Networks: Security Architecture

 Bernardo Alarco, Marifeli Sedano, and Maria Calderon

652 Bernardo Alarco et al. ETRI Journal, Volume 27, Number 6, December 2005

In this article, we define a pragmatic scenario of a
multiservice network based on programmable network
technologies and propose a security architecture for this
scenario.

Focusing on this subject pragmatically, we have considered
that the multiservice network will be deployed on the Internet,
and that the programmable services will be offered by service
providers. In this scenario, the service provider should be
capable of obtaining benefits provided by the services; hence,
commercial aspects must be taken into account. We must bear
in mind that the users of a service must be authorized
beforehand, and when they have used the service, they must
not be able to deny that they have requested it. In this scenario,
the security risk must be analyzed in order to avoid illegal uses
of programmable services.

Another important aspect of a pragmatic multiservice
network is the multidomain feature. A service would imply the
cooperation between different service providers, every one of
which has a different administrative domain. The multidomain
scenarios introduce scalability challenges into the security
architecture.

The security risks in this scenario have been analyzed by
focusing on the security from the service provider point of view,
looking at how the service provider can be protected from
attacks originated by malicious users. In this respect, the main
components to be protected in the programmable network are
the programmable nodes, and the main security risk would be
caused by malicious active packets or malevolent code.

False active packets could cause an attack on the
programmable nodes, changing their behavior or consuming
resources in an unauthorized manner. The security architecture
must verify that the active packets are authentic and authorized
before processing them in the programmable nodes. The
programmable node must not waste too many resources on the
security processing of an active packet because the flow of
active packets can be high.

The code that is introduced into the programmable nodes to
process the active packets must be controlled to avoid
programmable nodes executing malicious or uncontrolled
codes.

Therefore, the security architecture must protect the
programmable network from malevolent codes and active
packets as well as bearing in mind that some active packets
could proceed from other domains. The security solution must
be scalable.

As we will see later in this paper, the main contributions of
this article are the pragmatic vision of the multiservice network
model and the efficient manner of introducing security into
programmable nodes.

First, we introduce the programmable network technologies.

Then, in section III we define a pragmatic multiservice
network based on programmable networks as well as
analyzing the security requirements of the multiservice
network. After that, we describe previous works in
programmable network security accomplished by other
research groups. Next, in section V, we present the architecture
of security. In section VI, we present an analysis of the tests
carried out on the implementation of the security architecture.
And finally, section VII details our conclusions.

II. Programmable Networks

Programmable networks introduce programmability in the
network. There are two different trends in introducing the
computation plane inside the nodes: Opensign1) and Active
Networks [2], [3].

The concept of Opensign emerged from the
telecommunications companies and standardization
organizations in order to introduce programmability into the
nodes of the network. The Opensign community advocates that
programmability can be achieved by means of defining a series
of open network interfaces that represent physical network
devices and network services as distributed objects. Opening
the interface of the nodes, third party applications can control
the resources of them. Some examples of the proposals are a
generic framework for providing programmability, IEEE P1520
[4], and the general switch management protocol (GSMP) applied
to ATM switches, q-GSMP [5], or to IP routers, e-GSMP [6].
FORces [7] is a working group of the Internet Engineering Task
Force that proposes a generic architecture based on the Opensign
ideas, applied to Internet routers.

The concept of active networks emerged from discussions
within the Defense Advanced Research Projects Agency
(DARPA) research community in 1994 and 1995 on the future
direction of networking systems. The active network community
advocates a dynamic approach through which active packets
can offer services on demand as they carry the executable code.
In some active network proposals, the active packet carries the
user data and executable code that must process them. In other
proposals, the active packet carries a reference to the
executable code, which is downloaded onto the programmable
node separated from the user data.

There are different approaches in active network
technologies. In the programmable switch approach, the
packets keep the existing format and provide discrete
mechanisms for supporting the downloading of the code that
processes the packet. In contrast, the capsule approach
introduces a new type of packet called an active packet, which

1) Open Signalling Working Group. http://www.comet.columbia.edu/opensig/

ETRI Journal, Volume 27, Number 6, December 2005 Bernardo Alarco et al. 653

can carry user data and the code to process it. In some
proposals (in-band) the active packets carry the code, and in
others (out-of-band) the active packets carry a reference to the
code. In the latter case, the code can be downloaded from
another programmable node or from a code server.

DARPA has been the main promoter of the active network
technologies2) [8], developing an experimental network called
ABone [9]. Some Information Society Technologies (IST)
projects such as Global Communication Architecture and
Protocols (GCAP) [10], and Future Active IP Networks (FAIN)
[11], have been developed to propose different programmable
network technologies. These projects follow some pragmatic
ideas: allow the network administrator to control the codes used
to process the active packets, define a business model, and create
a mix of the Opensign and active network ideas.

III. The Security Problem of Multiservice Networks
Based on Programmable Networks

1. A Pragmatic Vision of Multiservice Networks Based on
Programmable Networks

In this section, we describe the scenario of a multiservice
network based on programmable network technology. We will
use pragmatic trends in programmable networks to define the
generic features of the multiservice network.

Basically, a programmable network is made up of a number
of programmable routers (called programmable or active
nodes) inside an IP network. The programmable nodes identify
special packets called active packets and load a specific code to
process them. Active packets go from an end-system source to
an end-system destination, and the programmable nodes in the
path between the source and the destination processes the
active packets, as shown in Fig. 1, with a specific code.

In some programmable networks, the users can introduce
their executable codes into the programmable nodes, but this is
not a pragmatic solution because of the risk of introducing
malicious codes. So, in order to obtain controlled codes from
the network administrator, we propose using code servers.
Every active packet carries the code identifier that executes the
programmable nodes to process the active packet itself. When
a programmable node receives an active packet, if it does not
have the code to process it, it will download the code from a
code server.

The programmable nodes consume resources when the
multiservice network offers the services demanded by the users.
We will define a service model that forces the users to request a
service before using it, so the multiservice network can accept

2) Darpa Active Networks Program, 1996. http://www.sds.lcs.mit.edu/darpa-activenet/

Programmable node

Fig. 1. Scenario of a programmable network.

Source

Active packet Destination

IP router

or refuse the service according to the available resources. These
services must be controlled in order to offer just the authorized
services. So, the programmable nodes must only process the
active packets that belong to an authorized service.

There are some approaches towards a programmable
network in which the programmable nodes need to know who
its closest programmable nodes are in order to send them the
active packets, while in other approaches the programmable
nodes that process active packets do not need to know this
information (its IP address). In this case, the active packets are
sent to the destination and are intercepted by the programmable
nodes in the path. We suppose that in a generic scenario of
programmable networks, the programmable nodes do not need
to know the topology (the other programmable nodes). This
supposition allows us to propose a generic security solution,
valid for both programmable network technology approaches.
In addition, it is a pragmatic requirement that the users (end
systems) do not need to know the topology of the
programmable network, which means that the users do not
need to know the programmable nodes (its IP address) in order
to send them the active packets.

A programmable network could experience changes in
topology that can be produced by changes in the network
routes by new programmable nodes that appear in the network
or when a programmable node is down. The changes in
topology can cause the changes to take place suddenly, as new
programmable nodes start to process the active packets of a
programmable service, or when other programmable nodes
suspend the processing of active packets. The security
architecture must be immune to the changes of topology.

A pragmatic network should be capable of deployment in a
network such as the Internet in order to reach the end users.
The topology of the Internet network is made up of networks
belonging to interconnected ISPs. Every network belonging to
an ISP has its own administrative domain that could have

654 Bernardo Alarco et al. ETRI Journal, Volume 27, Number 6, December 2005

programmable network technology. When a multiservice
network comprises various programmable networks of
different administrative domains, the multiservice network will
be a multidomain network.

It is assumed by the scientific community that the
programmable nodes will be located on the edge of the
network, where the number of flows to be processed is fewer
than at the core. Thus, we consider that the programmable
nodes will be located in the networks of the ISPs that are on the
edge of the Internet, which offer services directly to the users.
In Fig. 2, we can see the multidomain scenario of the
multiservice network.

Fig. 2. Multidomain scenario.

Transport
network

Programmable network

2. Security Requirements of the Multiservice Network

The goal of this article is to propose a security architecture to
protect the programmable network from malicious users.
Another possibility that is not being dealt with here is the
protection of users from malicious programmable nodes. This
is an interesting point of view, but in real scenarios it is
reasonable to trust the programmable nodes of the service
provider. In this sense, it is sufficient to guarantee that the
programmable nodes that modify the active packets belong to a
trusted service provider.

The programmable nodes are especially sensitive to the
denegation of service attacks (DoS), since they must carry out a
larger process on the packets, than the forwarding process
carried out by the traditional routers. Furthermore, the
processing of the packets implies the introduction of code into
the programmable node, which could be malicious. The active
packets carry information that would change the behaviour of
the programmable node, so the active packets could be
especially dangerous.

The authorization is fundamental in a scenario like this,
because of the need to process only the authorized active
packets. Therefore, a user must request authorization from the
network before sending active packets, and the programmable

nodes must verify that the active packets are authorized before
processing them.

The user might need to pay for the programmable service
received from the multiservice network [12]. To avoid the user
denying his responsibility for payment, the authorization
request must include the non-repudiation service.

The authentication must be verified in the following
situations:

•When a user requests a service from the multiservice
network, the multiservice network and the user must both
verify that his interlocutor is authentic.

•In the download process of a code from a code server to a
programmable node, the code server must verify that the
programmable node is authentic. And the programmable
node must verify that the received code is authentic.

•When a programmable node receives an active packet, it
must verify that the source of the active packet is authentic.
The source could be an end system or a programmable
node.

The programmable nodes can modify a part of the active
packets, called the dynamic part. This situation introduces new
security challenges to allow only the modifications made by
the authorized programmable nodes. The mechanisms that
offer the authentication of the active packets must also offer the
integrity service, in order to make sure that the dynamic part of
the active packet has not been modified by unauthorized
entities. The integrity mechanism must also be applied to the
codes exchanged between code servers and programmable
nodes, and to the information exchanged to request a service.

An attack that consists of injecting authentic previously
stolen active packets would cause an error in the service or
simply in the consumption of resources (DoS attack). The
authentication and integrity mechanisms do not offer anti-
replay services. We must apply anti-replay protection to the
active packets in order to avoid degradation of the service.

The definition of the trust relationship in a scenario with
programmable nodes is necessary to focus on the security
solution properly. The content of the active packets can be
modified by the programmable nodes (for example, an audio
flow carried by the active packets can be modified by a
transcoding process that runs in a programmable node). In
addition, a programmable node could generate a new active
packet towards the source or destination as the result of
processing incoming active packets (that is, if it is multicasting).
Programmable nodes must rely on the active packets inserted
or modified by other trusted programmable nodes. But we
must restrict the scope of the trust relationship between the
components of a programmable network. A reasonable
limitation includes the programmable nodes and code servers

ETRI Journal, Volume 27, Number 6, December 2005 Bernardo Alarco et al. 655

of the same administrative domain. But in the multidomain
network, some services require the cooperation between
programmable nodes of different domains. Therefore, dynamic
trust relationships between programmable nodes of different
domains must be established.

The security association between the end system and
programmable nodes or between two nearby programmable
nodes would be established in a similar way to the security
associations between the end systems in IPSec or transport
layer security (TLS) protocols. But in the generic and
pragmatic scenario of a programmable network, it is not
realistic to establish security associations between
programmable nodes or between programmable nodes and end
systems because of the knowledge implications of the topology.

IV. Related Works

We must protect the active packets using an authentication
and integrity mechanism. This protection could be
implemented using asymmetric or symmetric cryptography.
Asymmetric cryptography (digital signature) has better
scalability in a multidomain environment because it uses a
scalable public key infrastructure to distribute the public keys.
However, the asymmetric cryptographic algorithms require
more processing and memory than the symmetric
cryptographic algorithms (HMAC). On the other hand,
symmetric cryptography introduces the challenge of how to
obtain an efficient mechanism for key distribution. We now
describe the solution adopted by the main security architectures
of programmable networks.

The Secure Active Network Environment (SANE) [13] is a
security architecture developed by a research group from the
University of Pennsylvania. This architecture uses a
mechanism to protect the dynamic and static part of the active
packets, using a method based on symmetric cryptography
(more efficient). However, they propose a complex system of
key distribution made up of different keys: one shared key
between the end system and every programmable node, and
another shared key between the end system and all the
programmable nodes. Furthermore, the mechanism to
distribute the keys requires the end users and the
programmable nodes to know the topology of the network.

The Active Network Security Architecture (ANSA) [14] is a
generic security architecture proposed by a group of
researchers inside DARPA. This architecture proposes the use
of symmetric cryptography to protect the dynamic part of the
packets as well as using asymmetric cryptography to protect
the static part of the active packets. ANSA has been proposed
to offer security in Abone [15]. An interesting implementation
of ANSA is SANTS [16], a security architecture for the main

proposal for an active network applied in ABone, called ANTS
(active node transfer system) [17]. In ANSA, multidomain
security is dealt with using various credentials that carry
authorization information to the different domains.

This proposal requires a high CPU consumption and large
bandwidth because of the use of asymmetric cryptography. In
addition, a hop-by-hop security mechanism is proposed, using
a shared symmetric key between nearby programmable nodes.
This solution requires both the programmable nodes and the
end systems to know the network topology.

Another security architecture [18] based on ANSA has been
developed within the IST FAIN project. The difference with
SANTS is that the communication between the end system and
the first programmable node is based on asymmetric
cryptography. Therefore, it is not necessary for the user to
know the network topology, but the use of asymmetric
cryptography is less efficient.

Some security proposals study the security from the user
point of view. They define procedures that allow the user to
control the nodes that can modify [19] the active packets.

We can conclude that the state-of-art security proposals do
not define the multidomain extension of the security in a
complete manner, and that the security solutions depend on the
knowledge of the topology. In addition, we have seen that the
state-of-art proposals use asymmetric cryptography (as well as
symmetric) in the protection of the active packet. However,
this solution requires a greater consumption of resources by the
programmable nodes.

V. Security Architecture

Preliminary ideas on the proposed security architecture have
been published in [20]. In this article, we present a number of
improvements on the solution, the multidomain extension, and
the tests carried out on a real platform in section VI.

The main contributions of this security architecture to the
state of the art are as follows: the pragmatic approach of the
multiservice network model, the considerations of efficiency in
the solution, and the multidomain architecture. The solution is
based on the use of a symmetric key in the critical processes,
proposing an efficient way of distributing the symmetric key.

First, we describe the security architecture in a scenario made
up of one administrative domain. Then, we will describe how
to extend this solution to a multidomain scenario.

1. Security in an Administrative Domain

A. Authorization of Preliminary Definitions

The first problem that we must solve is the authorization of
the user to access a programmable service. The user must

656 Bernardo Alarco et al. ETRI Journal, Volume 27, Number 6, December 2005

negotiate with the programmable network to request the
service. We define a new component, the authorization server,
which represents a programmable network domain in the
negotiation process. All the service requests in the same
domain are centralized in a single authorization server, which is
implemented like a high availability server.

When a user requests a service, the authorization server will
generate a response. This response can be positive or negative,
depending on whether the user is authorized or not.

We define a single set of authorization parameters that define
the programmable service. These parameters are as follows:

• Ci: identification of the executable code that must process
the active packets to offer the service in the programmable
nodes. Because every programmable service is associated
with a different executable code, Ci is really a value that
identifies the programmable service that the user requests.

• SST: time in which the programmable service starts. The
programmable nodes must not process the incoming active
packets before the time indicated by SST.

• SET: time in which the programmable service ends. The
programmable nodes must not process the incoming active
packets after the time indicated by SET.

• S: IP address of the end system that is the source of the
active packets.

• D: IP address of the end system that is the destination of the
active packets. S and D allow verification that the active
packets are sent between the end systems that have been
negotiated.

• U: user identifier. This parameter identifies the user who has
requested the programmable service, which is responsible
for the proper use of the service.

All these parameters define a programmable service
requested by a user. By using them, the programmable nodes
can verify whether an active packet has authorization to be
processed or not.

This single and generic set of parameters can be increased in
some cases, with a specific parameter (SP) that depends on the
programmable service. The programmable service is
responsible for verifying the SP.

The programmable nodes must apply the authorization
policy to the incoming active packets. In order to make this
possible, the authorization parameters (Ci, SST, SET, S, D, U,
and SP) must arrive at the programmable nodes. So we must
define an efficient manner to transport the authorization
parameters to the programmable nodes.

In similar scenarios, the authorization information is usually
transported in credentials carried by the active packets. The
credentials are based on public cryptography (signed by the
authorization server or a trusted entity), which requires more

processing than symmetric cryptography. Furthermore, because
of the dynamism of the network topology, it is recommended
that the credential travels within all the active packets.

The use of a credential protected by a digital signature in all
the active packets implies large bandwidth consumption.
Therefore, we must define a procedure to transport the
authorization parameters in the active packets not based on the
use of public cryptography (digital signature).

B. Authentication and Integrity of Active Packets

The active packets that arrive at the programmable node
must be authentic; meaning that the active packets must have
been generated by the user or by a programmable node on
behalf of the user. In addition, the active packets must be
integral, meaning that the active packets must not have been
modified by an unauthorized entity. Only the programmable
nodes and end systems are authorized to generate and modify
the active packets.

To offer the authentication and integrity of the active packets,
we can use symmetric cryptography mechanisms (such as
HMAC) or asymmetric cryptography mechanisms (such as a
digital signature).

Symmetric cryptography requires the use of a secret key
shared among all the programmable nodes and the end systems
that process the flow of the active packets. The system based
on symmetric cryptography usually requires a great effort in
key distribution, which is difficult to scale if the number of
components sharing the key increases. However, the use of
symmetric cryptography (based on HMAC) is a good solution
because of the low resource consumption.

The user and programmable nodes can sign the active packet
using a digital signature (asymmetric cryptography). If this
solution is accompanied by a public key infrastructure that
facilitates the public key distribution through certificates, it will
have good scalability in large systems because, in this case, a
secret key distribution is not needed. However, the verification
of the digital signature implies a large consumption of
processing and bandwidth. Furthermore, if a programmable
node modifies the active packet, it must sign the active packet
as well, and the consumption of resources increases.

The most popular solution adopted in the sate of the art
consists of the protection of the static part of the active packet
(the one that is not modified by the programmable nodes) using a
digital signature generated by the user. Therefore, the
programmable nodes can identify the user that has generated the
active packet. In addition, the dynamic part of the active packet
(the one that can be modified by the programmable nodes) is
protected using symmetric cryptography (HMAC). The problem
of the key distribution is usually resolved by using a different key

ETRI Journal, Volume 27, Number 6, December 2005 Bernardo Alarco et al. 657

between every two adjacent programmable nodes, and between
the end systems and the adjacent programmable node. This is
called a hop-by-hop solution. But this solution requires the
programmable nodes and end systems to know the topology,
because in order to exchange the symmetric key, adjacent
systems must know themselves.

We propose a solution that does not use the digital signature
in order to reduce the consumption of resources. The proposal
consists of protecting the active packets via symmetric
cryptography (HMAC), but using a unique key shared between
the programmable nodes and the end systems. The use of a
unique shared key facilitates the distribution of the key without
knowing the network topology. To solve the problem of the
efficient distribution of the key to the end systems and the
programmable nodes, we propose a scalable and efficient
procedure. This procedure is based on the regeneration of the
key in the trusted programmable nodes using an efficient
procedure based on hash.

C. Mechanisms of Protection against Processing Illicit Active
Packets

The key used to protect the active packet is generated by the
authorization server and is sent to the user upon requesting a
programmable service. As this key is used only to protect the
active packets associated to this programmable service request,
it is limited in time by the authorization parameters: service
start time (SST) and the service end time (SET). So we will call
this key the session key.

The process starts when a user requests a service sending the
authorization parameters (Ci, SST, SET, D, S, U, and SP) to the
authorization server (AS). When the AS verifies that the user
has authorization, it will send him a response allocating the
session key (K) and the authorization parameters. The
authorization server can modify the value of some
authorization parameters (for example, the value of the SET)
before generating the response.

The session key is used to send active packets to the destination.
The packets are protected by using an algorithm based on
HMAC and K; however, this occurs before the user introduces
the authorization parameters inside the active packet. Thus, these
authorization parameters are sent to the programmable nodes with
integrity protection. The programmable nodes verify the active
packet integrity by using the same session key (K).

A malicious user would modify the authorization parameters.
For example, a user would increase the SET value to send
packets within a period of time higher than that which has been
negotiated. To avoid a user being able to modify the
authorization parameters, the session key will be generated by
the authorization server using (1).

K = hash(Kci, Ci, SST, SET, D, S, U, SP) (1)

Key Kci is a secret key that is only shared among the

components of the programmable network (authorization
server, code servers, and programmable nodes). Therefore, the
user cannot generate a session key because he does not know
Kci. When an active packet arrives at a programmable node,
this programmable node can generate the session key using the
authorization parameters carried by the active packet and the
value of Kci. Thus, if the user modifies the authorization
parameters, the session key generated by the programmable
nodes will be different to the one generated by the
authorization server, and the integrity verification of the active
packet will fail.

There is a different Kci for every kind of programmable
service (Ci value). The Kci values are generated by the
authorization server and sent to the code servers. Therefore, the
programmable nodes can download Kci at the same time as
they download the code from the code server. The values of
Kci

’s are refreshed periodically in order to avoid the excessive
use of the cryptographic material. The authorization server is
responsible for initiating the refreshment process.

Now, we will describe the process step by step in order to
clarify the compression, as shown in Fig. 3:

Fig. 3. Security solution.

IP router

Programmable node

Code server (CS)

Authorization server (AS)

Programmable service
negotiation

Active packet

Code and Kci
download

3
5

4

CS

CS

AS

1-2

1. The user requests authorization from the authorization
server: sending the authorization parameters Ci, SST, SET,
D, S, U, and SP.

2. The authorization server generates the session key and
sends it to the user using (1).

3. The user generates an active packet by introducing the

658 Bernardo Alarco et al. ETRI Journal, Volume 27, Number 6, December 2005

authorization parameters and protecting it (using the
session key and HMAC). Finally, the user sends the active
packet towards the destination.

4. When a programmable node receives an active packet, if it
does not have the executable code identified by Ci and/or
the associated Kci, it will download it from the code server
(usually for the first active packet of a new programmable
service). Then, the programmable node generates the
session key by using Kci and the authorization parameters
that carry the active packet, and verifies the integrity and
authentication of the active packet. The programmable
node also verifies the authorization to process the packet by
using the authorization parameters.

5. Once the active packet is processed, if it has been modified,
the programmable node protects it by using the session key.
Finally, the programmable node sends the active packet
towards the destination.

The verification of authorization to process the packet is
carried out by the programmable node and consists of the
following:

1. The parameters of S and D that correspond to the IP source
and IP destination respectively of the active packets are
used to verify that the active packet goes between the two
end systems.

2. The parameters SST and SET are used to verify that the
active packet arrives at the programmable node within a
valid period of time.

3. The identifier of the programmable service (Ci) is used to
verify that the user does not request a different service to
the one negotiated with the authorization server.

4. The parameter U would be used by the programmable
node to identify the user that requests the service, for
example, for charging purposes.

The programmable nodes can generate the session key, so
they are authorized to generate new active packets on behalf of
the user, or to modify incoming active packets.

Note that the transport of the authorization parameters to the
programmable nodes is single and efficient in resource
consumption. In other proposals of the state of the art, the
authorization parameters are transported as a credential generated
and signed by a trusted authority (for example, the authorization
server). The use of a digital signature requires the active packets
to transport a larger amount of information and requires too
much processing to verify the authenticity of the credential.

In this explanation, we have assumed that the active packet
goes from an end system called the source towards an end
system called the destination. If the destination needs to send
active packets towards the source, it uses the same session key

as the source. In general we can say that the end systems
(source or destination), from which the user has requested the
programmable service, sends the session key to the other end
system if necessary.

The authorization parameters S and D are respectively the IP
source address and IP destination address of the active packet.
To generate the same session key to both directions of the
active packet (from S to D, and from D to S), we must generate
the session key using the S and D ordered parameters; first, the
minor value and then the major value. Therefore, we avoid the
use of two session keys, one for each direction.

D. Anti-replay Protection of Active Packets

The HMAC algorithm provides protection against integrity
and authentication attacks on the active packet. But an
aggressor would provoke denegation of service attacks (DoS),
stealing active packets and injecting the packets into the session
at a later time. The programmable nodes process the injected
active packet because the HMAC verification is right.

Therefore, we must define a mechanism to verify whether an
active packet has already been processed by the same
programmable node before processing it.

An anti-replay procedure based on IPSec is usually used in
IP networks, which consists of identifying every active packet
using a different sequence number. As an IP network does not
guarantee the ordering of the packets, it is necessary to
implement it in the receptors of the active packets’ sliding
windows. The sliding window will have a constant size and
represents a range of sequence numbers.

In a programmable network, the programmable nodes must
carry out the anti-replay verification every time a new active
packet is received. The mechanism used in IPSec is
implemented between two end points. The security proposals
in the state of the art define a mechanism based on
implementing the IPsec anti-replay procedure between every
two neighboring programmable nodes [21]. The proposals that
follow this approach are dependent on changes in topology. In
addition, the users and programmable nodes need to know the
topology of the programmable network. We will propose a
variation in the solution that avoids the need to know the
topology and that supports changes in topology.

We must consider that a programmable node would insert
new active packets into a flow of active packets from a source
to a destination, and that the active packets would pass through
different programmable nodes when a change of topology is
produced.

Every session of a programmable service could have
different sources of active packets: the end system (end source)
and the programmable nodes (intermediary sources). If we use

ETRI Journal, Volume 27, Number 6, December 2005 Bernardo Alarco et al. 659

the same sequence to enumerate all the active packets,
situations of inconsistency in the numeration would be created.
This situation consists of different sources of active packets of
the same programmable service generating new active packets
using the same sequence number.

To avoid this problem, we will use a different numeration for
every source (end source and intermediates sources) that
generates active packets in the same session. Thus, we will
distinguish whether an active packet has already been
processed by a programmable node when it has passed an
active packet before with the same following parameters:

1. Session of programmable service (identified by Ci, SST,
SET, D, S, U and SP).

2. Source: IP address of the programmable node or end
system that has generated the active packet.

3. Sequence number.

Therefore, the active packets must carry the authorization
parameters, the IP address of the source that has generated the
active packet, and the sequence number generated by this
source (end system or programmable node).

We must note that if the source of an active packet is a
programmable node, the active packet will carry the IP address
of the end system in the IP header. So appending a field to carry
the IP address of the programmable node is necessary.

To implement this procedure, the programmable nodes that
receive the active packets must implement one sliding window
for every source of active packets corresponding to the same
session.

Therefore, by using more resources to implement different
sliding windows and carrying the IP address of the generator of
the active packet we avoid the inconsistency of the number of
sequences.

When a programmable node generating active packets
reboots, it will reset the value of the sequence number, and the
active packets could be rejected by the receivers because the
sequence number is reused. To avoid this problem, the
programmable nodes save the higher bits of the sequence
number in non-volatile memory. When the programmable
node reboots, the portion of the sequence number that has been
saved is recovered and incremented. Thus, the sequence
number will start with a higher value than the last one used
before the reboot.

E. Others Security Processes

Now we will briefly describe other less critical processes
involved in the security solution.

The programmable nodes download the Kci
 values and

programmable service codes from the code server. This
procedure requires security services for mutual authentication

and confidentiality of the codes and the Kci. To provide both
services, we propose to carry out the downloading process
through a secure TLS [22] connection.

The end systems request services from the authorization
server. This process requires security services of mutual
authentication and confidentiality for the session key. To make
this possible we can also use a TLS connection.

Finally, the refreshment process of the Kci
’s (keys associated

to the programmable services) between the authorization server
and the code servers requires security services for mutual
authentication and confidentiality. In addition, we must take
into account that a programmable network would have a
considerable number of code servers (for example, 40 code
servers), and this fact must not bring about scalability problems
in terms of the requirement for processing by the authorization
server.

The refreshment of the keys (Kci
’s) is initiated by the

authorization server that sends a message, the refreshment
request in Fig. 4, to all the code servers of the programmable
network. The Kci

’s are valid for a predefined period of time (for
example, 24 hours), so the authorization server must initiate this
process every period of time equal to the duration of the key.

This message carries a random and secret seed, which is
used by the authorization server and the code servers to
generate all the new Kci

’s. They make a computation based on
a hash function in order to be fast, even if the amount of
programmable services (Ci) is high. The procedure is as
follows: The authorization server and code servers use the seed
to generate a master secret (MSj) for the refreshment period j
using (2). The MSj value depends on the seed, the period of
validity of the keys generated (VP), and the master secret
generated in the last refreshment process (MSj-1).

MSj= hash [seed, VP, MSj-1] (2)

Finally, they use the master secret to generate the Kci

j of
every programmable service identified by Ci, and for the period
of refreshment j, as shown in (3).

Kci

j =hash(MSj, Ci) (3)

Fig. 4. Kci refreshment.

Authorization server

Code servers
Refreshment request

Response

660 Bernardo Alarco et al. ETRI Journal, Volume 27, Number 6, December 2005

The refreshment request message must be confidential and
authentic. To avoid the consumed time to generate the
messages depending on the amount of code servers, the
protection of confidentiality applied to the seed will be carried
out using symmetric cryptography, instead of asymmetric
cryptography. For authentication purposes, we use a digital
signature.

When sending the response message, Response in Fig. 4, the
code servers confirm that it has received the refreshment
properly. This message must be protected by authentication and
integrity procedures. The response message would provoke a
processing overload in the authorization server if the number of
response messages (code servers) is high. Thus, the
authentication mechanism is implemented by using a hash
function, which requires less processing than a digital signature.

2. Multidomain Security

A. Introduction

The proposal of the security architecture inside an
administrative domain requires a relationship of trust between
the components of the same administrative domain of a
programmable network. These components are the
programmable nodes, the code servers, and the authorization
server. The relationship between these components makes it
possible for them to share a secret. In this case, the secret is the
programmable key associated to the programmable services
(Kci

’s). But, it is not reasonable to extend this trust relationship
out of a domain. This means that the Kci keys must not be
shared between components of different domains. So, every
administrative domain j will have its own Kcij values for every
programmable service.

Then, if an active packet changes domain, the programmable
nodes of the new domain j will use different Kcij values and
thus a different session key (Kj). Therefore, the verification of
the packet will fail.

To resolve this problem, it is necessary to establish a
dynamic security association between the different domains
that take part in a session. These security associations do not
require the Kci

’s of every domain to be shared. However, it is
possible to share a secret value that has the validity period of
the session: these are the dominion session keys (Kj).

In a multidomain scenario there are a lot of domains, the
active packets that belong to the same session will cross some
of them. The first question that we must answer is which
domains will be crossed by the active packets. The user must
negotiate with the service over these domains (their
authorization servers). Therefore, we give the opportunity to all
the domains to decide whether the user is authorized to receive
the requested programmable service.

Once it has been decided which domains will offer the
programmable service, the domains will exchange a session
key. This session key is used by the end system user and the
programmable nodes to protect the active packets. We propose
to use a unique multidomain session key (Km) in order to
simplify the security processing in the programmable node.

 Now, we will explain the security solution in a multidomain
programmable network. The following phases will be
highlighted in the solution:

1. The process of finding out which domains take part in a
session of a programmable service.

2. The negotiation process for the session with the
encountered domains.

3. The protection process for the active packets.

The multidomain solution must fulfill the requirements on
the topology. This means that the user and the programmable
nodes do not need know the topology of the programmable
network. Furthermore, the solution must support changes in the
topology.

The most important requirement is that the solution must be
scalable; this means that the processing carried out by the
programmable nodes does not increase when the active packets
cross various domains. Additionally, the amount of information
related to the security, which is carried by the active packet,
must be reasonable as the number of domains increases.

We must take into account that programmable networks
must be on the edge of the network, so this technology will be
offered usually by the ISPs that give direct service to the users.
Therefore, a multidomain session will generally imply two
domains, and in some extreme situations, could be up to four
domains; that is, when two ISPs that give service to two
intranets, the end systems are situated within the intranets that
have programmable service technology, as we can see in Fig. 5.

Fig. 5. Multidomain scenario.

Transport
network

Programmable network

ISP

Intranet

Intranet

ISP

ETRI Journal, Volume 27, Number 6, December 2005 Bernardo Alarco et al. 661

Now, we describe the different phases of the multi-domain
solution.

B. Domain Discovery

To discover the programmable domains that participate in a
session, we will use the programmable network technology
itself, sending an active packet called a scout from the source to
the destination. The scout carries the IP address of the
authorization server (AS) that belongs to the domain from
which it originated. When the scout reaches the first
programmable node of a new domain, this programmable node
will inform its AS of the IP address of the previous AS. Then, a
new scout is sent by this programmable node to the destination,
carrying the IP address of the last AS. So, at the end of this
process every authorization server will know the previous
authorization server along the path of the active packets. When
an AS knows its nearby AS, it will negotiate with it.

In Fig. 6, we can see the messages exchanged in the
discovery and negotiation phases applied to a scenario with
three domains represented by AS1, AS2 and AS3.

When S requests the session from its AS, the AS verifies that
the destination belongs to a foreign domain, and S will then
send a scout active packet towards the destination that carries
the IP address of the authorization server. When the scout
packet reaches a programmable node of a new domain, the
programmable node detects that the IP address of the
authorization server, which carries the scout packet, does not
correspond to its authorization server.

Then, the programmable node sends a request of identity
message to its authorization server, indicating the IP address
and the IP address of the previous authorization server. The

Fig. 6. Discovering and negotiation.

AS1 PN2 S AS2 PN3

Scout

Request of discovery

Request of identity

K3

Response

AS3

Notification of identity

K2 K23

Km K12 K23

Request of
session

authorization server of the new domain sends a notification of
identity message to the previous authorization server. Then, the
first authorization server knows the IP address of the new one,
and can follow the negotiation process of the session.

The new authorization server initiates a repetition, made up
of the four messages, request of discovery, scout, request of
identity, and notification of identity. But in this case (when it is
not the first AS) the first message (request of discovery) is not
sent to S; instead, it is sent to the programmable node that had
sent him the request of identity in the previous iteration. After
the repetition, every authorization server will know the IP
address of the next authorization server in the path from S to D.

If the last authorization server detects that the destination
belongs to its domain, it will finish the search process. If the
domain of the destination does not have the programmable
network technology, then the authorization server of the last
programmable domain will not be able to detect that is the last
programmable domain. In this case, the previous authorization
server will continue the search process. Then, when the
authorization server does not receive a response to the request
of the discovery message, it will suppose that it is the last
programmable domain (after three attempts).

C. Multidomain Session Negotiation

Once an authorization server receives a notification of
identity message from the next server, it sends the server a
request of session message, as shown in Fig. 6. So, this
message is extended in a telescopic way up to the last
authorization server. The authorization servers would change
the authorization parameters in this process. For example, an
authorization server would reduce the SET parameter to reduce
the service time if the requested time is higher than the one
supported by its domain.

Then, the last authorization server sends a response message
to the previous one. This message carries the final authorization
parameters (Ci, SST, SET, D, S, U, SP) and is sent by passing
through all the authorization severs from the last to the first.
Every authorization server that accepts the session inserts the
following into the response message:

• Its IP address. These values are sent back to the source (S).
• Its session key (Kj for the domain j) confidentially. The

session key (Kj) for the domain j is generated using (5). This
value is sent on to the next authorization server, where Kcij
is the assigned key in the domain j to the programmable
service identified by Ci.

• Its interdomain session key (Kij) between the current and
previous domain. The interdomain session key (Kij)
generated by the authorization server of the domain j is a
value generated as shown in (6), where Kj and Ki are the

662 Bernardo Alarco et al. ETRI Journal, Volume 27, Number 6, December 2005

session keys of domains j and i, respectively. The
interdomain session keys (Kij) are public values, so they do
not need confidentiality. These values are sent up to the
source.

Kj = hash(Kcij, Ci, SST, SET, D, S, U, SP), (4)

Kij=Ki XOR Kj . (5)

Therefore, when the first authorization server (that is, the

nearest S) receives the response message, it can generate the
multidomain session key (Km) using the session keys of all the
domains, as shown in

Km = hash(Kj,Ki,...,K1). (6)

However, the first authorization server must know all the

session keys (K1,…,Kj) to generate Km. It generates the session
key (Kj) of the other domains using the session key of its
domain and the interdomain session keys (Ki,j), as we can see
in

 K2 = K12 XOR K1, (7)

K3 = K23 XOR K2,
K4 = K34 XOR K3.

Finally, the first authorization server sends a response to S
that carries the following information:

• The multidomain session key (Km)
• The definitive authorization parameters used to generate the

session keys (SST, SET, D, S, U, SP)
• The interdomain session keys: Kij,…, K12
• The IP address of the authorization servers that are along the

path of the active packets and that have accepted the session

D. Active Packet Processing

The source (S) sends active packets to the destination (D)
protected as we have explained in a domain scenario, but using
the multidomain session key (Km) instead the session key of its
domain (Kj).

In addition, the active packets carry a multidomain header
with the following information:

• The amount of programmable domains taking part in the
session

• IP address of the authorization servers
• Interdomain session keys (remember that these keys are

public parameters and therefore do not require
confidentiality service)

When a programmable node receives an active packet, it will
generate the session key (Kd) of its domain d. Then, the
programmable node uses this session key (Kd) and the
interdomain keys (Kij) carried in the active packet to generate
the other session keys (K1, K2,…, Kd-1, Kd+1,…,Kj). Then, the
programmable node generates the multidomain session key
(Km) using the session keys of all the domains (K1,…, Kj).

For example, if a session has four domains, there are four
session keys (K1, K2, K3, and K4) and three interdomain keys
K12, K23, and K34. When a programmable node of domain 2
receives an active packet, it generates the session key of its
domain using (8).

K2 = hash(Kci2, Ci, SST, SET, D, S, U, SP) (8)

Then, using the interdomain keys, (Kij) generates the session

keys of the rest of the domains (Kj), as we can see in

 K1 = K2 XOR K12, (9)
K3 = K2 XOR K23,
K4 = K3 XOR K34.

Finally, using the session keys (Kj) of all the domains, the

programmable node generates the multidomain session key
(Km) using (10).

Km= hash(K1 ,K2, K3 ,K4). (10)

We must note that a programmable node can only generate

the multidomain session key if it is capable of generating a
session key of one of the four domains. Therefore, only a
programmable node of one of the domains 1, 2, 3, or 4 can
generate the multidomain session key.

We can conclude that the procedure to process the active
packets is similar to the one described in a single domain. Here,
the procedure only changes to generate the multidomain
session key (Km), which is a bit more complex but does not
require many more resources for the programmable nodes.

Finally, we must say that all the messages in the phase of
discovering and session negotiation are protected using
authentications and anti-replay mechanisms. Furthermore,
when it is necessary to send the multidomain session keys (Km)
or a domain session key (Kj), we will use the confidentiality
service.

VI. Tests Carried Out

We have implemented the main mechanisms of the proposed
security architecture. The implementation has been carried out
on the programmable networks platform called Simple Active

ETRI Journal, Volume 27, Number 6, December 2005 Bernardo Alarco et al. 663

Router-Assistant Architecture (SARA) [23], which has been
developed in the IST project, GCAP. The SARA
implementation is carried out mainly in Java language. So the
security implementation has been carried out in Java.

The more critical procedures are those that carry out the
programmable node when an active packet is received. We
have measured the cost of the different procedures carried out
by the programmable node on an active packet.

We have used a single programmable service called
NameTrace that copies the node IP address in the active packet.
The destination forwards the active packet toward the source.
When the active packet arrives at the source, it carries the IP
address of all the programmable nodes in the path. Because the
programmable nodes must modify the active packet, they must
also protect the active packets before forwarding them.

The tests have been carried out using the SARA
implementation of programmable networks with an AMD XP
2400+ CPU with 256 MB of RAM and Linux kernel 2.4.21.
We have used the security solution JDK 1.4.2. to develop it.

Figure 7 shows the results of the measurements. We can see
that the time needed to process an active packet is divided into
verification time, programmable service processing time
(TraceName in this case), and protection processing time
because the active packet has been modified by the
programmable node.

We have seen that for one domain, the total processing time
of an active packet was 1.0523 ms. The HMAC and
authentication verification process of the active packet take up
17.58%, the anti-replay verification process takes up 4.97%,
and the protection of the packet takes up 9.09%. The rest of the
time (68.35%) is dedicated to the programmable service.

We must note that the percentage of security processing is
reduced even using a single programmable service. If we use a

Fig. 7. Time needed to process an active packet.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

Number of domains

Ti
m

e
(m

s)

Protection of the active packet

Processing of the active packet

Verification of the active packet (antireplay)

Verification of the active packet (hmac and authorization)

more complex service, this percentage will decrease.
If the number of domains is 1, 2, 3, or 4, the processing time

is 1.052, 1.058, 1.063, and 1.064 ms, respectively. So the
increase in the processing time with the number of domains is
so insignificant that we can say that the system is scalable. This
is because the multidomain solution only introduces changes
into the session key generation procedure, which is a procedure
with a very low cost.

The measurements have been carried out assuming that the
code and the key Kci are in the programmable node. Only the
first active packet of a session will usually bring about the
download of the code and the Kci. The download time is great
compared to the processing time, but its influence on the process
throughout the life of the programmable service will be reduced.

We have evaluated the overload of the active packets that
transport the security information: authentication code of the
message (mac), authorization parameters, anti-replay
information, interdomain keys, and IP address of the
authorization servers. By using the implementation of SARA,
we can see the overload for different packet sizes, and for a
different number of domains between 1 and 4 shown in Fig. 8.
So, for an active packet of 500 bytes, for instance, all the
security information takes up 15.20% of the packet size for a
typical scenario of two domains. In an extreme case of four
domains, the overload increase up to 24.80%.

We have compared the solution proposal in this article with a
solution based on asymmetric cryptography, like that proposed in
ANSA. If the active packet carries a digital signature, in addition
to the HMAC authenticator, the processing overload in the
programmable node will increase. We have measured the cost of
verifying the digital signature in the programmable node using
an RSA algorithm and a key of 1024 bits. The time needed to
verify the digital signature was 1.4 ms. Thus, if we use a digital
signature, the delay in the security process increases from 0,333
to 1,733 ms. In addition, if we transport the digital signature in
the active packet, the overload in the security information will be
increased. In the case of a domain and for a packet size of 512
bytes, the security information takes up 57% of the active packet,
assuming that the digital signature is 250 bytes. Therefore, we

Fig. 8. Overload of the security information.

0.00
10.00
20.00
30.00
40.00
50.00
60.00

250 500 750 1000 1500

Active packet size (bytes)

O
ve

rlo
ad

 (%
)

1 domain 2 domains 3 domains 4 domains

664 Bernardo Alarco et al. ETRI Journal, Volume 27, Number 6, December 2005

can see that the solution proposed in this article saves resources
with respect to other solutions presented in the state of the art that
use a digital signature.

We have estimated the time that a user must wait for a
response when requesting a service. The estimations have been
carried out by measuring the time needed for the cryptographic
procedures and the delay in the messages in a real scenario. In
the extreme case of four domains, assuming that the destination
does not belong to the last domain (worst case), the estimated
time is 2.6 s. This is a reasonable time because the procedure is
carried out before starting the service.

Because SARA is implemented in Java, the cryptographic
procedures are not optimized in processing consumption. We
can obtain an improvement in the implementation using more
efficient cryptographic providers [24]. A better improvement
may be to create a cryptographic provider based on C language,
as it is more efficient, and integrating it into SARA by means of
Java native interface.

VII. Conclusion

In this article, we have presented a security proposal applied
to a multidomain multiservice network based on
programmable network technology. The security architecture
presented follows pragmatic ideas in order to be applied in a
real network. One contribution in this sense consists of a
pragmatic vision of the scenario, treating the requirement of not
needing to know the topology.

We have focused our effort on ensuring that the security does
not use up a large amount of resources by the programmable
nodes when they process the active packets. Therefore, we
have proposed a security protection of the active packets based
on the symmetric cryptography, as opposed to other proposals
of the state of the art that use asymmetric cryptography (digital
signature).

We have resolved the problem of distribution of the
symmetric key (session key) to the programmable nodes in an
efficient and scalable way. The solution defines a single way to
distribute the session key, to check the authorization of the
programmable services, and to distribute the authorization
parameters to the programmable nodes.

In a multidomain scenario, the programmable nodes follow
using symmetric cryptography to verify and protect the active
packets. Furthermore, we have presented an original procedure
to regenerate a multidomain session key in the programmable
nodes. The asymmetric cryptography is used in the negotiation
procedure of the programmable service between the domains
to establish trust relationships between domains. Therefore, the
solution is pragmatic and efficient.

We have proposed an anti-replay protection of active packets

that deal with the problems derived from the requirement of
not needing to know the topology. These particular problems
are not dealt with in other previous works.

The tests carried out demonstrate that the security proposal
presented in this article is scalable according to the number of
domains, and is more efficient than the more representative
ideas presented in the state of the art.

References

[1] D. Wetherall, U. Legedza, and J. Guttag, “Introducing New
Internet Services: Why and How,” IEEE Network, Special Issue
on Active and Programmable Networks, vol. 12, no. 3, May/June
1998, pp. 12-19.

[2] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall,
and G.J. Minden, “A Survey of Active Network Research,” IEEE
Commun. Magazine, Jan. 1997, pp. 80-86.

[3] Jonathan T. Moore and Scott M. Nettles, Towards Practical
Programmable Packets, Technical Report MS-CIS-00-12, Dept.
of Computer and Information Science, University of
Pennsylvania, May 2000.

[4] J. Biswas, A. Lazar, S. Mahjoub, L.-F. Pau, M. Suzuki, S.
Torstensson, W. Wang, and S. Weinstein, “The IEEE P1520
Standards Initiative for Programmable Network Interfaces,” IEEE
Commun. Magazine, Special Issue on Programmable Networks,
Oct. 1998, pp. 72-78.

[5] Constantin M. Adam, Aurel A. Lazar, and Mahesan Nandikesan,
QoS Extensions to GSMP, OPENSIG draft, COMET Group,
Columbia University, Apr. 1997.

[6] S. Hariri et al, “Quality of Service Resource Management Using
Enhanced General Switch Management Protocol,” Int’l Software
Eng. (ISE) Conf., July 2002.

[7] IETF ForCES Working Group, draft-ietf-forces-requirements-
08.txt, Jan. 2003.

[8] AN Working Group, Architectural Framework for Active
Networks, Version 1.0, Active Networks Working Group, July
1999.

[9] Steve Berson, “A Gentle Introduction to the ABone,” OPENSIG
2000 Workshop, Oct. 2000, pp. 11-12.

[10] IST 1999-10504-GCAP project, Global Communication
Architecture and Protocols for New QoS Services over IPv6,
http://www.laas.fr/GCAP/

[11] Spyros Denazis, Alex Galis, eds, D14−Overview FAIN
Programmable Network and Management Architecture–Draft,
Fain Project Deliverable, May 2003.

[12] Marcelo Bagnulo, Bernardo Alarcos, María Calderón, and
Marifeli Sedano, “Providing Authentication & Authorization
Mechanisms for Active Service Charging,” Proc. QofIS/ICQT’02,
2002, pp. 337-346.

[13] D. Scott Alexander, W. Arbaugh, A. Keromytis, and J. Smith, “A

ETRI Journal, Volume 27, Number 6, December 2005 Bernardo Alarco et al. 665

Secure Active Network Architecture: Realization in the
SwitchWare,” IEEE Network, Special Issue on Active and
Programmable Networks, vol. 12, no. 3, May/June 1998, pp. 37-
45.

[14] AN Security Working Group, Security Architecture for Active
Nets, 2001.

[15] T. Faber, B. Braden, B. Lindell, S. Berson, and K. Bhaskar, Active
Network Security for the ABone, Nov. 2001, Document of the IST
ARP Project, http://www.isi.edu/active-signal/ARP/
DOCUMENTS/secarch.pdf

[16] S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee, “Strong
Security for Active Networks,” Proc. OPENARCH’01, Apr. 2001,
pp. 63-70.

[17] David J. Wetheral, John Guttag, and David Tennenhouse, “ANTS:
A Toolkit for Building and Dynamically Deploying Networks
Protocols,” Proc. OPENARCH’98, 1998.

[18] Arso Savanovic, Dušan Gabrijelcic, Borka Jerman Blažic, and
Stamatis Karnouskos, “An Active Networks Security
Architecture,” Informatica Int’l J. of Computing and Informatics,
vol. 26, no. 2, 2002, pp. 211-221.

[19] Jun Li, Mark Yarvis, and Peter Reiher, “Securing Distributed
Adaptation, Computer Networks,” Special Issue on
Programmable Networks, vol. 38, no. 3, Feb. 2002, pp. 347-371.

[20] Marcelo Bagnulo, Bernardo Alarcos, María Calderón, and
Marifeli Sedano, “ROSA: Realistic Open Security Architecture
for Active Networks,” Proc. IWAN’02, 2002, pp. 204-215.

[21] Bob Lindell, Active Networks Protocol Specification for Hop-By-
Hop Message Authentication and Integrity, ABone Draft: draft-
nodeos-security-00.txt, Dec. 1999.

[22] T. Dierks, and C. Allen, The TLS Protocol Specification, version
1.0, IETF Std. RFC2246, Jan. 1999.

[23] D. Larrabeiti, M. Calderón, A. Azcorra, and M. Urueña, “A
Practical Approach to Network-Based Processing,” IEEE 4th
Int’l Workshop on Active Middleware Services, 2002, pp. 3-10.

[24] B. Alarcos, E. de la Hoz, M. Sedano, and M. Calderón,
“Performance Analysis of a Security Architecture for Active
Networks in Java,” Proc. CSN’03, 2003, pp. 471-476.

Bernardo Alarcos is an Associate Professor in
the Automatic Department of the University of
Alcalá, Spain. He received the
telecommunication engineering degree in 1997
at the Technical University of Madrid (UPM),
and the PhD in telecommunications in 2004 at
the Alcalá University. He has published over 18

papers in the fields of broadband networks, programmable networks,
ad-hoc networks, and network security. The more recent research
projects are in the subject of programmable networks (CICYT
TEL1999-0988-C02-02, MCYT TIC2001-1650-C02-01) and ad-hoc
networks (UAH2005/082).

Marifeli Sedano is an Associate Professor in
the Telematic Systems Engineering Department
of the Technical University of Madrid (UPM),
Spain. She received the computer science
engineering degree in 1987 from the University
of Deusto, Spain and the PhD degree in
computer science in 1999 from the Technical

University of Madrid (UPM), Spain. She has published over 16 papers
in the fields of advanced communications, reliable multicast protocols,
programmable networks, and network security in outstanding
magazines and conferences, such as IEEE Networks Magazine,
European Transactions on Telecommunications Magazine, IWAN, and
IEEE-PROMS-MMNET. The more recent research projects in which
she has participated are in the subjects of programmable networks and
network security (CICYT TEL1999-0988-C02-02, MCYT TIC2001-
1650-C02-01).

Maria Calderon is an Associate Professor in
the Telematic Engineering Department of the
University Carlos III of Madrid, Spain. She
received the computer science engineering
degree in 1991, and the PhD degree in computer
science in 1996, both from the Technical
University of Madrid (UPM), Spain. She has

published over 20 papers in the fields of advanced communications,
reliable multicast protocols, programmable networks and IPv6 mobility,
in outstanding magazines and conferences, such as IEEE Networks
Magazine, IWAN, and IEEE-PROMS-MMNET. Some of the recent
European research projects in which she has participated are LONG
(IST-1999), GCAP (IST-1999-10504), DAIDALOS (FP6-2002-IST-1-
506997), COST-263 and E-NEXT (FP6 Network of Excellence on
Emerging Networking Experiments and Technologies).

