
A KNOWLEDGE-BASED SYSTEM FOR THE VALIDATION OF THE
DEPLOYMENT OF SOFTWARE UNITS

Fco. Javier Blanco, Laura Dı́az-Casillas, Mercedes Garijo
Departamento de Ingenierı́a de Sistemas Telemáticos, Universidad Politécnica de Madrid, Madrid, Spain

{fcojavibr, ldcasillas, mga}@dit.upm.es

Keywords: knowledge-based systems, validation, software deployment

Abstract: Today, many business applications are developed following SOA principles. One of the activities required
for their implementation is deployment, a complex process that usually is done by hand, being necessary to
develop new tools to facilitate it. This article presents a knowledge-based system that validates the deployment
of software units on a particular environment, before executing them. The system is based on an information
model and has been implemented with Drools 5.0 and as an OSGi bundle to be integrated into a deployment
and configuration architecture.

1 INTRODUCTION

Nowadays, many business applications are developed
according to a service-oriented architecture (SOA)
(Hashimi, 2003), which promotes their availability,
reliability and scalability. One of the operations to ex-
ecute during the development of such applications is
the deployment of services, in which all the activities
required for the execution of these services are car-
ried out. A service is a software system that provides
a particular function to a user or to another system.
Usually, services cooperate with each other to achieve
a common goal, being necessary to check their avail-
ability. Also, the requirements demanded by the ser-
vices have to be considered in order to select the most
suitable nodes for their deployment. It is also neces-
sary to take into account that during the development
of the application, services and environment charac-
teristics can change, being necessary to modify de-
ployment activities or, at least, validate them. There-
fore, deployment is a complicated process. However,
it is a task that is usually done manually, having a high
cost associated and being one of the main sources of
error during the systems development.

Due to several problems that have to be solved,
automation of deployment is still a research area.
ITECBAN is an innovation project funded by the
Spanish Ministry of Industry, Tourism and Trade

through CENIT program. Its main objective is to cre-
ate a platform that serves as a basis for developing
core banking information systems. In this context,
a deployment and configuration architecture (from
now on DCA) has been developed to support deploy-
ment activities of software units on different envi-
ronments. This architecture uses a resource model
explained in (Cuadrado et al., 2009), based on the
model presented in (Ruiz, 2007), which is suitable
for distributed and heterogeneous environments. This
model is also based on the CIM (DTMF, 2005) ap-
plication model and the standard of components and
distributed systems deployment established by OMG
(OMG, 2006). Specifically, the information model
is divided into three models dedicated to the defini-
tion of: the environment to be used on the deploy-
ment (Deployment Target), the software units to de-
ploy (Deployment Unit), and the deployment plan that
determines the activities to be carried out (Deploy-
ment Plan).

The use of deployment plans improves the au-
tomation of the process. Each deployment plan has an
objective, consisting of executing an operation over a
software unit in a specific environment. Usually, the
fulfillment of a plan requires to add a set of previous
operations, in order to satisfy the requirements of the
unit to deploy. But it is possible that since the cre-
ation of the plan until its execution, the state of the



environment changes, being necessary to verify that
the operations in the plan are still suitable and do not
conflict with available resources and already deployed
units in the environment.

According to Binder (1995), who illustrates how it
is practically impossible to do effective software test-
ing and validation without automation (Binder, 1995),
such verification has to be carried out in an automatic
way. There are different approaches to automate soft-
ware validation and verification. Playle and Beckman
(1996) compare people who make decisions, neural
networks, and rule-based programs, drawing the con-
clusion that human decisions are more precise but re-
quire more time than machines; neural networks, with
nonlinear rules, are relatively unreliable in making the
decisions; and rule-based machine programs are very
fast and almost as accurate as the humans (Playle and
Beckman, 1996).

This article presents an automatic system to val-
idate deployment plans. From the information con-
tained in the plan and the current state of the envi-
ronment, the system evaluates if the activities of the
plan are appropriate for achieving the objectives set
at its creation. Therefore, the purpose of the valida-
tion system is to ensure that the plan is suitable for
the selected environment before executing it. Valida-
tion results are shown to the user, avoiding potential
problems and helping to solve actual or future errors.
Results indicate if the plan is valid, or contains op-
erations that can cause errors, or should be aborted.
For its implementation, a knowledge-based system
has been used, it means, a system that tries to solve
problems through reasoning and heuristic methods.
This approach is often used to emulate the behavior
of an expert in a particular area of expertise, being
known as expert systems.

The rest of the article is organized as follows. Sec-
tion 2 exposes a description of the implemented sys-
tem, indicating the elements that compose its archi-
tecture and their relationship with the system in which
has been integrated. Then, section 3 explains tech-
nologies used for its implementation, and section 4
shows results obtained after testing the system. Sec-
tion 5 presents related work and finally, section 6
shows the main conclusions and possible future lines
of work.

2 SYSTEM DESCRIPTION

To define a deployment process, the user selects a
software unit and a target environment. As a result,
a deployment plan that includes all required activities
is created. But, before its execution, it is necessary to

Figure 1: Validation System

verify that the plan is correct. This is the purpose of
the validation system, which analyzes the plan to ex-
ecute and the state of the environment selected for its
deployment, and generates a report showing the user
the most appropriate actions to be performed.

The system is integrated into the DCA (Ruiz et al.,
2008), whose main components are the Execution
Manager, the Environment Manager, and the Deploy-
ment Repository. Execution Manager is responsi-
ble for activating the validation immediately before
launching the plan, indicating the information con-
tained in the deployment plan. The validation system
is integrated into the Environment Manager that pro-
vides the current state of the environment. To carry
out the validation, the system has to access the De-
ployment Repository through Web services in order
to get the information of the software units.

Figure 1 shows the exchange of information be-
tween systems in the architecture (DCA).

The implemented system analyzes every activity
in the deployment plan, considering possible depen-
dencies between them, and verifying if all require-
ments for the deployment are fulfilled. In some cases
activities will have to be aborted, while in others it
will be enough to warn the user about possible con-
flicts that can arise from its execution.

2.1 Available knowledge

Initial knowledge consists on a deployment plan, i.e.
the set of activities to be performed, and the state of



the environment where the deployment will be carried
out.

Each activity involves the execution of an opera-
tion (installation, start, update, uninstall or stop) of
a software unit on a container belonging to a node
in a particular environment. Users create deployment
plans with the aim of working on a software unit, but
units have constraints and dependencies with other
units, and if they are not currently satisfied in the en-
vironment, new activities have to be added to the plan
to fulfill all the necessary requirements. Specifically,
each unit exports a set of resources and has dependen-
cies with other units, which export resources required
for its execution. Moreover, units have constraints
that need to be fulfilled by the container in which the
deployment will be carried out (e.g. EJB container,
glassfish server,...). Deployment unit data are stored
in the Deployment Repository.

The information to be considered depends on the
activity to be performed on a software unit. For ex-
ample, to start a unit requires to verify that all de-
pendent units are available, while to stop a unit needs
to consider if this unit is being used by others. To
manage such information, two different dependency
graphs are used, one manages the units required by a
unit, it means its dependencies, while the other ana-
lyzes the deployed units that are using and are used
by a unit, it means the relations among runtime units
in the current environment.

2.2 Knowledge-based system

Using a knowledge-based system for the validation of
the deployment of software units allows domain ex-
pert users to define the checks to perform during the
validation and the most appropriate actions to follow
in each case. Inference engine takes this information,
stored in the knowledge base, to verify the operations
of the deployment plan that is going to be executed,
considering the requirements of the software units in-
volved in the plan and the current state of the environ-
ment related to that plan.

A rule-based system has been used to specify con-
ditions and actions to perform under specific situa-
tions. Rules are represented in a decision table, en-
abling their updating in the future in an easy way.
Table columns contain the conditions and associated
actions to execute in each case, determining the sys-
tem behavior. Therefore, each row of the table corre-
sponds to a rule, that are classified into several groups:

• Initialization, this rule starts the verification of the
deployment environment related to the plan.

• Environment elements, this set of rules verifies
that the nodes and containers of the deployment

environment are in a correct state.

• Deployed units, these rules check if the unit as-
sociated to an activity is already deployed on the
environment and analyzes its state.

• Necessary units, in this case, rules are used to
check if dependencies imposed by the unit are sat-
isfied by the environment. For example, if a unit
that depends on another is going to be started, it is
necessary to verify if the required unit is currently
launched.

• Overversion units, these rules check if there are
other units with the same name but different ver-
sion already deployed on the environment.

• Completion, these rules end the validation pro-
cess.

The execution order of the rules corresponds to
the order in which they are exposed, for example, if
a container is not available (feature considered in the
environment elements, the second group of rules), the
validation ends and a report is created to inform the
user about this fact.

2.3 Results

The result of the validation of each activity is com-
posed of a list of messages, each of them contains the
type of the response and a text, which explains the
reason and the cause of the response. In particular,
possible answers are:

• NONE indicates that the outcome of the valida-
tion has been positive and the activity can be exe-
cuted.

• NEXT, in this case, the result of the activity to per-
form is already implemented in the environment,
so this activity is not necessary to be carried out.

• WARNING indicates that there is a conflict and
the execution of the activity can cause problems.

• ABORT implies that there is a problem in the en-
vironment and the associated activity can not be
executed.

For example, if one of the plan activities consists
of launching a deployment unit that is not present
in the container, validation system will report an
ABORT message, in which the text will indicate that
the unit is not present in the container, showing also
the data related to that unit.

If an activity has to be aborted, all activities that
depend on it will generate an ABORT response too.



3 IMPLEMENTATION

The validation system has been developed as an OSGi
bundle. OSGi (OSGi Alliance, 2009) is a Java-based
service platform that implements a dynamic compo-
nent model. Each component or bundle is a dynam-
ically loadable set of classes, configuration files, and
resources, that hides its implementation details and
declares its dependencies to other components. Com-
munication between them is established through ser-
vices. And a service registry allows bundles to know
available services in each moment. Therefore, our
system acts as a dynamic module that can be con-
nected and disconnected to the global architecture
without requiring a reboot. It provides a validation
service that can be used by any other module. These
modules only have to indicate the necessary argu-
ments and will receive a standard respond with the
validation results.

The use of Spring Dynamic Modules (DM) for
OSGi Service Platforms (SpringSource Community,
2009) has facilitated to build a Spring application that
comply with OSGi standard.

Rule-base reasoning system has been imple-
mented through Drools Expert, a component of
Drools (JBoss Community, 2009). It is a business
logic integration platform developed by JBoss Com-
munity. There are several suitable options for imple-
menting an expert system such as Jess, Mandaraz, and
OpenRules. But Drools Expert has been selected be-
cause:

• It is an open source product with a great support
community.

• It works with decision tables in a user friendly
format, using a spreadsheet software, such as
OpenOffice Calc or Microsoft Excel.

• It is completely correlated with Java, allowing to
import and use Java classes in the rules.

• It supports the inclusion of the entire framework
on a Maven bundle to be executed as an OSGi ser-
vice, which offers the ideal features to be devel-
oped within DCA.

Drools Expert components used in the validation
system are presented in Figure 2.

It has been necessary to update the bundle pro-
vided by Drools to version 5.0 from the implemented
version 4.7.1. In addition, specific libraries have been
added to allow the use of a decision table in a spread-
sheet format for managing the rules and to fully sup-
port MVEL and Java rule languages.

Furthermore, a Web interface has been developed
to interact with the validation system. It has been im-
plemented as a war bundle, which uses Spring DM to

Figure 2: Drools components

access to the system through the Environment Man-
ager, and Spring MVC for data management and pre-
sentation. For its implementation, a controller form
has been used, which collects data introduced by
the users and manages the displayed information and
the navigation between different views, implemented
through JSP pages.

4 TESTS

A set of tests has been carried out to check the perfor-
mance of the developed system. Firstly, unitary tests
were executed, using different deployment plans over
a test environment. Activities of the plan, software
units, resources and nodes were configured according
to several situations to get a great quantity of different
test cases, generating multiple test deployment plans
to validate all the rules. Validation system was exe-
cuted for each generated plan. Table 1 presents the
results of some performed test.

Later, the system was integrated into the Environ-
ment Manager within DCA and integration tests were
carried out.

Finally, the Web interface was used to test the sys-
tem with deployment plans generated by expert users
in a real environment.

5 RELATED WORK

Most of the automated validation and verification of
the deployment of software units is related to compu-
tational grids or grid computing. This technology en-
ables the integrated use of remote high-end comput-
ers, databases, scientific instruments, networks and
many other resources to execute the pieces of a pro-
gram in parallel, having many similarities with SOA.
According to Lacour et al. (2005), application de-
ployment is responsible for discovering and selecting
resources, verifying and validating them, placing ap-
plications on computers and finally launching appli-



Table 1: Activity validation examples.

Scenario Result Type Result Message
Installing a software unit in a container in which a same Next Activity already done
version unit has already been installed
Launching a software unit A in a container in which has OK Activity can be executed
already been installed. Also, unit A depends on a resource
exported by unit B, and this unit has been correctly installed
and launched (due to previous activities in the same or in
other deployment plan). Both units fulfill locality requirements
Installing a software unit in a container that is not accessible Abort Container is not accessible
Installing a software unit in an environment in which a higher Warning A higher version of the unit
version of the unit is already installed is already installed
Stopping a software unit required by another unit that is Abort This unit is being used
already being executed by another unit
Uninstalling a software unit required by another unit that is Warning This uninstallation produces
stopped. No other unit satisfies this dependency that a dependent unit could

not be launched

cation processes. Several ways are presented to de-
scribe applications, suggesting different deployment
planners for each one. But defining a planner, with its
planning algorithm and validation, for every type is
too costly. Therefore, a generic application descrip-
tion model is proposed to have only one planner. In
this way, specific and heterogeneous software units
are translated into generic deployment units accord-
ing to the model to facilitate their management (La-
cour et al., 2005). Our validation system is also based
on a generic information model, enabling to use the
same system with different software units.

Cannataro and Talia (2003) propose the use of
grids to support Parallel and Distributed Knowledge
Discovery (PDKD) systems. These platforms con-
tain a combination of large data sets, geographically-
distributed services, data, users and resources, and a
computationally intensive analysis. PKDP execution
plans contain graphs describing the interactions and
data flows among data sources and are used and stored
in a repository. Also, a resource allocation and execu-
tion management service is used to find a mapping be-
tween an execution plan and available resources, with
the goal of satisfying requirements and constraints. In
this context, execution plans are also responsible for
managing and coordinating the application execution
(Cannataro and Talia, 2003). Our system uses graph
to validate resources, requirements and constraints.
The validation is always done before executing the
plan, ensuring its performance. Moreover, our sys-
tem is published as a service, not as a group, being
able to be launched in parallel with other services due
to OSGi features.

Another area related to automated validation and
verification of the deployment is to solve real-world

planning problems. Wilkins and desJardins (2000)
propose the development of methods based on rich
knowledge models in order to make planning systems
useful for complex environments. The goal of plan-
ning is not only to build a plan, it also has to be val-
idated to be used in the environment. They expose
that realistic planning systems must support execu-
tion validation and plan modification during execu-
tion (Wilkins and desJardins, 2000). Our system per-
forms the verification and validation before the de-
ployment, avoiding that the environment reaches an
invalid state. Moreover, we have considered plan
modifications before its execution to avoid the above-
mentioned problem as future work.

In (Romano and Palmer, 1998), a decision support
system is developed to aid the validation and verifica-
tion of requirement sets and to enhance the quality
of the resulting global design by reducing risks. This
system is used to detect four major types of poten-
tial risks: ambiguity, conflict, complexity and techni-
cal factors. In our system, ambiguity and conflict are
solved by the use of a generic model that describes the
deployment plan and the requirements of each unit.
Complexity is solved by the use of an automatic sys-
tem (machines treat any term with indifference if they
are well programmed). Therefore, to validate technol-
ogy factors is the objective of our system.

6 CONCLUSIONS

Enterprise applications deployment is a complex task
that requires new tools to facilitate its development.
This article proposes the use of a knowledge-based



system that validates the deployment of software units
on a particular environment. The system is integrated
into a deployment and configuration architecture and
based on its information model, which represents de-
ployment units, plans and environments.

Deployment process begins with the creation of
a plan, whereby the user determines the deployment
unit on which he wants to perform an operation in a
specific environment. To avoid that possible changes
in the environment cause errors in the execution of a
deployment plan, an automatic validation system has
been developed to advise users if the deployment pro-
cess will not be able to perform correctly and why.
After analyzing the unit requirements of each plan ac-
tivity, it checks the current state of the environment,
including existence, location and state of nodes, con-
tainers, and available resources over deployed units.
A knowledge-based system has been developed due to
these systems offer more facilities than conventional
software systems to collect, interpret and use their
knowledge, helping human experts to solve problems.

The validation system is presented as a dynamic
and independent OSGi module and its implementa-
tion is based on Drools 5.0. Rules have been repre-
sented by a decision table, in spreadsheet format, fa-
cilitating their understanding and therefore, their up-
date in the future. After the implementation of the
system, a set of tests has been carried out to verify its
performance.

Some improvements that can be developed within
the validation system are:

• Currently, the system validates installation and
uninstallation plans, being possible to extend the
system to verify configuration plans.

• Nodes, containers and deployed units in the envi-
ronment are analyzed by the system, but also re-
source properties could be examined to increase
the security level during the execution of the plan.

• Also, algorithms to perform an optimal deploy-
ment of units, analyzing required and available re-
sources in the environment, could be developed to
improve the performance of the system.

ACKNOWLEDGEMENTS

We would like to express our appreciation to the
Spanish Government for funding this project under
the IT innovation project ITECBAN (MITYC CDTI-
CENIT 2005). We would also like to express our ap-
preciation to José Luis Ruiz, Félix Cuadrado, Rodrigo
Garcı́a, and Marco Antonio Prego for their help to de-
velop the validation system.

REFERENCES

Binder, R. V. (1995). Testing Object-
Oriented Systems: A Status Report.
www.stsc.hill.af.mil/crosstalk/1995/04/testinOO.asp.

Cannataro, M. and Talia, D. (2003). The knowledge grid.
In Communications of the ACM, volume 46, pages 89–
93.

Cuadrado, F., Dueñas, J., Garcı́a, R., and Ruiz, J. (2009). A
model for enabling context-adapted deployment and
configuration operations for the banking environment.
Networking and Services, International conference
on, 0:13–18.

DTMF (2005). Common Information Model (CIM) 2.1.
www.dmtf.org/standards/cim.

Hashimi, S. (2003). Service-Oriented Architecture Ex-
plained. O’Reilly Media, Inc.

JBoss Community (2009). Drools - Business Logic integra-
tion Platform. jboss.org/drools.

Lacour, S., Perez, C., and Priol, T. (2005). Generic Applica-
tion Description Model: Towards Automatic deploy-
ment of applications on computational grids. In Grid
Computing, 2005. The 6th IEEE/ACM International
Workshop on.

OMG (2006). Deployment and configuration of component
based distributed applications version 4.0. OMG doc-
uments formal/06-04-02.

OSGi Alliance (2009). OSGi - The Dynamic Module Sys-
tem for Java. www.osgi.org.

Playle, G. and Beckman, C. (1996). Knowledge-
Based Systems and Automated Soft-
ware Validation and Verification.
www.stsc.hill.af.mil/crosstalk/1996/07/knowledg.asp.

Romano, J. and Palmer, J. (1998). TBRIM: decision support
for validation/verification of requirements. In Sys-
tems, Man, and Cybernetics, 1998. 1998 IEEE Inter-
national Conference on, volume 3, pages 2489–2494.

Ruiz, J. (2007). A policy-driven, model-based software and
services deployment architecture for heterogeneous
environments. PhD thesis, Departamento de Inge-
nieria de Sistemas Telematicos, Universidad Politec-
nica de Madrid.

Ruiz, J., Dueñas, J., and Cuadrado, F. (2008). A service
component deployment architecture for e-banking. In
AINAW ’08: Proceedings of the 22nd International
Conference on Advanced Information Networking and
Applications - Workshops, pages 1369–1374.

SpringSource Community (2009). Spring Dy-
namic Modules for OSGi Service Platforms.
www.springsource.org/osgi.

Wilkins, D. E. and desJardins, M. (2000). A Call for
Knowledge-based Planning. AI MAGAZINE, 22:99–
115.


