Intelligent Environments 2016 33
P. Novais and S. Konomi (Eds.)

© 2016 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-690-3-33

Smart Office Automation Based on
Semantic Event-Driven Rules

Sergio Muiioz 1 Antonio F. Llamas, Miguel Coronado, and Carlos A. Iglesias

Intelligent Systems Group, Universidad Politécnica de Madrid,
E.T.S.I. Telecomunicacion, Avda. Complutense, 30, 28040 Madrid, Spain

Abstract. The emerging Internet of Things opens endless possibilities to the con-
temporary notion of smart offices, where employees can benefit for automations
so that the workplace can maximize employees productivity and enterprise perfor-
mance. However, usually the integration of new components in smart environments
is not straightforward. In this article we propose the use of a semantic vocabulary
to define this automation, and an architecture consisting of a web task automation
server and mobile task automation components that enable contextual services. One
the one hand, the architecture exhibits flexibility to interconnect internet services
and devices. On the other side, the use of semantic technologies provides semantic
interoperability and expressivity for the automation definition.

Keywords. smart office, task automation, ontology, EWE, ambient intelligence

1. Introduction

The increasing adoption of Information and Communication Technologies (ICT) has
transformed workplaces into networked workplaces. The application of Ambient Intel-
ligence (Aml) principles to the workplace turns out in the notion of smart offices, that
can be defined as “workplaces that proactively, but sensibly, support people in their daily
work” [1]. Smart offices should be aligned to the business objectives of the enterprise [2],
and should enable a productive environment that maximizes employee satisfaction and
company performance. Thus, smart offices should manage efficiently and proactively the
Internet of Things (IoT) infrastructure deployed in the workplace as well as the enter-
prise systems. Moreover, smart offices should be able to interact with smartphones and
help employees to conciliate their personal and professional communications.

A recent shift in Aml is to move from the model of full and transparent automation
to smart collaboration, since autonomous often leave users feeling out of control [3]. A
popular approach to interconnect and personalise both IoT as well as Internet services
is the use of Event-Condition-Action (ECA) rules, also known as trigger-action rules. A
number of now prominent web sites, mobile and desktop applications feature this rule-
based task automation model, such as Ifttt 2 or Zapier. These systems, so-called Task
Automation Service (TAS) [4], are typically web platforms or smartphone applications,
which provide an intuitive visual programming environment where unexperienced users
seamlessly create and manage their own automations.

ICorresponding Author.
Zhttp://iftt.com and http://zapier.com

34 S. Muiioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules

The great number of users these platforms accumulate, speak for itself in terms
of usefulness. However, they suffer from two major drawbacks: (i) the only incoming
data streams available are those the platform is prepared for; and, (ii) they lack of a
mechanism to use and reason over large scale data outside their platform such as the
Linked Open Data (LOD) cloud or context data. These shortcomings decrease TASs
flexibility, narrowing rule capabilities.

Before introducing the complete architecture, lets consider the following scenario. A
technological company uses the EWETasker framework to automate common processes
inside corporate logistics with their clients and employees as main actors. The smart
office has installed several beacons along the entire perimeter, covering every depart-
ment of the enterprise. Each employee has installed the EWETasker application on his
smartphone and is able to define customized automated rules using their local resource
channels combined with company channels.

In order to overcome the shortcomings identified above and realize the proposed
smart office scenario, this paper provides the following contributions. We propose to
use a semantic vocabulary, Evented WEb (EWE), for modeling automation rules and a
general task automation architecture where users can customize their automation rules.
The article presents an implementation of this architecture, so-called EWETasker, that
provides both a web platform as well as a mobile application for Android devices. Rule
execution has been developed based on EYE inference engine that provides support for
Notation3 rules. In addition, this framework also integrates external devices as channels,
like Estimote Beacons, which uses Bluetooth Low Energy (BLE) technology to detect
the position of the user inside the beacon range among other things.

The rest of the article is structured as follows. In the next section, we review briefly
the EWE ontology [4] that provides the foundation for expressing task automation for
web services and devices. Then we present the architecture of EWE Tasker, a task au-
tomation service for enabling the smart office in Sect 3. The implementation of this ar-
chitecture in a smart office scenario is presented in Sect. 4. Sect. 5 discuss related work.
Finally, we discuss lessons learnt and future work in Sect. 6.

2. Evented WEb (EWE)

Evented WEb (EWE) ontology [4]° is a standardized data schema (also referred as “on-
tology" or “vocabulary") designed to model, in a descriptive approach, the most signifi-
cant aspects of Task Automation Services. It provides a common model to define and de-
scribe TASs, representing its rules and enabling rule interoperability. In addition, it pro-
vides a base vocabulary in order to build domain specific vocabularies, and also enables
the publication of raw data from TASs online (in conformity with Internet trends).

Four major classes make up the core of EWE: Channel, Event, Action and Rule, as
shown in Fig. 1. In order to create new classes that are specific to particular use case
scenarios in TASs, these classes may be extended [4].

First, the class Channel defines individuals that either generate Events, provide Ac-
tions, or both. In the smart office context, sensors and actuators such as a presence sensor
or a light switch are described as channels, thus they produce events or provide actions.
The class Event defines a particular occurrence of a process, and allows users to describe

3 Available at http://www.gsi.dit.upm.es/ontologies/ewe/

S. Muriioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules 35

ewe:hasRule

ewe:hasActiveChannel

ewe:hasAction ewe:executes

@hannel ewe:hasParameter

ewe:generatesEvent ewe:triggeredBy

ewe:Action

ewe:Event

ewe:represents

wsmo:WebService

Figure 1. EWE main entities

ewe:source

,,,,,,,,,,,,, Legend -
| [property

I O cdlass

under which conditions should Rules be triggered. Event individuals are generated by a
certain Channel. The presence detection generated by the presence sensor is an example
of entity that belongs to this class. The class Action defines an operation provided by
a Channel that is triggered under some conditions. Following the smart office context
mentioned above, to switch on the light is an example of Action generated by the light
switch Channel. Finally, the class Rule defines an Event-Condition-Action (ECA) rule,
triggered by an Event that produces the execution of an Action. An example of rule is:
“If presence is detected, then switch on the light.". In order to model the execution logic
of the rules, EWE employs the EYE reasoner.

3. EWETasker Architecture

The smart office scenario combines events coming from different sources, such as Inter-
net services, smartphones, and connected devices. These services and devices are man-
aged by channels. Channels are defined as abstractions for receiving events or emitting
actions to Internet services (i.e. Twitter or GCalendar) and connected devices (i.e. device
channels). These channels are registered in a channel directory provided by the TAS.

A reference TAS architecture must provide a visual rule editor for managing rules;
include both web and device channels; feature channel discovery; enable multi-event,
multi-action and chain rules; manage group channels and group rules; detect collisions
with rules that involve group channels; and support mixed execution profile [5]. Further-
more, in a smart environment, it is essential the ability to enable easy including of new
components that expand the capabilities of the system. These reference requirements
have been followed in order to successfully design the EWETasker architecture.

EWETasker architecture, shown in Fig. 2, consists of two main modules: Task Au-
tomation Server and Mobile Client. The former aims to handle events and to trigger ac-
cordingly an action generated by the rule engine. The latter has as main role to han-
dle events coming from contextual sources (such as presence or temperature sensors) or
from the own device (such as battery, Wifi, or Bluetooth), and to send them to the TAS.
Furthermore, both modules include several functions for managing rules. In this way,

36 S. Muiioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules

EWETasker

Task Automation Server

Channel Editor “Crhannel Events Rule Editor T |
Channel Manager | Reposit Manager Rule Manager | Repasitol

Mobile Client

Rules Editor
Rules Manager
4

Beacon

Figure 2. EWETasker architecture

users in the smart office scenario are able to manage their own automation rules, using
for this purpose a graphic interface on a web client or a mobile client. Both modules will
be described in detail below.

3.1. Task Automation Server

Users in a smart environment need a platform to manage their automation rules. Such a
platform must provide functions for creating, updating, storing and erasing these rules.
In addition, when programming these automations, users need to activate available chan-
nels. With the purpose of making easier the process of plugging new components, men-
tioned above, EWETasker provides functions for also managing these channels. Finally,
the rask automation platform has a main role: to automate tasks. It must be able to con-
nect with several channels for receiving events, evaluating them together with stored
rules and performing a corresponding action. Task Automation Server module has been
designed to carry out all these functions, and it has been split into four submodules: Rule
Administration, Channel Administration , Rule Engine, and Action Trigger.

The submodule involved in the rule creation is the Rule Administration. Its main
purpose is to provide an automation rule editor in which users can configure and adapt
their preferences about events coming from all sources. Users are able to create, remove,
or edit rules in an easy way by a rule editor graphical interface, based on icons and “drag
and drop" actions. As an example, the rule “If I'm near the door; then open it.", written
in Notation3 is shown in Listing 1. This example rule has two conditions that must be
fulfilled: the id of the sensors which detects the presence has to be “ABC123", and the
distance from the sensor to the detected presence has to be lower than 2 meters. Never-
theless, we do not need to define specific rules for every sensor. One of the advantages
of using semantic technologies is that these automation rules are generalized and can be
based on event properties or classes, in contrast with other TASs such as Ifttt or Zapier.

Once created, rules are stored by the rule manager in the rule repository. Further-
more, users can import rules created by other users into their own repository. The rule

S. Muriioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules 37

repository is implemented with the MongoDB database. Rule repository has one docu-
ment collection for rule documents.

{

7event rdf:type ewe-presence:PresenceDetectedAtDistance.
?event ewe:sensorID ?sensorID.

7?sensorID string:equallgnoringCase ¢ABC123°.
7event!ewe:distance math:lessThan 2.

}

=>

{

ewe-door:DoorLock rdf:type ewe-door:0OpenDoor.

}

Listing 1: Rule example

Channel Administration provides users facilities for creating channels. Actions
and events are defined using Notation3 [6], as shown in Listing 1. Once the required
events and actions have been created, channels can be defined properly. Channel man-
ager provides users access to all channels stored in the channel repository. This informa-
tion can be managed through the Channel editor. Channel repository is also implemented
as a MongoDB database, with three collections: channels, events and actions. Several
vocabularies have been defined for our smart office scenario as shown in Listing 2.

ewe-door:DoorLock a owl:Class ;
rdfs:1label "Connected door-lock"@en ;
rdfs:subClass0f ewe:Channel

ewe-door:DoorOpened a owl:Class ;
rdfs:label "Door opened"@en ;
rdfs:subClass0f ewe:Event ;
rdfs:domain ewe-door:DoorLock

ewe-door:LockDoor a owl:Class ;
rdfs:label "Lock door"@Qen ;
rdfs:subClass0f ewe:Action ;
rdfs:domain ewe-door:DoorLock

Listing 2: Example of definition of the vocabulary for the channel Connected Door

The role of handling Internet and contextual events is carried out by the events man-
ager in Channel Administration. Finally, the Rule Engine submodule is where events
will be evaluated together with stored rules generating the corresponding actions.

Rule Engine is one of the most important modules in this system, and is based on
an ontology model, which uses the EWE ontology [5]. It is divided into two parts: EYE
Helper and EYE Server. The former is responsible for the reception of events from the
Channel Administration and the load of rules that are stored in the repository. When a
new event is received, EYE Helper captures it and loads the available rules. Then, events
and rules are sent to the EYE Server, an Euler Yap Engine [7] reasoner that runs the on-
tology model inferences. The rule engine draws the actions based on the incoming events
and the automation rules. EYE output is a string written in Notation3 whose processing

38 S. Muiioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules

is not trivial, so we have developed a N3 parser that is provided by the events manager
in the Channel Administration.

There are two Action Trigger submodules that will receive this JSON, one in the
Task Automation Server and the other in the Mobile Client. The role of Action Trigger
is to trigger the actions generated by the Rule Engine. The Action Trigger of the TAS
is able to run actions that come from several channels like: Trello, Connected Door or
Google Calendar. For this purpose, the Action Trigger module must be connected with
those channels. So some examples of actions triggered by this module may be: opening
a door, pushing a commit, sending an email or switching on a TV.

To sum up, automation rules are created in the Rule Administration using channels
created in the Channels Administration. This submodule also receives events that are
evaluated together with stored rules in the Rule Engine. Once the consequently actions
have been generated, they are triggered in the Action Trigger module. As we have just
described, the Task Automation Server is able to handle automation rules from their
creation to their execution. However, in the smart office environment the user should be
able to be connected via mobile client, which presented in the next section.

3.2. Mobile Client

Mobile Client module provides functions for managing rules from the smartphone in the
Rule Administration submodule. In order to create rules from the smartphone, users
should have access to the available channel list which is centralized in the web TAS. For
this purpose, Rule Administration connects with the Channel Administration submodule
of the web TAS, which provides a channel list that is used by Rule Administration to
get the available channels with their events and actions. Once available channels are
received, rules can be defined via the graphic interface that provides this module. Users
need their local repository to be synchronized with the rule repository in the TAS, so
when a rule is defined, it is sent to the TAS via POST request. In this way, users are able
to manage rules in an easy way from their smartphones.

ewe-presence:PresenceSensor rdf:type ewe-
presence:PresenceDetectedAtDistance.

ewe-presence:PresenceSensor ewe:sensorID ¢A1B2C3°.

ewe-presence:PresenceSensor ewe:distance 1.

Listing 3: Input template

Users also need to automate rules where several sensors such as presence, temper-
ature and humidity are involved. Therefore, the mobile client is also an event source. It
generates events coming from the device itself or from other sensors such as beacons,
and sends them to the TAS. Events coming from beacons are received by the Contex-
tual Channel, whose main goal is to handle the data provided by them, and to send ac-
cordingly events to the server. The mobile receives from each beacon via Bluetooth the
ambient temperature, the humidity and the distance. This submodule is responsible for
converting this data to N3 events, that will be evaluated by the Rule Engine in the TAS.
This process is straightforward, thanks to input templates. Input templates are structures
written in N3 that can be used as base to create events. An example of these templates
for the generation of a presence-detected event is shown in Listing 3.

S. Muriioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules 39

As commented above, the device itself is also an event source. These events (i.e.
battery level is low) are received by the Smart Local Resources submodule. It works
in the same manner as the Contextual Channel, receiving events from channels such as
Bluetooh, Wifi or Screen bright and converting them to N3 format before being passed
to the TAS. However, the user’s smartphone is not only an event source, but there are
actions that are triggered by it (i.e. When I arrive into the office, turn off data network
and turn Wifi on). For this reason, once the TAS has evaluated the passed events, the
JSON containing the generated actions are received by the Action Trigger submodule.

The Action Trigger submodule has the same goal that its counterpart in TAS: to
trigger actions. Some examples of actions that may be triggered by this module are: to
show a notification, to mute the mobile or to call someone.

To sum up the whole architecture, this system counts with a TAS module that pro-
vides rules and channels management functions, evaluates events and rules and triggers
the consequently actions; and a Mobile Client module that connects with beacons and
other devices channels for generating events and triggering consequently actions.

4. Case study

To clarify some aspects explained on the architecture section, we will detail one scenario
in order to show in depth the value of the project inside a smart office environment. The
main scenario consists of an employee working in a company which uses EWETasker to
establish task automation rules for avoiding repetition of daily activities. Some channels
provided by the smart office environment are the employees’ smartphones, with all their
local resources (WiFi, Bluetooth, Calendar...) included, the beacons installed inside the
office, the connected door and Internet channels related to social networks and project
management applications. In Fig. 3 the beacon geographical distribution inside the smart
office proposed in this case is depicted.

Main door o
]
Beacon G7H8I9

=

—

-] -

Work room

er

NN

Figure 3. Map of the smart office scenario deployed at the research lab

The employee has the EWETasker application installed in his device and has de-
clared the needed automation rules. The first activity the employee wants to automate is

40 S. Mufioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules

the door opening when he arrives in the morning. For expressing this rule, he needs to
open the EWETasker application and to define the rule, by selecting the Presence Detec-
tor as the event channel, and to be located at a distance lower than 2 meters from it as
the event. Afterwards he must set up the action of the rule, selecting the Connected Door
as channel and the door opening as the action. Finally, the rule created can be expressed
in a more formal way like “When I arrive work, then open the door.". According to the
Notation3 structure, and using the EWE ontology for channel modeling, some example
rules will look in the mobile application and the web platform like showed in Fig. 4.

Smartphone Web

-
o0 @ ©

iz then o L o .
IFa calendar event with keyword meeting k
starts, then mute my phone 201

Figure 4. Interface of the rules in the Mobile Application and the Web interface

Once the rule is created, we are going to explain how the smartphone behaves when
the event is triggered, and which elements described on the architecture participate in this
process. First of all, the smartphone starts listening any change related to the rules created
on the definition process. Every second, the application makes a sweep inside the beacon
coverage area looking for any sensor transmitting. If success, then the device calculates
the distance between each other, and generates an input for the inference engine, similar
to the represented in Listing 3. This input is sent to the server, where will be processed,
generating the consequent action.

All this automation process is invisible to the employee, who just need to preset the
rule before he arrives to work and to authenticate with right credentials when the door
is attempting to be opened. This avoids the use of external authentication devices like
fingerprint readers or traditional keys, preventing its loss or undue forgery by people
outside the company.

The second activity the employee wants to automate uses his smartphone local re-
sources as channels, to define a rule. In this case, the user wants to mute his smartphone
when a scheduled meeting starts. The channels involved in this process are the smart-
phone calendar and the notification module given by the phone. The calendar is where
the user must create an event with a specific keyword as title and set the time range where
it will take place. This keyword works as filter and is needed to listen only the events
related to this category, so in this case it will be meeting. Once scheduled the appoint-
ment, the mobile application will be listening an event triggering from calendar. When
the event starts, the input is sent to the rule engine responding with the phone audio
manager as performer channel. Inside the smart office environment, this is useful to re-
mind meetings or project milestones, and also to link the calendar events with third-party
applications which focus on project version control or management.

Finally, beacons can also work as company information emitters. As shown in Fig. 3,
several beacons have been deployed in the whole perimeter, so that they can provide con-

S. Muriioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules 41

textual information to the networked enterprise. This contextual information is related
to the enterprise, such as project status updates to employees, offers or new marketing
campaigns to new clients that enter the office. In addition, the company and employees
can define contextual automations for enabling energy saving or personalisation of the
information shown in devices, such as the Smart TV, among others.

This scenario illustrates how the proposed ontology and architecture can realized
our notion of smart office. Employees could define automation rules from their phone
based on their context (e.g. position or working time based on calendar). With regards to
companies, they could define good practices or corporate procedures as automation rules
to maximize the company performance.

5. Related work

To determine which of the features discussed are supported by state of the art TASs, we
have analyzed* web platforms for general audience (Ifttt), web platforms for business
and enterprises (Zapier, Cloudwork, elastic.io, itduzzit), a web platform for cloud storage
synchronisation (Wappwolf), mobile apps (Tasker, Atooma, Automateit, onx), and smart
home systems (WigWag, Webee)’.

Several authors have also proposed the use of ECA rules in smart environments,
but usually these works have not reached the combination of enterprise and Internet
services. Paraimpu [8] allows user to interconnect Http-enabled smartobjects and web
services. However, final users need programming skills to configure them. As Karger [9]
points out, one of the main disadvantages of these systems is that it is impossible to
integrate new data suppliers and consumers unless the TAS company chooses to do so.
To overcome this problem, Opasjumruskit et al. designed Mercury [10], a powerful TAS
that features service discovery. This service is able to find appropriate sensors, services,
actuators, etc; to perform certain functionality. Mercury relies on semantic annotation of
web of device data sources so it can reason about them.

6. Conclusions and Future Work

This article has proposed a task automation architecture as an enabler of the envisioned
notion of smart office. Task automation based on event-based ECA rules provides a uni-
fying metaphor for users to configure and combine Internet services, [oT devices and
mobile phones. The main characteristic of our proposal, which makes a step ahead com-
pared to similar architectures [3,11] is the formalization of an ontology, EWE, which
provides a number of benefits. Its formalization benefits from the advantages of seman-
tic model, and should put impact on data interoperability and portability of automations,
allowing external resource linking to the instances such as those from the LOD cloud.

“These systems are available online: Ifttt (http:/iftt.com), Zapier (http://zapier.com), Cloud-
work (http://cloudwork.com), elastic.io (http://www.elastic.io), itduzzit (http://cloud.itduzzit.com), Wap-
wolf (http://wapwolf.com), Tasker (http://tasker.dinglisch.net), Atooma (http://www.atooma.com), Auto-
matelt (http://www.automateitapp.com), onx (http://www.onx.ms), WigWag (http://www.wigwag.com),
Webee (http://www.webeeuniverse.com)

A summary of the results is presented is available online at
http://www.gsi.dit.upm.es/ontologies/ewe/study/full-results.html

42 S. Muiioz et al. / Smart Office Automation Based on Semantic Event-Driven Rules

The implementation of a smart office prototype, based on the proposed architecture,
has shown some benefits of bringing automation into a workplace. The current imple-
mentation of the architecture performs a central execution of the rules, but it would be
desirable to integrate a rule engine in the mobile component and research on the orches-
tration of automation among the central and mobile TASss. The main limitation for this
is the availability of N3 rule engines optimized for mobile devices.

Nevertheless, some aspects of the proposal deserve more attention. Managing fail-
ures in IoT environments while executing automations [12]. An initial work on learning
channel ontologies has been addressed in [5]. Other aspects, such as mining automation
rules from user activity, or tackling social choice [13] will be addressed in future works.

Acknowledgements

This work has been partially supported by the Autonomous Region of Madrid through
programme MOSI-AGIL-CM (grant P2013/ICE-3019, co-funded by EU Structural
Funds FSE and FEDER) and by the Spanish Ministry of Industry and Competitiveness
through the project SEMOLA (TEC2015-68284-R).

References

[1] J. C. Augusto, Intelligent Computing Everywhere. ~Springer London, 2007, ch. Ambient Intelligence:
The Confluence of Ubiquitous/Pervasive Computing and Artificial Intelligence, pp. 213-234.

[2] K. Furdik, G. Lukac, T. Sabol, and P. Kostelnik, “The network architecture designed for an adaptable
iot-based smart office solution,” International Journal of Computer Networks and Communications Se-
curity, vol. 1, no. 6, pp. 216-224, 2013.

[3] S. Mennicken, J. Vermeulen, and E. M. Huang, “From today’s augmented houses to tomorrow’s smart
homes: New directions for home automation research,” in Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, ser. UbiComp ’14. New York, NY, USA:
ACM, 2014, pp. 105-115.

[4] M. Coronado, C. A. Iglesias, and E. Serrano, “Modelling rules for automating the evented web by
semantic technologies.” Expert Syst. Appl., vol. 42, no. 21, pp. 7979-7990, 2015.

[5] M. Coronado, “A Personal Agent Architecture for Task Automation in the Web of Data. Bringing intel-
ligence to everyday tasks,” Ph.D. dissertation, ETSI Telecomunicacién, feb 2016.

[6] T.Berners-Lee and D. Connolly, “Notation3 (n3): A readable rdf syntax,” W3C Team Submission, Tech.
Rep., 1998.

[7]1 J.D.Roo, “Euler yet another proof engine,” http://eulersharp.sourceforge.net, 2013.

[8] A. Pintus, D. Carboni, and A. Piras, “Paraimpu: a platform for a social web of things,” in Proceedings
of the 21st international conference companion on World Wide Web. ACM, 2012, pp. 401-404.

[9] D.R. Karger, “The semantic web and end users: What’s wrong and how to fix it,” Internet Computing,
IEEE, vol. 18, no. 6, pp. 64-70, 2014.

[10] K. Opasjumruskit, J. Expésito, B. Konig-Ries, A. Nauerz, and M. Welsch, “Mercury: User centric device
and service processing—demo paper,” in 19th Intl. workshop on Personalization and Recommendation
on the Web and Beyond, Mensch & Computer, Konstanz, Germany, 2012.

[11] F. Cabitza, D. Fogli, R. Lanzilotti, and A. Piccinno, “Rule-based tools for the configuration of ambient
intelligence systems: a comparative user study,” Multimedia Tools and Applications, pp. 1-21, 2016.

[12] B. Ur, M. P. Y. Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard, D. Schulze, and M. L. Littman,
“Trigger-action programming in the wild: An analysis of 200,000 ifttt recipes,” in Proc. CHI’16, 2012.

[13] E. Serrano, P. Moncada, M. Garijo, and C. A. Iglesias, “Evaluating social choice techniques into intel-
ligent environments by agent based social simulation,” Information Sciences, vol. 286, pp. 102.-124,
December 2014.

http://eulersharp.sourceforge.net

