
Universidad Politécnica de Madrid

Escuela Técnica Superior de Ingenieros de

Telecomunicación

Application of Agent Technology for Fault

Diagnosis of Telecommunication Networks

Tesis Doctoral

Álvaro Carrera Barroso

Ingeniero de Telecomunicación

2016

Universidad Politécnica de Madrid

Escuela Técnica Superior de Ingenieros de

Telecomunicación

Application of Agent Technology for Fault

Diagnosis of Telecommunication Networks

Tesis Doctoral

Álvaro Carrera Barroso

Ingeniero de Telecomunicación

2016

Departamento de Ingeniería de Sistemas

Telemáticos

Escuela Técnica Superior de Ingenieros de

Telecomunicación

Universidad Politécnica de Madrid

Application of Agent Technology for Fault

Diagnosis of Telecommunication Networks

Autor:

Álvaro Carrera Barroso

Ingeniero de Telecomunicación

Tutor:

Carlos Ángel Iglesias Fernández

Doctor Ingeniero de Telecomunicación

2016

Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la
Universidad Politécnica de Madrid, el día de
de .

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Suplente:

Suplente:

Realizado el acto de defensa y lectura de la Tesis
el día de de . en la
E.T.S.I. Telecomunicación habiendo obtenido la calificación de

.

EL PRESIDENTE LOS VOCALES

EL SECRETARIO

A mi madre, a mi padre y a Tamara, gracias por todo.

Agradecimientos

Me gustaría incluir en estos agradecimientos a todas aquellas personas que me han

dado ánimos para realizar este trabajo y que han estado día a día motivándome para poder

concluirlo.

En especial, me gustaría mencionar a mi madre y a mi padre por haberme brindado

la oportunidad de desarrollar mi vocación; a Tamara por haber estado siempre ahí en los

momentos de necesidad; a mis suegros y cuñados; a mis compañeros y amigos: Miguel,

Juan Fernando, Vicente, Laura (Díaz), Paco, José Ignacio, Alberto, José Javier, Jorge Juan,

Jesús, David, Laura (Galán), Gonzalo, Bea, Gema, Carlos, Daniel, Óscar, Emilio, Geovanny,

Shenjing, Ganggao y tantos otros.

No puedo olvidar a toda la gente que me acogió en Telefónica I+D y me ofrecieron

la posibilidad de comenzar a trabajar en los temas que se han desarrollado en esta tesis.

Gracias a todos y en especial a Javier (Algarra), a Javier (González), a Pablo, a Raquel, a

Andrés y a todos los demás que también me dieron ánimos y motivación para realizar este

trabajo.

Tampoco me querría olvidar de los londinenses que me acogieron entre ellos durante

unos meses, especialmente de Jose, Sara y Bea; a Ashley por el asesoramiento con el título

de esta tesis; y finalmente, a Eduardo, por acogerme bajo su tutela durante mi estancia en

Londres.

También agradecer, por supuesto, a Carlos Ángel por la dirección de esta tesis y su in-

finita paciencia. También, al resto profesores del Grupo de Sistemas Inteligentes: Mercedes,

Gregorio, Marifeli, José Carlos y tantos otros.

Y por último, también querría agradecer al resto de familiares, amigos y compañeros que

no hayan sido ya mencionados; pero por desgracia, la lista no puede ser infinita.

Gracias, sin vosotros no lo habría conseguido.

Resumen

La presente tesis doctoral contribuye al problema del diagnóstico autonómico de fallos en

redes de telecomunicación. En las redes de telecomunicación actuales, las operadoras real-

izan tareas de diagnóstico de forma manual. Dichas operaciones deben ser llevadas a cabo

por ingenieros altamente cualificados que cada vez tienen más dificultades a la hora de ges-

tionar debidamente el crecimiento exponencial de la red tanto en tamaño, complejidad y

heterogeneidad. Además, el advenimiento del Internet del Futuro hace que la demanda de

sistemas que simplifiquen y automaticen la gestión de las redes de telecomunicación se haya

incrementado en los últimos años.

Para extraer el conocimiento necesario para desarrollar las soluciones propuestas y fa-

cilitar su adopción por los operadores de red, se propone una metodología de pruebas de

aceptación para sistemas multi-agente enfocada en simplificar la comunicación entre los

diferentes grupos de trabajo involucrados en todo proyecto de desarrollo software: clientes

y desarrolladores.

Para contribuir a la solución del problema del diagnóstico autonómico de fallos, se

propone una arquitectura de agente capaz de diagnosticar fallos en redes de telecomuni-

cación de manera autónoma. Dicha arquitectura extiende el modelo de agente Belief-Desire-

Intention (BDI) con diferentes modelos de diagnóstico que gestionan las diferentes sub-tareas

del proceso. La arquitectura propuesta combina diferentes técnicas de razonamiento para al-

canzar su propósito gracias a un modelo estructural de la red, que usa razonamiento basado

en ontologías, y un modelo causal de fallos, que usa razonamiento Bayesiano para gestionar

debidamente la incertidumbre del proceso de diagnóstico.

Para asegurar la adecuación de la arquitectura propuesta en situaciones de gran com-

plejidad y heterogeneidad, se propone un marco de argumentación que permite diagnosticar

a agentes que estén ejecutando en dominios federados. Para la aplicación de este marco

en un sistema multi-agente, se propone un protocolo de coordinación en el que los agentes

dialogan hasta alcanzar una conclusión para un caso de diagnóstico concreto.

Como trabajos futuros, se consideran la extensión de la arquitectura para abordar otros

problemas de gestión como el auto-descubrimiento o la auto-optimización, el uso de técnicas

I

de reputación dentro del marco de argumentación para mejorar la extensibilidad del sistema

de diagnóstico en entornos federados y la aplicación de las arquitecturas propuestas en las

arquitecturas de red emergentes, como SDN, que ofrecen mayor capacidad de interacción

con la red.

II

Abstract

This PhD thesis contributes to the problem of autonomic fault diagnosis of telecommu-

nication networks. Nowadays, in telecommunication networks, operators perform manual

diagnosis tasks. Those operations must be carried out by high skilled network engineers

which have increasing difficulties to properly manage the growing of those networks, both

in size, complexity and heterogeneity. Moreover, the advent of the Future Internet makes

the demand of solutions which simplifies and automates the telecommunication network

management has been increased in recent years.

To collect the domain knowledge required to developed the proposed solutions and to

simplify its adoption by the operators, an agile testing methodology is defined for multi-

agent systems. This methodology is focused on the communication gap between the different

work groups involved in any software development project, stakeholders and developers.

To contribute to overcoming the problem of autonomic fault diagnosis, an agent architec-

ture for fault diagnosis of telecommunication networks is defined. That architecture extends

the Belief-Desire-Intention (BDI) agent model with different diagnostic models which handle

the different subtasks of the process. The proposed architecture combines different reason-

ing techniques to achieve its objective using a structural model of the network, which uses

ontology-based reasoning, and a causal model, which uses Bayesian reasoning to properly

handle the uncertainty of the diagnosis process.

To ensure the suitability of the proposed architecture in complex and heterogeneous

environments, an argumentation framework is defined. This framework allows agents to

perform fault diagnosis in federated domains. To apply this framework in a multi-agent

system, a coordination protocol is defined. This protocol is used by agents to dialogue until

a reliable conclusion for a specific diagnosis case is reached.

Future work comprises the further extension of the agent architecture to approach other

managements problems, such as self-discovery or self-optimisation; the application of repu-

tation techniques in the argumentation framework to improve the extensibility of the diag-

nostic system in federated domains; and the application of the proposed agent architecture

in emergent networking architectures, such as SDN, which offers new capabilities of control

III

for the network.

IV

Contents

Resumen I

Abstract III

Contents V

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Solution Outline . 4

1.4 Thesis Organization . 6

2 Knowledge Gathering for Autonomic Fault Diagnosis 7

2.1 Introduction . 8

2.2 Related Work . 9

2.3 BEAST Methodology . 11

2.3.1 System Behaviour Specification . 13

2.3.2 MAS Behaviour Specification . 15

2.3.3 Agent Level Testing . 16

2.3.4 MAS Level Testing . 23

2.4 BEAST Tool . 38

2.4.1 Story Parser . 39

2.4.2 BEAST Test Case Model . 40

V

CONTENTS CONTENTS

2.4.3 MAS Platform Interface . 41

2.4.4 Mock Definition . 42

2.4.5 Implementing Test Cases . 42

2.4.6 Impact of BEAST Tool . 43

2.5 Summary . 46

3 Agent Architecture for Autonomic Fault Diagnosis 49

3.1 Introduction . 50

3.2 Related Work . 51

3.3 B2D2 Knowledge Model . 52

3.3.1 Domain Model . 53

3.3.2 Inference Model . 59

3.4 B2D2 Agent Architecture . 67

3.4.1 Monitoring the network . 67

3.4.2 Detecting possible faults . 68

3.4.3 Reaching diagnosis conclusions . 70

3.5 Case Study . 72

3.5.1 Internet Business Scenario . 73

3.5.2 Wireless Sensor Network Scenario . 80

3.6 Summary . 90

4 Coordination for Autonomic Fault Diagnosis in Federated Domains 91

4.1 Introduction . 92

4.2 Related Work . 93

4.3 B2D2 Argumentation Framework . 98

4.3.1 Framework Definition . 98

4.3.2 Relations between arguments . 100

VI

CONTENTS CONTENTS

4.4 B2D2 Coordination Protocol . 104

4.4.1 Coalition Formation Phase . 105

4.4.2 Argumentation Phase . 106

4.4.3 Conclusion Phase . 107

4.5 B2D2 Argumentative Agent Architecture . 109

4.5.1 Argumentation Model . 109

4.5.2 Argumentative Capability . 112

4.6 Case Study . 119

4.6.1 Federated Network Scenario . 119

4.6.2 Deployment of Argumentative Agents 120

4.6.3 Distributed Diagnosis Example . 121

4.6.4 Evaluation . 126

4.7 Summary . 132

5 Conclusions and Future Research 135

5.1 Conclusions . 136

5.2 Future Research . 137

Bibliography 141

List of Figures 159

List of Tables 163

Glossary 165

Appendix A Publications 169

A.1 Journal Articles . 169

A.2 Conference Proceedings . 170

VII

CONTENTS CONTENTS

Appendix B Developed Tools and Ontologies 173

B.1 Open-source Tools . 173

B.2 Ontologies . 174

VIII

CHAPTER1
Introduction

In this chapter, the motivation and the objectives of this thesis are introduced to
the reader. We summarise the problems of the network management for the Future
Internet and highlight a set of challenges where the complexity and heterogeneity of
the network are considered as one of the most important problems to face in the next
generation of network management systems. Finally, we outline the solution proposed
to achieve the objectives of this thesis.

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

Telecommunication companies have seen increased their activity exponentially in the last

decades (Cetinkaya et al., 2013). As a consequence, telecommunication networks have been

growing constantly, both in size, heterogeneity and complexity. The current Internet is

based on the premise of a simple network service used to interconnect end systems where

relatively intelligent services were running. That simplicity has allowed a huge growth of

the network since the beginnings of the primitive Internet (Evans, 2011). But the man-

agement approach followed by network operators in the current Internet is obstructing the

evolution of the network. So, network management is really challenging for next generation

networks (Plevyak and Sahin, 2011). The Future Internet will need to optimise the use of

its resources continuously and recover from problems, faults or attacks transparently for the

network operator and without impact on the services running over it (Charalambides et al.,

2011). To achieve those goals, networks will need to be more intelligent and adaptive than

the current ones and their management systems will need to be embedded in the network

itself instead of being external systems (Jennings et al., 2007).

In those next generation networks, many different actors will interact dynamically to

offer reliable end-to-end services. That diversity of actors (users, sensors, devices, content

providers, etc.) will make network operation and management very hard for the traditional

network management approach (Galis et al., 2009). Services deployed on the top of the

networks will be considered as one of those actors that will have to cooperate autonomously

with other actors to get the expected result (Tselentis and Galis, 2010). That dynamic

and autonomous cooperation among actors is a key requirement to get flexible and efficient

networks (Müller, 2012). Moreover, that complexity of the Future Internet will bring a

high level of uncertainty to management tasks (Guckenheimer and Ottino, 2008). But, that

uncertainty is not only an issue for the Future Internet, current Internet deals with it as

exposed by Clark et al. (2007). They estimate that the current Internet is over-dimensioned

by a factor of 400% to ensure its performance under almost any conditions. It means that

the strategy of current Internet is to over-size the network to ensure its availability. But,

maintaining this strategy in the Future Internet would be very inefficient and costly. Indeed,

the cost of network management and support has increased drastically in recent years due

to the complexity of the network technologies requiring ever more skilled engineers and

administrators and rounding 200 billions dollars (Agoulmine, 2011). Therefore, management

of the uncertainty coming from complex networks will be an essential requirement for any

management system of the Future Internet (Pras et al., 2007).

To deal with that complexity, autonomic approaches have been proposed both for com-

2

1.1. MOTIVATION

puting (Kephart et al., 2007) and networking (Strassner et al., 2007; Tschudin and Jelger,

2007). This trend tries to achieve self-management capabilities with a Monitor-Analyze-

Plan-Execute (MAPE) control loop (Kephart et al., 2007) implemented by autonomic man-

agers. Those autonomic managers must perform different management tasks, such as self-

configuring, self-healing, self-optimising and self-protecting. However, a single isolated au-

tonomic manager can achieve autonomic behaviour only for the resources it manages, which

can lead to scalability problems. To avoid those problems, the managers must be coordinated

to obtain a global autonomic management of the network.

Autonomic approaches require innovative aspects and mechanisms to enable the desired

self-* capabilities to govern an integrated behaviour of the Future Internet (Bouabene et al.,

2010). Those mechanisms are based on the usage of specific domain knowledge of net-

work engineering taking into consideration the dynamicity and complexity of the supervised

systems. The European Telecommunications Standards Institute (ETSI) supports this au-

tonomic approach with a generic reference model for autonomic networking named Generic

Autonomic Network Architecture (GANA) (Laurent et al., 2013) which defines a set of de-

sired properties for those autonomic systems. Those desired properties are: automation,

awareness, adaptiveness, stability, scalability, robustness, security, switchable and federa-

tion. Getting them in an autonomic management system is really challenging for network

operators following the traditional management approach. Thus, Laurent et al. (2013) de-

fine some enabling concepts and mechanisms for further research to achieve those desired

properties in the management systems of the autonomic Future Internet. This autonomic

approach is supported by the Internet Research Task Force (IRTF). Behringer et al. (2015)

describe the design goals of the autonomic networking in the Request For Comments (RFC)

7575, and Jiang et al. (2015) analyse the general gap for autonomic networking reviewing

the current status of autonomic aspects of current networks. Among others, they identify

troubleshooting and recovery as one of the non-autonomic behaviour of the current Internet

in the RFC 7576, which motivated us to develop this thesis in the field of autonomic fault

diagnosis of telecommunication networks.

In conclusion, due to the increasing complexity, heterogeneity and the consequent high

level of uncertainty in telecommunication networks, autonomic fault management is an in-

teresting research field for operator companies. Accordingly, our motivation when preparing

this thesis was to improve the current situation with relation to aforementioned challenges

for the autonomic Future Internet. In particular, we are motivated by the fact that there is

still a lack of solutions for autonomic fault diagnosis mechanisms.

3

CHAPTER 1. INTRODUCTION

1.2 Objectives

The primary objective of the thesis is to define a scalable and reliable solution for Fault

Diagnosis tasks in Telecommunication Network Management. By referring to the previous

section, the solution must meet some requirements that focus on the main challenges of

the Future Internet management, such as to handle uncertainty and cooperate in complex

federated scenarios. Therefore, we have decomposed the thesis global objective into a number

of more specific ones in order to build the final solution step by step:

• (1) Facilitate the adoption of fault diagnosis solutions by network opera-

tors. Our objective is to define a methodology that facilitate the adoption of the

autonomic solutions focusing on requirement gathering. It should be focus on gather

the knowledge required to design a fault diagnosis solution facilitating the communi-

cation between stakeholders and designers.

• (2) Define an autonomic fault diagnosis solution which can handle properly

the uncertainty of complex systems. Our objective is to define a solution suitable

for the network management of the Future Internet. The formalisation of the solution

should put impact on handling the uncertainty in complex systems and should be

independent of the network technology.

• (3) Define an autonomic fault diagnosis solution which works in federated

environments. Our objective is to define a solution to allow fault diagnosis systems

to work in the heterogeneous environment of the Future Internet, where multiple actors

in different federated domains have to cooperate to achieve agreements about diagnosis

conclusions.

1.3 Solution Outline

In order to fulfil the stated objectives, we propose a number of solutions put together in

a single framework to facilitates their adoption. This framework aims to provide opera-

tors an autonomic fault diagnosis solution for telecommunication networks based on agent

technology (see Figure 1.1).

On the top of the contemporary state of the art on requirement engineering for software

development projects, we propose a methodology to bridge the communication gap between

network operators and system designers (Network Level). The aims of this methodology is

4

1.3. SOLUTION OUTLINE

to gather the required domain knowledge to design the appropriate solution for the fault

diagnosis problem.

Figure 1.1: Overview of the solution proposed in this thesis.

The designed solution constitutes an agent architecture (Agent Level). This agent archi-

tecture is based on the BDI model which is extended with a set of diagnostic models to carry

out properly the diagnosis process under uncertainty. A Structural Model of the network

and a Causal Model of fault-symptom relations are combined with a Diagnosis Model in the

knowledge plane of the agent to handle all diagnosis information. Due to the complexity

of the considered scenario, a coordination mechanism is required to ensure the suitability

of the proposed agent model in heterogeneous network scenarios with federated domains.

Accordingly, we propose an argumentation-based technique to allow agents in different do-

mains to cooperate (Coordination Level). The proposed framework consists of three main

contributions:

• (1) BEAST Methodology. We propose an Acceptance Testing Methodology for

Multi-Agent Systems development (Objective 1) for domain knowledge gathering.

5

CHAPTER 1. INTRODUCTION

The methodology is composed by 4 different phases: System Behaviour Specification

to define the expected outcome of the system and gather the domain knowledge from

network operators, MAS Behaviour Specification to translate the previous system spec-

ification to agents behaviours, Agent Level Testing to test agents individually while

they are under development, and finally, MAS Level Testing to test and evaluate the

behaviour of the global system in a testing environment. This contribution is described

in Chapter 2.

• (2) B2D2 Agent Architecture. We propose an Agent Architecture to carry out

the Autonomic Fault Diagnosis tasks handling the uncertainty of a complex telecom-

munication network (Objective 2). The proposed architecture follows a task model

which defines the phases of the diagnosis process. We propose a Diagnosis Model

which covers the inference knowledge required to carry out autonomic fault diagnosis

tasks and combines different domain knowledge models to allow agents to deal with

network elements and their faults under uncertainty. This contribution is described in

Chapter 3.

• (3) B2D2 Coordination Framework. We propose an extension of the B2D2 Agent

Architecture to add argumentative capabilities. Those argumentative capabilities are

used in a Coordination Protocol which allows agents to argue about diagnosis cases in

a federated domains environment (Objective 3). The coordination protocol is based

on an argumentation framework which has been defined focused on the restrictions

of a federated scenario where agents have to deal with uncertain knowledge. This

contribution is described in Chapter 4.

1.4 Thesis Organization

This thesis is organised as follows. Chapter 2 describes the proposed methodology for knowl-

edge gathering. Chapter 3 describes the agent architecture for autonomic fault diagnosis of

telecommunication networks. Chapter 4 describes the coordination protocol to allow agents

to diagnose faults in federated domains. All these chapters include different sections for

related works of each topic and the corresponding evaluations of the proposal exposed in

them. Finally, Chapter 5 concludes the thesis summarising the contributions and proposing

possible future research to continue this work.

6

CHAPTER2
Knowledge Gathering for Autonomic Fault

Diagnosis

Following the objective of facilitating the adoption of the solutions presented in this
thesis, this chapter presents an acceptance testing methodology that bridges the com-
munication gap between stakeholders and developers, named BEhavioural Agent Sim-
ple Testing (BEAST) Methodology. The methodology is focused on gathering the do-
main knowledge from expert network operators for building autonomic fault diagnosis
agents. The BEAST Methodology presents traceability from user requirements to test
cases, enabling stakeholders can be aware of the project status providing executable
requirements. This methodology fits with agile software development methodologies,
such as SCRUM, allowing an incremental development process and involving differ-
ent actors in the project. Moreover, an open source tool that supports the proposed
methodology is presented. This tool supports the automatic generation of test cases
from requirements which enhances the traceability between them. The methodology
and the associated tool have been validated in the development of a Multi-Agent Sys-
tem (MAS) for fault diagnosis of a FTTH network.

7

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

2.1 Introduction

Nowadays, the application of multidisciplinary techniques from different engineering disci-

plines are becoming a necessity to solve complex problems, which makes interdisciplinary

methodologies more and more important (Borutzky, 2010). This thesis aims to contribute

to the application of agent technology for fault diagnosis of telecommunication networks,

which merges Agent Oriented Software Engineering (AOSE) with network engineering. The

domain knowledge required to develop systems which interact with the network must be

acquired from the expert network engineers who deal with it everyday. But the gap between

both engineering disciplines makes that acquisition process is a difficult task. Therefore,

this chapter presents an agile acceptance testing methodology focused on facilitating the

communication between stakeholders and developers.

The context of this work was a research project contracted by the company Telefónica

R&D. They requested to develop a multi-agent system for fault diagnosis in their network.

From a software engineering point of view, the main challenges were: (i) they required man-

aging the project using the SCRUM Agile Methodology (Schwaber and Sutherland, 2009),

(ii) the project involved integration with a wide range of external systems and the emulation

of faulty behaviour of network transmission and (iii) the development team was composed

of students with different timetables, so they were not working together most of the time.

After the first release, the main problems we encountered were communication problems be-

tween the development team and the customer (expert network engineers), communication

problems within the development team, where agents were being developed in parallel, and

lack of automation in the unit testing process, which involved to test physical connections

with a manual and very time consuming process.

After analysing several AOSE proposals based on agile principles (Clynch and Collier,

2007; García-Magariño et al., 2009), we have not found any proposal which covers acceptance

tests and provides a good starting point for its application in an agile context. Thus, this

research aims at bridging the gap between acceptance testing and AOSE. The key motiva-

tion of this methodology is to explore to what extent acceptance testing can benefit MAS

development, in order to provide support in the development of MAS in agile environments.

This brought us to identify the need for an agile acceptance testing methodology for MAS.

The main contribution of this chapter is that the Behaviour Driven Development (BDD)

approach has been suitable for its application in MAS development. Furthermore, the use of

BDD facilitates the communication between stakeholders and designers or developers, which

is usually a gap between both of them. In the framework of this thesis, this methodology

8

2.2. RELATED WORK

provides a communication channel with network operators to extract the domain knowledge

required to design the autonomic fault diagnosis agents.

The rest of the chapter is structured as follows. Firstly, Section 2.2 discusses related work

in the research field of agile acceptance testing. Section 2.3 describes the agile acceptance

testing methodology for MAS based on BDD techniques and its application to the project

mentioned above. Section 2.4 provides an overview of the open source tool that supports

the proposed methodology. Finally, Section 2.5 presents some concluding remarks of this

chapter.

2.2 Related Work

Understanding stakeholders requirements and fulfilling their desired functionality is consid-

ered as the most important aspect for a software project to be considered successful (Agar-

wal and Rathod, 2006). Thus, requirements engineering plays a key role in the development

process. The main challenges of requirements engineering are (Marnewick et al., 2011): (i)

improving the communication between the stakeholders and the development team and (ii)

understanding the problem. These challenges are even more difficult to solve in complex

environments (Jarke and Lyytinen, 2015), but they can be faced using more holistic thinking

and decomposing appropriately the global problem (Katina et al., 2014).

Nevertheless, the process of eliciting requirements and communicating them is still an

issue and some authors consider it the next bottleneck to be removed from the software

development process (Adzic, 2009). The main reasons for this communication gap between

stakeholders and the development team are that (Adzic, 2009) (i) imperative requirements

are very easy to misunderstand; (ii) even the obvious aspects are not so obvious and can

be misinterpreted and (iii) requirements are over-specified, since they are expressed as a

solution, and focus on what to do and not why, not allowing the development team whether

discuss if those requirements are the best way to achieve stakeholders’ expectations.

In order to bridge the communication gap between developers and stakeholders, the

agile movement has proposed to shift the focus of requirements gathering. Instead of fol-

lowing a contractual approach where the requirements documents is the most important

goal, they put emphasis on improving the communication among all the stakeholders and

developers to have a common understanding of these requirements. Many approaches have

been explored for requirements gathering, such as the use of ontologies for modelling the

user requirements (Sun et al., 2010) or the definition of UML models for capturing qual-

ity requirements (Guerra-García et al., 2013). Moreover, given that requirements will have

9

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

inconsistencies and gaps (Adzic, 2011), it has been proposed to anticipate the detection of

these problems by checking the requirements as soon as possible, even before the system is

developed. In this line, Martin and Melnik (2008) formulated the equivalence hypothesis:

“As formality increases, tests and requirements become indistinguishable. At the limit, tests

and requirements are equivalent”, which is the basis idea of executable requirements, i.e. a

test (or set of tests) used to check if a requirement is met.

As a result, they have proposed a practice so called agile acceptance testing, whose

purpose is improving communication by using real-world examples for discussion and spec-

ifications of the expected behaviour at the same time, which is called Specification by Ex-

ample (SBE). Different authors have proposed to express the examples in a tabular form

(Acceptance Test Driven Development (ATDD)1 with Fit test framework (Mugridge and

Cunningham, 2005)) or as scenarios (BDD (North, 2007) with tools such as JBehave (North,

2011) or Cucumber (Wynne and Hellesy, 2008)). In this way, requirements are expressed

as acceptance tests, and these tests are automated. When an agile methodology is fol-

lowed, acceptance tests can be checked in an automated way during each iteration, and

thus, requirements can be progressively improved. Most frameworks provide a straight for-

ward transition from acceptance tests to functional tests based on tools such as the xUnit

family (Hamill, 2004) or even automating the test case generation (Kamalrudin and Sidek,

2014). Agile acceptance testing complements Test Driven Developoment (TDD) practices,

and it can be seen as a natural extension of TDD practices, which have become mainstream

in among software developers. In this way, software project management can be based

not only on estimations but on the results of acceptance and functional tests. In addition,

these practices facilitate to maintain requirements (i.e. acceptance tests) updated along the

project lifespan.

In the multi-agent field, there have been several efforts in the testing of final sys-

tems. MAS testing present several challenges (Nguyen, 2009), given that agents are dis-

tributed, autonomous and it is interesting not its individual behaviour but the emergent

behaviour of the multi-agent system that arises from the interaction among individual be-

haviours. A good literature review of MAS testing can be found in (Nguyen, 2009; Nguyen

et al., 2011; Houhamdi, 2011). Thangarajah et al. (2011) propose to extend the scenarios

of the Prometheus Methodology (Padgham and Winikoff, 2003) in order to be able to do

testing of scenarios as part of requirements or acceptance testing. The work describes also

a novel technique for integrating agent simulation in the testing process. Nevertheless, their

proposal of acceptance tests seems targeted at technical users familiarised with AOSE vo-

cabulary, given than the scenarios are described in terms such as percepts, goals and actions.

1A literate review of ATDD can be found in (Haugset and Hanssen, 2008).

10

2.3. BEAST METHODOLOGY

Nguyen et al. (Nguyen et al., 2010) propose an extension of the Tropos Methodology (Bres-

ciani et al., 2004) by defining a testing framework that takes into account the strong link

between requirements and test cases. They distinguish external and internal testing, but

they focused on the internal one. External testing produces acceptance tests for being val-

idated by project stakeholders, while internal testing produces system and agent tests for

being verified by developers.

As conclusion, to the best of our knowledge, there is no previous work dealing explicitly

with acceptance testing in AOSE for agile environments. This motivated us to define an

agile acceptance testing methodology for MAS.

2.3 BEAST Methodology

To cover the problems identified above, we should identify which requirements should have

the testing methodology. First, our primary concern is that the methodology should help in

improving the communication between the stakeholders and the development team, as well

as the communication among the development team. Another requirement comes from the

overall methodology: it should be compatible and suitable for its application in combination

with agile techniques. Finally, it should not be tied to a specific MAS tool or framework, such

as JADE or JADEX, and it should be feasible to integrate with other MAS environments

with low effort.

The BEAST Methodology is intended to be used in agile environments, with special

focus on providing traceability from stakeholder requirements to test cases. With this end,

requirements are automated as acceptance tests, which are linked with MAS testing. The

main benefit of this approach is that it improves the understanding of the real progress of

the project from the stakeholders perspective, and, moreover, it provides a good basis for

reviewing the objectives of every iteration. As a result, requirements negotiation and speci-

fication can be done in an iterative way, and can be adapted to the improved understanding

of the desired system by both stakeholders and development team.

The methodology consists of four phases: System Behaviour Specification, MAS Be-

haviour Specification, Agent Level Testing and MAS Level Testing, which can be applied in

every iteration of any agile development methodology. Figure 2.1 depicts these steps and

the actors that appear in each one of them.

During the first step (System Behaviour Specification phase), the expected behaviour of

the system is specified by the customer, the product owner and, at least, one member of the

11

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Figure 2.1: Overview of the Beast Methodology.

development team, as it is described in the SCRUM Methodology (Schwaber and Suther-

land, 2009). This specification is done following the Behaviour Driven Development (BDD)

technique, as shown in Section 2.3.1. Once the BDD system specification is available, the

product owner and the designer of the development team must translate the system speci-

fication into agent behaviours specification during the MAS Behaviour Specification phase,

as shown in Section 2.3.2. The output of this step is a set of BDD requirements for the MAS

that are implemented and tested in the following step of the methodology. During this Agent

Level Testing phase, shown in Section 2.3.3, the methodology proposes the use of mocking

techniques to replace other agents which are not developed yet or external systems that are

not available during the development phase. After the behaviour of all agents have been

tested, the MAS Level Testing phase has two sub-phases, as shown Section 2.3.4.. First of

all, once agents have been developed, integration testing can be done replacing mocks by the

real agents. Second, emergent features should be validated in a testing environment. Both

simulation techniques or testbed scenarios can complement this phase to simulate different

system configurations. Thus, acceptance testing is straight forward, and the expectations

of the stakeholders can be checked without discussing about ambiguities or omissions in the

requirements document thanks to the traceability from project requirements to test cases.

To properly frame the BEAST Methodology, the motivational network management

project contracted by the company Telefónica R&D has been chosen as case study. In this

12

2.3. BEAST METHODOLOGY

project, the stakeholder is a network operator company which wants a tool to reduce the

management cost of Fiber To The Home (FTTH) networks. The first task of the project

was to write a high level project proposal and to explore different possible approaches to

solve the problem. The result of this phase was that the solution that best fits the problem

is a MAS architecture. SCRUM Agile Methodology (Schwaber and Sutherland, 2009) and

BEAST Methodology, supported by the developed BEAST Tool, was used to manage the

progress of the project. To facilitate the reading and understanding of the methodology,

the following sections include the application of every phase of the methodology to the case

study.

2.3.1 System Behaviour Specification

The System Behaviour Specification phase aims at providing a communication bridge be-

tween the project stakeholders and the development team during requirements gathering.

This phase follows the BDD technique (North, 2007). System behaviours are derived from

the business outcomes that the system intends to produce. These business outcomes should

be prioritized by the stakeholders. Then, business outcomes are drilled down to feature sets.

A feature set decompose a business outcome into a set of abstract features, which show what

should be done to achieve a business outcome. These feature sets are the result of discus-

sions between stakeholders and developers. The expected features are described using User

Stories. Later, User Stories are exposed in scenarios for each particular instantiation of a

User Story. In other words, scenarios exemplify a User Story to cover all possible variations

of the presented feature. Thus, those scenarios are the basis of acceptance tests.

[Story title] - description

As a [Role]

I want a [Feature]

So that [Benefit]

Table 2.1: User Story template (North, 2007).

Scenario [Scenario name]

Given [Context]

And [Some more contexts] ...

When [Event]

Then [Outcome]

And [Some more outcomes] ...

Table 2.2: Scenario template (North, 2007).

Instead of using plain natural language, BDD proposes the usage of textual templates.

Table 2.1 presents the template for a User Story. This template presents a feature, i.e. a

requirement, of the system and the benefit that this feature has from the point of view of a

specific role, such as a final client or a system administrator. Table 2.2 presents the template

13

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

for a scenario. A set of scenarios must exemplify a User Story giving specific situations to

well understand the feature and to test the system meets the requirement. These templates

should be instantiated by the pertinent concepts of the domain knowledge. Those concepts

are part of the ubiquitous language (Evans, 2004) which establishes the common terminology

used by stakeholders and developers. Thus, these terms will be used in the instantiation of

the domain knowledge models of agents, helping to reduce the gap between technical and

business terminology.

This phase in the case study started with a meeting with the stakeholders to specify a

set of initial requirements. Those requirements were written in BDD format as User Stories.

Table 2.3 shows an example of one gathered requirement (User Story, lines 1-4) with two

associated scenarios (lines 6-9 and 11-18).

1 Story: Time-to-repair cut down

2 As an operator network,

3 I want to have a system to diagnose root cause of faults

4 So that time-to-repair is below the SLA with the customer.

5 ******

6 Scenario: System monitors streaming sessions

7 Given a user that has a Video On Demand (VoD) service,

8 When the customer is consuming any streaming content,

9 Then the system must monitor the quality of the streaming session.

10 ------

11 Scenario: System diagnoses a QoS decreasing failure

12 Given a user that has a Video On Demand (VoD) service connected through

13 an FTTH access network

14 And the customer requests a film from the streaming server,

15 When loss rate is higher to 1%, latency is higher to 150ms or jitter

16 is higher to 30ms,

17 Then the system must diagnose the root cause of fault is

18 ’Damaged Fibre’, ’Inadequate Bandwidth’ or ’Damaged Splitter’.

Table 2.3: Example of User Story.

Notice that stakeholders do not know anything about the solution, in this case, a Multi-

Agent System (MAS). So, the written requirements, or User Stories, do not refer at all to

agents, only to desired features. The translation from these requirements to agents is done

by the designer following a MAS design methodology, as shown in Section 2.3.2.

In the case study, the designed solution had to work in a Fiber To The Home (FTTH)

14

2.3. BEAST METHODOLOGY

network that is composed by a set of specific devices. In a FTTH network, the optical

fiber reaches the boundary of the living space, such as a box on the outside wall of a

home. In these networks, there are some passive elements, such as splitters or fibers, and

active elements, such as Optical Network Terminal (ONT), Optical Line Termination (OLT)

or ethernet routers. Figure 2.2 depicts a standard structure of an FTTH network. This

network architecture usually delivers triple-play services directly from the central office of

the operators. Furthermore, the final system should deal with devices from different vendors

and different access protocols, which was an issue in the project.

Figure 2.2: Architecture of an FTTH network.

2.3.2 MAS Behaviour Specification

This phase has the goal of architecturing the multi-agent system specifying all agent roles

and the interaction among them. Based on the features identified in the previous phase,

the agent features are realised with the MAS system. In order to maintain traceability and

improve communication within the development team, we have found useful to use the same

approach than in the previous phase for specifying the MAS behaviour. Thus, business

benefits are described by features which are assigned to agent roles. The textual templates

presented in Tables 2.1 and 2.2 are used by the MAS designer in this phase to create Agent

Stories. These Agent Stories describe the expected behaviour of an agent given a context

and a trigger event to achieve a specific goal. The described scenarios are translated into

test cases in the following phase of the methodology. These scenarios must represent all

agent behaviours.

As the proposed methodology is focused on acceptability testing, no restriction is im-

posed for designing the MAS using any design methodology. Therefore, methodologies, such

as MAS-CommonKADS (Iglesias et al., 1998), Ingenias (Pavon et al., 2005), Prometheus (Padgham

15

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

and Winikoff, 2003), or Gaia (Wooldridge et al., 2000), can be used to design and/or develop

the MAS. In other words, the proposed methodology is an agile acceptance testing method-

ology to ensure the communication among stakeholders and developers and no design or

implementation restrictions are imposed. So, the MAS designer has the responsibility to

translate User Stories to Agent Stories describing all agent roles in the system and all their

behaviours using any MAS design methodology. Those Agent Stories are used to test all

agents of the system.

As previously, features can be obtained in different contexts which are described as

scenarios, which can involve one or more agent roles in the case of cooperative scenarios. In

the case of emergent features coming from global behaviour, they will be only verified when

the full system has been developed. This kind of emergent behaviour will be specified at

MAS level in the agent stories, instead of for a particular agent role.

The final MAS of the case study was too complex to be shown in this section, so a

simplified scenario is presented to exemplify the use of the methodology. We are going

to focus only on the Agent Stories exposed in Table 2.4. These Agent Stories define the

behaviour of a Diagnosis Agent that must be able to diagnose the root cause of fault and it

is directly related with the User Story shown in the previous section in Table 2.3.

In Table 2.4, two Agent Stories are shown. Every story has two scenarios to exemplify

the requirement defined in the story. The first story (lines 1-4) defines the goal that the agent

has to perform a diagnostic process for the devices under its supervision. The associated

scenarios (lines 6-11 and 13-16) exemplify that requirement for specific diagnosis symptoms.

The second story (lines 18-21) defines the goal of fulfilling the conditions contracted with the

customer in the Service Level Agreement (SLA). Its associated scenarios (lines 23-29 and

31-37) specify the goal of satisfying a concrete time restriction contracted with the customer

and trying to minimise the diagnosis time.

2.3.3 Agent Level Testing

This phase has the aim of testing all agents individually providing traceability to the User

Story they are trying to implement. Based on the requirements obtained during the pre-

vious phases, agents are designed and developed. As mentioned previously, any of the

existing MAS design methodologies can be used for modelling and implementing agents.

This methodology is focused on testing aspects while the whole system is being developed,

considering that many different agents are being developed in parallel. Then, any test case

where several agents should interact among them could not be performed until all of them

16

2.3. BEAST METHODOLOGY

1 Story: Diagnosis process triggered by a symptom

2 As a Diagnosis Agent,

3 I want to process a FIPA-INFORM message with a detected symptom,

4 So that the system under my supervision is diagnosed as soon as possible.

5 ******

6 Scenario: Diagnosis Agent diagnoses Damaged Splitter

7 Given a VoD streaming session,

8 When a ‘high loss rate’ symptom is received from a Probe Agent

9 And two or more geographically close users have loss rate higher to 1%,

10 Then the Diagnosis Agent must infer that the root cause of the

11 problem is ‘Damaged Splitter’.

12 ------

13 Scenario: Diagnosis Agent performs bandwidth tests

14 Given a VoD streaming session,

15 When a ‘jittering’ symptom is received from a Probe Agent,

16 Then the Diagnosis Agent must perform bandwidth test to know its usage rate.

17

18 Story: SLA fulfilment

19 As a Diagnosis Agent,

20 I want to report issue status before a given deadline,

21 So that I achieve my goal of fulfilling SLA restrictions.

22 ******

23 Scenario: Diagnosis Agent meets the SLA

24 Given a SLA is contracted with a customer

25 And the Diagnosis Agent is aware of SLA commitments,

26 When that customer is current on payments

27 And any diagnosis is in progress,

28 Then the Diagnosis Agent must give a response in time that fulfils the SLA

29 time restrictions.

30 ------

31 Scenario: Diagnosis Agent performs fast diagnosis

32 Given a SLA is contracted with a customer

33 And the Diagnosis Agent is aware of SLA commitments,

34 When that customer is current on payments

35 And any diagnosis is in progress,

36 Then the Diagnosis Agent must finish the network tests as soon as possible

37 to minimise the diagnosis time.

Table 2.4: Examples of Agent Stories.

17

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

would be implemented. For that reason, we propose the use of Mock Agents to emulate

non-available agents in this testing phase, as explained below. So, this phase has two main

steps (see Figure 2.3): (i) developing mocks of the agents (for those not developed yet) and

external systems that an agent interacts with and (ii) developing the unit tests of every

agent2.

Figure 2.3: Steps of the Agent Level Testing Phase.

The first step requires to emulate or simulate the expected behaviour of the agents or

external systems according to the scenarios from the Agent Stories developing mock agents.

The second phase implements the tests configuring those developed mocks. There have

been several research works developing the concept of using mock testing for agent unit

testing. Coelho et al. (Coelho et al., 2006) proposed a framework for unit testing of MAS

based on the use of Mock Agents on top of the multiagent framework JADE (Bellifemine

et al., 2007). They proposed to develop one Mock Agent per interacting agent role. Mock

Agents were programmed using script-based plans which collect the messages that should

be interchanged in the testing scenarios. Tiryaki et al. (Tiryaki et al., 2007) proposed the

framework SUnit on top of the multiagent framework Seagent (Dikenelli et al., 2005). They

extended JUnit testing in order to cope with agent plan structures testing. Zhang (Zhang

et al., 2011) generated automatically Mock Agents from design diagrams developed within

the Prometheus Methodology (Padgham and Winikoff, 2003).

As we are interested in simulating the behaviour of agents, we have defined several types

of Mock Agents which provide a simple FIPA interface. Three basic mock patterns have

been defined: mock that simulates answering messages (ResponderMockAgent), mock that

2Notice that an agent that is being tested is denoted as Agent Under Test (AUT)

18

2.3. BEAST METHODOLOGY

simulates receiving messages without providing an answer (ListenerMockAgent) and mock

that receives a message from one agent and sends a new message to a different agent (Medi-

atorMockAgent). Figure 2.4 depicts the interaction among the proposed Mock Agents, the

Test Case and the Agent Under Test (AUT). The ResponderMockAgent has been designed

to reply incoming messages with predetermined ones. This can be used to simulate external

services or agents which have to connect to those services. So, an AUT can interact with

this type of Mock Agent to get external information in the same way as the final MAS. The

MediatorMockAgent has been designed to act as a filter of messages. In other words, this

Mock Agent receives messages from an AUT and sends a different message to other AUT.

So, this type of Mock Agent can be used as processes that have to perform some actions

with the information enveloped in the first message and have to inform to another agent or

system. Finally, the ListenerMockAgent has been designed as a mailbox. This Mock Agent

can be used to check if the content of a message sent by an AUT.

Figure 2.4: BEAST Mock Agents.

The proposed types of agents cover the most general communications among agents

in a MAS. However, other Mock Agents can be designed if it is a need for the project

requirements. For example, the proposed ResponderMockAgent could be modified to query

a database to reply the message with real data that would be used by the AUT.

The solution designed for one of the scenarios of Agent Stories exposed in the previous

section is shown in Figure 2.5 to exemplify how to test an agent in a specific scenario, included

in the Table 2.5. There are three types of agents: a Probe Agent responsible for monitoring

Video On Demand (VoD) sessions, an Expert Agent to collect metrics from other subscriber

lines and the Diagnosis Agent to perform the diagnosis process itself. In the first iteration

of the case study project, the Probe agent and the Expert agents had not been developed

yet. Thus, the mocking facility of the proposed BEAST Methodology was used. In this

19

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

case, the Mediator Mock Agent is suitable for simulating Probe Agent to send symptoms

to the Diagnosis Agent and the Responder Mock Agent is suitable for simulating Expert

agents. Thus, these mocks are configured for sending symptoms and network information

respectively to simulate both agent roles. Finally, the Diagnosis Agent is the Agent Under

Test (AUT) for this scenario. The testing scenario starts when the Probe Mock Agent sends

a message to the Diagnosis Agent (AUT). Then, the Diagnosis Agent requests information

about the status of other subscriber lines. Finally, the tester checks if the AUT has got

the right hypothesis of fault root cause. The implementation of this scenario as BEAST

Test Case is exposed in Section 2.4.5 after the reminder features of the BEAST Tool are

explained. To illustrate the explanation of this scenario, Figure 2.6 represents the interaction

of the BEAST Test Case with the Mock Agents and the AUT in a sequence diagram.

1 Scenario: Diagnosis Agent diagnoses Damaged Splitter

2 Given a VoD streaming session,

3 When a ‘high loss rate’ symptom is received from a Probe Agent

4 And two or more geographically close users have loss rate higher to 1%,

5 Then the Diagnosis Agent must infer that the root cause of the

6 problem is ‘Damaged Splitter’.

Table 2.5: Exemplified Scenario of an Agent Story.

Figure 2.5: Overview of agents involved in the exemplified scenario.

As SCRUM Agile Methodology (Schwaber and Sutherland, 2009) had been chosen to

manage the project progress, the result of the executable requirements are shown to the

stakeholder (Product Owner in SCRUM terminology) periodically during progress review

meeting (Sprint Reviews in SCRUM terminology). This helps to the Product Owner to

know the status of the project and to modify the User Stories to represent better the idea of

the stakeholder that is not always well translated in the initial User Stories. Furthermore,

the traceability from a User Story to a test case makes easy to know which features or what

test cases must be modified to fits the updated requirements.

20

2.3. BEAST METHODOLOGY

Figure 2.6: Steps of the exemplified scenario.

Traceability from user requirements to executable tests is one of the keys of success in any

software project (Almeida et al., 2007). To ensure this traceability, the BEAST Methodology

proposes a set of mapping rules that connect the outcomes of all phases of the methodology.

Figure 2.7 shows that User Stories obtained in the System Behaviour Specification phase

are used as input in the MAS Behaviour Specification phase. In this phase, a User Story is

translated to one or more Agent Stories. Both User Stories and Agent Stories follow the

same template format (see Tables 2.1 and 2.2). Finally, the scenarios of the Agent Stories

are implemented to test the developed MAS. Thus, a User Story is broke down in Agent

Stories. An Agent Story is composed by a set of scenarios that are implemented as test

cases. So, the stakeholders know automatically which requirements are not fulfilled when a

test fails.

Figure 2.7: Outcomes of BEAST phases.

21

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Following the JUnit framework, both User and Agent Stories can be tested at once using

TestSuites to execute all test cases related with it. A TestSuite is a collection of test cases

to show if a software has a specified behaviour. So, the set of scenarios which compose a

story are joint in a TestSuite to check if a story feature is satisfied. Figure 2.8 shows an

example of traceability in the BEAST Methodology.

Figure 2.8: Example of traceability in the BEAST Methodology.

This traceability simplifies the global view of the project status. An example of trace-

ability from User Story to test case is shown in Figure 2.9 with the result message of a

failing User Story. The message of that failing test says what specific scenario of the story

is failing to find exactly what test case must be reviewed. That information is useful for

stakeholders, designers and developers to know in a look the status of the project and take

decision accordingly.

22

2.3. BEAST METHODOLOGY

Figure 2.9: Screenshot of a failing BEAST Test Case.

2.3.4 MAS Level Testing

This phase has the aim of evaluating the complete systems offering metrics to measure

the expected outcomes of the system. When all agents that compose the MAS have been

developed and tested individually in the previous phases, integration testing is performed

to ensure all agents work together as expected and, later, a set of metrics is collected to

evaluate the behaviour of the developed system in a testing environment. Thus, the MAS

Level Testing phase is divided in two different sub-phases: Integration Phase and MAS

Validation Phase, as shown in Figure 2.10.

The Integration Phase has the aim of validating the behaviour of all agents working

together. As soon as two different agents have been developed, integration tests can start

using the same test case extracted from an Agent Story replacing the Mock Agents with the

developed agents. However, these integration tests among agents cannot ensure the expected

behaviour of the MAS executing in the final environment. In other words, the interaction

between the agents and the environment in long term conditions are, generally, difficult to

be measured using unit test cases. Thus, the evaluation of the system in a complete testing

environment is required to validate the developed MAS.

Therefore, the second sub-phase of this MAS Level Testing phase is focused on those

features that cannot be tested in a unit test case and require a complete testing environment,

which replicate or emulate the production environment, to evaluate the global behaviour

of the developed system under specific and general conditions. To measure that system

behaviour, some metrics are defined based on the User Stories, requested by the stakeholders,

23

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Figure 2.10: MAS Level Testing.

and the Agent Stories, requested by the MAS designer. Those metrics are collected during

the execution of the system in the testing environment and analysed to know if desired

requirements are met and to evaluate the validity of the designed solution. But, the definition

of these metrics is not restricted only to the stories that define the expected behaviour of an

agent or the system. Other non-functional features, such as effort balance or time metrics,

can be measured to analyse the system behaviour and, consequently, the impact caused by

the MAS when is deployed in the production environment.

We propose a framework for metrics definition based on their typology. There are two

main types of metrics, the ones which are defined to measure the outcome expected by

the stakeholders (Requirement metrics) and the ones which are defined to measure the

behaviour of the developed systems and evaluate its design (Design metrics). Hence, we

associate Requirement metrics with User Stories and Design metrics, with Agent Stories.

A Requirement metric can be classified as Functional or Non-Functional, based on

the requirement that is being measured. For example, based on the User Story shown in

Table 2.3, we can define some metrics about the number of correct diagnosis, the correction

of detected symptoms as Functional Requirement metric, and metrics about the time to

diagnose or the amount of resources required to carry out the diagnosis process as Non-

Functional Requirement metrics.

24

2.3. BEAST METHODOLOGY

Alternatively, Design metrics are classified by their Granularity and their Domain.

Granularity is the extent to which a system is composed of distinguishable pieces. Thus,

we propose two levels in this dimension: Macro and Micro. We say the granularity of a

metric is defined as Macro when it observes behaviours of the global system, i.e. the MAS.

Contrarily, when a metric is focused in a single agent, its granularity is defined as Micro.

Finally, some metrics can be applied to measure some features of any MAS. The Domain

dimension of those metrics are defined as Generic. In contrast, other metrics are defined

specifically to observe a behaviour of a system or an agent in a concrete environment or

situation. Therefore, they are classified as Specific.

A set of the metrics for the case study project is defined to exemplify the use of this

metrics framework in the development of a fault diagnosis system. First of all, a set of

Requirement metrics are defined in Table 2.6, both Functional and Non-Functional (shown

in column Type as F and NF respectively). These metrics are directly extracted from User

Stories and, consequently, they do not include any reference about the solution designed.

Only the concept of system is mentioned, but not the concept of agent.

A set of Design metrics is proposed to evaluate the validity of the designed MAS. These

metrics are defined from the Agent Stories. Table 2.7 proposes a set Design metrics to

evaluate the behaviour of the proposed MAS solution for the FTTH scenario exposed in the

previous sections. Both dimensions, Granularity and Domain, are shown in column Type for

the proposed metrics as Macro (M) or Micro (m), and as Generic (G) or Specific (S). Klügl

(2008) proposes a set of metrics for measuring complexity of multi-agent systems. Thus, the

Generic Macro (G/M) metrics exposed below are based on that work.

After a number of iterations of the case study project, the developed MAS is ready to

execute in a testing environment. Then, the metrics defined previously are collected during

the execution of the developed solution in the testing environment. After an analysis of

the collected data, the metrics are shown to the stakeholders in charts and/or diagrams

to expose the measured results of the system. All these metrics have been collected in a

simulated environment where 3500 diagnosis cases where generated.

The number of completed diagnoses and their final states are shown in Figure 2.11 (M1

- Number of Completed Diagnoses.) where we can observe that only a few cases finishes

with a warning status. We can observe that a 3.9% of the diagnosis processes finished with

a Warning message, but zero cases finished with a fatal error.

But not only the final status is important, the correctness of the symptom detection

process is a key factor to improve the efficiency of the fault diagnosis system. This metric

25

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Metric ID Metric Name Type Description

M1 Number of Completed Di-

agnoses

F Measure of the success of the diagno-

sis processes properly performed by the

system.

M2 Correct Symptom Detec-

tion

F Measure of the correct detection of

symptoms.

M3 Correct Diagnosis Conclu-

sions

F Measure of the processes which diag-

noses properly a detected symptom.

M4 Heterogeneity of Diagnosis

Cases

NF Measure of the diversity of the faults

diagnosed by the system.

M5 Time To Diagnose NF Measure of the time between a symp-

tom is detected and a conclusion is

reached by the system.

M6 Spectrometer Usage Rate NF Measure of the usage of a critical de-

vice that avoid the regular usage of the

transmission line.

Table 2.6: Requirement Metrics for an autonomic Fault Diagnosis system.

26

2.3. BEAST METHODOLOGY

Metric ID Metric Name Type Description

M7 Agents Population G/M Measure of the heterogeneity of the

MAS by number and type of agent.

M8 Available Resources G/M Measure of the heterogeneity of the

systems, devices or services which the

agents have to interact with.

M9 Global Efficiency Rate S/M Measure of the cost of a success diagno-

sis process based on the consumed re-

sources associating a cost to every re-

source.

M10 Number of Messages per

Diagnosis Case

S/M Measure of the messages generated by

the agents per diagnosis cases.

M11 Number of Sent Messages G/m Measure of the messages sent by one

agent.

M12 Number of Received Mes-

sages

G/m Measure of the messages received by

one agent.

M13 Time To Reason S/m Measure of the time to infer a conclu-

sion of a detected fault by a Diagnosis

Agent.

M14 Time To Test S/m Measure of the time to perform a spe-

cific test to collect information from the

network by an Expert Agent.

M15 Time to Detect S/m Measure of the time between a symp-

tom appears and it is detected by a

Probe Agent.

Table 2.7: Design Metrics for an autonomic Fault Diagnosis system.

27

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Figure 2.11: M1 - Number of Completed Diagnoses.

is shown in Figure 2.12 (M2 - Correct Symptom Detection.). It shows the number of well

detected symptom (60.4% of true positives), bad detected symptoms (6.7% of false posi-

tives), non-detected symptoms (2.8% of false negatives) and non-false alarms (30.1% of true

negatives).

In the presented case study, there are nine different fault root causes under considera-

tion. The correctness of the diagnosis conclusions3 for the simulations executed as testing

environment is shown in Figure 2.13 (M3 - Correct Diagnosis Conclusions.).

Among all those cases, a fault root cause shows a different set of symptoms. We measure

that fact with the entropy value. Thus, Figure 2.14 (M4 - Heterogeneity of Diagnosis Cases.)

shows that some root causes have entropy values close to zero, because these fault types

almost always present the same symptoms. In contrast, other fault root causes exhibit high

entropy because these fault types can be manifested as different symptoms and test results.

In other words, M4 is a measure of the complexity of every type of fault.

The time required by the system between a symptom is detected and a fault root cause

is offered as conclusion is shown in Figure 2.15 (M5 - Time To Diagnose.). This a classical

metric for any fault diagnosis process, either automatic or manual, known as Time To

Diagnose (TTD); as exposed by FitzGerald and Dennis (2008). Other two interesting metrics

3We are considering the regular status of the network as a valid diagnosis conclusion, i.e. no problem

diagnosed. This is to handle false positive cases in the symptom detection process.

28

2.3. BEAST METHODOLOGY

Figure 2.12: M2 - Correct Symptom Detection.

Figure 2.13: M3 - Correct Diagnosis Conclusions.

29

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Figure 2.14: M4 - Heterogeneity of Diagnosis Cases.

for this time measurement are the mean µ and the standard deviation σ of the TTD. In the

testing environment, the value of them were µ = 33.357 seconds and σ = 8.188 seconds.

To conclude with the Requirement metrics, the usage of a critical device, such as a

spectrometer, is quantified in Figure 2.16 (M6 - Spectrometer Usage Rate.). Notice that the

spectrometer is a critical resource, because the final client/user of the diagnosed line cannot

use their connection while the spectrometer is measuring. Thus, the impact of using this

resource during the diagnosis process is quite high. Thus, thanks to M6, the stakeholder

can observe that the spectrometer is only used in a few diagnosis cases (2.8%). The mean

time while the spectrometer was being used during a diagnosis case was 24.31 seconds (with

a standard deviation of 2.99 seconds).

So, thanks to these Requirement metrics, the stakeholders can decide if the status of

the system is stable enough or further development and refinement is required. With this

information, grounded decisions can be made. For instance, if they decide that the number

of Warning cases shown in M1 (Figure 2.11) is too high, they should consider than the usage

of the spectrometer could increase in further iterations to reduce that percentage of warning

messages.

Focusing on Design metrics, the reminder charts and diagrams are focused on designers.

30

2.3. BEAST METHODOLOGY

Figure 2.15: M5 - Time To Diagnose.

Figure 2.16: M6 - Spectrometer Usage Rate.

31

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

But, some interesting data can be shown to stakeholders to explain or justify design decisions.

Figure 2.17 (M7 - Agents Population.) shows the number of agents running in the solution

presented in this case study, offering a view of the heterogeneity of the agents roles required

to carry out the diagnosis process. Thus, we have one Diagnosis Agent, one Probe Agent

and four Expert Agents for this case study.

Figure 2.17: M7 - Agents Population.

The available resources for this Fault Diagnosis scenario are shown in Figure 2.18 (M8

- Available Resources.). As we are considering a simplified scenario for this case study, the

devices shown in this figure are for a single client connection. Thus, we find one VoD client,

one VoD server, one Rourter GW, one ONT, two Splitters, one OLT, one Spectrometer and

two different Databases where some context information is stored and can be retrieved by

the agents to complete the diagnosis process.

Associating a specific cost to every resource, other interesting measure of the behaviour

of the system is how efficiently those devices and/or systems are being used while the system

is diagnosing. Thus, Figure 2.19 (M9 - Global Efficiency Rate.) shows an histogram of a

set of 3500 simulated diagnosis cases assigning the following costs to every resource4: access

to Data Base (1), check ONT(1), check OLT (1), check Router GW connectivity (1), check

VoD server (2), check VoD client (2) and usage of spectrometer (7)5. The metric shows a

4Splitters are passive elements which are used in any connection to the Home Area Network (HAN) but

no cost is associated to them because no action can be performed over them.
5This high cost for the spectrometer is based on its critical nature as mentioned previously

32

2.3. BEAST METHODOLOGY

Figure 2.18: M8 - Available Resources.

coherent resource consumption in a high percentage of cases and only a few with a high

consumption, which is an acceptable behaviour.

The number of messages generated in a MAS can offer an idea of the complexity of

the processes carried out by their agents. Thus, Figure 2.20 (M10 - Number of Messages

per Diagnosis.) shows the messages generated by all agents in a single diagnosis case.

Based on the resources status, some cases require more messages than others. For instance,

depending on the load of a server, some tests could not be performed and new requests

could be generated or an alternative should be found using some discovery techniques, such

as directory facilitators queries or broadcast requests.

Focusing on single agents, we are considering some micro metrics for the presented

case study. Figures 2.21 (M11 - Number of Sent Messages.) and 2.22 (M12 - Number

of Received Messages.) show the number of messages sent and received, respectively, by

each agent of the MAS. Those data have processed to show the minimum and maximum

values highlighting the mean and the standard deviation of the data series. Analysing these

message metrics, we can observe than the existence of only one diagnosis agent overload it

with a number of messages higher than the reminder agents. This could be an scalability

issue in large-scale scenarios. A multi-role agent approach could be explored to solve this

problem, but it would increase the development time and the complexity of the solution.

Anyway, for the FTTH scenario under consideration, this solution design offers satisfactory

results.

33

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Figure 2.19: M9 - Global Efficiency Rate.

Figure 2.20: M10 - Number of Messages per Diagnosis.

34

2.3. BEAST METHODOLOGY

Figure 2.21: M11 - Number of Sent Messages.

Figure 2.22: M12 - Number of Received Messages.

35

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Focusing on the behaviour of every individual agent, we can measure the time spent by

every of them to carry out their goals. Figure 2.23 (M13 - Time To Reason.) shows the

time used to reason by the Diagnosis Agent to infer the possible causes of the fault. We can

find that the reasoning time is always below 2 seconds.

Figure 2.23: M13 - Time To Reason.

Other interesting point is the time spent by Expert Agents to perform tests and retrieve

information from the network, as shown in Figure 2.24 (M14 - Time To Test.). As can be

seen, the metrics for two agents (VoD Agent and Spectrometer Agent) has their mean and

standard deviation close to zero. That is because they are two agents that perform tests

with high costs (see Figure 2.13) and the system tries to reduce the execution of those tests.

Finally, as a quick detection of symptoms is crucial for any diagnosis, Figure 2.25 (M15

- Time to Detect.) shows the time spent by the Probe Agent to detect a generated symptom

in the testing environment. This metric shows the time since the symptom is artificially

generated until the symptom is notified to the Diagnosis Agent. That time varies based on

the severity of the problem. For instance, a fiber cut problem is detected quickly (i.e. the

connection is lost), but a VoD server overload could be more difficult to detect (i.e. the

video streaming has some micro-cuts but it seems that works).

To conclude with the analysis of the presented metrics, some final remarks can be high-

lighted after the evaluation of the system. On the one hand, the shown metrics reveal

possible improvements in the system both in performance and outcomes. But, on the other

hand, those improvements could overload the resources that the system uses to carry out

its objectives. The design of the solution presents some potential issues in large-scale sce-

36

2.3. BEAST METHODOLOGY

Figure 2.24: M14 - Time To Test.

Figure 2.25: M15 - Time to Detect.

37

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

narios, but it is suitable for the problem under consideration. If any of the detected issues

is considered as a design problem or stakeholders are not satisfied with the shown results,

the MAS should be redesigned in the following iterations of the project which would have a

direct impact on the Agent Stories.

2.4 BEAST Tool

This section exposes some features of the open source tool developed to support the BEAST

Methodology detailed in the previous section, named BEAST Tool, which is hosted in a

Github repository6. This tool has the aim of providing assistance in the application of

the BEAST Methodology. The tool provides parsing facilities to support the translation

of requirements to test cases, both in System Behaviour Specification phase and MAS Be-

haviour Specification phase. The tool translates story and scenario templates (see Tables 2.1

and 2.2 respectively) into Java templates. The tool provides a BEAST Test Case model

which is used in the Agent Level Testing phase. This test case model is integrated with

an extended version of JBehave framework (North, 2011), which is a framework that sup-

ports the execution of BDD scenarios. The implemented extension of that framework allows

the execution of agents running in MAS platforms in a executable scenario test. Focus-

ing on those platforms, one of the design principles of BEAST Tool has been that it must

be valid for different MAS platforms. By now, the current version of the tool supports

JADEX (Braubach et al., 2005) and JADE (Bellifemine et al., 2007) frameworks, but it can

be extended to other frameworks with low effort as it is explained below in Section 2.4.3. Fi-

nally, the tool provides mocking facilities which allow to configure easily some Mock Agents

extending the Mockito framework (Mockito Project, 2012).

The rest of this section is structured as follows. Section 2.4.1 exposes a reader (or

parser) package which is used to manage the translation of user and agent stories to Java

code. Section 2.4.2 explains the BEAST Test Case model. The adaptation of the tool

to the MAS platforms is defined in Section 2.4.3. The use of mock agents is exposed in

Section 2.4.4. The implementation of a specific test case is shown in Section 2.4.5. Finally,

the impact of the application of this tool for the implementation of a set of tests for JADE

and JADEX agents is shown in Section 2.4.6.

6BEAST Tool is hosted in the following public repository: http://github.com/gsi-upm/BeastTool/

38

2.4. BEAST TOOL

2.4.1 Story Parser

This section presents the parsing capability of the tool to provide an automatic generation

of test cases skeletons based on the text plain requirements. There are two different types of

stories in the proposed methodology (Section 2.3): User Story and Agent Story. Following

the BEAST Methodology, the first step is the System Behaviour Specification when the

stakeholders and the development team (or at least one or two people of the development

team) defines a set of User Stories in BDD format (see Tables 2.1 and 2.2). Then, these User

Stories are processed with the parser included in BEAST Tool and a TestSuite is created

for every User Story.

After User Stories are defined, the designer defines a set of Agent Stories that must fulfill

the requirements specified in the User Stories. These Agent Stories contain the specification

of all behaviours of any agent of the system. Then, the parser is used again to generate a new

TestSuite per Agent Story and a set of BEAST Test Case templates (one per scenario). The

parser is configured to generate BEAST Test Case templates or not depending on what type

of story is being parsed (see Figure 2.26). In other words, the scenarios of an Agent Story

are translated to a BEAST Test Case to implement them with agents. But, the scenarios

of a User Story are translated to a TestSuite to be filled with other tests which implement

those user requirements.

Figure 2.26: Java classes generated in the parsing process.

Defining which Agent Story is related with a User Story is a manual matching process

which must be carried out by the designer. During this process, the designer must edit the

User Stories TestSuites with the corresponding Agent Stories TestSuites or their specific

scenarios. After this matching process, a User Story is completely traceable to the BEAST

39

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

Test Cases that implement a concrete test scenario. This allows stakeholders to execute

requirements as test cases, getting executable requirements to have a quick look of the status

of the project.

2.4.2 BEAST Test Case Model

This section explains how to translate the BDD specification of an agent story, in a Given-

when-then template in Java source code to implement the test case. Our approach to agent

level testing has consisted of extending JUnit framework in order to be able to test MAS

systems. Mapping rules (Solis and Wang, 2011) have been defined in order to provide full

traceability of acceptance tests defined previously in BDD format. Thus, JBehave has been

extended with this purpose. In this framework, a user story is a file containing a set of

scenarios. The name of the file is mapped onto a user story class. Each scenario step is

mapped onto a test method using a Java annotation. In our case, BEAST Tool translates

a scenario (see Table 2.2) to a test case class, termed BEAST Test Case, which extends

JUnitStory class of JBehave framework and contains three key methods that directly related

with the three parts of a scenario (“Given-When-Then”).

The three methods that a tester must implement are depicted in Figure 2.27. The

setUp method represents the “Given” scenario condition. This method typically initialises

agents and configures their state (goals, beliefs, etc.) as well as initialises the environment.

The launch method represents the “When” scenario condition. This method generates and

schedules the trigger event to start the test. The verify method represents the “Then”

scenario condition. The expected states, such as goals or beliefs, are checked in this method

once test execution is over.

Figure 2.27: Relation between BEAST TestCase class and a BDD scenario.

BEAST Test Case has several methods that allows the interaction with a generic interface

to interact with the MAS platform. This interface offers some facilities to prepare a concrete

40

2.4. BEAST TOOL

state of the agent. For example, external messages can be sent to the MAS platform, agents

can be started and stopped, or internal information of an Agent Under Test (AUT) can be

configured, such as beliefs or goals. This generic MAS platform interface is shown in the

following section.

2.4.3 MAS Platform Interface

This section explains how the BEAST Tool connects the test case with the MAS platform

to start and manage agents under testing. To provide MAS platform independence, three

different interfaces have been defined to interact with the MAS platform from a BEAST Test

Case. Each of them is responsible of different aspects on the platform management. The

first one, Connector interface, provides an abstract interface to agent managing functions,

such as launching platform or starting agents. The second one, Messenger interface, declares

methods for sending and receiving messages to or from the platform respectively. Finally,

the third one, Agent Introspector interface, provides access to the agent model to deal with

its beliefs, goals, etc.

To integrate BEAST Tool with any MAS platform, these three interfaces must be im-

plemented to get access to their agents. In the current version of BEAST Tool, JADE

4.0 (Bellifemine et al., 2007) and JADEX 2.0 (Braubach et al., 2005) are completely in-

tegrated. To make easier the generation of BEAST Test Case classes, a testing interface

selector has been defined, so called PlatformSelector. This selector provides the proper plat-

form access from a BEAST Test Case to the MAS platform in which the system is being

implemented as shown in Figure 2.28.

Figure 2.28: MAS Platform Selector for Beast Test Case.

41

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

2.4.4 Mock Definition

The BEAST Methodology proposes three basic mock patterns for messaging, as exposed

in Section 2.3.3. BEAST Tool includes those patterns in three Mock Agents completely

developed and ready to be used in any BEAST Test Case. As these agents have to execute

in the MAS platform as any other agent, they have been implemented for JADE 4.0 and

JADEX 2.0 with mock behaviours. So, we can say that a BEAST Mock Agent is an agent

that contains mock plans and/or mock behaviours and can be configured and started from

a BEAST Test Case.

After analysing available mocking frameworks, we selected Mockito (Mockito Project,

2012) framework, because of its easiness to be learnt, its popularity and its wide coverage

of mocking functionalities. Thus, we have extended Mockito in order to be able to use it in

MAS environments. In addition, the mocking framework allows an easy configuration of the

mock objects (or agents), with patterns such as when(< some input >).thenReturn(< some

answer >). Mock Agents allow the specification of the emulated behaviour using Mockito

constructions. Here follows an example.

when(mockAgent.processMessage(

eq(‘‘REQUEST’’),

eq(‘‘Connection Loss Rate’’)))

.thenReturn(‘‘INFORM’’,‘‘Loss Rate=0.2’’);

Using this type of constructions, a tester can emulate the behaviour of Mock Agents as

complex as required. The tester can consider a Mock Agent as a black box, i.e. the inputs

and the outputs are known but the internal process is unknown. Thus, the use of Mock

Agents is not restricted to the messaging. The BEAST Methodology presents only three

Mock Agents for messaging (see Section 2.3.3) because those agents are completely generic

models and can be used in any MAS development. But, the tester can implement other

specific Mock Agents for a concrete project to make easier and faster its work as this agents

can be configured with a few lines of code with different behaviours in a BEAST Test Case.

2.4.5 Implementing Test Cases

This section shows an example of implementing a specific test case. As exposed in Sec-

tion 2.4.2, there are three methods that a tester must implement to implement a BEAST Test

Case: setup(), launch() and verify(). Other methods, such as startAgent, sendMessageToA-

gent or checkAgentsBeliefIsEqualTo, are provided by the parent class (i.e. BeastTTestCase

42

2.4. BEAST TOOL

class) that interacts with the MAS Platform interface to access to the agents, as described

in Section 2.4.3. The mock agents used in this example are configured with the construc-

tions presented in Section 2.4.4. For further information about how to implement test cases,

please refer to the BEAST Tool wiki in the Github repository7.

Table 2.8 shows the required code to implement a test case for agents that run on JADEX

2.08. The example contains a setup method (lines 3-30) where two different mock agents

are configured (lines 6-11 and 14-19) to interact with a Diagnosis Agent, which is the AUT

in this test case. During the setup, two Mock Agent are started (lines 26-29), and the agent

under testing, a Diagnosis Agent, is started too (line 23)). Later, the launch method (lines

32-35) generates the trigger event of the scenario (line 33) and set an execution time of the

test (line 34). Then, the agents running in the MAS platform during that time until the

verify method (lines 37-39) is executed. In that moment, an agent belief is checked in the

Diagnosis Agent (line 38). With that check, the test case is finished and the result is shown

properly to the tester.

2.4.6 Impact of BEAST Tool

The impact of the proposed BEAST Tool have been evaluated in a quantifiable way using

source code metrics. In particular, we have measured the number of test code lines required

to implement tests. One of the most important benefits of developed BEAST Tool is that

automatically creates a wrapper of the MAS platform and allows developers to interact

with a friendly interface simplifying the implementation of tests. These metrics are strongly

associated with the test implementation time that a developer consumes during this phase

of development. The savings in number of code lines and in percentage are shown because

they are quantifiable objective data. In contrast, the time to develop a test depends on the

programming skills of the developer.

BEAST Tool is already adapted to test two MAS, one implemented on JADE and the

other on JADEX, and the evaluation process has been carried out for both platforms. To

simplify the comparison, twelve different test cases have been chosen for this evaluation.

These test cases are quite different among them, different Mock Agents are used, different

number of agents are involved in each one of them and the interaction protocols among

agents are different too.

Figures 2.29 and 2.30 shows the analysed code metrics for the JADEX and the JADE

7BEAST Tool Wiki: https://github.com/gsi-upm/BeastTool/wiki.
8Note that some comments and other Java code lines, such as logging lines or constants definition, have

been omitted in the table to clarify the code.

43

https://github.com/gsi-upm/BeastTool/wiki

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

1 public class DiagnosisAgentDiagnosesDamagedSplitter extends BeastTestCase {

2

3 public void setup() {

4

5 // Configure Probe Mock Agent

6 AgentBehaviour mockProbe = mock(AgentBehaviour.class);

7 when(mockBeh.processMessage(eq(INFORM),

8 eq("Generate High Loss Rate Symptom")))

9 .thenReturn("DiagnosisAgent", INFORM, "Loss rate=0.15");

10 MockConfiguration mockConfProbe = new MockConfiguration();

11 mockConf.addBehaviour(mockConfProbe);

12

13 // Configure Expert Mock Agent

14 AgentBehaviour mockExpert = mock(AgentBehaviour.class);

15 when(mockBeh.processMessage(eq(REQUEST),

16 eq("Loss Rate - User Line ID: 14")))

17 .thenReturn(INFORM, "Loss rate=0.09");

18 MockConfiguration mockConfExpert = new MockConfiguration();

19 mockConf.addBehaviour(mockConfExpert);

20

21

22 // Start Diagnosis Agent

23 startAgent("DiagnosisAgent","DiagnosisAgent.agent.xml");

24

25 // Start mocks agents

26 MockManager.startMockJadexAgent("ProbeMockAgent","MediatorMock.agent.xml",

27 mockConfProbe,this);

28 MockManager.startMockJadexAgent("ExpertMockAgent","ResponderMock.agent.xml",

29 mockConfExpert,this);

30 }

31

32 public void launch() {

33 sendMessageToAgent("ProbeMockAgent",INFORM,"Generate HighLossRateSymptom");

34 setExecutionTime(2000);// Waiting time in milliseconds

35 }

36

37 public void verify() {

38 checkAgentsBeliefIsEqualTo("DiagnosisAgent",ROOT_CAUSE,DAMAGED_SPLITTER);

39 }

40

41 }

Table 2.8: Implementation of the exemplified scenario in a BEAST Test Case.

44

2.4. BEAST TOOL

Figure 2.29: Test code lines (Y axis) per Test Case (X axis) comparison for JADEX.

Figure 2.30: Test code lines (Y axis) per Test Case (X axis) comparison for JADE.

MAS respectively9. In both graphics, columns represent the code lines of AUTs and the lines

represent the code lines required to implement the test with (solid line) and without (dashed

line) BEAST Tool. Figure 2.29 shows the benefits of BEAST Tool in number of code lines

required to implement the same test using BEAST Tool and without it for JADEX. The

improvement is, in average, 247.91 lines per test, i.e. a saving of 97.22%. Figure 2.30 shows

the same comparison for JADE with similar test cases. The improvement in this case is, in

average, 262,08 lines per test, i.e. a saving of 97,36%.

Nevertheless, the main advantages of the BEAST approach do not come from the saving

in coding tasks. The main benefit of our approach is the significant increase in communica-

tion between the stakeholders of the software project and the development team, thanks to

the use of the ubiquitous language and its formalisation using BDD templates. The trace-

ability from user requirements to the executable tests is a key point to know which tests

must be executed to know if the system meets a concrete requirement. Thus, the stakeholder

can check easily the status of the project at each iteration.

9Notice that the vertical axis of the graphics shown in Figures 2.29 and 2.30 are in logarithmic scale.

45

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

2.5 Summary

This chapter has proposed an agile testing methodology for Multi-Agent Systems based

on BDD, termed BEAST Methodology, and a support tool, called BEAST Tool. The main

conclusion of this work is that the BDD approach has been suitable for its application

in MAS development. Furthermore, the use of BDD facilitates the communication between

stakeholders and designers or developers which, usually, it is a gap between both of them. To

solve this problem, the BEAST Methodology establishes that stakeholders must generate a

set of behaviour specifications that describes the global system. Later, MAS designers must

generate the set of agent behaviour specifications that fits the solution of the problem. These

behaviours in BDD format are translated automatically with BEAST Tool to JUnit test

cases. During this process, text plain in natural language is always available to facilitate the

specification compression and communication between both stakeholders and development

team.

Other common issue in MAS development is the need of other third-party agents to test

the behaviour of an Agent Under Test (AUT). As these agents could be non-developed yet,

BEAST uses Mock Agents to allow developers to ensure the correct behaviour of an AUT

during the testing phase. To add flexibility to mocking technique, Mockito (Mockito Project,

2012) framework has been integrated with BEAST Tool to allow the use of the facilities of the

mocking framework, such as mock agents, mock web services or mock Java objects. Besides,

the use of MAS testing techniques or methodologies are commonly strongly connected to a

specific MAS platform or design methodology (Coelho et al., 2006; Gómez-Sanz et al., 2009;

Nguyen et al., 2008). BEAST Tool is easily adaptable for MAS frameworks as there is a clear

interface between the tool and the MAS platform. Currently, JADE 4.0 (Bellifemine et al.,

2007) and JADEX 2.0 (Braubach et al., 2005) are supported. Furthermore, the methodology

does not impose any restriction about the design methodology. As BEAST Methodology

deals with specifications of the system behaviours and tests to check if the final agents meet

those requirements, the internal design of the agents is not covered by the proposed testing

methodology allowing the use of any MAS design methodology.

Furthermore, for the MAS Level Testing (see Section 2.3.4), a metrics framework is

proposed. When the MAS is sufficiently developed to be executed in a testing enviroment,

those metrics are used to measure the outcomes of the system (Requirement metrics) and the

suitability of the designed solution (Design metrics). That environment can be a testbed or

a simulated scenario where the agents executes under similar conditions that the expected in

the production environment. After the execution of the system in the testing environment,

a set of metrics are collected and synthesised to show the behaviour of the system to the

46

2.5. SUMMARY

stakeholders in a quantifiable way.

Finally, the proposed BEAST Methodology defines mechanisms to extract the domain

knowledge that will be required to develop the agent architecture described in the following

chapter. That knowledge must be gathered from human experts in network engineering in

order to design and implement suitable solutions for an autonomic fault diagnosis approach

which improves the current state of the art on this topic.

47

CHAPTER 2. KNOWLEDGE GATHERING FOR AUTONOMIC FAULT DIAGNOSIS

48

CHAPTER3
Agent Architecture for Autonomic Fault

Diagnosis

This chapter presents an Agent Architecture for Autonomic Fault Diagnosis of Telecom-
munication Networks, which is based on an extended BDI model that combines hetero-
geneous reasoning processes: ontology-based reasoning and Bayesian reasoning. The
proposed architecture is focused on handling the uncertainty of the complex systems
during the diagnosis process. The domain knowledge obtained applying the method-
ology proposed in the previous chapter is used to feed the models an agent applies to
carry out specific diagnostic tasks. The proposed agent architecture uses a Diagno-
sis Model that bridges a Structural Model which semantically describes the network
and a Causal Model that expresses the fault-symptom relations. The architecture is
described in detail in the chapter and evaluated in two different scenarios. One of
them is a real network environment, in which the behaviour of the system has been
analysed with data collected while the system was working on a real-live network which
offers an enterprise service during one and a half years. The other one is a simu-
lated environment where a wireless sensor networks is running for a motion detection
application.

49

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

3.1 Introduction

As introduced in Section 1.1, Network Management is one of the most expensive tasks for

telecommunication operator companies (Agoulmine, 2011). Consequently, there is a trend

of delegate the management of the network to itself. This is know as Autonomic Network-

ing (Behringer et al., 2015). But, today, Fault Diagnosis is still being a non-autonomic

task (Jiang et al., 2015). Traditionally, this process has been carried out by humans experts

supported by surveillance systems for symptom detection. But, even with those systems,

the diagnosis task is mainly a manual process. The constant increase in the size and com-

plexity of the network makes fault diagnosis a critical task that should be handled quickly

and in a reliable way. For that, high skilled engineers are required to carry out this task,

although even these individuals are not always able to deal with the increasing heterogeneity

and complexity of the networks making diagnosis a difficult, time-consuming and expensive

task.

In consequence, operators have the goal of fully automating fault diagnosis (Laurent

et al., 2013; Kephart et al., 2007) to reduce operation costs and improve customers’ experi-

ences through the automated operation of standardised diagnostic processes. The increasing

heterogeneity of networks increases their complexity and that complexity produces a high

level of uncertainty which is one of the main challenges to face an autonomic diagnostic

process (Pras et al., 2007). At the beginning of the diagnostic process, only partial informa-

tion is known, and it is not feasible to collect or even model all the available information in

complex environments such as telecommunications networks which are composed of multiple

subnetworks, equipment and technologies in constant evolution. Thus, diagnosing telecom-

munications networks requires reasoning under uncertainty. However, uncertainty is not the

unique challenge for an automated diagnostic process. The distributed location of data in

the network and the existence of federated domains can be an issue related with privacy and

scalability. Hence, the capability to reason under uncertainty in a distributed way keeping

coherence is also an important feature for autonomic diagnostic system.

Based on these requirements, this chapter presents an Agent Architecture designed to

perform autonomic fault diagnosis tasks of telecommunication networks under uncertainty.

The capability of perform distributed diagnosis processes for federated environment is pre-

sented in the next chapter as a coordination framework where agents can discuss keeping

coherence during a distributed fault diagnosis process. The agent architecture presented in

this chapter is based on an extended BDI model, named BDI for Bayesian Diagnosis (B2D2),

that combines Bayesian reasoning to handle the uncertainty with ontology-based reasoning

for domain knowledge inference. The rest of this chapter is structured as follows. First, we

50

3.2. RELATED WORK

discuss related works in Section 3.2. Section 3.3 describes the knowledge model used during

a diagnostic process. Section 3.4 presents the B2D2 Agent Architecture for autonomic fault

diagnosis in telecommunication networks. Section 3.5 shows two different case studies: one

real-life telecommunication network where a fault diagnosis agent is deployed and a simu-

lated environment that complements the evaluation of the proposed architecture. Finally,

Section 3.6 presents some concluding remarks of this chapter.

3.2 Related Work

The concept of autonomic networking is being introduced in order to build the Future

Internet (Tselentis and Galis, 2010), but the current Internet does not facilitate that objec-

tive (Rubio-Loyola et al., 2010). Nonetheless, some autonomic solutions can be found in the

literature. Massie et al. (2004) propose a passive scalable distributed monitoring approach for

high-performance computing focus on programmability of network interfaces. Other decen-

tralised passive approach based on monitoring probes is proposed by Di Pietro et al. (2010).

In contrast, Song et al. (2009) propose a centralised monitoring control which includes some

active measurement mechanisms. But, autonomic networking is not only about monitoring.

Further actions should be taken if any anomaly or undesired state is detected (Agoulmine,

2011). A self-healing approach based on Peer-to-Peer (P2P) management for an intrusion

detection scenario is proposed by Duarte et al. (2011). That P2P-based self-healing service

is composed of independent monitoring and healing services, which shows an example of the

cooperation among different services required for the Future Internet (Chai et al., 2010).

In recent years, several research projects have proposed autonomic architectures and

reference models, such as ANA FP7 Project1, Autonomic Internet FP7 Project2 or AS-

CENS FP7 Project3. Furthermore, the ETSI and the IRTF have shown their interest about

this research field generating some reference models, such as GANA (Laurent et al., 2013)

and RFCs, such as RFC 7575 (Behringer et al., 2015) and RFC 7576 (Jiang et al., 2015).

But, although these projects remark the importance of the fault-management in an auto-

nomic architecture, there is no a clear fault-management approach in the current reference

models and RFCs. This encouraged us to focus our work to propose some fault-diagnosis

mechanisms and models applicable to generic autonomic architectures, but without a strong

dependence of any them due to the lack of standardisation.

Nevertheless, all autonomic approaches agree about the need of an appropriate knowl-

1ANA Project Website: http://www.ana-project.org/
2Autonomic Internet Project Website: http://www.autoi.ics.ece.upatras.gr/
3ASCENS FP7 Project Website: http://www.ascens-ist.eu/

51

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

edge management. Ontology models are the most ground approach for knowledge mod-

elling (Subbaraj and Venkatraman, 2015; Monteiro et al., 2014), as they provide a common

terminology which is essential to enable cooperation among self-managed entities (Staab

and Studer, 2013) and that necessity of coordination is a point where all autonomic ap-

proaches agree. That cooperation grounds in the idea that autonomic management entities

need to cooperate among them to achieve a desired goal, but this is not a new idea in the

agent engineering (Wooldridge, 2009) field where the concept of agent grounds exactly in

the same idea. Consequently, some authors explore the possibility of applying Agent Tech-

nology for Autonomic Networking (Paolino et al., 2011; Sanz-Bobi et al., 2010; Cox et al.,

2007). Martín et al. (2012) presented a framework based on intelligent agents for network

management that used rule-based reasoning. Both Leitão et al. (2012) and Mendoza et al.

(2011) present MAS focused on the reconfigurability of the system for collaborative tasks

using adaptive agents. Luo et al. (2012) proposed a fault diagnosis system using Dempster-

Shafer evidence theory (Dempster, 1967; Shafer, 1967) in combination with rules to resolve

the possible conflicted information from multi-sensors systems. In our work, we solve this

issue using Bayesian networks (Pearl, 1985) to handle the uncertainty of the incomplete or

unreliable data.

All in all, today fault-management is a non-autonomic network management task (Jiang

et al., 2015), but there is a clear interest to achieve it. This motivated us to propose an

autonomic fault-diagnosis solution based on agent technology focusing on some challenging

features of the Future Internet, such as handling uncertainty, heterogeneity and complexity.

3.3 B2D2 Knowledge Model

A knowledge model is composed of different models, each capturing a related group of

knowledge structures. Those models describe different aspects of a specific problem to enable

the development of a solution to solve it. This section presents a set of models which enables

an agent to carry out an autonomous diagnosis process. The agent architecture proposed

to use these models is presented in Section 3.4. Those knowledge models are divided in

two main areas: Domain Model and Inference Model. They are presented in the following

sections as exposed below. Section 3.3.1 presents the Domain Model used to describe the

domain knowledge, in our case, fault diagnosis of telecommunication networks. Section 3.3.2

shows the Inference Model used to define the tasks required to carry out a diagnosis process.

52

3.3. B2D2 KNOWLEDGE MODEL

3.3.1 Domain Model

The domain model describes the main static information and knowledge in an application

domain, in our case, the fault diagnosis task for telecommunication networks. This sec-

tion exposes two type of domain models which offer complementary views of the domain

knowledge. Those models must be instantiated by agents with their own knowledge bases

which must contain information about specific networks they are diagnosing. Those mod-

els are presented in the following sections as exposed below. Section 3.3.1.1 presents a

Structural Model that contains knowledge about the network itself using Infrastructure and

Network Description Language (INDL). Section 3.3.1.2 defines a Causal Model that relates

the symptoms with the possible fault root causes while handling uncertainty using Bayesian

networks.

3.3.1.1 Structural Model

A Structural Model (SM) of a telecommunication network is defined as a representation of

the components of the network and their properties. Formally, a SM is a pair < E,P >,

where E is a set of elements that compose the telecommunication network and P is a set

of properties that define the set of elements contained in E and the relation among them.

Focusing on the application of a SM in the Fault Diagnosis task under consideration, this

model describes semantically the elements of the network, E, that could cause or be affected

by a fault. The model must define how those elements are related among them and their

expected status, as properties P , to know when something is out of the admissible range.

The use of ontologies for modelling the required knowledge to build the autonomic Fu-

ture Internet is a grounded idea (Monteiro et al., 2014). There are many ontologies proposed

for different fields in telecommunications. The Common Information Model (CIM) (CIM

Specification Group, 2015) provides a network device information model based on Unified

Modelling Language (UML) commonly used in enterprise settings. Moreover, some exten-

sions have appeared, such as the Directory Enabled Networking-next generation (DEN-ng)

model (Strassner, 2002) which extends the CIM with the description of business rules. The

Virtual private eXecution infrastructure Description Language (VXDL) (Koslovski et al.,

2009) is mostly focused on modelling requests for virtual infrastructures. Some ontologies,

such as Semantic Resource Description Language (SRDL) (Abosi et al., 2009) and Media

Applications Description Language (MADL) (Ntofon et al., 2012), suffer from a limited abil-

ity to model connectivity, but do not the properties for the network resources which makes

them semantically indistinguishable and unusable within a semantic context. To cover that

53

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

lack, Infrastructure and Network Description Language (INDL) (Ghijsen et al., 2013) is

focused on the semantic properties to describe the storage and computing capabilities of

the resources in combination with a very generic network description schema from the Net-

work Markup Language (NML), which is being standardised4. Therefore, we propose the

adoption of INDL to describe the Structural Models (SMs) for a generic network schema.

Moreover, INDL offers the application of self-discovery techniques for an automatic SM gen-

eration. A toolkit to generate INDL automatically based on a set of traffic protocols, such

as Open Shortest Path First (OSPF), Traffic Engineering Extensions to Open Shortest Path

First (OSPF-TE) or Inter-Domain Controller Protocol (IDCP) is available as an open-source

tool5.

Some basics classes of INDL are briefly mentioned below and shown in Figure 3.1. The

NetworkObject class represents the elements of the network, denominated above as E in

the SM, and it is instantiated with complementary concepts, such as Link, Node or Service.

These concepts are extended with others that specifies more information about them in type,

such as BidirectionalLink or AdaptationService, or in structure, such as NodeComponent.

As can be seen in Figure 3.1, these are only a few concepts of the ontolgy. For further

information, please refer to the complete INDL ontology6.

Finally, INDL is suitable to describe our structural model considering its classes as

elements E of our model and its semantic relations as properties P . In Table 3.1, we

illustrate its use for representing some network elements in a simplified WSN scenario. This

scenario consists of a sink tree topology, where all messages are routed to a sink node,

called Base Station. For this scenario, we have extended the basic INDL concepts with the

appropriate classes for this type of network. That extension classes are shown in example

with the b2d2-wsn prefix. In this example shown in Table 3.1, there are three different

elements: a device, a link, and a link group, which is an inferred element from the other

ones. We find the description of a sensor device (lines 10-20), specifically, a ZigBeeRouter

(line 11) (following the ZigBee7 notation). This device receives messages from other sensors

what is represented with the property isSink (lines 14-17). At the same time, this node

sends messages to others what is described with the propery isSource (line 18). Both isSink

and isSource properties connects a network elements with links. Hence, those links are

represented as instances of the Link class (lines 22-24). Based on this simple concept, the

instance of the PathToBaseStation class (lines 26-33) represents a group of links that forward

4NML Standardisation Work Group: http://redmine.ogf.org/projects/nml-wg
5Public Github Repository of Pynt toolkit : https://github.com/jeroenh/Pynt/
6The INDL ontology file can be found in: https://github.com/jeroenh/indl/blob/master/

owl/indl.owl
7ZigBee Alliance: http://www.zigbee.org/

54

http://redmine.ogf.org/projects/nml-wg
https://github.com/jeroenh/Pynt/
https://github.com/jeroenh/indl/blob/master/owl/indl.owl
https://github.com/jeroenh/indl/blob/master/owl/indl.owl
http://www.zigbee.org/

3.3. B2D2 KNOWLEDGE MODEL

Figure 3.1: Main classes of the Infrastructure and Network Description Language.

messages to the sink node. This composed element can be inferred by the agent based on the

information of isolated links between the sink node and any sensor, which is an interesting

capability when a Fault Diagnosis agent is running in a dynamic network scenario, as in the

WSN scenario under consideration.

In conclusion, this section presented the Structural Model (SM) that allows agents to

reason about the network elements while carrying out the Fault Diagnosis task. But, gather-

ing the required knowledge to build the SM for specific networks is not a trivial task. Hence,

we propose the application of the BEAST Methodology for that knowledge extraction, as

proposed in Chapter 2. With the knowledge extracted from network operators in the System

Specification Behaviour phase, we can described the network in a Structural Model using

the INDL language to feed agents with that domain knowledge.

3.3.1.2 Causal Model

A Causal Model (CM) is defined as an abstract model that describes the causal mechanisms

of a system. Concretely, Judea Pearl (Pearl, 2000) defines a CM as an ordered triplet

< U, V,E >, where U is a set of exogenous variables whose values are determined by

factors outside the model; V is a set of endogenous variables whose values are determined

by factors within the model; and E is a set of structural equations that express the value of

55

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

1 @prefix owl:

2 <http://www.w3.org/2002/07/owl#> .

3 @prefix indl:

4 <http://www.science.uva.nl/research/sne/indl#> .

5 @prefix nml:

6 <http://schemas.ogf.org/nml/2013/05/base#> .

7 @prefix b2d2-wsn:

8 <http://www.gsi.dit.upm.es/ontologies/b2d2/wsn/ns#> .

9

10 b2d2-wsn:sensor-15 a nml:Node,

11 b2d2-wsn:ZigBeeRouter,

12 b2d2-wsn:ZigBeeSensorNode,

13 b2d2-wsn:ZigBeeSoftware ;

14 nml:isSink b2d2-wsn:path-sensor-15-sensor-22,

15 b2d2-wsn:wifi-sensor-11,

16 b2d2-wsn:wifi-sensor-12,

17 b2d2-wsn:wifi-sensor-9 ;

18 nml:isSource b2d2-wsn:path-sensor-68-sensor-15 ;

19 nml:locatedAt b2d2-wsn:location-sensor-15 ;

20 nml:name "sensor-15"^^xsd:string .

21

22 b2d2-wsn:path-sensor-60-sensor-15 a nml:Link,

23 b2d2-wsn:RoutePathLink ;

24 nml:name "path-sensor-68-sensor-15"^^xsd:string .

25

26 b2d2-wsn:pathToBaseStationFrom-sensor-15 a nml:LinkGroup,

27 b2d2-wsn:PathToBaseStation ;

28 nml:hasLink b2d2-wsn:path-base-station-sensor-68,

29 b2d2-wsn:path-sensor-68-sensor-15 ;

30 nml:hasNode b2d2-wsn:base-station,

31 b2d2-wsn:sensor-15,

32 b2d2-wsn:sensor-68 ;

33 nml:hasTopology b2d2-wsn:cluster-sensor-15 .

Table 3.1: Examples of the usage of INDL to describe the Strcutural Model.

56

3.3. B2D2 KNOWLEDGE MODEL

each endogenous variable as a function of the values of the other variables in U and/or V .

Following Pearl’s definition, a causal model can be represented as a network with nodes

(variables U ∪ V) and links between those nodes (structural equations E), called causal

network. A Bayesian Network (BN) (Pearl, 1988) can be considered as a causal network if the

relations between its variables are causal relations. Formally, a BN is a probabilistic graphic

model that represent a set of random variables V and their conditional dependencies R via

a Directed Acyclic Graph (DAG). Hence, the equivalence between a CM and a BN is given

if the variables of the network are both exogenous and endogenous variables (V = U ∪ V)

and the conditional relations are only causal relations (R = E).

Focusing on the structure, a BN is composed by layers of variables that are related

with variables in other layers. The simplest models, such as QMR (Myers, 1987) or QMR-

DT (Shwe et al., 1991), are composed only by two layers: symptoms and fault root causes, as

shown in Figure 3.2. In contrast, other models, such as the BN3M Model (Kraaijeveld et al.,

2005), adds context information to the variables set. Thus, a third layer is added to the

model, as shown in Figure 3.3. This three layer structure is still simple and its performance

is reasonably similar to the two layer models (Middleton et al., 1991) and the usage of only

three types of variables keeps it easy for a human to identify which variables belong to each

type. Additional layers, i.e. more types of variables, will increase the complexity of the

model and will not increase the diagnostic performance (Provan, 1995).

Figure 3.2: Two layers model of Bayesian network.

The models presented above can be used to build causal models that uses evidences

collected from the environment (in our case, from the telecommunication network) to dis-

criminate between the possible fault root causes. While two layer models use only symptoms

and fault root causes (and the relations among them) to form the structure of the network,

three layer models add context variables to be able to use the same model in different con-

texts. For our purpose of fault diagnosis in telecommunication networks, we can use both

types of model, depending of the information that can be collected from the environment.

57

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.3: Three layers model of Bayesian network.

As the Structural Model, the Causal Model is built based on the domain knowledge

extracted in the System Specification Behaviour phase of the BEAST Methodology. Network

operators specify in that phase what data can be collected from the network and they are

modelled as evidence variables. In the same way, the possible fault root causes or any

context information are included in the causal model as variables completing the variables

set (V). The causal relations (R) are required to complete the model. But, the structural

equations that express those relations are not always easily defined by network operators.

If that information is not available after the knowledge gathering process, we can apply

self-learning algorithms to find those equations (Voortman, 2005; Oniśko et al., 2001) based

on data collected from the network.

We illustrate the result of this knowledge gathering process with an example of the CM

defined for a real-life telecommunication network corresponding to one of the case studies

shown in Section 3.5. Figure 3.4 shows the structure of the causal model following the BN3M

Model with three types of variables: evidences, fault root causes and context variables. The

example model is composed of 27 evidence variables (yellow nodes), 17 fault root causes (blue

nodes) and 18 auxiliary nodes (white nodes) which sum a total of 62 variables (V). Every

node in the model is associated to a Conditional Probability Table (CPT) that contains the

structural equations (R) that complete the causal model. A simplified CPT is shown in

Figure 3.5. Those conditional probability equations define the probability that a variable of

the model is in a concrete state given other related variables are in specific states.

Following the decision of using ontologies for knowledge modelling, Probabilistic OWL

(PR-OWL) extends the OWL language to represent probabilistic ontologies. This is based

on Bayesian first-order logic what fits perfectly to describe the Bayesian networks of the

Causal Models using ontologies. Thanks to some concepts, such as ProbAssign and ProbDist,

58

3.3. B2D2 KNOWLEDGE MODEL

Figure 3.4: Example of the structure of a Causal Model following the BN3M Model.

Figure 3.5: Example of a CPT which relates variables of a Causal Model.

PR-OWL allows to define complex conditional probability distributions or simple declarative

confidence values for any entity of the model. For further information, please refer to the

complete PR-OWL ontology8.

In conclusion, this section presents the Causal Model (CM) which enables agents to

reason under uncertainty about the possible fault root causes based on the evidences collected

from the network. As the SM, the application of BEASTMethodology, exposed in Chapter 2,

is proposed to gather the knowledge required to define the CM and, if required, self-learning

algorithms can be applied to complete and refine the model.

3.3.2 Inference Model

The inference model describes how the domain knowledge defined in the previous section

can be applied to carry out the reasoning process. Section 3.3.2.1 shows a Task Model that

defines the different phases of a diagnosis process and proposes several solving methods to

perform it. Section 3.3.2.2 proposes a Diagnosis Model which combines the Structural and

the Causal Models to allow a B2D2 agent to handle that knowledge during the different

phases of the diagnosis process defined by the Task Model.

8PR-OWL Website: http://pr-owl.org/

59

http://pr-owl.org/

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

3.3.2.1 Task Model

This section presents a generic task model following the MAS-CommonKADS methodol-

ogy (Iglesias et al., 1998) based on the analysis exposed by Benjamins (1995). In this

model, a task is a specification of a goal that is needed to be achieved. It can be decom-

posed into subtasks by a Problem-Solving Method (PSM). A PSM is the definition of

the way to achieve the goal specified in a task. A task can be realised by several methods

consisting of subtasks that can be reused in different PSMs. In the following diagrams, PSM

are represented by rectangles and tasks by ellipses. Following this nomenclature, the Fault

Diagnosis task is realised by the Prime Diagnostic Method (see Figure 3.6), which is de-

composed into three subtasks: (i) Symptom Detection, finding out whether complaints are

indeed symptoms, (ii) Hypothesis Generation, generating hypotheses of possible causes based

on the symptoms, and (iii) Hypothesis Discrimination, discriminating among the hypotheses

based on additional observations.

Figure 3.6: Prime Diagnostic Method.

Symptom Detection As shown in Figure 3.7, there are three main methods to perform

the Symptom Detection task:

• The Compare Symptom Detection method compares the value of a variable obtained

from the environment with the expected value obtained from a model. After that

comparison, if the detected behaviour is not the expected one, we say that a symptom

is detected.

• The Classify Symptom Detection method is based on a classification task. The infor-

mation observed from the environment is filtered by a classification engine that decides

if the observations are a symptom or not.

60

3.3. B2D2 KNOWLEDGE MODEL

• The User Symptom Detection is the manual report from a user that is supposed to be

truth. Then, no check or classification process is required.

Figure 3.7: Symptom Detection Task.

Hypothesis Generation After a symptom is detected, the Prime Diagnostic Method con-

tinues with the next task: Hypothesis Generation. The two main options to achieve this

goal are the use of a Compiled Method or a Model-based Method, as depicted in Figure 3.8.

• The Compiled Method is composed by three subtasks which use associations between

symptoms and causes and can be followed by a probability filter. This method starts

with an abstraction process that translates between raw observations to qualitative

and generalised observations. The method continues with the association of that

abstracted observations with possible causes of fault. Finally, an optional task is the

addition of a probability filter to discard non-probable hypotheses.

• The Model-based Method follows other approach based in non-abstracted observations.

Firstly, the finding of a set of model entities that could contribute to an abnormal-

ity observation is required. Then, that set is transformed into a hypothesis set in

which every element is a possible explanation for the observed symptoms. Finally, a

prediction-based filtering can be used to discard inconsistent hypotheses.

The Causal Model presented in Section 3.3.1.2 is used as Compiled Method in the Agent

Architecture for this Hypothesis Generation task, as exposed appropriately in Section 3.4.2.

Hypothesis Discrimination After a hypothesis set is generated, the Hypothesis Discrim-

ination task is performed to find the final conclusion of the Fault Diagnosis Task. The

61

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.8: Hypothesis Generation Task

method described by Benjamins (1995) is divided in four subtasks, as shown in Figure 3.9.

The Discrimination task starts with a decision about the next action to gather more

information about the fault under diagnosis. This decision can be made based on different

criteria, such as time restrictions or computational cost of the possible actions. When the

action is decided, data about possible observations are collected and analysed to find new

symptoms or evidences. Finally, the hypothesis set is updated based on the observations

collected in the previous task. If a reliable conclusion is found in the Hypotheses Update task,

the Fault Diagnosis task can be considered as finished. If not, the discrimination process

continues repeating the previous tasks (Hypothesis Selection, Data Collection and Symptom

Detection) until a reliable conclusions is achieved.

Figure 3.9: Hypothesis Discrimination Task

62

3.3. B2D2 KNOWLEDGE MODEL

Summarising, the task model presented above describes a generic Fault Diagnosis process

that can be carried out by an agent or a set of agents, both human, software agents or a

combination of them. This general task model is particularised for the reasoning cycle of

proposed Agent Architecture in Section 3.4.

3.3.2.2 Diagnosis Model

This section proposes a Diagnosis Model designed to allow an agent to carry out an au-

tonomic fault diagnosis process. The developed model is formalised as an ontology which

covers concepts that combine the three models presented previously in this chapter: the

Task Model, the Structural Model and the Causal Model. The main classes of the ontology

are shown in Figure 3.10. The most important conceps in the model9 is the Diagnosis, which

is performed by actors that execute actions to collect observations from the supervised net-

work objects. Based on those observations, a hypothesis set is generated and discriminated

until a conclusion with enough confidence is reached. This simplified overview is exposed

to facilitate the understanding of the Diagnosis Model, but the complete model is available

on the web10. Nevertheless, further explanations are included below.

The diagnosis process considered in the model is composed by three different phases. The

model defines three different states for these phases: pending, ongoing or finished, which are

used to handle the progress of the diagnosis. Firstly, during the Symptom Detection phase,

monitoring actions are being executed by the agent until a symptom is detected. That symp-

tom is considered an observation collected from a specific network object11. Then, during

the Hypothesis Generation phase, the agent analyses the Causal Model12 to know what are

the possible fault root causes13 of the detected symptom and generates the corresponding

hypotheses. Every hypothesis holds an initial confidence14 about a type of fault is occur-

ring on a network object. That confidence is a key concept to allow agents to reason under

uncertainty. When the hypothesis set has been generated, the hypothesis discrimination

phase starts looking for any available testing action to collect information about suspicious

network objects. The availability of a specific action is defined by a set of required condi-

9Notice that all the italic concepts refer to classes of the proposed Diagnosis Model to simplify the

explanations.
10Diagnosis Model Ontology Specification: http://www.gsi.dit.upm.es/ontologies/b2d2/

diagnosis
11Network Object is one of the concepts included in INDL
12In the Diagnosis Model, the Causal Model is equivalent to the MTheory concept of PR-OWL.
13Using the PR-OWL language combined with the BN3M Model, fault root causes are modelled as domain

resident nodes and evidences and contexts variables, as finding resident nodes.
14The hypothesis confidence is equivalent to the ProbAssign concept of PR-OWL.

63

http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis
http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.10: Main classes of the Diagnosis Model.

tions that must be satisfied to execute it. For example, the most simple condition is that

an actor must have the capability to execute a specific action to consider it as available.

After a testing action is executed, a new observation is gathered. That observation is used

to feed the Causal Model and update the hypothesis set15. If any hypothesis reachs enough

confidence, it is selected as conclusion and the diagnosis finishes. If not, additional testing

actions are executed until any hypothesis is clarified or there is no available testing actions,

in which case the most probable hypothesis, i.e. the one with higher confidence, is picked as

conclusion.

The concept of action has a strong relation with the concept of network object. The

specification of possible actions that could be executed on every network object is an essential

knowledge which should be included in the Structural Model to allow agents to plan their

behaviours autonomously. Accordingly, the definition of conditions for those actions is

required too. That information is used to defined the capabilities of a specific agent. That

enables the possibility to specialise agents in specific type of actions, which execution could

be requested by third-party agents as required for distributing the work load.

To illustrate the use of the proposed model, Table 3.2 shows a simplified example ex-

tracted from one of the case studies presented in Section 3.5. Some data have been removed

15Observations are modelled as input to the Causal Model using the Finding Input class of PR-OWL.

64

3.3. B2D2 KNOWLEDGE MODEL

from the original example to facilitate the reading and understanding of the example. It

includes a Diagnosis case (lines 8-15) with Observations (lines 9-11) and Hypotheses (lines

12-13). The Observation (lines 17-20) included in the example contains information about

from what network element was collected (line 18), what variable of the Causal Model feeds

(line 19) and what action was performed to collect it (line 20). The hypothesis (lines 22-25)

exposed in the example has an associated confidence value (line 23) for a specific fault (line

25) and it is associated with a variable of the Causal Model too (line 24). Moreover, that

fault (lines 30-33) has a suspicious network element as location (line 32).

In conclusion, this section presented a Diagnosis Model that covers the concepts required

to carry out an autonomic fault diagnosis process. It is formalised as an Ontology Web

Language (OWL) ontology which is publicly available on the web16. The proposed model

follows the Task Model, described in Section 3.3.2.1 and uses the Structural Model, shown in

Section 3.3.1.1, to retrieve information from the network, and the Causal Model, shown in

Section 3.3.1.2, to deal with the uncertainty of the diagnosis process and inference possible

causes of fault; which makes this is the core model of the proposed B2D2 Agent Architecture

shown in Section 3.4.

16Diagnosis Model Ontology Specification: http://www.gsi.dit.upm.es/ontologies/b2d2/

diagnosis

65

http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis
http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

1 @prefix pr-owl:

2 <http://www.pr-owl.org/pr-owl.owl#>

3 @prefix b2d2-diag:

4 <http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis/ns#> .

5 @prefix b2d2-wsn:

6 <http://www.gsi.dit.upm.es/ontologies/b2d2/wsn/ns#> .

7

8 b2d2-wsn:diagnosis-034 a b2d2-diag:Diagnosis ;

9 b2d2-diag:hasCollectedInformation b2d2-wsn:observation-011,

10 b2d2-wsn:observation-012 ;

11 b2d2-wsn:symptom-002 ;

12 b2d2-diag:hasHypothesis b2d2-wsn:hypotesis-03,

13 b2d2-wsn:hypothesis-04 ;

14 b2d2-diag:hasPerformedAction b2d2-wsn:testAction-002 ;

15 b2d2-diag:isStartedBySymptom b2d2-wsn:symptom-002 .

16

17 b2d2-wsn:observation-011 a b2d2-diag:Observation ;

18 b2d2-diag:collectedFrom b2d2-wsn:sensor-15 ;

19 b2d2-diag:isCausalModelInput b2d2-wsn:fd-input-003 ;

20 b2d2-diag:gatheredWithAction b2d2-wsn:testAction-002 .

21

22 b2d2-wsn:hypothesis-03 a b2d2-diag:Hypothesis ;

23 b2d2-diag:hasConfidence b2d2-wsn:prob-hyp-03 ;

24 b2d2-diag:isCausalModelOutput b2d2-wsn:bn-var-005 ;

25 b2d2-diag:representsPossibleFault b2d2-wsn:poss-fa-002 .

26

27 b2d2-wsn:prob-hyp-03 a pr-owl:ProbAssign ;

28 pr-owl:hasStateProb 0.78 .

29

30 b2d2-wsn:poss-fa-002 a b2d2-wsn:OverloadedDevice,

31 b2d2-diag:Fault ;

32 b2d2-diag:hasLocation b2d2-wsn:sensor-15 ;

33 b2d2-diag:canBeRepairedWith b2d2-wsn:healing-action-004 .

Table 3.2: Example of application of the Diagnosis Model.

66

3.4. B2D2 AGENT ARCHITECTURE

3.4 B2D2 Agent Architecture

This section describes the BDI for Bayesian Diagnosis (B2D2) Agent Architecture which

aim is to achieve an Autonomic Fault Diagnosis in Telecommunication networks based on

the Belief-Desire-Intention (BDI) model (Wooldridge, 2000) and in the knowledge models

presented in Section 3.3. A simplified overview of the proposed agent architecture is shown

in Figure 3.11. The Reasoning Cycle of a B2D2 Agent follows the Task Model exposed in

Section 3.3.2.1. The three tasks that compose the diagnosis process are formalised using the

AgentSpeak language (Rao, 1996) in the following subsections where the reasoning processes

are explained.

Figure 3.11: B2D2 Agent Architecture.

3.4.1 Monitoring the network

The Symptom Detection task is realised monitoring the network and analysing the incoming

data. This analysis is based on a rule-based inference process. As the Diagnosis Model is

described in OWL language, we propose the use of the SPARQL Inference Notation (SPIN)

rules17 to have a direct integration between the knowledge models and the inference engine.

17SPIN Web Site: http://spinrdf.org/

67

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

1 CONSTRUCT {

2 ?path nml-base:hasNode ?nextRouter .

3 ?path nml-base:hasLink ?link .

4 }

5 WHERE {

6 ?this a b2d2-wsn:ZigBeeRouter .

7 ?path a b2d2-wsn:PathToBaseStation .

8 ?path nml-base:hasNode ?this .

9 ?this nml-base:isSource ?link .

10 ?nextRouter nml-base:isSink ?link .

11 }

Figure 3.12: Example of SPIN rule to add routers to a Path.

These rules can be used to detect anomalies in the expected behaviour of network elements

and/or to updated the dynamic network features, such as topology, network load or services

status, represented in the Structural Model. A simple example of a SPIN rule extracted from

one of the case studies included in Section 3.5 is shown in Figure 3.12. This rule is used to

discover the path from any router to the sink node in a sink tree topology. So, the agent

can infer the topology of the network dynamically if it changes during the operation of the

system. The example rule infers that if a router (line 6) is in a specific path (line 7-8) and

that router sends packages to other router (line 9-10), this other router which receives the

packages is in the path too (lines 2-3).

This task is formalised in Table 3.3. As mentioned, previously, the agent starts its

execution with the initial goal of monitoring specific network elements described in the

Structural Model (line 8). Always a diagnosis process is not in progress, this monitoring goal

will be active (lines 12-15). While monitoring, the agent analyses the incoming data from

the supervised network elements until an anomaly is detected (lines 17-20). The appearance

of this symptom actives a new goal to diagnose it. Then, the next diagnosis phase starts

(lines 22-29).

3.4.2 Detecting possible faults

The Hypothesis Generation task is realised analysing the structural relations among vari-

ables contained in the Causal Model. As explained in Section 3.3.1.2, the Causal Model is

composed of evidences observed from the network which are used to discriminate between

68

3.4. B2D2 AGENT ARCHITECTURE

1 // B2D2 Agent

2 /* Agent beliefs */

3 causalModel(evidences, contexts, faultsRootCauses, relations).

4 structuralModel(networkElements).

5 diagnosisModel(hypotheses, observations, actors, actions).

6

7 /* Initial goal */

8 !monitor(networkElements).

9

10 /* Symptom Detection - Plans */

11 // Start to monitorise

12 +!monitor(networkElements) :

13 not .desire(diagnose(symptom))

14 <-

15 !analyseData(networkElement).

16 // Update system info

17 +!analyseData(networkElement)

18 <-

19 update(strucuturalModel);

20 !lookForAnomaly(networkElement).

21 // Start a diagnosis or continue monitoring

22 +!lookForAnomaly(networkElement) :

23 anomaly(symptom)

24 <-

25 !diagnose(symptom).

26 +!lookForAnomaly(networkElement) :

27 not .desire(monitor(networkElement))

28 <-

29 !monitor(networkElement).

Table 3.3: Symptom Detection Task in AgentSpeak language.

69

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

the possible fault root causes. Those variables are related among them by a set of structural

equations. In this phase, those relations are explored to know what possible faults are, or are

not, related with the detected symptom. For this purpose, the agent checks the definition

of the Causal Model to get those relations among variables. This model definition must be

instantiated in a Bayesian inference engine to allow the agent to reason under uncertainty

during the discrimination task. Inputs and outputs of that Bayesian inference engine are

modelled in the Diagnosis Model as Observations and Hypotheses respectively, as exposed

in Section 3.3.2.2.

This task is formalised in Table 3.4. The agent starts this task with the goal of diagnosing

a new symptom which has been generated in the previous phase (line 9). The first subgoal

to achieve that objective starts generating a set of possible hypotheses about the faults that

could cause the detected symptom (line 10-12). Then, the agent analyses the possible actions

that could be performed to collect more information about the status of the supervised

elements (line 13). Hence, a new goal to look for more evidences is created (line 14).

1 // B2D2 Agent

2 /* Agent beliefs */

3 causalModel(evidences, contexts, faultsRootCauses, relations).

4 structuralModel(networkElements).

5 diagnosisModel(hypotheses, observations, actors, actions).

6

7 /* Hypothesis Generation - Plans */

8 // Generate initial hypothesis

9 +!diagnose(symptom) :

10 anomaly(symptom)

11 <-

12 generateHypothesis(symptom,faultRootCauses,hypotheses);

13 detectPossibleActions(actions,actors);

14 !lookForEvidences(actions,networkElements).

Table 3.4: Hypothesis Generation Task in AgentSpeak language.

3.4.3 Reaching diagnosis conclusions

The Hypothesis Discrimination task has the aim of finding the most probable cause of

fault for the detected symptom based on the collected information from the network. The

agent has to perform test actions on network elements to know its current status and infer

70

3.4. B2D2 AGENT ARCHITECTURE

about the probability of fault. The results of those tests are used to feed the Causal Model

instantiation with the corresponding evidence inputs. To collect this information efficiently,

an intelligent test selection strategy must be followed by the agent. We propose the following

strategies for the test selection process:

• Parallel Execution: Time To Diagnose (TTD) can be minimised if all possible tests

are executed at the same time. But, this strategy could overload the network avoiding

its correct operation.

• Random Sequential Execution: In this case, test are randomly executed one by

one until a hypothesis reaches a confidence threshold18 or all available tests have been

executed.

• Strength-based Execution: This strategy proposes to used the concept of strength

of an evidence collected executing a specific test for the discrimination hypothesis

process (Kjaerulff and Madsen, 2008). This strength concept defines how relevant is

the information collected by a test for the current diagnosis case.

• Cost-based Execution: Any test action has an associated cost19, such as overloading

a network element or consuming some resources. This strategy proposes the cheapest

tests should be executed first.

• Strength-Cost Balanced Execution: This strategy proposes a combination of the

previous strategies. Balancing the tests strength and cost, tests can be executed in

parallel or sequentially. In other words, if a test has high strength and high cost, it

could be selected to execute before than others with lower strength. In contrast, several

low cost tests can be executed in parallel if they do not overload the tested elements.

This task is formalised in Table 3.5. The agent starts this task with the goal of looking

for evidences to discriminate the cause of fault (line 9 and 14). To get those evidences, it

executes testing actions (lines 15-17) following any of the test selection strategies proposed

above (line 22-25). The hypothesis set is updated every time new observations are available

(lines 18-19) The execution of tests continues until a hypothesis reaches the confidence

threshold value or no more tests can be executed (line 10). Then, the diagnosis process

finishes and the most reliable hypothesis (i.e. the hypothesis with highest confidence) is

picked as conclusion of the diagnosis process (line 12). Notice that several hypotheses with

similar confidence values can be selected as conclusions of one diagnosis. This is considered
18A notion confidence threshold for hypotheses is included in the Diagnosis Model.
19This cost property is included in the Diagnosis Model.

71

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

to cover the possibility of several faults are occurring simultaneously. Finally, when the agent

achieves a conclusion, we consider the fault diagnosis task is finished. The proposed agent

architecture could be extended with further autonomic capabilities, such as healing actions

to fix the diagnosed faults, but that is out of the scope of this thesis and it is considered as

future work.

1 // B2D2 Agent

2 /* Agent beliefs */

3 causalModel(evidences, contexts, faultsRootCauses, relations).

4 structuralModel(networkElements).

5 diagnosisModel(hypotheses, observations, actors, actions).

6

7 /* Hypothesis Discrimination - Plans */

8 // Check if the diagnosis is finished

9 +!lookForEvidences(actions,networkElements) :

10 enoughConfidence(hypothesis) | not pending(actions)

11 <-

12 finishDiagnosis(observations,hypotheses,conclusion).

13 // Pick a test plan to execute

14 +!lookForEvidences(actions,networkElements) :

15 pending(actions)

16 <-

17 !getEvidence(action);

18 updateEvidences(observations);

19 disciminateHypothesis(observations,hypotheses,causalModel);

20 !lookForEvidences(actions,networkElements).

21 // Get a new evidence

22 +!getEvidence(actions)

23 <-

24 selectNextAction(actions,observations,relations);

25 !getTestResult(action).

Table 3.5: Hypothesis Discrimination Task in AgentSpeak language.

3.5 Case Study

This section presents two different network scenarios where the proposed Agent Architec-

ture has been evaluated and validated. Section 3.5.1 presents a practical experience in the

application of a fault diagnosis multi-agent system deployed at Telefónica O2 Czech Re-

72

3.5. CASE STUDY

public network to manage the faults of an enterprise service. In this real-life application

scenario, the Symptom Detection task was carried out for human operators due to a stake-

holder requirement and only a simplified version of the Structural Model was applied due to

other knowledge systems were already running in the scenario. Thus, Section 3.5.2 shows

a Wireless Sensor Network (WSN) scenario which has been developed to evaluate the pro-

posed architecture in a simulated scenario where a motion detection application is running

focusing specially in the detection of symptoms performing ontology-based reasoning using

the Structural Model.

3.5.1 Internet Business Scenario

Internet Business is a service for business subscribers offered and operated by Telefónica

O2 Czech Republic. The service provides secure Internet access to corporate users based on

Virtual Private Network (VPN) technology. This system was selected for this case study

because it is easy to understand and provides an interesting scenario with enough complexity

to evaluate the proposed agent architecture. Figure 3.13 depicts the technical infrastructure

required to offer this service. In this infrastructure, subscribers communications equipment

connections are realised via a multi Symmetric Digital Subscriber Line (SDSL) to a Digital

Subscriber Line Access Multiplexer (DSLAM). Traffic from the DSLAM is transported

through the Regional Ethernet Network (REN) to the entry point of the Multiprotocol

Label Switching (MPLS) network where MPLS pseudo-wire connections are established to

the MPLS provider equipment at a central site. Finally, the customers communication

equipment establishes a Point-to-Point Protocol (PPP) session with the Broadband Remote

Access Servers (BRASs) at the central site using this transport path. Moreover, the use of

technology from different vendors for the different network elements increases the complexity

of the diagnosis task for this scenario.

This comprehensive technical solution imposes strong requirements on the inventory

and configuration systems. One of the main causes of failure in this service is configuration

issues of inventory systems. An inventory system enables the precise identification of the

network elements (physical or virtual, including their technical features) that are being used

to offer a service to a specific subscriber. The scenario includes a combination of automatic

configuration systems based on network events and on a human based configuration of the

inventory system (e.g. assigning a new IP address or VLAN). When a configuration change

request process is initiated, a service outage or a decrease in the quality of service could occur

if the Operation Support Systems (OSS) or inventory systems fail or are missconfigured.

Other potential causes of service outages may be hardware or software failures or last mile

73

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.13: Technical infrastructure for providing the Internet Business service.

problems. Hence, in summary, there are many possible root causes of failure in this scenario.

The data required to carry out a diagnosis process are geographically distributed. Moreover,

that information can be missing, outdated or even unreachable. Thus, this diagnosis scenario

is suitable for the application of uncertainty reasoning techniques.

Following the BEAST Methodology nomenclature, the main outcome expected by oper-

ators for using the proposed diagnosis system in Telefónica O2 Czech Republic is to decrease

the Mean Time to Diagnose (MTTD) (FitzGerald and Dennis, 2008). In addition, a more

effective diagnosis system would also increase customer satisfaction and decrease the human

resources required for maintenance tasks. The Internet Business service was selected for

automated diagnosis because of the high number of customers using this solution, the high

number of trouble tickets and the high complexity of the service.

Following the proposed B2D2 Agent Architecture presented in Section 3.4, a MAS was

developed and deployed in the OSS servers. That system was implemented using the JADE

platform (Bellifemine et al., 2007), which is supported by the BEAST Tool. Outlining the

designed solution, the system is composed by a set of agents with different roles, such as,

Interface Agent which receives requests from operators to diagnose a detected symptom or

Expert Agent which can executed tests on network elements. But, our interest for this case

study is the design of the Diagnosis Agent which is the main responsible of carrying out the

fault diagnosis process. As mentioned, human operators are able to interact with the Fault

Diagnosis MAS to request diagnoses using a web interface. In this request, they provide the

detected symptom to an Interface Agent that is responsible for collecting data from inventory

databases. With that human interaction, the Symptom Detection task was delegated to a

74

3.5. CASE STUDY

Figure 3.14: Diagnosis results graph.

human operator as requested by stakeholders. Moreover, the inventory systems plays a

similar role as the Structural Model identifying specific suspicious network elements which

simplifies the development of the system. After the required information has been collected,

the Interface Agent sends a diagnosis request message to the Diagnosis Agent, the one

that follows the B2D2 Agent Architecture. Detected symptoms are added to the Bayesian

inference engine, which instantiates the Causal Model, to generate a set of hypotheses that

represents possible root causes of the fault. With this step, the Hypothesis Generation task

finishes. Later, the Diagnosis Agent requests Expert agents to perform tests. There are

six Expert agents deployed in this scenario, with each agent specialising in a device type:

customer equipment, provider equipment, BRAS, DSLAM, REN and inventory databases.

For this task, shell scripts and Simple Network Management Protocol (SNMP) commands

are used to interact with network elements. Each time a test is performed, the result is fed

back to the Causal Model and Diagnosis Agent generates new updated hypotheses for the

Hypothesis Discrimination task.

If one or more hypotheses attain a sufficiently high level of confidence (i.e. probability

above 95%), the final conclusion set is shown to the network operator who requested the

diagnosis through the web interface. To make the diagnosis results easy to understand, the

output of the diagnosis system is presented to the human operator in a diagram, as shown

in Figure 3.14. This diagram summarises all the information collected during the diagnosis

process.

In this scenario, the Diagnosis Agent carries out the hypothesis generation and reasons

under uncertainty as shown in Section 3.3.1.2. The Causal Model used in this case study is

shown in Section 3.3.1.2 as an example. It is composed of 62 different variables: 27 evidence

nodes, 18 auxiliary nodes and 17 fault root cause nodes. The knowledge contained in this

model was provided by a human operator and its experience was translated in a Bayesian

network. The results of this model was validated by human operators rounding the 99%

of accuracy. Thus, the application of self-learning algorithms after collecting data from the

75

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.15: A portion of the Causal Model used in the case study. The associated CPT of

each node is omitted.

network was not required. As the complete Causal Model has been shown in Figure 3.4, a

small portion is shown in Figure 3.15 to offer more details. In this portion, we highlight

the node that represents the detected symptoms (e.g., Manifestation), the three nodes that

represent fault root causes hypotheses (shown with a blue background) and the six nodes

that represent tests results (shown with a yellow background). The rest of the nodes are

auxiliary variables. The application of the Diagnosis Model shown in Section 3.3.2.2 is

exemplified with a diagram of some individuals of the ontology shown in Figure 3.16. The

diagram contains three different hypotheses with their corresponding confidence values, one

symptom, one observation which is the result of a test execution.

To conclude, in this section we shown how the proposed fault diagnosis model has been

successfully applied to an Internet Business service. A web interface has been developed

to allow human operators to interact with the diagnosis MAS through an Interface Agent

that receives symptoms and collects information to start a diagnosis. The Diagnosis Agent

performs Bayesian inference using a Causal Model that represents the relationship between

network element states and possible failures of the Internet Business service. Six different

Expert Agents perform tests using shell scripts in accordance with the demands of the

Diagnosis Agent. Finally, the diagnosis result is shown graphically to the human operator,

as shown in Figure 3.14.

Evaluation

The presented architecture was evaluated during the period of one and a half years from

November 2010 to March 2012. During that period of time, the fault diagnosis MAS was

operating and recording data of diagnosis cases stored in a database in internal Telefónica

76

3.5. CASE STUDY

Figure 3.16: Example of Ontology Individuals obtained with the mapping process.

Czech Republic servers. That database contains information about thousands of different

diagnosis cases. Every of them contains information about what tests were performed,

what information was available during the diagnosis process, what final conclusions were

reached at the end of the diagnosis process and other complementary information, such as

timestamps or parameters.

The evaluation methodology consisted of two steps. First, we analysed the coverage

of the dataset relative to the global problem to check whether these data are sufficiently

representative as explained below. Then, we defined several Key Performance Indicators

(KPIs) to evaluate the business benefit of the system. To analyse the complexity of the

scenario, the entropy of possible diagnosis cases has been calculated and compared with the

entropy of each possible root cause20. This entropy represents how a same fault root cause

can be manifested in the environment for different test results. In other words, different

test results can be collected for a single fault type which brings a high level of uncertainty.

In this case, 17 different fault types are under consideration. The normalised entropies of

fault root causes were compared among them to determine which fault root cause (fault

type) is more complex to diagnose. Figure 3.17 shows that some root causes have entropy

values close to zero, because these fault types almost always present the same symptoms. In

contrast, other fault root causes exhibit high entropy because these fault types can produce

many different observations, which increases the diagnosis complexity.

To graphically represent all diagnoses stored in the database, a Sammon mapping al-

gorithm (Sammon, 1969) has been used to represent the diagnoses in a two dimensional

graph in Figure 3.18. Using this algorithm, the relative euclidean distance among all di-

agnosis cases is relatively maintained. As shown in Figure 3.18, diagnosis cases with the

same conclusions are clustered in the graph. To highlight these clusters, all of them have

20As proposed in metric “M4 - Heterogeneity of Diagnosis Cases” of the BEAST Methodology in Sec-

tion 2.3.4

77

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.17: Normalised entropy of various root causes of faults.

been rounded and labelled properly. Furthermore, we can observe that the clusters area are

directly related with the entropy value of the fault root causes which is associated, which

confirms that the Sammon mapping algorithm is suitable to represent the complexity of

fault root causes. To interpret this graph, note that two diagnosis cases that are graphically

in the same place in Figure 3.18 represent cases with the same symptoms and the same final

hypotheses, i.e., the euclidean distance between those cases is close to zero.

The duration of diagnosis process21 is presented as a histogram22 in Figure 3.19. The

result of this histogram can be understood as a normal distribution with a mean value of

48.365 seconds and a standard deviation of 7.462 seconds.

After this analysis of the data collected, several KPIs were defined to evaluate the busi-

ness outcomes of the system. We have two measures of these KPIs, after one month of the

system deployment and eighteen months later (i.e. until the dataset is analysed), as shown

in Table 3.6 . Notice the KPIs values are meaningful as the available dataset is sufficiently

representative relative to the global problem and the system was enough time executing to

know its global performance.

KPI1 is used to measure the usage of the system by human operators, i.e., the acceptance

rate of the diagnosis system. This KPI was initially 24.74% and posteriorly, it increased to

92.00%. In other words, human operators use the developed fault diagnosis systems in the

21As proposed in metric “M5 - Time To Diagnose” of the BEAST Methodology in Section 2.3.4
22Notice that Y axis of Figure 3.19 is on a logarithmic scale.

78

3.5. CASE STUDY

Figure 3.18: Fault root cause clusters.

Figure 3.19: Histogram of diagnosis duration (in seconds).

79

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

KPIs 1st Month 18th Month

KPI1 24.74% 92.00%

KPI2 9.51 hours 5.2 hours

KPI3 0.56 hours 0.37 hours

Table 3.6: System KPIs

92% of the cases, what can be considered as a successful acceptance rate. Operators explain

this increase due to initial reservations to use a new system, but the final usage rate shows

a massive acceptance level.

KPI2 is used to measure the average incident solution time (i.e., the diagnosis and repair

time). Initially, this KPI was 9.51 hours initially. It decreased to 5.2 hours, representing

45.32% time savings. That time reduction was not only produced by the application of the

system. During the same period of time, other optimization techniques where applied for

the maintenance of the network.

KPI3 is used to measure the mean time before a work order is created (i.e., the diagnosis

time). This KPI was initially 0.56 hours, and the MAS system has decreased this metric

to 0.17 hours, representing 33.93% time savings. This time includes the TDD shown in

Figure 3.19 and the time between the work order is created and an operator requests a

diagnosis process to the system. We can consider the time to start a diagnosis by an

operator (using or not the system under evaluation) has not changed in the period of time.

Thus, this time saving is associated directly with the use of the developed fault diagnosis

system.

Summarising, the performance of the system has been measured with several KPIs that

demonstrate the business outcomes of the diagnosis system. Furthermore, the diagnosis

results stored in a database during the one and a half years of operation of the diagnosis MAS

have been analysed to measure the entropy of all available diagnoses (see Figure 3.17) and to

graphically represent the similarity among the diagnoses (see Figure 3.18). Based on those

findings, the validity of the proposed B2D2 Agent Architecture has been demonstrated.

3.5.2 Wireless Sensor Network Scenario

This section describes the simulated WSN scenario that has been developed to validate

some components of the agent B2D2 Agent Architecture, proposed in Section 3.4, which

80

3.5. CASE STUDY

were not fully validated in the previous case study. As mentioned in Section 3.5.1, the

Symptom Detection task was delegated to human operators due to a stakeholder requirement.

Moreover, some of the knowledge that is covered by the Structural Model was allocated in

the inventory systems that were already running in the scenario. Thus, only a simplified

version of the Structural Model was used. For these reasons, this complementary case study

is exposed focusing on ontology-based reasoning for symptom detection.

The simulated application over the WSN is a motion detection application where sensors

can detect any motion in a range and a randommobile target is in the simulated environment.

The developed simulation is built on the top of the MASON simulation framework (Luke

et al., 2005) and it is available in a public Github Repository23. In the simulation, the WSN

topology24 is automatically generated with two parameters: number of ZigBee End Devices

(ZEDs) and number of ZigBee Routers (ZRs). One ZigBee Coordinator (ZC) is deployed as

sink node in the topology and the B2D2 Agent is executed in that node which we consider

without any power or computational restrictions. The ZR nodes route all packages received

from the ZEDs, i.e. motion detection notifications, to the sink node, i.e. the ZC. All ZED

devices connected to the same ZR device conform a cluster, and that ZR is known as cluster

head.

Figure 3.20: Snapshot of the simulated WSN scenario.

23WSN Simulation Public Repository: https://github.com/gsi-upm/shanks-wsn-module
24We are using the ZigBee Alliance nomenclature: http://www.zigbee.org/

81

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Thus, when the simulation starts, the network topology is generated in three steps.

Firstly, the ZC node (sink node) is placed in a fixed position and all ZR and ZED nodes

are randomly placed. Secondly, ZR and ZED nodes are moved until they have at least one

router (or directly the ZC sink node) in range. Finally, Dijkstra’s algorithm (Skiena, 1990)

is used to create routes (i.e. links) between ZR nodes using minimum power consumption

criteria based on accurate power consumption values provided by Landsiedel et al. (2005)

and ZED nodes are linked to the closest ZR node. An example of the result of this process

is illustrated in Figure 3.20.

The behaviour of the simulated devices have been implemented following the specifi-

cations of MICAz device25. The emulated MICAz devices are equipped with emulated

Panasonic IR Motion Detection sensors26 which detect the mobile target. When the target

is in range, the detecting nodes generate a message to notify that detection. To reduce

the messaging cost of the simulated scenario, no ACK messages are sent to confirm the

reception. So, some messages can be lost due to several causes, such as network overflow

or weather/noise conditions, as exposed below in the evaluation of this case study. These

messages are forwarded including trace information and some data about the nodes in the

path. In other words, every node which receives a message adds data about the node it-

self, such as, node id, message id, cpu load or memory load. Thus, the message received

by the sink node contains information about all nodes which have forwarded the original

message. That information is used by the Fault Diagnosis Agent to update its Structural

Model and to detect symptoms. The packages between nodes are parsed as plain text and

sent using the maximum throughput in ZigBee WSN obtained by Burchfield et al. (2007).

When the WSN is ready to work, the mobile target starts its random movement generating

traffic over the network. Then, the Fault Diagnosis Agent that is running in the ZigBee

Coordinator node, i.e. the sink node, processes the incoming information about the network

status and topology and updates the structural network model in real-time.

The B2D2 Agent deployed in the ZC uses aDiagnosis Model which includes the Structural

Model that uses the INDL language to describes the network elements emulated in this

WSN scenario, such as ZigBeeSensorNode or ZigBeeMessage, network properties, such as

StarTopology or TreeTopology, or the possible observation detected from the network, such as

LostMessage. For further information, please refer to the complete B2D2 WSN Ontology27.

The B2D2 Agent uses this model in combination with a set of SPIN rules to reason about

the network elements and its properties. An example of one of those rules is shown in

25MICAz Datasheet: http://www.memsic.com/wireless-sensor-networks/
26IR Motion Detection Sensor Datasheet: https://www3.panasonic.biz/ac/e/control/sensor/human/wl/index.jsp
27B2D2 WSN Ontology Specification: http://www.gsi.dit.upm.es/ontologies/b2d2/wsn

82

http://www.gsi.dit.upm.es/ontologies/b2d2/wsn

3.5. CASE STUDY

1 CONSTRUCT {

2 ?this a wsn-ndl:ZigBeeLeafRouter .

3 }

4 WHERE {

5 ?this a wsn-ndl:ZigBeeRouter .

6 {

7 SELECT ?this

8 WHERE {

9 ?path a wsn-ndl:RoutePathLink .

10 ?this nml-base:isSink ?path .

11 }

12 GROUP BY ?this

13 HAVING (COUNT(?path) = 0)

14 } .

15 }

Figure 3.21: Example of SPIN rule to detect edge routers.

Figure 3.21. This example is used to detect edge routers nodes in the network dynamically.

The rule picks a router (line 5) which does not receive any message from other routers (lines

7-13) and labels it as a ZigBeeLeafRouter (line 2). Another example of these rules is shown in

Section 3.4.1 and the rest of them are available in the Github repository of the simulation28.

The Causal Model developed for this scenario is available in the Github repository too and

its structure is shown in Figure 3.22. For Bayesian reasoning and learning, the B2D2 Agent

uses SMILE library (Druzdzel, 1999). The reminder reasoning capabilities of the agent,

such control loop or plan selection strategy, are implemented with a MASON agent (Luke

et al., 2005), which is the simulation framework used for implementing this case study as

mentioned previously.

Evaluation

The outcomes of the B2D2 Agent in this WSN scenario are evaluated in two different

ways as exposed below. Firstly, the number of detected lost messages by the B2D2 Agent

are analysed comparing different network configurations to check if the simulation model

generates consistent results during the Symptom Detection task. Secondly, we have used

28Other examples of SPIN rules can be found in our Github public repository: https://github.com/gsi-

upm/shanks-wsn-module/tree/master/src/main/resources/rules

83

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.22: Structure of the Causal Model developed for this case study.

a dataset of diagnosis cases, based on the simulated scenario, to analyse the benefit of

reasoning with the Structural Model and the Causal Model or only with the Causal Model.

The data collected for the evaluation of the Symptom Detection task was gathered exe-

cuting 200 simulated scenarios with different parameters. We simulated a WSN where nodes

were deployed on a two-dimensional space of 100 square meters during 10 minutes29 with

one mobile target with 5 kilometres per hour speed that moved randomly in the simulation

space. The perception range of the motion detectors was 5 meters. We consider the sim-

ulation was indoor for radio range of MICAz devices. This setup generates around 8000

messages that should be received in the ZC sink node in every execution of the simulation

scenario. Under these conditions, we designed our experiments to quantify the behaviour of

the B2D2 Agent running in the ZC sink node. Specifically, we measured the number of lost

messages were detected30.

During the execution of the 200 simulated scenarios, a dataset was collected to analyse

the results of the Symptom Detection task. The results of the simulations have been analysed

comparing the ratio of detected lost messages and some metrics of the WSN topology.

Figure 3.23 shows the ratio of lost messages to the number of sensors deployed in the

simulation. A gradual increase of the ratio can be observed with the number of deployed

sensors. Other interesting relation is the ratio of lost messages compared with the ratio of

routers to total sensors, shown in Figure 3.24. A decrease is detected when the number

29The simulation manages the time for tasks such as movement (with a specific speed) or devices through-

put.
30As no ACK messages are sent in the simulated scenario, if a node cannot handle a received message, it

will be lost.

84

3.5. CASE STUDY

of routers is similar to the number of deployed sensors, i.e. there are small sensor clusters

in the network topology. Finally, we analyse the lost message ratio with the ratio of edge

routers31, i.e. the first router in a path to the sink node. Figure 3.25 shows a similar

behaviour independently of the ratio of edge routers in the network. Finally, the ratio of

lost messages to correctly received messages in the ZC sink node is 1.63%, with an average

of 125.96 lost messages detected and 7707.06 received messages in the ZC sink node in every

execution. In a real WSN this lost rate could be considered too high, but remember that

we are considering no ACK messages to incentive the lost of messages for testing purposes.

In conclusion, the results show that B2D2 Agent performs a consistent Symptom Detection

task using SPIN rules to infer about the network elements in this error-prone scenario.

Figure 3.23: Ratio of lost messages to number of deployed sensors.

As mentioned previously, only a simplified version of a Structural Model was used in the

previous case study. Thus, a complementary evaluation has been performed focusing on the

ontology-based reasoning process for symptom detection. The aim of this evaluation is to

analyse the improvement of using the Structural Model with a post-processing rule-based

inference process to feed the Causal Model compared with the use of an isolated Causal

Model without rules (i.e. no Structural Model and no rules).

First of all, we have calculated the entropy of the fault root causes of the scenario under

consideration32. As shown in Figure 3.26, there is a variety of entropy among the different

fault root cause selected for this study, which means that some diagnosis cases will be more

observations than others to reach a conclusion.

31This edge routers are detected by the SPIN rule shown in Figure 3.21.
32As proposed in metric “M4 - Heterogeneity of Diagnosis Cases” of the BEAST Methodology in Sec-

tion 2.3.4

85

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.24: Ratio of lost messages to ratio of number of routers and number of deployed

sensors.

Figure 3.25: Ratio of lost messages to ratio of number of edge routers and number of total

routers.

86

3.5. CASE STUDY

Figure 3.26: Normalised entropy of the fault root causes of the simulated WSN scenario.

To perform this evaluation, we trained two different Causal Models applying self-learning

algorithms: one with all information available after the rule-based inference process (labelled

as SM+CM in the figures) and the other with the information available directly from the

network, without post-processing (labelled as CM in the figures). Both Causal Models have

been validated with three different levels of uncertainty: no missing data, 25% of missing

attributes and 50% of missing attributes. The global success rate for those cases are shown

in Figure 3.27 where we can observe an improvement around a 3% in all cases.

Moreover, we have analysed the success rate per fault root causes to know in what

cases the rule-based inference process is improving the accuracy of the diagnosis conclusion.

Figures 3.28, 3.29 and 3.30 present the accuracy of both alternatives per fault root cause33

with (i) no missing data, (ii) 25% of missing attributes and (iii) 50% of missing attributes,

respectively. As we can observed in the figures, there are some causes which its accuracy

are very related to the rule-based inference process with an accuracy close to zero for the

CM alternative. While other fault root causes show a similar accuracy for both alternatives

in the three scenarios with different level of uncertainty. Therefore, we can conclude that

33These metrics have been not presented while proposing the BEASTMethodology in Section 2.3.4 because

the metrics of that section are not defined to compare the accuracy of two alternative reasoning processes.

The reminder metrics of this section has been defined for that specific objective.

87

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

Figure 3.27: Global Success Rate of the Validation Process.

the use of a complete Structural Model is important to reach correct conclusions for specific

faults, while for others is not so relevant obtaining similar results with and without an

Structural Model and a rule-based inference process.

Figure 3.28: Success Rate with no missing data.

88

3.5. CASE STUDY

Figure 3.29: Success Rate with 25 % missing data.

Figure 3.30: Success Rate with 50 % missing data.

89

CHAPTER 3. AGENT ARCHITECTURE FOR AUTONOMIC FAULT DIAGNOSIS

3.6 Summary

This chapter has proposed an Autonomic Fault Diagnosis Agent Architecture, named BDI

for Bayesian Diagnosis (B2D2) Agent Architecture. The proposed architecture uses several

knowledge models that are combined in the proposed B2D2 Diagnosis Model34. This model

covers the domain knowledge required to carry out an autonomic fault diagnosis process

including a Structural Model, which describes network elements and their relations and

properties, and a Causal Model, which relates the observations collected from the network

with their possible fault root causes. The agent follows a Task Model which divides the

diagnosis process in several tasks which are formalised in the chapter using the AgentSpeak

language.

The proposed agent architecture has been validated in two complementary case studies.

One of them is a practical experience in the application of a fault diagnosis multi-agent

system deployed at Telefónica O2 Czech Republic network to manage the faults of an enter-

prise service. The data collected during one and a half years of system execution in a real

telecommunication network has been used to analyse and validate the proposed architec-

ture. The second case study is a simulated WSN scenario which complements the evaluation

process of the first case study focusing on the automation of the symptom detection task,

which was manually performed in the first case study.

Finally, the proposed B2D2 Agent Architecture defines mechanisms to perform auto-

nomic fault diagnosis of telecommunication networks. The proposed B2D2 Diagnosis Model

covers the knowledge domain required for the autonomic diagnosis process. Nevertheless,

the execution of monolithic agents is not suitable for the Future Internet due to the presence

of federated domains and scalability constraints. Therefore, the coordination mechanisms

proposed in Chapter 4 allow different agents to discuss the possible fault root cause to

perform the discrimination process in a distributed way, which allows the execution of the

proposed agent architecture in federated domains solving possible scalability problems.

34Diagnosis Model Ontology Specification: http://www.gsi.dit.upm.es/ontologies/b2d2/

diagnosis

90

http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis
http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis

CHAPTER4
Coordination for Autonomic Fault Diagnosis

in Federated Domains

This chapter presents an argumentation framework as coordination mechanism to
perform distributed autonomic fault diagnosis tasks in federated domains. The ar-
gumentation framework is used by agents to discuss uncertain information for dis-
criminating hypotheses of fault. The arguments of that framework are composed of
probabilistic statements, whose aim is to handle the uncertainty of the diagnosis pro-
cess under access restriction situations. The framework is applied in a coordination
protocol which defines different phases for the distributed diagnosis process. More-
over, an extension of the B2D2 Agent Architecture exposed in the previous chapter is
presented to include in the agent the argumentation capability required to apply the
proposed argumentation framework. The proposed argumentation framework has been
evaluated measuring the correctness of the conclusion obtained after the argumenta-
tion process. This evaluation process has been performed in a simulation environment
in which the conditions of federated domains were reproduced to assess the validity of
the proposed argumentation framework as coordination mechanism.

91

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

4.1 Introduction

One of the most important aspects of the Future Internet is the federation of the autonomic

systems to enable optimal end-to-end service provisioning (Müller, 2012). That federation is

defined as the agreement between different autonomic systems belonging to different domains

which have to cooperate to achieve an objective (Laurent et al., 2013). That agreement

capability of the federated systems is considered a key property to solve scalability issues

in large scale systems in the Future Internet (Cerf, 2013). For instance, the fault diagnosis

solution proposed in the previous chapter could not monitor and diagnose the whole Internet,

because the knowledge models required to build that global solution would be unmanageable

and would require constant updates and extensions to keep the pace of the growing of the

network. Moreover, the computational resources required to reason for a global diagnosis

process in a single monolithic agent would be huge to handle the global domain models.

Thus, the B2D2 Agent Architecture for Autonomic Fault Diagnosis, proposed in Chapter 3,

could not be considered as completely suitable for the Future Internet without coordination

mechanisms to enable that capability of agreement and ensure scalability of the solution.

Several coordination mechanisms have been considered to build that cooperative capa-

bility for the proposed agent architecture during the development of this thesis. Our first

attempt was to apply distributed Bayesian inference techniques, such as Multiply Sectioned

Bayesian Networks (MSBNs), Distributed Perception Networks (DPNs) or Prior/Likelihood

Decomposable Models (PLDMs). But, some aspects make them not completely suitable for

the considered federated network scenario. Some scalability and flexibility issues would have

implied an extra management cost for the final solution if we had applied them. For further

information about these techniques, please refer to the work of Méndez (2011). Then, we

looked for alternative technique which fits with our agent architecture. We found argu-

mentation theory is commonly applied as communication mechanism to reach agreements

among agents (Walton, 2009). But, we did not find an argumentation framework fully com-

patible with the uncertainty management of the diagnosis process supported by the B2D2

Agent Architecture. Therefore, this chapter proposes an argumentation framework which

uses arguments composed of probabilistic statements to represent the uncertainty of the

knowledge they contain. Based on that framework, a coordination protocol is proposed.

That protocol enables agents to cooperate during the diagnosis process until they reach

an agreement about the most probable fault root cause. The protocol establishes different

phases to conform a coalition of agents, to discuss among them about a specific diagnosis

case, and to get conclusions for the diagnosis process.

The rest of this chapter is structured as follows. Firstly, Section 4.2 discusses related

92

4.2. RELATED WORK

works in the research field of application of argumentation techniques in multi-agent sys-

tems. Section 4.3 presents the formal definition of the argumentation framework. Section 4.4

proposes the coordination protocol based on the proposed framework for a distributed auto-

nomic fault diagnosis. Section 4.5 introduces an extension of the B2D2 Agent Architecture

for adding the argumentative capability required to apply the argumentation framework as

coordination mechanism. Section 4.6 shows a case study where the proposed coordination

mechanism is applied in a federated network scenario and exposes the evaluation of the

proposed argumentation framework. Finally, Section 4.7 presents some concluding remarks

of this chapter.

4.2 Related Work

Argumentation is a crucial communicative activity in society (Moor and Aakhus, 2006).

Consequently, the argumentation theory has many applications in both theoretical and

practical works. It is defined as the interdisciplinary study of the method to obtain conclu-

sions through logical reasoning (van Eemeren et al., 1996) and has been studied in many

different fields, such as rhetoric (Wallace, 1963; Perelman and Olbrechts-Tyteca, 1969), phi-

losophy (Toulmin, 2003), law (Feteris, 1999) computer science (Bench-Capon and Dunne,

2007) or artificial intelligence (Walton, 2009). It covers situations such as debate and nego-

tiation, which are both directed toward achieving valid conclusions and/or agreements. In

the literature, we find Dung’s work (Dung, 1995) as one of the most influential approach

to apply argumentation in the artificial intelligence field. However, other approaches are

widely used too, as summarised in Table 4.1.

For further information about the application of argumentation techniques in multi-

agent systems, please refer to a systematic review about that topic published during the

development of this thesis (Carrera and Iglesias, 2015). That review was conducted following

the principles provided by Kitchenham and Charters (2007). Intensive searches in the main

electronic scientific databases were performed in July 2012, March 2013 and January 2015

to ensure the coverage of the systematic review. Based on a set of inclusion and exclusion

criteria, 64 studies were included and properly analysed. The extraction and synthesis

process was established to answer the most relevant aspects of the included studies from

the authors point of view. The results are clearly presented, both graphically and literally.

Some of the concluding remarks of that review are summarised below.

Regarding the goal of the dialogue among agents, the most common objective of an

argumentative system is to decide the best course of action. But, the goal of achieving

93

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

Argumentation Framework Studies

Dung’s Argumentation Framework
(DAF) (Dung, 1995)

(Tannai et al., 2011; Caiquan et al., 2010; Yuan et al.,
2011; van der Weide et al., 2011; Amgoud and Serrurier,
2007; Huang and Lin, 2010; Xiong et al., 2012; Rowe
et al., 2012; Vreeswijk, 2005; Wang et al., 2014; Bedi and
Vashisth, 2014)

Preference-based Argumentation
Framework (PAF) (Amgoud and
Cayrol, 1998)

(Obeid and Moubaiddin, 2009; Bulling et al., 2008; Am-
goud and Serrurier, 2008; Amgoud et al., 2005; Amgoud,
2006)

Value-based Argumentation Frame-
work (VAF) (Bench-capon et al.,
2002)

(Heras et al., 2013b,a; dAvila Garcez et al., 2014; Tho-
mopoulos et al., 2014)

Assumption-based Argumentation
Framework (AAF) (Bondarenko
et al., 1993)

(Gaertner and Toni, 2007, 2008; Fan et al., 2014, 2013)

Argumentation-based Negotia-
tion (ABN) (Rahwan et al., 2003)

(Ye et al., 2010; Hsairi et al., 2006; Zhang et al., 2012; El-
Sisi and Mousa, 2012; Harvey et al., 2007; Brandao Neto
et al., 2013; Xue-jie et al., 2013; Sierra et al., 1998; Am-
goud et al., 2008; Morge and Beaune, 2004; Alonso, 2004)

Three-Layer Argumentation Frame-
work (TLAF) (Maio and Silva, 2012)

(Maio et al., 2011; Maio and Silva, 2014)

Logic Programming without Nega-
tion as Failure (LPwNF) (Kakas
et al., 1994)

(Moraitis and Spanoudakis, 2007; Kakas and Moraitis,
2003)

Table 4.1: Studies per argumentation framework.

94

4.2. RELATED WORK

Behaviour Studies

Collaborative (Hsairi et al., 2006; Moraitis and Spanoudakis, 2007; Yuan et al., 2009; Obeid
and Moubaiddin, 2009; Liu et al., 2010; Ge et al., 2010; Hsairi et al., 2010; Ye
et al., 2010; Maio et al., 2011; Zhang et al., 2012; El-Sisi and Mousa, 2012;
Aulinas et al., 2012; Chow et al., 2013; Grando et al., 2012; Harvey et al.,
2007; Marreiros et al., 2005; Rowe et al., 2012; Velaga et al., 2012; Letia and
Groza, 2012; Amgoud and Serrurier, 2008; Monteserin and Amandi, 2011;
Wang et al., 2010; Das, 2005; Bulling et al., 2008; Amgoud and Serrurier,
2007; Huang and Lin, 2010; Janjua and Hussain, 2012; Tao et al., 2014; Wang
et al., 2014; Kakas and Moraitis, 2003; Fogli et al., 2013; Fan et al., 2014;
Bedi and Vashisth, 2014; Ferrando and Onaindia, 2013; Maio and Silva, 2014;
Vicari et al., 2003; Tang and Parsons, 2005; Morge and Beaune, 2004)

Competitive (Yuan et al., 2011; Keppens, 2011; Heras et al., 2013b,a; Brandao Neto et al.,
2013; Xue-jie et al., 2013; Pashaei et al., 2014; Sierra et al., 1998; Amgoud
and Parsons, 2002; Gaertner and Toni, 2007; Caiquan et al., 2010; Tannai
et al., 2011; Xiong et al., 2012; Wardeh et al., 2012; van der Weide et al.,
2011; Vreeswijk, 2005)

Table 4.2: Studies per agent level behaviour.

agreements or reasonable settlements is quite popular too. Paying attention to the agents’

interactions in their society, we highlight that a collaborative behaviour is observed more

often than a competitive behaviour. Nevertheless, it is clear that argumentation techniques

have been applied successfully in both cooperative and competitive environments, as shown

in Table 4.2.

Focusing on the application field of argumentation techniques in real-life problems, we

highlight their application in e-commerce and virtual organisations. For e-commerce, they

are used for tasks such as finding potentially interesting products (Huang and Lin, 2010),

making deals with providers and customers (Ge et al., 2010) or negotiating supply strate-

gies (Wang et al., 2010). For virtual organisations, we remark their application for dealing

with incomplete and conflicting information (Janjua and Hussain, 2012), analysing emo-

tional factors (Marreiros et al., 2005), deciding benefit concessions (Wardeh et al., 2012),

approving credit assignment (Pashaei et al., 2014) or building reputation models (Hsairi

et al., 2010).

Another interesting finding of the systematic review is the evolution of the studies from

pure theoretical studies to prototypes or real-life applications. The number of prototypes/ap-

plications described in the period from 2011 to 2015 depicts this technology offers suitable

95

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

Year Theory Prototype Application

1998-2005 11 0 1

2006-2010 15 5 1

2011-2014 9 17 5

Table 4.3: Maturity level of included studies per year.

approaches for solving real-life problems, as shown in Tables 4.3 and 4.4. Based on this

evolution, we can place the argumentation technology for multi-agent systems in an early

third stage of the maturation classification proposed by Redwine and Riddle (1985). That is

because, as an interdisciplinary field of study, argumentation has a robust and solid theoret-

ical background and it is beginning to be applied in industrial applications. In conclusion,

the interest for applying of argumentation theory in multi-agent systems has increased in

recent years (Maudet et al., 2007).

Although the application of argumentation techniques in a MAS can be an appropriate

approach to solve many different problems, these techniques by themselves do not solve all

of the issues that a MAS has to solve for facing real-life problems. Hence, authors decide

to combine argumentation frameworks with other reasoning techniques, such as case-based

reasoning (Heras et al., 2013b) or rule-based reasoning (Hartfelt et al., 2010). Following this

approach, we propose the use of an argumentation framework compatible with the reasoning

techniques used in the B2D2 Agent Architecture presented in the previous chapter. Specially,

the argumentation framework will require an appropriate management of the uncertainty of

the diagnosis process. In the proposed architecture, the agent applies a Bayesian reasoning

technique to reason under uncertainty during the hypothesis discrimination phase. Thus,

the argumentation framework must be compatible with that reasoning process of the agent.

96

4.2. RELATED WORK

Maturity
level

No.
studies

Studies

Theory 35 (Yuan et al., 2009; Liu et al., 2010; Wang and Luo, 2010; Caiquan et al.,
2010; Ge et al., 2010; Hsairi et al., 2006, 2010; Obeid and Moubaiddin,
2009; Yuan et al., 2011; Maio et al., 2011; Das, 2005; van der Weide et al.,
2011; Bulling et al., 2008; Amgoud and Serrurier, 2007; Keppens, 2011;
Rowe et al., 2012; Gaertner and Toni, 2008; Vreeswijk, 2005; Amgoud
and Serrurier, 2008; Brandao Neto et al., 2013; Tao et al., 2014; Amgoud
et al., 2000; Kakas and Moraitis, 2003; dAvila Garcez et al., 2014; Sierra
et al., 1998; Fan et al., 2013; Amgoud and Parsons, 2002; Amgoud et al.,
2008; Amgoud and Prade, 2009; McBurney et al., 2003; Amgoud et al.,
2005; Amgoud, 2006; Tang and Parsons, 2005; Morge and Beaune, 2004;
Alonso, 2004)

Prototype 22 (Moraitis and Spanoudakis, 2007; Ye et al., 2010; Wang et al., 2010;
Monteserin and Amandi, 2011; Heras et al., 2013b; Huang and Lin, 2010;
Janjua and Hussain, 2012; Xiong et al., 2012; Zhang et al., 2012; El-Sisi
and Mousa, 2012; Heras et al., 2013a; Grando et al., 2012; Harvey et al.,
2007; Wardeh et al., 2012; Xue-jie et al., 2013; Wang et al., 2014; Fogli
et al., 2013; Fan et al., 2014; Bedi and Vashisth, 2014; Ferrando and
Onaindia, 2013; Maio and Silva, 2014; Pashaei et al., 2014)

Application 7 (Tannai et al., 2011; Gaertner and Toni, 2007; Aulinas et al., 2012; Chow
et al., 2013; Velaga et al., 2012; Thomopoulos et al., 2014; Vicari et al.,
2003)

Table 4.4: Maturity level.

97

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

4.3 B2D2 Argumentation Framework

This section proposes the B2D2 Argumentation Framework. This framework is used by

agents to discriminate the most probable cause of fault during a distributed diagnosis pro-

cess in federated domains. In those federated domains, every agent manages its own domain

and has a partial view of the global problem. This ability to divide the global problem into

domains combined with coordination mechanisms ensures the scalability for large scale sys-

tems (Cerf, 2013). Therefore, the coordination mechanism provided by this argumentation

framework is required to ensure that scalability of the B2D2 Agent Architecture presented

in Chapter 3. In that architecture, the model applied during the hypothesis discrimination

phase to reason under uncertainty is the Causal Model. This model is used to update the

hypothesis set every time new observations are collected from the network. The informa-

tion used as input and output of the Causal Model is used in the proposed argumentation

framework to build arguments keeping the uncertainty management capability offered by

the model. Thus, the argumentation framework exposed in this section requires that every

agent has a Causal Model to build and process arguments.

All in all, the formal definition of the argumentation framework is presented in Sec-

tion 4.3.1, and the possible relations that can exist between arguments of this framework

are exposed in Section 4.3.2.

4.3.1 Framework Definition

The proposed argumentation framework relies on the idea of probabilistic statements built

using a Causal Model. That model is composed by a set of variables and their conditional

probabilistic dependencies, as explained in Section 3.3.1.2. Accordingly, we consider that

the problem domain for this argumentation framework is described by a set of variables

V = {v1, ..., vn} and a set of states S = {s1, ..., sm} in which the variables can be. Each

variable vi ∈ V can be in a state sj ∈ S with a given probability. The set of states a

variable vi can be in is denoted by Svi ⊆ S, and is defined as the variable state set. We

define two types of variables: observations, obs, and fault root causes, frc, which compose

the set V = obs∪frc. Those observations and fault root causes are modelled as variables of

the agent’s Causal Model. This allows the agent to infer the probability of a variable is in a

given state. That probability represents the agent’s degree of certainty about the state of a

given variable, which is the key concept to handle the uncertainty of the diagnosis process.

In this argumentation framework, we denote that probability as p(i, j) = Pr(vi, sj) = [0, 1],

where sj ∈ Svi . To condense the probabilities of all states of a given variable vi, we define

98

4.3. B2D2 ARGUMENTATION FRAMEWORK

a set of probabilities on that variable, as a statement stvi . Formally,

Definition 4.3.1.1 A statement stvi is a pair 〈vi,D〉 where vi ∈ V and D is a set of

probabilities p(i, j), which represent the probability of the variable vi is in the state sj.

A statement stvi on a variable vi is coherent if and only if ∀p(i, j) ∈ stvi ,
∑
p(i, j) = 1.

That means that a statement is coherent if represents a probability distribution for the

possible states of the variable vi. Formally,

Definition 4.3.1.2 A statement stvi is coherent ⇐⇒ ∀p(i, j) ∈ D |
∑
∀p(i, j) = 1.

Otherwise, stvi is incoherent.

We define three different types of statements: evidence, assumption and proposal. On

one hand, an evidence is based on an observation obtained from the network and represents

that a variable is in a specific state. As observed directly from the network, we consider

that information is certain and cannot be discussed. Formally,

Definition 4.3.1.3 Given a coherent statement stvi = 〈vi,D〉, stvi is an evidence ⇐⇒
vi ∈ obs ∧ ∃〈p(i, j)〉 ∈ D | p(i, j) = 1.

On the other hand, an assumption represents an unobserved variable. That means the

agent cannot gather that information for any reason, such as technical issues or privacy

restrictions. An agent can infer this assumption based on the knowledge contained in its

Causal Model. As an assumption is based on background knowledge and is not a certain

information, this type of statement can be discussed among agents to clarify the state of the

variable. Formally,

Definition 4.3.1.4 Given a coherent statement stvi = 〈vi,D〉, stvi is an assumption ⇐⇒
vi ∈ obs ∧ @〈p(i, j)〉 ∈ D | p = 1.

Finally, a proposal represents a hypothesis for the states of a specific variable, that can

be a conclusion of possible fault root cause or a possible clarification for an assumption.

Formally,

Definition 4.3.1.5 Given a coherent statement stvi = 〈vi,D〉, stvi is a proposal ⇐⇒
vi ∈ V ∧ @〈o, p〉 ∈ D | p = 1.

99

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

To summarise all statements about a specific diagnosis case, statements about different

variables in the domain are collected into a set of statements to conform arguments. Based

on the three types of statements, we define an argument as a triplet of sets of statements.

Formally,

Definition 4.3.1.6 An argument arg is a triplet 〈E ,A,P〉, where E is the evidence set

of arg, A is the assumption set of arg, and P is the proposal set of arg.

In conclusion, this argumentation framework defines three different types of statements

which represent different types of knowledge. Arguments are built as a triplet of sets of

statements: evidence set, assumption set and proposal set.

4.3.2 Relations between arguments

The framework defined in the previous section has been proposed to perform hypothesis

discrimination tasks among sets of agents in distributed fault diagnosis processes. Thus,

those agents have to generate and evaluate arguments to try to conclude the process with

the most reliable diagnosis conclusion. That evaluation process is based on the relations

between every pair of arguments which are exposed below.

To explain the relations between arguments, we define a pair of agents, Agi and Agj , can

agree or disagree, because they have different background knowledge and different views of

the global problem when they are diagnosing in federated domains. Hence, if Agi, generates

an argument, argi, and Agj generates another as response, argj ; there can be two main types

of relation between those arguments: a support relation, if both agents agree, or an attack

relation, if not. Moreover, there are different types of attacks. But, before starting with the

definition of those attack types, we must define the relations of similarity and preferability

between two statements, α and β, generated by two different agents about a specific variable.

These concepts of similarity and preferability are explained in Sections 4.3.2.1 and 4.3.2.2

respectively. Finally, the types of attacks between arguments are exposed in Section 4.3.2.3.

4.3.2.1 Similarity

We define Similarity between statements as a measure of equivalence between them. If two

statements are similar enough, we say they are equivalent for the fault diagnosis task. To

measure the similarity between two statements, we process those statements as probability

distributions that represent the possible states of the variable vi, as defined in Section 4.3.

100

4.3. B2D2 ARGUMENTATION FRAMEWORK

Thus, similarity will be used to know if two agents agree or disagree about the state of a

specific variable, i.e. if their statements are similar enough or not. Strictly, two statements

are equal if both have equal probabilities for every state of a variable p(i, j). As agents have

their own causal models, it is not probable that two statements from different agents have

equal probabilities. For that reason, the definition of similarity between statements includes

some permissibility to allow that agreement was found with more flexibility. This reduces

the number of arguments needed to achieve a reliable conclusion. Moreover, for our fault

diagnosis task, we do not need a strict equity between statements. Two similar statements

are tolerable agreement between agents to continue with the argumentation process.

Therefore, to measure the similarity of two statements α, β about the same variable vi,

we need to apply a distance function, ∆, to get a numeric measure, ∆(α, β) ∈ R, about
how similar two statements are between them to know if agents agree or disagree. This simi-

larity can be measured using different distance metrics, such as Euclidean distance, Hellinger

distance, Kullback-Leiber distance, J-divergence distance or Cumulative Distribution Func-

tion (CDF) distance. For a review of distance metrics between probability distributions,

please refer to the work of Koiter (2006). For our fault diagnosis field, we pick the Hellinger

distance (Nikulin, 2002) which offers the following interesting features. Firstly, it can be

normalised to bound the metrics in [0, 1], which simplify its processing in contrast with

other unbounded metrics, such as Kullback-Leiber distance or J-divergence. Secondly, it

does not require any order sequence among the states of a variable in contrast with CDF

distance that is targeted towards ordinal distributions. Thirdly, it is symmetric, in contrast

with others, such as Kullback-Leiber distance. That is an interesting feature do not require

any order between statements to measure the distance between them. Because similarity

must be a symmetric measure. Finally, it is more sensitive near 0 and 1, in contrast with

Euclidean distance. That is a desirable feature because probabilities near to those values

in a statement represents that an agent is almost sure that a variable is (p(i, j) ≈ 1) or is

not (p(i, j) ≈ 0) in a given state. This is interesting because a statement that is more sure

about the state of a variable should be less similar than other less certain.

Then, with the normalised Hellinger distance (Nikulin, 2002), shown in Definition 4.3.2.1,

chosen to measure the similarity between two statements, ∆(α, β) ∈ R, we define a thresh-
old th = [0, 1] to establish the bound distance between two statements to be classified

as similar enough. Therefore, two statements α, β about the same variable vi are similar

enough, if the distance between them is below the threshold, ∆(α, β) < th.

Definition 4.3.2.1 Given two discrete probability distributions P = (p1, ..., pk) and Q =

(q1, ..., qk), their normalised Hellinger distance is defined as:

101

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

H(P,Q) = 1√
2

√
k∑
i=1

(
√
pi −

√
qi)2

Based on this definition, a threshold value near to 0 would imply a strict behaviour, as

agents will only agree when the distance between them is really narrow. This would increase

the number of arguments to achieve a conclusion. In contrast, a threshold value near to 1

would entail a permissive behaviour, as agents would almost always agree, which would

reduce the duration of the argumentation. But, any convergence would not be achieved.

Accordingly, a threshold value between the two bounds should be adjusted depending on

the preferences between these two behaviours. Anyway, a value above 0.5 would have no

sense to get agreement at the end of the argumentation, because it would diverge the beliefs

of the agents instead to converge to a common conclusion. Thus, the threshold value should

be between 0 and 0.5 to foster agreements, 0 < th < 0.5.

Finally, we formally define similarity as follows:

Definition 4.3.2.2 Given two coherent statements α, β about the same variable vi, a dis-

tance function ∆ and a threshold th, α is similar to β, and viceversa ⇐⇒ ∆(α, β) < th.

Otherwise, they are not similar.

4.3.2.2 Preferability

We define Preferability between two statements as an order of preference between them.

As the goal of the system is to diagnose fault root causes, a statement that contains more

reliable information about a variable is preferred against other. As mentioned above, when

two statements are not similar enough, i.e. they are not equivalent, we can define an order

of preference between them. In other words, we can define how to pick a statement among

a set.

As mentioned previously, a statement is composed by a set of probabilities p(i, j) that a

variable is a given state. Those probabilities represent the agent’s degree of certainty about

the state of a given variable. In other words, a probability p(i, j) ' 1 represents the agent

is almost sure the variable vi is in the state sj . Contrarily, a probability p(i, j) ' 0 means

the agents is almost sure the variable is not in that state. For the fault diagnosis task,

that certainty is more valuable than other less certain probabilities, such as p(i, j) ' 0.5.

Thus, we would prefer the statement that represent the highest level of certainty to get more

certain conclusions. Notice that this preference is valid because we are considering all agents

have a common goal of diagnosing faults and they cooperate to achieve it. In competitive

102

4.3. B2D2 ARGUMENTATION FRAMEWORK

environments, every agent could have different preferences and this decision could be made

based on different criteria. We formally define preferability as follows:

Definition 4.3.2.3 Given two coherent statement α, β about the same variable vi with their

respective sets of probabilities Dα,Dβ , α is preferred to β ⇐⇒ ∃p(i, j) ∈ Dα | ∀p(i, k) ∈
Dβ ∧ p(i, j) > p(i, k).

Finally, the orderability of statements provided by this preferability property is an inter-

esting feature to solve conflicts and to choose the most preferable statement of a set. This

property is used in the conflict resolution strategies exposed in Section 4.4.3.

4.3.2.3 Types of Attacks

This section defines the different type of attack relations that can exist between two ar-

guments, argj and argi, based on the concepts of similarity and preferability. We define

three different attack types if agents disagree on a specific type of statement: discovery,

clarification and contrariness.

Definition 4.3.2.4 Given two arguments argi and argj, generated by agents Agi and Agj,

respectively. If argj contains any new evidence, stvi |vi ∈ obs, about the diagnosis in progress

that is not in argi, we define that argj is a discovery for argi.

If argj is a discovery for argi, argi is discarded and agent Agi should generate a new

argument including the new evidences. The discovery is the most basic attack type because

it modifies the ground of the reasoning process. Hence, if the ground (the evidences) changes,

the output of the inference process (the conclusions) could change too.

Definition 4.3.2.5 Given two arguments argi and argj, generated by agents Agi and Agj,

respectively. When argj contains a proposal about the variable, stvi |vi ∈ obs, and argj

contains an assumption of that variable, if both statements are not similar and the proposal

is preferred to the assumption, we define that argj is a clarification for argi.

If argj is a clarification for argi, argi is discarded and agent Agi should accept the

proposal and generate a new argument including it. A clarification attack tries to offer a

more certain information about an unknown variable represented in an assumption.

103

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

Definition 4.3.2.6 Given two arguments argi and argj, generated by agents Agi and Agj,

respectively. When argj contains a proposal that contains a possible conclusion of the di-

agnosis process, stvi |vi ∈ frc, and argj contains other possible conclusions, stvj |vj ∈ frc;
if both conclusions are not similar enough, we define that argj is a contrariness for argi,

and vice versa.

As no statement is discarded in this attack type, both agents stop of arguing until new

discoveries or clarifications appear during the argumentation process. This type of attack

is resolved globally at the end of the argumentation process of the coordination protocol as

shown in Section 4.4.

Finally, we define that an argument supports another one if no attack relation exists

between them. If a support relation exists among all pairs of non-discarded arguments,

a global agreement has been achieved. But, as every agent has its own domain knowledge

synthesised in the Causal Model, we cannot ensure a global agreement for any argumentation.

Thus, a conflict resolution mechanism must should be applied if required, as proposed in

the protocol shown in Section 4.4.3.

4.4 B2D2 Coordination Protocol

This section proposes a coordination protocol for distributed autonomic fault diagnosis in

federated domains, named B2D2 Coordination Protocol. In this protocol, there are two

different agent roles, namely the Argumentative role and the Manager role. An argu-

mentative agent is responsible to generate and process arguments. A manager agent is

responsible (i) to establish a coalition of argumentative agents to argue, (ii) to decide when

an argumentation process has finished and (iii) to figure out the conclusion of the argumen-

tation process. In our case, a B2D2 Agent can play these roles following the argumentation

framework proposed in Section 4.3. A simplified overview of an Argumentative B2D2 Agent

is shown Figure 4.1. The figure includes the argumentative model and the argumentative

capability of the extended B2D2 Agent Architecture, which are exposed in Section 4.5.

The proposed protocol has three different phases1, as shown in Figure 4.2. The initial

phase for the formation of a group of agents capable to reach a reliable conclusion for a

specific diagnosis case is called Coalition Formation Phase, as explained in Section 4.4.1.

After the argumentation coalition is established and every agent knows the rest of the

1For the sake of clarity, the diagrams included in the following subsections follows the Business Process

Model and Notation (BPMN) 2.0 standard specification.

104

4.4. B2D2 COORDINATION PROTOCOL

Figure 4.1: Overview of B2D2 Argumentative Agents in Federated Domains.

constituents, the Argumentation Phase starts, as exposed in Section 4.4.2. Finally, when a

manager agent decides that the argumentation is finished, the arguments are analysed to

extract a final conclusion during the Conclusion Phase, as shown in Section 4.4.3.

Figure 4.2: Phases of the B2D2 Coordination Protocol.

4.4.1 Coalition Formation Phase

This phase starts when an Argumentative agent (Initiator agent) initiates a new process

to diagnose an anomaly or a symptom detected in the supervised network elements. This

Argumentative agent sends a Coalition Formation Request message to the Manager agent.

This message includes data to identify the problem domain. Then, the Manager agent

broadcasts the message to the rest of the Argumentative agents as a Coalition Invitation

message. When an agent receives that invitation, it decides whether to join the coalition or

not. If it decides to join, it must respond to the invitation. Otherwise, it ignores it. This

105

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

decision is based on the local private knowledge of the agent. In other words, if the agent

can offer any relevant information about the problem domain, it would accept the invitation.

Otherwise, it would not.

A period of time is specified as deadline to response the invitation to avoid deadlocks

while the Manager agent is waiting responses from all Argumentative agents. At this way,

the Coalition Invitation message can be broadcasted. After the deadline, the Manager agent

establishes the coalition with all agents that accepted the invitation and the Initiator agent.

Finally, it broadcasts a Coalition Established message with the complete list of agents that

joined the coalition. With this last message, the Coalition Formation Phase is finished.

Figure 4.3 shows a diagram of this phase.

Figure 4.3: Coalition Formation Phase.

4.4.2 Argumentation Phase

This phase starts when the Coalition Established message, sent in the previous phase, is re-

ceived by the Initiator Agent who broadcasts the initial argument to the coalition. After

this step, this agent acts as any other Argumentative agent. Later, every agent in the coali-

tion receives that initial argument and analyses it to find any attack relation following the

reasoning process exposed in Section 4.5.2.3. After an argument is processed, the options

of an argumentative agent are the followings: (i) If a discovery or a clarification relation

is found, the agent generates a new updated argument. (ii) Alternatively, if a contrariness

106

4.4. B2D2 COORDINATION PROTOCOL

relation is found, it looks for new information from the environment to add it to the argu-

mentation process. (iii) Finally, if the received argument support the agent beliefs, it can

wait until other argument is received.

During this Argumentation Phase, an agent can receive a message that contains an

argument while it is processing or generating other one received previously. In that case, the

agent should analyse the arguments in reception order. Afterwards, it would generate only

one argument as response when all incoming arguments have been processed. This strategy

reduces the number of arguments generated during the argumentation dialogue. This makes

the argumentation process requires less messaging and, consequently, less computational

resources.

As shown in Figure 4.4, agents broadcasts any generated argument to all coalition mem-

bers, including the Manager agent. At this way, we ensure that any agent receive all argu-

ments to attack or support any of them during the argumentation dialogue. Every time the

Manager agent receives an argument, it restart a timer that will be used to know when the

argumentation is finished. When all agents keep in silence for a time longer than the silence

timeout, the Manager decides this phase is done and starts the Conclusion Phase. In other

words, the Argumentation Phase continues until every agent has proposed its conclusions to

the diagnosis case under consideration and it does not receive any new argument that makes

an agent to change those conclusions. It is important to remark that Argumentative agents

must be able to process and generate arguments in a time lower than the silence timeout,

to ensure the Manager agent does not finish this phase prematurely. Notice that the end of

the Argumentation Phase can be delayed in time depending on the number of agents and

their configuration (see the notion of similarity threshold and its impact in the permissibility

of the agents in Section 4.3.2). To avoid this phase would be too time consuming, the Man-

ager agent can be configured to allow the coalition member agents to argue during a time,

and then the Conclusion Phase starts in any case, even if the Argumentation Phase is not

finished. Anyway, the Manager agent sends a message to the coalition members to notify

that the argumentation process has finished including the conclusions of the argumentation

process.

4.4.3 Conclusion Phase

After the Argumentation Phase is done, the Manager agent must process arguments which

would have not been discarded due to attacks and extract a final conclusion, as shown in

Figure 4.5. We name that set of arguments as candidate arguments set. Based on

the attack types of the argumentation framework proposed in Section 4.3, only one type

107

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

Figure 4.4: Argumentation Phase.

of attack relation can be among arguments of this set: the contrariness relation. In other

words, every argument of the set contains a proposal about a possible fault root cause. If

some contrariness is found between two arguments, we say that a conflict is found. If

some conflict is found while analysing the candidate arguments set, different criteria can be

applied to resolve those conflicts and select a final conclusion. Contrarily, if no conflict is

found, the conclusion all agents agree on is selected as the final conclusion. After conflicts

have been resolved, a final conclusion is obtained as the result of the argumentation dialogue.

We propose two different conflict resolution strategies for this final phase.

• Most Popular Conclusion: This strategy picks as final conclusion the most popular

conclusions in the candidate arguments set.

• Most Confident Conclusion: This strategy picks as final conclusion the conclusions

with highest confidence in the candidate arguments set.

• Weighted Conclusion: This strategy calculate the average confidence value among all

arguments with the same conclusion and picks as final conclusion, the one with highest

average confidence value.

Finally, the Manager agent sends the conclusions of the distributed diagnosis to all

Argumentative Agents to notify them end that the argumentation is finished.

108

4.5. B2D2 ARGUMENTATIVE AGENT ARCHITECTURE

Figure 4.5: Conclusion Phase.

4.5 B2D2 Argumentative Agent Architecture

This section proposes an extension of the B2D2 Agent Architecture presented in the previous

chapter. The aim of this extension is to include the argumentative capability in the agent

architecture. That capability is used to perform a distributed hypothesis discrimination

process cooperatively among agents, as exposed in the coordination protocol presented in

Section 4.4. To include the proposed coordination mechanism in the knowledge models of

the agent, an argumentation model is presented in Section 4.5.1. Later, the formalisation of

the argumentative capability for a B2D2 Argumentative Agent is presented in Section 4.5.2.

4.5.1 Argumentation Model

The model proposed in this section covers the concepts required to enable the execution

of a distributed fault diagnosis process using the proposed argumentation framework. This

Argumentation Model has been designed to enable the proposed B2D2 Agent Architecture

to carry out a distributed diagnosis following the steps defined in the proposed coordination

protocol. The developed model is formalised as an ontology which extends the proposed

B2D2 Diagnosis Ontology presented in the previous chapter. The main classes of the ontol-

ogy are shown in Figure 4.6. The most important concept of the model2 is argument, which

is composed by three different types of statements: evidences, assumptions and proposals.

While, evidences are associated with observations gathered from network objects, both as-

sumptions and proposals are inferred using the Causal Model of B2D2 Agents. Those agents

2Notice that all the italic concepts refer to classes of the proposed Argumentation Model to simplify the

explanations.

109

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

conform coalitions to discuss trough an argumentation process to perform a distributed di-

agnosis. Notice that some of these concepts are equivalent to some concepts in the B2D2

Diagnosis Ontology, such as network object, but other ones extend or are related with oth-

ers, such as distributed diagnosis which is a tpye of diagnosis or evidence which is a type of

statement directly related with the concept of observation. For further details, please refer

to the complete argumentation model3.

Figure 4.6: Main classes of the Argumentation Model.

To illustrate the use of the proposed argumentation model, Table 4.5 shows a simplified

example which includes a set of individuals of the ontology4 as explained below. In the

example, we can find an argument (lines 10-18) which is composed by three sets of state-

ments: three evidences (lines 12-14), three assumptions (lines 15-17) and one proposal (line

18). To perform the argumentation process, the argumentative agent which generated that

argument (line 11) is included in a coalition (lines 20-23) conformed by three argumentative

agents. That coalition is associated with a specific argumentation (lines 25-27) process which

is managed by a manager agent (line 26). Moreover, one of the proposals which compose

3B2D2 Argumentation Ontology Specification: http://www.gsi.dit.upm.es/ontologies/b2d2/

argumentation
4Notice that all the italic concepts refer to classes of the proposed Argumentation Model to simplify the

explanations.

110

http://www.gsi.dit.upm.es/ontologies/b2d2/argumentation
http://www.gsi.dit.upm.es/ontologies/b2d2/argumentation

4.5. B2D2 ARGUMENTATIVE AGENT ARCHITECTURE

the argument is shown in the example too (lines 29-31). That proposal has an associated

probability distribution (lines 33-35) for a specific variable of the Causal Model (line 34)

which represents a possible fault root cause, as exposed in Section 4.3.

1 @prefix pr-owl:

2 <http://www.pr-owl.org/pr-owl.owl#>

3 @prefix b2d2-diag:

4 <http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis/ns#> .

5 @prefix b2d2-arg:

6 <http://www.gsi.dit.upm.es/ontologies/b2d2/argumentation/ns#> .

7 @prefix b2d2-argex:

8 <http://www.gsi.dit.upm.es/ontologies/b2d2/arg-example/ns#> .

9

10 b2d2-argex:argument-003 a b2d2-arg:Argument ;

11 b2d2-arg:isGeneratedBy b2d2-argex:agent-001 ;

12 b2d2-arg:hasEvidenceStatement b2d2-argex:evidence-005 ,

13 b2d2-argex:evidence-006 ,

14 b2d2-argex:evidence-007 ;

15 b2d2-arg:hasAssumptionStatement b2d2-argex:assumption-001 ,

16 b2d2-argex:assumption-002 ,

17 b2d2-argex:assumption-003 ;

18 b2d2-arg:hasProposalStatement b2d2-argex:proposal-003 .

19

20 b2d2-argex:coalition-001 a b2d2-arg:Coalition ;

21 b2d2-arg:hasArgumentativeAgent b2d2-argex:agent-001 ,

22 b2d2-argex:agent-002 ,

23 b2d2-argex:agent-003 .

24

25 b2d2-argex:argumentation-001 a b2d2-arg:Argumentation ;

26 b2d2-arg:managedBy b2d2-argex:agent-002 ;

27 b2d2-arg:hasCoalition b2d2-argex:coalition-001 .

28

29 b2d2-argex:proposal-003 a b2d2-arg:Proposal,

30 b2d2-arg:Statement ;

31 b2d2-arg:hasProbDist b2d2-argex:probdist-proposal-003 .

32

33 b2d2-argex:probdist-proposal-003 a pr-owl:PR-OWLTable ;

34 pr-owl:isProbDistOf b2d2-argex:fault-root-cause-variable-002 ;

35 pr-owl:hasProbAssign b2d2-argex:probassign-005 .

Table 4.5: Application example for the Argumentation Model.

111

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

In conclusion, this section proposes an Argumentation Model which covers the concepts

required to perform a distributed autonomic fault diagnosis using the argumentation frame-

work proposed in Section 4.3. It is formalised as an OWL ontology which extends the

Diagnosis Model presented in the previous chapter to enable the argumentative capability

in a B2D2 Agent.

4.5.2 Argumentative Capability

The application of the proposed coordination mechanisms by a B2D2 Agent requires an

extension of the agent architecture presented in Chapter 3. That extension to enable the

argumentation capability is presented in this section to formalise the B2D2 Argumentative

Agent Architecture. This extension covers all tasks mentioned in the coordination protocol

exposed in Section 4.4, which makes a B2D2 Argumentative Agent fully compatible with

that protocol. Those tasks are formalised in the following subsections using the AgentSpeak

language (Rao, 1996) as follows. Firstly, Section 4.5.2.1 exposes how an argumentative

agent can start a distributed diagnosis process extending the plans of the B2D2 Agent

exposed in the previous chapter. Section 4.5.2.2 explains how an agent performs the coalition

formation task. Section 4.5.2.3 presents the evaluation of arguments generated during the

argumentation phase to perform the distributed hypothesis discrimination task. Finally,

Section 4.5.2.4 shows the task to get the final conclusion of the diagnosis.

4.5.2.1 Initiating argumentation processes

The detection of a symptom triggers the diagnosis process exposed in the previous chapter

for a non-argumentative B2D2 Agent. After the generation of a hypothesis set, the B2D2

Agent actives a goal to look for new evidences to discriminate the most probable cause of

fault among its hypothesis. At this point, the argumentative capability can be included in

the reasoning cycle of the agent. As shown in Table 4.6, if an agent detects it is not able

to collect some evidences due to technical restrictions (line 4), such as they are allocated

in other domains, it starts a distributed diagnosis process as Initiator agent, as exposed in

the coordination protocol explained in Section 4.4. Then, the Initiator agent looks for a

Manager agent (line 6) and later, sends a Coalition Formation Request message (line 7) and

waits until the coalition is established (line 8).

112

4.5. B2D2 ARGUMENTATIVE AGENT ARCHITECTURE

1 /* Initiating a Distributed Hypothesis Discrimination Task - Plans */

2 // Start argumentation if required

3 +!lookForEvidences(actions,networkElements) :

4 restrictedAccessToDomain(domain,networkElements,evidences)

5 <-

6 findArgumentationManager(actors);

7 send(manager,coalitionRequest);

8 !wait(coalitionEstablished).

Table 4.6: Initiating an Argumentation for Hypothesis Discrimination Task.

4.5.2.2 Conforming coalitions

To enable the capabilities required to play the Manager role, an additional initial goal must

be added to the goal base of the agent, as shown in Table 4.7 in line 2. That makes when the

Manager agent receives a Coalition Formation Request (line 8), it checks available actors

(line 10) and broadcast a Coalition Invitation message (line 11). Then, the Manager agent

establishes the deadline to this coalition formation phase (line 12) and waits responses (line

13). It starts receiving Invitation Acceptance messages (line 16) and add those argumentative

agents to the coalition (line 18) until the deadline is over (line 20). Then, the coalition is

conformed (line 22) and the Coalition Established message is broadcasted (23). At this

point, the Manager agent starts to check if the argumentation process is finished (line 24),

as exposed in Section 4.4.2.

Similarly, a new initial goal for the Argumentative agent must be included in the goal

base to join coalitions (line 27), as shown in Table 4.7. This goal represents the desire to

join coalitions to diagnose faults in a cross-domain scenarios. The agent listen incoming

Coalition Invitation messages (line 28) and, based on its domain knowledge, it decides to

join the coalition (lines 32-36) or to ignore the invitation (lines 37-40).

4.5.2.3 Processing arguments

After the coalition is established and all its constituents have been properly notified, the

Initiator agent sends the initial argument and the reminder Argumentative agents waits

until they receive that argument. For explanation purpose, we are going to label the initial

argument generated by the Initiator agent as arg0. To build that argument, the agent feeds

its Causal model with a set of evidences, i.e. variables the agent does not know certainly

113

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

1 /* Initial goal */

2 !listenRequests(actors,domains).

3 !listenInvitations(coalition,domains).

4

5 /* Conforming coalitions - Plans */

6 // Manager listens for coalition formation requests

7 +!listenRequests(actors,domains) :

8 incoming(coalitionRequest)

9 <-

10 check(actors,domains);

11 broadcast(coalitionInvitation);

12 set(deadline);

13 !waitResponses(coalitionInvitation)

14 // Wait until deadline is reached

15 +!waitResponses(coalitionInvitation) :

16 incoming(inviationAcceptance) & not expired(deadline)

17 <-

18 addToCoalition(agent).

19 +!waitResponses(coalitionInvitation) :

20 expired(deadline)

21 <-

22 conform(coalition);

23 broadcast(coalitionEstablished);

24 !checkArgumentationIsFinished(coalition).

25

26 // Argumentative agent listens for coalition invitations

27 +!listenInvitations(coalition,domains) :

28 incoming(coalitionInvitation)

29 <-

30 !decideIfJoin(coalition,domains).

31 // Decice if join the coalition or not

32 +!decideIfJoin(coalition,domains) :

33 includesmyDomain(domains);

34 <-

35 join(coalition);

36 !wait(coalitionEstablished).

37 +!decideIfJoin(coalition,domains) :

38 not includesmyDomain(domains);

39 <-

40 ignore(coalitionRequest).

Table 4.7: Conforming coalitions for an Argumentation process.

114

4.5. B2D2 ARGUMENTATIVE AGENT ARCHITECTURE

while observes the network. After, it infers a set of assumptions, i.e. variables the agent

unknown, and a set of possible conclusions, i.e. proposals of possible fault root causes.

Inferring these data with the Bayesian inference process, the agent builds the argument

generating statements for the variables V of the problem domain, as exposed in Section 4.3.

Then, the agent broadcasts the argument to the coalition and waits any response. After

this point, the Initiator agents acts as any other Argumentative agent in the coalition.

This process is formalised in Table 4.8 for Initiator agent (lines 3-8) and the reminder

Argumentative agents (lines 9-12).

1 /* Initiating the Argumentation Phase - Plans */

2 // Sends the initial argument

3 +!wait(coalitionEstablished) :

4 incoming(coalitionEstablishedNotification) & myself(initiator)

5 <-

6 generate(argument);

7 broadcast(argument,coalition);

8 !wait(incomingArguments).

9 +!wait(coalitionEstablished) :

10 incoming(coalitionEstablishedNotification) & not myself(initiator)

11 <-

12 !wait(incomingArguments).

Table 4.8: Initiating the argumentation phase.

The reasoning process to evaluate arguments is formalised in Table 4.9. When an incom-

ing argument, arg1, is received by an Argumentative agent (line 4), it is compared with the

argument that the agent would generate at that moment, arg′ (line 6). This is because the

last argument generated by the agent, arg0, could be outdated as new evidences could be

detected or agent’s beliefs could have changed while it was waiting. Thus, the agent builds

arg′ and look for any relation between arg1 and arg′ as explained below.

• If a discovery relation is detected, the Causal Model of the agent is fed again with the

updated evidence set including the new evidences found in the incoming argument.

Then, a new argument which condenses the current agent’s beliefs about the diagnosis

case is generated and sent to continue the argumentation (line 14-18).

• If a clarification relation is detected, the Causal Model is fed again with the updated

evidence set including the clarifications as soft-evidences (Pan et al., 2006). Then, a

new argument is generated and sent with the updated assumption (line 14-18).

115

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

• If a contrariness relation is found, the agent has to look for new information to generate

the next argument(line 20-25). If no information is found, no argument is generated.

• If none attack relation is found, the received argument arg1 supports the agent’s ar-

gument arg′. Then, no new argument is generated because both agents agree (lines

10-12).

1 /* Reasoning during the Argumentation Phase - Plans */

2 // Sends the initial argument

3 +!wait(incomingArguments) :

4 incoming(argument)

5 <-

6 analyse(argument);

7 !decideNextAction(argumentRelations).

8 // Decide the next action of the agent

9 +!decideNextAction(argumentRelations) :

10 support(argument)

11 <-

12 !wait(incomingArguments).

13 +!decideNextAction(argumentRelations) :

14 discovery(argument) | clarification(argument)

15 <-

16 generate(argument);

17 broadcast(updatedArgument,coalition);

18 !wait(incomingArguments).

19 +!decideNextAction(argumentRelations) :

20 contrariness(argument)

21 <-

22 !lookFor(newInfo);

23 generate(argument);

24 broadcast(updatedArgument,coalition);

25 !wait(incomingArguments).

Table 4.9: Processing arguments.

The information gathering process when a contrariness (line 16) is found is explained

below. The agent starts looking for new evidences, i.e. certain knowledge observed from the

network. If new evidences are found, the Causal Model is fed again with the updated evidence

set and a new argument is generated. If not; the agent checks if any of the assumption

contained in arg′ is preferred to the assumption about the same variable in arg1. If it is,

116

4.5. B2D2 ARGUMENTATIVE AGENT ARCHITECTURE

the agent generates a new argument with the preferred assumption as a proposal. Thus,

when the other agent receives the generated argument, it will find a clarification relation

and, at that point both agents will agree about the status of that variable. Otherwise, if no

new evidence is found and no assumption can be clarified, the argumentative agent which

is processing those arguments does not respond with any argument because both agents

agree about the evidences and the assumptions. In other words, they agree in the ground

of the reasoning process, but they disagree about the conclusion. Thus, the argumentative

agent continues looking for new observations that could change the conflictive state of the

argumentation until the argumentation finishes.

Notice that an agent must look for attack relations in the exposed order: discovery, clar-

ification and contrariness. This is because a discovery found between two arguments. That

gives rise to a new argument and any clarification or contrariness relation can be discon-

sidered because the previous argument is outdated and replaced by the new one. The same

situation happens with the clarification relation. If a clarification is found, any contrariness

relation is no here longer valuable because the argument is discarded and replaced by a new

one.

4.5.2.4 Concluding argumentation processes

This control task of theManager agent is formalised in Table 4.10. Since the initial argument

is sent by the Initiator agent, the Manager agent is supervising the argumentation process

(lines 3-7) to decide to finish it if the silence timeout is exceeded, as explained in Section 4.4.

Finally, when it decides the argumentation phase finishes (line 8-9), diagnosis conclusions

are extracted (line 11) solving any possible conflict among arguments (line 12). Then,

the coalition constituents are notified (line 13) and the Manager agent returns to listen

for coalition formation request (line 14). After the Argumentation Finished notification

is received, argumentative agents finish the argumentation phase and continue monitoring

their network domains to detect any future fault (lines 17-22).

117

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

1 /* Concluding the Argumentation process - Plans */

2 // Manager agents supervise the argumentation process.

3 +!checkArgumentationIsFinished(coalition) :

4 incoming(argument) & not expired(silenceTimeout)

5 <-

6 reset(silenceTimeout);

7 !checkArgumentationIsFinished(coalition).

8 +!checkArgumentationIsFinished(coalition) :

9 expired(silenceTimeout)

10 <-

11 getCondidateSet(arguments);

12 resolveConflicts(candidates);

13 broadcast(conclusion,coalition);

14 !listenRequests(actors,domains).

15

16 // Return to monitor the network

17 +!wait(incomingArguments) :

18 incoming(conclusion)

19 <-

20 finish(diagnosis);

21 !listenInvitations(coalition,domains).

22 !monitor(networkElements).

Table 4.10: Concluding the distributed Hypothesis Discrimination Task.

118

4.6. CASE STUDY

4.6 Case Study

This section presents a case study to illustrate the operation of a B2D2 ARgumentative

Multi-Agent System (BARMAS) in a federated scenario. In this case study, the scenario is

composed of several federated networks that offer an enterprise service similar to the one

offered by Telefónica O2 Czech Republic, shown in the evaluation of the non-argumentative

B2D2 Agent in the previous chapter. An example of a distributed fault diagnosis process

is used to illustrate the application of a BARMAS using the B2D2 Coordination Protocol.

Finally, the proposed argumentation framework has been evaluated measuring the correct-

ness of the conclusion obtained after the argumentation process. This evaluation process

has been performed in a simulation environment in which the conditions of federated do-

mains were reproduced to assess the validity of the proposed argumentation framework as

coordination mechanism.

The rest of this section is structured as follows. Firstly, Section 4.6.1 exposes the feder-

ated network scenario of this case study where an cross-domain enterprise service is running.

Section 4.6.2 presents the argumentative agents involved in the case study. Section 4.6.3

exposes a simplified distributed fault diagnosis example using the proposed coordination

protocol. Finally, Section 4.6.4 shows the results of the evaluation process.

4.6.1 Federated Network Scenario

This section exposes a scenario where several telecommunication operators are offering a

cross-domain service for international companies. The service allows geographically dis-

tributed entities of a company to be connected as if they were physically in the same network

(i.e. a VPN service). In this federated scenario, every operator company manages its own

network. Under a non-autonomic approach, human operators of every company involved in

this cross-domain service should cooperate to handle any possible fault which would hap-

pen in the mentioned service. Even though we are considering an autonomic approach, we

find the same situation: several agents have to cooperate to carry out fault diagnosis tasks.

Initially, we could consider that this multi-agent approach is not required, that a single

fault management system could perform a diagnosis process following the B2D2 Agent Ar-

chitecture. But, considering the complexity of the Future Internet and other non-technical

constrains, such as data privacy or business interests, that is impracticable. Therefore, we

consider a federated scenario where B2D2 Argumentative Agents are responsible of specific

domains and cooperate among them to perform cross-domain diagnoses. Figure 4.7 shows

an exemplary agent system deployment in different regions of several European countries.

119

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

Every agent (presented as blue dots in the figure) is responsible to diagnose potential faults

in its own network domain (i.e. in its geographical region).

Figure 4.7: Agent deployment in motivational scenario.

For exemplification purpose, we are going to consider a simplified version of this enter-

prise service. Basically, the service under consideration allows geographically distributed

entities of a company to be connected as if they were physically in the same network. To

get this feature, a set of complex management tasks must be performed. But we are going

to consider a simplified service assuming that only a set of dynamic translations of Internet

Protocol (IP) addresses must be done and some registers must be updated with the proper

information. Then, we will omit the required low-level configuration tasks. In this simplified

scenario, we consider only two offices of a company connected by the described service, one

of them in Prague, Czech Republic, and the other one in Madrid, Spain, and that connection

is routed through Lyon, France.

4.6.2 Deployment of Argumentative Agents

Following the protocol proposed in Section 4.4, three different Argumentative Agents are

deployed in the OSS of their respective cities and any of them can adopt the Manager role

if it is required. As each agent can interact with other agents in other diagnosis processes

of that service, such as Rome-Paris, Madrid-Berlin, etc., every agent has its own private

background knowledge based on their own previous experience. In other words, every agent

has its own Causal Model to reason under uncertainty based on their experience of past

diagnosis cases. We can name those agents as: Agent M (in Madrid), Agent P (in Prague)

and Agent L (in Lyon), as depicted in Figure 4.8. These agents are monitoring their networks

and the interactions among them when the VPN service is running. In this simplified

scenario, we consider a translation service running in a server in Lyon (Agent L domain)

120

4.6. CASE STUDY

and two registration services running in Prague (Agent P domain) and in Madrid (Agent M

domain). The translation service is the core of this scenario. It is a global IP translation

service for many connections of different entities. In contrast, the registration services are

two local lists (for Prague and Madrid, respectively) that contain all IP addresses allowed

to use the VPN service.

Figure 4.8: Simplified overview of the example of the federated network scenario.

4.6.3 Distributed Diagnosis Example

This section presents a worked example of how a set of three B2D2 Argumentative Agents

performs a distributed fault diagnosis process. For this example, we consider the set of

variables V which defines the problem domain and their respective possible states are the

ones shown in Table 4.115. We consider that all agents have a similarity threshold value

equals to 0.2 and they calculate it using the Hellinger distance (see Section 4.3.2). For

further explanations of this concepts, please see Section 4.3.

The distributed diagnosis process starts when an anomaly is detected by Agent P in the

connection between those offices (Prague-Madrid). That anomaly is an unknown source IP

address attempting to connect with a server in Prague. Then, the Coalition Formation

Phase starts. It generates the Coalition Formation Request message, but no Manager agent

is known. So, Agent P adopts the role of Manager agent and sends a Coalition Invitation

message. After the coalition formation period, two agents (Agent M and Agent L) have

accepted the invitation. Then, Agent P sends the Coalition Established message to Agent

L and Agent M. Finally, the argumentation coalition is established with three constituents

and the protocol continues to the next phase.

At the begging of the Argumentation Phase, Agent P generates and broadcasts the

initial argument. That initial argument contains the information shown in Argument 1.

It has three evidences that represent: the source IP address is unknown ({ SA:U }), the
5Notice that all arguments exposed below for this worked example use the contracted nomenclature

exposed in Table 4.11 to facilitate the reading.

121

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

Variable States

SourceMachineUp (SU)
True (T)

False (F)

DestinationMachineUp (DU)
True (T)

False (F)

SourceIPAddress (SA)
Known (K)

Unknown (U)

DestinationIPAddress (DA)
Known (K)

Unknown (U)

AllowedIPListsRecentlyUpdated (AR)
True (T)

False (F)

TranslationIPListRecentlyUpdated (TR)
True (T)

False (F)

FaultRootCause (RC)

AllowedIPListsOutDated (A)

DuplicatedIPInTranslationTable (D)

WrongTranslation (W)

Table 4.11: Variables of the Problem Domain for the worked example.

122

4.6. CASE STUDY

destination IP address is known ({ DA:K }) and the destination machine is up and ready

to offer its services ({ DU:T }). While those three variables are known with certainty,

other set of variables are uncertain and admissible to discuss among all agents. That set

is composed by the assumptions that represent the uncertainty of the belief of Agent P

as a probability distribution. Those probability distribution are inferred using the Causal

Model of Agent P, based on its background knowledge. The output of the inference process

offers different probabilities for each variable: if the source machine is up or is down ({

SU:(T=0.7/F=0.3) }), if the list that contains all IP addresses allowed to use the service

has changed recently ({ AR:(T=0.85/F=0.15) }) or if the translation service used to route

has changed recently ({ TR:(T=0.4/F=0.6) }). Thus, based on the available evidences and

those assumptions, Agent P proposes the most probable fault root cause is the list of allowed

IP addresses is outdated and that proposal is added to the argument as a coherent statement

({ RC:(A=0.7/D=0.05/W=0.25)}).

Argument 1 Sender: Agent P

Earg1 →{SA=U:DU=T:DA=K}
Aarg1 →{AR=(T=0.85/F=0.15):SU=(T=0.7/F=0.3):TR=(T=0.4/F=0.6)}
Parg1 →{RC=(A=0.7/D=0.05/W=0.25)}

That initial argument is received by the rest of the constituents of the coalition (Agent L

and Agent M). Then, Agent M processes that argument getting the evidences and comparing

its own assumptions with the assumptions sent by Agent P in the initial argument. As Agent

M knows a new evidence useful for this diagnosis case, it increases the evidence set with a

new piece of information: the list of allowed IP addresses has not been updated recently ({

AR:F }). Then, Agent M generates a new argument (Argument 2) with an updated evidence

set, its own assumptions in an updated assumption set and with its own new proposal of

the fault root cause in the proposal set.

Argument 2 Sender: Agent M

Earg2 →{SA=U:DU=T:DA=K:AR=F}
Aarg2 →{SU=(T=0.6/F=0.4):TR=(T=0.55/F=0.45)}
Parg2 →{RC=(A=0.05/D=0.5/W=0.45)}

At this point, Agent L has received two arguments. It processes them and adds another

new evidence: the source machine is up ({ SU:T }). Then, Agent L tries to get information

about the status of variable TR, but that information is unreachable because the server is

overloaded and it is not possible to get that information without stopping the service causing

123

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

a decrease of Quality of Service (QoS). Hence, that information is not available at diagnosis

time and will be handled as an assumption during the argumentation. Thus, the updated

evidence set, the assumption and the proposal of fault root cause of Agent L are sent in the

Argument 3.

Argument 3 Sender: Agent L

Earg3 →{SA=U:DU=T:DA=K:AR=F:SU=T}
Aarg3 →{TR=(T=0.45/F=0.55)}
Parg3 →{RC=(A=0.05/D=0.7/W=0.25)}

When Agent P receives Arguments 2 and 3, and Agent M receives Argument 3, they

process them and detect discovery attacks between those arguments. So, they accept

the new evidences and generate two new arguments: Argument 4 and Argument 5, that

contain the beliefs of Agent P and Agent M respectively. At this point, the evidence sets

of Argument 3, 4 and 5 contain all available certain information about the diagnosis case

exposed in this worked example. Thus, as all agents have sent their beliefs based on the

same evidence set, they discuss now about their assumptions to get the most reliable proposal

about the fault root cause.

Argument 4 Sender: Agent P

Earg4 →{SA=U:DU=T:DA=K:AR=F:SU=T}
Aarg4 →{TR=(T=0.75/F=0.25)}
Parg4 →{RC=(A=0.45/D=0.3/W=0.25)}

Argument 5 Sender: Agent M

Earg5 →{SA=U:DU=T:DA=K:AR=F:SU=T}
Aarg5 →{TR=(T=0.85/F=0.15)}
Parg5 →{RC=(A=0.05/D=0.8/W=0.15)}

At this point, we summarise the status of the argumentation as follows. Arguments 1

and 2 have been discarded and replaced by Arguments 4 and 5, respectively. Thus, Argu-

ments 3, 4 and 5 represent the beliefs about the most probable fault root cause of agent L,

P and M, respectively.

Using the similarity and preferability concepts defined in Sections 4.3.2.1 and 4.3.2.2

respectively, agents detect the statement about the variable TR in the assumption set of the

Argument 5 (stTR ∈ Aarg5, simplified as a5TR) is similar to the one in Argument 4 (a4TR)

124

4.6. CASE STUDY

6 and not similar to the one in Argument 3 (a3TR)
7. At this point, Agent M holds the

most preferred statement about TR. Thus, it generates a new argument (Argument 6) with

a proposal for the probability distribution of the variable TR.

Argument 6 Sender: Agent M

Earg6 →{SA=U:DU=T:DA=K:AR=F:SU=T}
Aarg6 → {∅}
Parg6 →{TR=(T=0.85/F=0.15)}

When Agent P receives Argument 6, it agrees with the proposal and waits for any other

argument. Thus, we say that Argument 6 supports Argument 4.

In contrast, when Agent L receives this argument, it finds that Argument 6 is a clari-

fication for Argument 3. Thus, Agent L adds the received belief as input to the Bayesian

inference process as soft-evidence (Pan et al., 2006), discards Argument 3 and sends a new

argument with a new proposal inferred based on the updated beliefs (Argument 7). After

this, as Argument 6 has achieved its commitment and it does not contain any proposal about

a possible fault root cause, it is discarded too.

Argument 7 Sender: Agent L

Earg7 →{SA=U:DU=T:DA=K:AR=F:SU=T}
Aarg7 →{TR=(T=0.85/F=0.15)}
Parg7 →{RC=(A=0.05/D=0.9/W=0.05)}

Finally, all available evidences have been discovered and all agents agree about the

possible assumption (only variable TR in the example). Only support relations (between

Arguments 5 and 7) and contrariness relations (between Arguments 4 and 5, and between

Arguments 4 and 7) exist between arguments. Hence, all agents keep in silence because they

do not receive any information that make them to change their beliefs.

After a time in silence longer than the silence timeout, Agent P, as Manager Agent,

finishes the Argumentation Phase sending a notification to the coalition constituents and

starts the Conclusion Phase.

As exposed in Section 4.4.3, Agent P filters the set of arguments to get the candidate

arguments set, that, in this example, is composed by Arguments 4, 5 and 7. Summarising,

there are three different proposals:
6∆(a4TR , a5TR) = 0.08 < th = 0.2 ⇒ a4TR and a5TR are similar.
7∆(a3TR , a5TR) = 0.3 > th = 0.2 ⇒ a3TR and a5TR are not similar.

125

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

• Agent P proposes A = 0.45/D = 0.3/W = 0.25 in Argument 4.

• Agent M proposes A = 0.05/D = 0.8/W = 0.15 in Argument 5.

• Agent L proposes A = 0.05/D = 0.9/W = 0.05 in Argument 7.

So, there is a conflict between Agent P and the team formed by Agent M and Agent

L. At this point, several strategies can be applied to resolve the conflict, as proposed in

Section 4.4.3. For example, let say that the resolution conflict strategy applied is that the

most reliable proposal is picked as final conclusion. Then, the argumentation concludes when

Agent P picks that the most reliable fault root cause is D = 0.9 (proposed by Agent L in

Argument 7) that means there is a duplicated IP address in the translation table hosted in

the Agent L domain. The argumentation finished message is sent to all messages in the

coalition and the distributed fault diagnosis finishes.

4.6.4 Evaluation

This section presents a report of the experiments performed to assess the validity of the

proposed argumentation framework as distributed hypothesis discrimination mechanism.

The reminder tasks required to carry out the complete diagnosis process have been evaluated

in the previous chapter. Therefore, this evaluation process is focus only on the distributed

hypothesis discrimination task to get diagnosis conclusions using the proposed argumentative

approach. Focusing only in this task, we consider the discrimination as a classification task.

This is because, if we omit the reminder tasks validated in the previous chapter, we have

that the discrimination process has the aim of identifying what fault root cause among a set

of possible causes is generating the observed symptoms, which is essentially a classification

task. Therefore, for evaluation purposes, we consider the proposed argumentation framework

as a distributed multi-class classification technique and it is compared with other traditional

classification techniques.

The rest of this section is structured as follows. Firstly, Section 4.6.4.1 presents the

experimentation framework developed to carry out this evaluation process. Section 4.6.4.2

summarises the datasets used during the experimentation process. Finally, Section 4.6.4.3

shows the results of the experiments execution and discusses them.

4.6.4.1 Experimentation Framework

In order to provide an empirical assessment of the application of the proposed argumenta-

tive framework in the context of standard classification problems, a series of experiments

126

4.6. CASE STUDY

were conducted to compare the results of the proposed technique with other traditional

classification techniques. The traditional techniques considered were decision trees, (such

as J48, LADTree, or PART); support vector machines, (such as SMO); simple probabilistic

classifiers (such as NBTree) and probabilistic graphs (such as BayesSearch). Most of the

considered techniques are available in WEKA library8. In addition, SMILE library9 was

used because it provides algorithms not available in WEKA.

Contrary to the mentioned traditional centralised approaches, the proposed argumenta-

tive solution requires more than a data mining library to be executed. We have developed an

experimentation framework that offers an environment to execute agents under federated do-

mains conditions, such as access restrictions situations and different background knowledge

for every agent. This framework is available as an open-source tool, named B2D2 ARgu-

mentative Multi-Agent System (BARMAS) framework10. It uses SMILE library as Bayesian

inference and learning engine to enable Argumentative Agents to reason with their Causal

Models and MASON simulation framework11 as agent platform. Notice that the considered

traditional classification techniques follow a centralised approach, while the proposed argu-

mentative framework has been designed as a distributed solution. Anyway, it is interesting

to compare the results of those techniques for contexts where a distributed approach could

be replaced by a centralised one assuming some extra costs, such as the requirement of high

computing capacity in one single node, or sacrificing the data privacy because information

must be stored in a central node for the whole system. Finally, Table 4.12 summarises the

considered techniques and the respective software libraries used to execute them.

The validation were carried out with a cross-validation technique with a 10-Fold config-

uration. While for the validation of traditional centralised approaches, 90% of data were

used for training and 10% for testing in 10 different iterations, for executing BARMAS

framework, the training data is divided in many sets as argumentative agents are running

in the experiment. Then, each agent has only a portion of the total training dataset to

provide different background knowledge for every agent. For instance, in an execution with

2 argumentative agents, each one has only a 45% of the original dataset for training. The

other 10% is used for testing. For 3 agents, 30%; for 4 agents, 22.5% and so on and so forth.

To learn from training data, each argumentative agent performs a training process using the

BayesSearch technique to synthesise the agent’s background knowledge in a Causal model.

To reproduce access restriction conditions, the set of variables is divided in many subsets as

Argumentative agents, V1 ∪ ... ∪ Vn = V \ frc (excluding the classification target variables

8Weka Website: http://www.cs.waikato.ac.nz/ml/weka/
9SMILE Website: http://genie.sis.pitt.edu/

10Github repository of BARMAS framework: https://github.com/gsi-upm/BARMAS
11MASON Website: cs.gmu.edu/~eclab/projects/mason/

127

http://www.cs.waikato.ac.nz/ml/weka/
http://genie.sis.pitt.edu/
https://github.com/gsi-upm/BARMAS
cs.gmu.edu/~eclab/projects/mason/

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

Classification Technique Acronym Software Library

J48 - implementation of C4.5 algorithm J48 WEKA

Logical Analysis of Data (LAD) Tree LADTree WEKA

Pruning Rule based classification Tree PART WEKA

Sequential Minimal Optimization SMO WEKA

Naive Bayes Tree NBTree WEKA

Bayesian Search BayesSearch SMILE

B2D2 ARgumentaive Multi-Agent System BARMAS SMILE and MASON

Table 4.12: Summary of considered classification techniques.

frc). Each agent can access only to one of those subsets to reproduce the partial view of

the global problem in federated domains.

In addition to the argumentative agents mentioned previously, some extra agents are

used in the experiments to reproduce the conditions of the real-life scenario which motivated

this work. Firstly, a Generator Agent is included in the experiments to generate diagnosis

cases. In other words, it simulates the symptom detection task and triggers the distributed

classification process. A Manager Agent is included to control the argumentation process

as explained in Section 4.4. The Manager agent is configured to follow the most certain

conclusion strategy, proposed in Section 4.4.3, as conflict resolution strategy. The silence

timeout defined in Section 4.4.2, is configured to ensure that every agent can generate

at least an argument. An Evaluator Agent is included to evaluate the conclusion of the

argumentation process. This agent is notified by theManager agent when the argumentation

processed is finished to check the correctness of the classification process. Therefore, the

following agents execute in all experiments: Generator, Evaluator, Manager, and a set of

Argumentative agents. Finally, all Argumentative Agents are configured with a threshold

value equals to 0.2 (th = 0.2) to measure the similarity between statements, as explained in

Sections 4.3.

4.6.4.2 Datasets

A number of public datasets were used for the evaluation as well as the private one extracted

from the case study presented in Section 3.5.1, which contains fault diagnosis data of a

real-live telecommunication network running for one and a half years. Those datasets are

128

4.6. CASE STUDY

used to measure the accuracy of the proposed approach for the multi-class classification

problem. Public datasets have been collected from UCI12 and KEEL13 repositories and have

a meaningful difference among their characteristics with respect to number of classes, number

of instances and number of attributes. An overview of the complexity of the considered

datasets is shown in Table 4.13.

Dataset #Instances #Classes #Attributes

Zoo 14 101 7 16

Solar Flare 15 1066 6 11

Marketing 16 8933 9 13

Nursery 17 12690 5 9

Mushroom 18 8124 2 22

Chess 19 28056 18 6

Network 20 1183 15 27

Table 4.13: Datasets Summary.

4.6.4.3 Results

To measure the accuracy of the considered classification techniques, we present the Er-

ror Rate (ER) values obtained for every dataset under different uncertainty levels. That

uncertainty was generated hiding some variables of datasets to reproduce a crucial aspect

of the motivational problem, i.e. uncertainty during fault diagnosis of telecommunication

networks. In other words, uncertainty was reproduced in the experiments using missing

attributes for the classification techniques. Three configurations were used to generate dif-

ferent uncertainty levels: no missing attributes, 25% of missing attributes and 50% of missing
12UCI Repository Website: http://archive.ics.uci.edu/ml/datasets.html
13KEEL Repository Website: http://sci2s.ugr.es/keel/datasets.php
14Zoo Dataset: http://sci2s.ugr.es/keel/dataset.php?cod=69
15Solar Flare Dataset: http://sci2s.ugr.es/keel/dataset.php?cod=98
16Marketing Dataset: http://sci2s.ugr.es/keel/dataset.php?cod=163
17Nursery Dataset: http://sci2s.ugr.es/keel/dataset.php?cod=103
18Mushroom Dataset: http://archive.ics.uci.edu/ml/datasets/Mushroom
19Chess Dataset: http://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.

+King%29
20Private dataset with Telefónica O2 Czech Republic rights.

129

http://archive.ics.uci.edu/ml/datasets.html
http://sci2s.ugr.es/keel/datasets.php
http://sci2s.ugr.es/keel/dataset.php?cod=69
http://sci2s.ugr.es/keel/dataset.php?cod=98
http://sci2s.ugr.es/keel/dataset.php?cod=163
http://sci2s.ugr.es/keel/dataset.php?cod=103
http://archive.ics.uci.edu/ml/datasets/Mushroom
http://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29
http://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

attributes21. The following tables show the results of the considered traditional classifica-

tion techniques (BayesSearch, J48, LADTree, NBTree, PART and SMO) and the proposed

argumentative technique (BARMAS) with different numbers of agents involved in the argu-

mentation process (2, 3 and 4). Notice the results of different tables should not be compared

between them, because the results with no uncertainty will be, in general, better than the

results with a 25% or a 50% of missing values, i.e. with uncertainty.

Table 4.14 shows the results with no missing attributes22. That implies Argumentative

agents make no assumptions during the Argumentation Phase because all variables are

known with certainty. By analysing these results, we observed the results of BARMAS are

comparable with the rest of the traditional techniques. It would suggest that, generally

speaking, the use of BARMAS as a distributed approach produces similar results to other

centralised alternatives in non-uncertain situations.

Dataset

BARMAS Bayes

J48

LAD NB

PART SMO#Agents Search Tree Tree

2 3 4

Zoo 0.00 0.03 0.00 0.02 0.02 0.01 0.01 0.02 0.01

Solar Flare 0.29 0.26 0.26 0.36 0.26 0.27 0.26 0.29 0.26

Marketing 0.71 0.71 0.71 0.71 0.7 0.67 0.68 0.70 0.66

Nursery 0.07 0.08 0.09 0.07 0.01 0.08 0.03 0.01 0.07

Mushroom 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

Chess 0.5 0.62 0.64 0.61 0.42 0.69 0.39 0.46 0.56

Network 0.16 0.16 0.16 0.18 0.13 0.14 0.14 0.14 0.12

Table 4.14: Error Rate without uncertainty (all available data).

Tables 4.15 and 4.16 show the results adding uncertainty to the experiment, i.e. removing

the 25% and the 50% of the attributes of the classification case as unknown information

(missing attributes) that agents can discuss.

Closer inspection of Table 4.15 revealed that the difference between columns becomes

to be significant in uncertain situations for some datasets. For example, focusing in the

21We consider uncertainty levels above 50% are quite improbable in real-life scenarios and would conclude

unreliable conclusions.
22Notice that values are truncated and values equals to 0.00 do not mean a perfect classification. They

represent values between 0.00 and 0.01.

130

4.6. CASE STUDY

Mushroom row of Table 4.15, we observed that BARMAS (0.01 ∼ 0.02), BayesSearch (0.03)

and NBTree23 (0.04) have quite low ER compared with other alternatives, such as J48

(0.26), LADTree (0.52) PART (0.23) or SMO (0.23). Other example can be observed in

Zoo row of the same table. In contrast, all compared alternatives present similar results in

the rest of the datasets.

Dataset

BARMAS Bayes

J48

LAD NB

PART SMO#Agents Search Tree Tree

2 3 4

Zoo 0.09 0.12 0.11 0.11 0.43 0.4 0.16 0.43 0.41

Solar Flare 0.58 0.56 0.6 0.62 0.68 0.67 0.58 0.68 0.79

Marketing 0.70 0.71 0.71 0.71 0.7 0.73 0.67 0.70 0.69

Nursery 0.25 0.26 0.26 0.25 0.24 0.27 0.24 0.26 0.32

Mushroom 0.02 0.01 0.01 0.03 0.26 0.52 0.04 0.23 0.23

Chess 0.64 0.73 0.77 0.68 0.62 0.86 0.64 0.68 0.75

Network 0.16 0.17 0.16 0.17 0.14 0.14 0.15 0.15 0.18

Table 4.15: Error Rate with 25% of missing attributes.

From Table 4.16, it is apparent that BARMAS has lower (or at least equal) error rate

than the other alternatives. This attests to the accuracy of BARMAS in situations with high

uncertainty (50% of missing attributes) is preferable to other alternatives. Furthermore, it

offers the flexibility to be applied in distributed environments with private knowledge, as

mentioned previously. As data in Table 4.16 shows, the results for Zoo or Mushroom datasets

present, again, a significant improvement using Bayesian approaches with differences up to

0.49 for the ER values24. Contrarily, comparable values are observed (with equal uncertainty

levels) in other datasets, such as Solar Flare, Marketing, Nursery, Chess or Network.

In conclusion, one of the most important consequences of the analysed results is the

robustness of the proposed approach against uncertainty that can be observed focusing on

the same dataset of Tables 4.14 and 4.16. For example, at one end, the experiment with

4 BARMAS agents presents only a 0.02 difference between situations with no uncertainty

(ER = 0.01) and 50% of missing attributes (ER = 0.03) for Mushroom dataset. In con-

trast, at the other end, LADTree presents a difference equals to 0.52 (ER = 0.00 with

23All of them are Bayesian approaches.
24Between BARMAS with 4 agents (0.03) and LADTree (0.52) for Mushroom dataset, shown in Table 4.16.

131

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

Dataset

BARMAS Bayes

J48

LAD NB

PART SMO#Agents Search Tree Tree

2 3 4

Zoo 0.13 0.18 0.19 0.16 0.51 0.59 0.28 0.53 0.6

Solar Flare 0.63 0.64 0.63 0.65 0.69 0.69 0.63 0.69 0.8

Marketing 0.72 0.72 0.72 0.72 0.72 0.89 0.73 0.72 0.83

Nursery 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.32

Mushroom 0.04 0.04 0.03 0.05 0.32 0.52 0.22 0.41 0.21

Chess 0.72 0.76 0.78 0.74 0.72 0.87 0.73 0.74 0.78

Network 0.22 0.22 0.21 0.24 0.23 0.23 0.28 0.23 0.3

Table 4.16: Error Rate with 50% of missing attributes.

no uncertainty and ER = 0.52 with 50% of missing attributes.). Thus, broadly speaking,

the experiments results attest that BARMAS provides a suitable mechanism to perform

distributed fault diagnosis under uncertainty in federated domains.

4.7 Summary

This chapter has proposed an extension of the B2D2 Agent Architecture to add argumenta-

tive capability. That capability enables to perform distributed fault diagnosis in federated

domains. The argumentation process grounds on the proposed B2D2 Argumentative Frame-

work. An Argumentation Model has been developed extending the knowledge models of the

B2D2 Agent Architecture. This model covers concepts required to perform a distributed

fault diagnosis applying the proposed coordination protocol. That protocol is composed

by three different phases: Coalition Formation Phase, Argumentation Phase and Conclu-

sion Phase, which are carried out by two different agent roles: Argumentative and Manager

agents. A set of Argumentative agents is able to argue about the discrimination of a detected

anomaly or symptom in the network. Those agents interchange arguments that contain in-

formation about a diagnosis case until aManager agent decides the argumentation is finished

and extracts the final conclusion, i.e. the fault root cause of the diagnosed problem. The

proposed argumentation framework grounds on the idea of probabilistic statements to han-

dle the uncertainty of the diagnosis process. Every statement type contains different type of

knowledge: evidences contain certain knowledge, assumptions contain uncertain knowledge

132

4.7. SUMMARY

and proposals represent propositions about a specific information, such as a fault root cause.

The proposed B2D2 Argumentative Agent Architecture has been evaluated in a simu-

lation framework. The evaluation has been performed considering a B2D2 ARgumentative

Multi-Agent System (BARMAS) as a multi-class classification technique with other tradi-

tional classification techniques under different conditions of uncertainty. Moreover, different

public and private datasets were used during the experiment execution to provide results

for different domains. The results attest the proposed argumentative extension of the B2D2

Agent Architecture provides a suitable mechanism to perform distributed fault diagnosis

under uncertainty.

Finally, the proposed B2D2 Argumentative Agent Architecture defines coordination

mechanisms to perform autonomic fault diagnosis in federated domains. The argumentative

capability adds some interesting features to the basic B2D2 Agent Architecture presented in

the previous chapter: (i) it enables to perform distributed hypothesis discrimination keeping

coherence with high robustness against uncertainty, (ii) it enables to keep private knowledge

among agents in federated domains, (iii) it provides cooperation mechanism to reach agree-

ments obtaining conclusions for cross-domain diagnosis cases and (iv) it enables agents to

be deployed dynamically in complex environments as coalitions are conformed in execution

time as required.

133

CHAPTER 4. COORDINATION FOR AUTONOMIC FAULT DIAGNOSIS IN FEDERATED
DOMAINS

134

CHAPTER5
Conclusions and Future Research

This thesis has presented a number of solutions that contribute to the area of Appli-
cation of Agent Technology for Fault Diagnosis of Telecommunications Networks. In
this chapter, those contributions are summarised and final conclusions are presented.
Furthermore, having taken account of the achievements of the thesis, this chapter
presents possible future research lines.

135

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

The research presented in this thesis was set out with the goal to propose a solution for the

problem of fault diagnosis for the Future Internet following an autonomic approach. Al-

though some autonomic solutions begin to be more popular in the community for some net-

work management tasks, such as monitoring or routing, the lack of autonomic solutions for

fault management motivated us to research on that topic. Specifically, this thesis proposes

the Application of Agent Technology for Fault Diagnosis of Telecommunications Networks.

Throughout the course of the thesis, a number of contributions have been delivered that can

be gathered under three main contribution areas:

Knowledge Gathering for Autonomic Fault Diagnosis. The thesis proposed the BEAST

Methodology which is focused on knowledge gathering from human experts to enable the

design of Autonomic Fault Diagnosis solutions. The methodology was evaluated during the

development of a MAS for a Fault Diagnosis task of FTTH networks. Based on that work, the

final contributions in this area are an agile acceptance testing methodology for multi-agent

systems and an open-source tool to support the application of the methodology on software

development projects. The final conclusions obtained via evaluation of those contributions

are: 1) the BDD approach is suitable for its application in MAS development; 2) the use

of BDD templates facilitates the communication between stakeholders and designers or

developers, which is usually a gap between both of them; 3) the application of mock agents

simplifies MAS development in agile environments.

Agent Architecture for Autonomic Fault Diagnosis. The thesis proposed the B2D2 Agent

Architecture based on an expert knowledge model for fault diagnosis of telecommunication

networks. The proposed architecture has been validated in a real-life telecommunication

network and in a simulation environment. The results of the fault diagnosis system of a

enterprise service running for one and a half years were analysed to measure the outcomes

of the solution. Furthermore, the thesis has contributed with a knowledge model for fault

diagnosis by the means of an ontology and connected this model to other domain models

which describes different characteristic of a telecommunication network. The final conclu-

sions obtained via evaluation of the presented contributions are: 1) the utilised technology

can reduce the time to diagnose in the real-life network management tasks; 2) the use of

different knowledge models can offer complementary views of the fault diagnosis problem; 3)

the use of hybrid reasoning techniques can improve the correctness of diagnosis conclusions.

136

5.2. FUTURE RESEARCH

Coordination for Autonomic Fault Diagnosis in Federated Domains. The thesis pro-

posed the B2D2 Argumentation Framework as coordination mechanism among agents. This

framework was designed to perform distributed hypothesis discrimination in federated do-

mains. The thesis contributed with a coordination protocol to manage the argumentation

process among agents. This argumentative capability was included in the proposed agent

architecture. Moreover, an argumentation model has been contributed by the means of an

ontology to enable agents to add this capability to their knowledge models. The conclusions

reached after the experimentation process are: 1) the argumentative framework is suitable to

perform distributed hypothesis discrimination in federated domains; 2) it offers high robust-

ness against uncertainty; 3) the coordination solution ensures the scalability of the proposed

agent architecture for complex environments.

The order in which the contributions have been presented was not accidental. Each of

the consecutive contributions builds on the outcomes of the previous. The firstly proposed

knowledge gathering process using the BEAST Methodology is the basis to feed the knowl-

edge models proposed for the B2D2 Agent Architecture for specific networks. Similarly,

that B2D2 Agent Architecture is the basis of the B2D2 Argumentative Agent Architecture

which extends the possible application of the autonomic fault diagnosis solution to federated

environments where multiple agents have to cooperate to achieve a common goal.

5.2 Future Research

The development of this thesis and its contributions to the state of the art in Application

of Agent Technology for Fault Diagnosis of Telecommunications Networks have opened new

possibilities for future research. The experiments conducted have proved usefulness of certain

solutions or excluded particular approaches. Additionally, the related software prototypes

and tools have stimulated the development of new ideas for improving the state of the art.

In terms of conclusions for the thesis research, the following lines of future research can be

pointed out as follows.

The testing methodology proposed in this thesis defines a phase where the whole multi-

agent system is evaluated while running in a testing environment. The methodology consid-

ers that environment can be a simulated scenario that reproduces some features of the real

scenario where the MAS will be deployed. But, it would be desirable a further analysis of

the requirements of those simulated environments. That would be specially interesting for

the development of multi-agent systems in complex environments where the development of

realistic simulations of the environment could require a lot of effort and time. Therefore,

137

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

the use of simulated environments for testing could be more deeply explored and anal-

ysed to define some techniques or design principles for the development of those simulations

based on the requirements of the system. But that does not mean the testing methodology

should specify how to design the agents of the solution, because the aim of the methodol-

ogy is not focused on designing multi-agent systems but in acceptance testing. So, it does

not depend of any multi-agent design methodology. Nevertheless, some guidelines could be

provided to associate user stories gathered as requirements with the development of a so-

lution following a specific MAS design methodology, such as MAS-CommonKADS (Iglesias

et al., 1998), Ingenias (Pavon et al., 2005), Prometheus (Padgham and Winikoff, 2003), or

Gaia (Wooldridge et al., 2000). In other words, further research could be done to specify a

connection between the System Behaviour Specification phase and theMAS Behaviour Speci-

fication phase through a specific MAS design methodology. Moreover, the methodology

specifies the metrics collected in testing environments are used to evaluate the behaviour

of the global system and redesign the solution if required. But, it would be interesting

to provide some guidelines about what impact could have specific types of metrics in the

design of the solution in future iterations of the project. So, further research could be done

to measure the impact of metrics in the design of the solution.

The thesis proposed the use of the testing methodology to extract knowledge from ex-

pert network engineers to feed the domain models required for the autonomic fault diagnosis

solution proposed as an agent architecture. Notwithstanding, the definition of a process to

extract specific key information from human experts would be desirable for facilitating

the knowledge gathering process. For instance, the knowledge related with the structural

model of the network used by the proposed fault diagnosis agent architecture. Regarding

with that structural model, the evolution of standard network description languages

must be followed with special attention. The thesis proposed the use of INDL language

based on the standardised Network Markup Language (NML) to instantiate that domain

knowledge model, but other alternatives could arise to be de facto standards, which could

promoted the existence of knowledge repositories. Those repositories will be a valu-

able resource to extend the knowledge of the agent with descriptions of network elements

providing specific knowledge for every diagnosis case.

Besides, the agent architecture could be extended to add other interesting autonomic

capabilities further than Autonomic Fault Diagnosis. Among all the possibilities that the

autonomic networking presents, we could highlight some of them, such as a combination

of self-discovery and self-learning techniques to learn passively the behaviour of the

network detecting fault symptoms and exploring how to resolve them. This function could

be combined with an interface with human operators to ask them if the detected behaviours

138

5.2. FUTURE RESEARCH

are correct or not and if the planned strategy to solve those faults is suitable or not. Other

interesting autonomic capability is the self-protection for telecommunication networks.

It could provide dynamic and adaptive mechanisms to react to malicious behaviours of

systems or deliberate user attacks. This could be an interesting future work because the

attack detection and classification task is not really different to the fault diagnosis tasks

covered in this thesis. Thus, the knowledge models used by the fault diagnosis agent could

be adapted to design a self-protection capability for autonomic management systems.

As exposed in the thesis, the agent architecture has been validated in a real-life telecom-

munication network. In that case, the agent interacts with some information systems which

filtered low-level network information and offered high-level events. However, the analy-

sis of low-level data could be interesting for some management tasks, such as real-time

monitoring or reconfiguration tasks. For that, the possibilities of the emerging network

architectures, such as Software-Defined Networking (SDN), offer a set of dynamic, manage-

able and adaptable capabilities that previously was difficult to implement in the traditional

network architectures. This makes the application of self-management systems is an in-

teresting research topic in the area. For that, further research for the application of the

proposed autonomic fault diagnosis solutions in a SDN environment would be interesting

for network operator companies. Furthermore, the agent architecture could be validated

in a network scenario which combines low-level network diagnosis with high-level diagnosis

interacting with third-party information systems.

The thesis proposed a coordination mechanism based on argumentative techniques. The

proposed solution could be extended adding reputation metrics in the argumentation

framework proposed for distributed diagnosis in federated domains. The concept of reputa-

tion could be used to enable a new level in the argument acceptance process proposed in

the framework. The agent reputation could be a decision factor to accept or reject a specific

argument during the argumentation process. That could be a mechanisms to detect agents

with a high rate of incorrect diagnosis conclusions and improve their background knowledge

to get better diagnosis accuracy. This argumentation framework relies in the idea of agents

supervise different domains of the network, but it would be interesting to provide some dis-

covery mechanisms to find what domains are related with specific fault types. Thus, further

research on domains specifications for federated domains could be followed to enable

some discovery mechanisms among those domains.

Concluding the presented lines of future work: the thesis has investigated and proposed

solutions for Autonomic Fault Diagnosis of Telecommunication Networks applying Agent

Technology. As pointed out in the solution outline presented at the beginning of this dis-

139

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

sertation, all the contributions are interconnected and dependent on each other. Therefore,

aside of answering new questions that the thesis rose, future work should investigate further

the impact of thesis contributions on autonomic management solutions, with special inter-

est in its application in emerging network architectures and research on how the proposed

solutions could be implanted in combination with other autonomic management solutions

to realise the ambitious idea of autonomic networking for the Future Internet.

140

Bibliography

C. E. Abosi, R. Nejabati, and D. Simeonidou. Design and development of a semantic

information modelling framework for a service oriented optical internet. In Transparent

Optical Networks, 2009. ICTON’09. 11th International Conference on, pages 1–4. IEEE,

2009.

G. Adzic. Bridging the Communication Gap: Specification by Example and Agile Acceptance

Testing. Neuri Limited, United Kingdom, 2009.

G. Adzic. Specification by Example: How Successful Teams Deliver the Right Software.

Manning Publications Co., Greenwich, CT, USA, 1st edition, 2011.

N. Agarwal and U. Rathod. Defining success for software projects: An exploratory revelation.

International Journal of Project Management, 24(4):358 – 370, 2006.

N. Agoulmine. Chapter 1 - Introduction to Autonomic Concepts Applied to Future Self-

Managed Networks. In Autonomic Network Management Principles, pages 1 – 26. Aca-

demic Press, Oxford, 2011.

J. P. Almeida, M. E. Iacob, and P. Eck. Requirements traceability in model-driven develop-

ment: Applying model and transformation conformance. Information Systems Frontiers,

9(4):327–342, 2007.

E. Alonso. Rights and argumentation in open multi-agent systems. Artificial Intelligence

Review, 21(1):3–24, 2004.

L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation. In

MultiAgent Systems, 2000. Proceedings. Fourth International Conference on, pages 31–

38, 2000.

L. Amgoud. An argumentation-based model for reasoning about coalition structures. In Ar-

gumentation in Multi-Agent Systems, volume 4049 of Lecture Notes in Computer Science,

pages 217–228. Springer Berlin Heidelberg, 2006.

141

BIBLIOGRAPHY

L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based argumen-

tation. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence,

UAI’98, pages 1–7, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

L. Amgoud and S. Parsons. Agent dialogues with conflicting preferences. In Intelligent

Agents VIII, volume 2333 of Lecture Notes in Computer Science, pages 190–205. Springer

Berlin Heidelberg, 2002.

L. Amgoud and H. Prade. Using arguments for making and explaining decisions. Artificial

Intelligence, 173(3-4):413 – 436, 2009.

L. Amgoud and M. Serrurier. Arguing and explaining classifications. In Proceedings of

the 6th International Joint Conference on Autonomous Agents and Multiagent Systems,

AAMAS ’07, pages 160:1–160:7, New York, NY, USA, 2007. ACM.

L. Amgoud and M. Serrurier. Agents that argue and explain classifications. Autonomous

Agents and Multi-Agent Systems, 16(2):187–209, 2008.

L. Amgoud, J.-F. Bonnefon, and H. Prade. An argumentation-based approach to multiple

criteria decision. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty,

volume 3571 of Lecture Notes in Computer Science, pages 269–280. Springer Berlin Hei-

delberg, 2005.

L. Amgoud, Y. Dimopoulos, and P. Moraitis. A general framework for argumentation-based

negotiation. In Argumentation in Multi-Agent Systems, volume 4946 of Lecture Notes in

Computer Science, pages 1–17. Springer Berlin Heidelberg, 2008.

M. Aulinas, P. Tolchinsky, C. Turon, M. Poch, and U. Cortés. Argumentation-based frame-

work for industrial wastewater discharges management. Engineering Applications of Ar-

tificial Intelligence, 25(2):317 – 325, 2012.

P. Bedi and P. Vashisth. Empowering recommender systems using trust and argumentation.

Information Sciences, 279(0):569 – 586, 2014.

M. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter, S. Jiang, and L. Ciavaglia.

Autonomic networking: Definitions and design goals. Technical report, Internet Research

Task Force, 2015.

F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with JADE,

volume 5 of Wiley Series in Agent Technology. Wiley, 2007.

T. J. M. Bench-capon, S. Doutre, and P. E. Dunne. Value-based argumentation frameworks.

In Artificial Intelligence, pages 444–453, 2002.

142

BIBLIOGRAPHY

T. J. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence. Artificial

intelligence, 171(10):619–641, 2007.

R. Benjamins. Problem-solving methods for diagnosis and their role. International Journal

of Expert Systems: Research and Applications, 8(2):93–120, 1995.

A. Bondarenko, F. Toni, and R. A. Kowalski. An assumption-based framework for non-

monotonic reasoning. In Proceedings of the Second International Workshop on Logic Pro-

gramming and Non-Monotonic Reasoning, pages 171–189. MIT Press, 1993.

W. Borutzky. Bond graph methodology: development and analysis of multidisciplinary dy-

namic system models. Springer Science & Business Media, 2010.

G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller, and M. May. The autonomic

network architecture (ANA). Selected Areas in Communications, IEEE Journal on, 28

(1):4–14, 2010.

P. Brandao Neto, A. Rocha, and H. Lopes Cardoso. Risk assessment through argumentation

over contractual data. In Information Systems and Technologies (CISTI), 2013 8th Iberian

Conference on, pages 1–6, 2013.

L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI-Agent System Combining Mid-

dleware and Reasoning. In Software Agent-Based Applications, Platforms and Develop-

ment Kits, Whitestein Series in Software Agent Technologies and Autonomic Computing,

pages 143–168. Birkhäuser Basel, 2005.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Sys-

tems, 8:203–236, 2004.

N. Bulling, J. Dix, and C. I. Chesñevar. Modelling Coalitions: ATL + Argumentation. In

Proceedings of the 7th International Joint Conference on Autonomous Agents and Mul-

tiagent Systems - Volume 2, AAMAS ’08, pages 681–688. International Foundation for

Autonomous Agents and Multiagent Systems, 2008.

T. R. Burchfield, S. Venkatesan, and D. Weiner. Maximizing throughput in zigbee wireless

networks through analysis, simulations and implementations. In Proc. Int. Workshop

Localized Algor. Protocols WSNs, pages 15–29, 2007.

X. Caiquan, W. Chunzhi, M. Qing, and S. Xianbin. An argumentation-based interaction

model and its algorithms in multi-agent system. In International Conference on Intelli-

gent Computation Technology and Automation (ICICTA), 2010, volume 1, pages 493–496,

2010.

143

BIBLIOGRAPHY

A. Carrera and C. A. Iglesias. A systematic review of argumentation techniques for multi-

agent systems research. Artificial Intelligence Review, 44(4):509–535, 2015.

V. Cerf. Abstraction, federation, and scalability. Internet Computing, IEEE, 17(1):96–c3,

2013.

E. K. Cetinkaya, D. Broyles, A. Dandekar, S. Srinivasan, and J. Sterbenz. Modelling com-

munication network challenges for future internet resilience, survivability, and disrup-

tion tolerance: a simulation-based approach. Telecommunication Systems, 52(2):751–766,

2013.

W. K. Chai, A. Galis, M. Charalambides, and G. Pavlou. Federation of future internet net-

works. In Network Operations and Management Symposium Workshops (NOMS Wksps),

2010 IEEE/IFIP, pages 209–216, 2010.

M. Charalambides, G. Pavlou, P. Flegkas, N. Wang, and D. Tuncer. Managing the future

internet through intelligent in-network substrates. Network, IEEE, 25(6):34–40, 2011.

H. K. Chow, W. Siu, C.-K. Chan, and H. C. Chan. An argumentation-oriented multi-agent

system for automating the freight planning process. Expert Systems with Applications, 40

(10):3858 – 3871, 2013.

CIM Specification Group. Common Information Model. http://www.dmtf.org/

standards/cim, 2015. Accessed December 15, 2015.

D. Clark, S. Shenker, and A. Falk. GENI Research Plan (Version 4.5). GENI Research

Coordination Working Group and GENI Planning Group. GDD, pages 06–28, 2007.

N. Clynch and R. Collier. SADAAM: Software agent development-an agile methodology.

In Proceedings of the Workshop of Languages, methodologies, and Development tools for

multi-agent systems (LADS07), Durham, UK, 2007.

R. Coelho, U. Kulesza, A. von Staa, and C. Lucena. Unit testing in multi-agent systems

using mock agents and aspects. In Proceedings of the 2006 international workshop on

Software engineering for large-scale multi-agent systems, SELMAS ’06, pages 83–90, New

York, NY, USA, 2006. ACM.

D. P. Cox, Y. Al-Nashif, and S. Hariri. Application of autonomic agents for global infor-

mation grid management and security. Summer Computer Simulation Conference, pages

1147–1154, 2007.

S. Das. Symbolic argumentation for decision making under uncertainty. In Information

Fusion, 2005 8th International Conference on, volume 2, pages 8 pp.–, 2005.

144

http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim

BIBLIOGRAPHY

A. S. dAvila Garcez, D. M. Gabbay, and L. C. Lamb. A neural cognitive model of argumen-

tation with application to legal inference and decision making. Journal of Applied Logic,

12(2):109 – 127, 2014.

A. Dempster. Upper and lower probabilities induced by a multi-valued mapping. The Annals

of Statistics, 28:325–339, 1967.

A. Di Pietro, F. Huici, D. Costantini, and S. Niccolini. DECON: Decentralized Coordi-

nation for Large-Scale Flow Monitoring. In INFOCOM IEEE Conference on Computer

Communications Workshops , 2010, pages 1–5, 2010.

O. Dikenelli, R. C. Erdur, and O. Gumus. SEAGENT: a platform for developing semantic

web based multi agent systems. In Proceedings of the fourth international joint conference

on Autonomous agents and multiagent systems, AAMAS ’05, pages 1271–1272, New York,

NY, USA, 2005. ACM.

M. J. Druzdzel. SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: a

development environment for graphical decision-theoretic models. In AAAI/IAAI, pages

902–903, 1999.

P. Duarte, J. Nobre, L. Granville, and L. Rockenbach Tarouco. A P2P-Based self-healing ser-

vice for network maintenance. In Integrated Network Management (IM), 2011 IFIP/IEEE

International Symposium on, pages 313–320, 2011.

P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial intelligence, 77(2):321–357,

1995.

A. El-Sisi and H. Mousa. Argumentation based negotiation in multiagent system. In 7th

International Conference on Computer Engineering Systems (ICCES), 2012., pages 261–

266, 2012.

D. Evans. The internet of things: How the next evolution of the internet is changing

everything. CISCO white paper, 1:14, 2011.

E. Evans. Domain-driven design: tackling complexity in the heart of software. Addison-

Wesley Professional, 2004.

X. Fan, R. Craven, R. Singer, F. Toni, and M. Williams. Assumption-based argumentation

for decision-making with preferences: A medical case study. In Computational Logic in

Multi-Agent Systems, volume 8143 of Lecture Notes in Computer Science, pages 374–390.

Springer Berlin Heidelberg, 2013.

145

BIBLIOGRAPHY

X. Fan, F. Toni, A. Mocanu, and M. Williams. Dialogical two-agent decision making with

assumption-based argumentation. In Proceedings of the 2014 International Conference on

Autonomous Agents and Multi-agent Systems, AAMAS ’14, pages 533–540, Richland, SC,

2014. International Foundation for Autonomous Agents and Multiagent Systems.

S. P. Ferrando and E. Onaindia. Context-aware multi-agent planning in intelligent environ-

ments. Information Sciences, 227:22 – 42, 2013.

E. T. Feteris. Fundamentals of legal argumentation: A survey of theories on the justification

of judicial decisions, volume 1. Boom Koninklijke Uitgevers, 1999.

J. FitzGerald and A. Dennis. Business Data Communications and Networking. John Wiley

and Sons, 2008.

D. Fogli, M. Giacomin, F. Stocco, and F. Vivenzi. Supporting medical discussions through

an argumentation-based tool. In Proceedings of the Biannual Conference of the Italian

Chapter of SIGCHI, CHItaly ’13, pages 18:1–18:10, New York, NY, USA, 2013. ACM.

D. Gaertner and F. Toni. Computing arguments and attacks in assumption-based argumen-

tation. Intelligent Systems, IEEE, 22(6):24–33, 2007.

D. Gaertner and F. Toni. Preferences and assumption-based argumentation for conflict-

free normative agents. In Argumentation in Multi-Agent Systems, volume 4946 of Lecture

Notes in Computer Science, pages 94–113. Springer Berlin Heidelberg, 2008.

A. Galis, H. Abramowicz, M. Brunner, D. Raz, P. Chemouil, J. Butler, C. Polychronopoulos,

S. Clayman, H. De Meer, T. Coupaye, et al. Management and service-aware networking

architectures (MANA) for future Internet - Position paper: System functions, capabilities

and requirements. In Communications and Networking in China, 2009. ChinaCOM 2009.

Fourth International Conference on, pages 1–13. IEEE, 2009.

I. García-Magariño, A. Gómez-Rodríguez, J. Gómez-Sanz, and J. González-Moreno.

Ingenias-SCRUM development process for multi-agent development. In International

Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008), pages

108–117. Springer, 2009.

Z. Ge, J. Guo-rui, and H. Ti-yun. Design of argumentation-based multi-agent negotiation

system oriented to e-commerce. In International Conference on Internet Technology and

Applications, 2010., pages 1–6, 2010.

M. Ghijsen, J. Van Der Ham, P. Grosso, C. Dumitru, H. Zhu, Z. Zhao, and C. De Laat. A

semantic-web approach for modeling computing infrastructures. Computers & Electrical

Engineering, 39(8):2553–2565, 2013.

146

BIBLIOGRAPHY

J. Gómez-Sanz, J. Botía, E. Serrano, and J. Pavón. Testing and Debugging of MAS In-

teractions with INGENIAS. In Agent-Oriented Software Engineering IX, volume 5386 of

Lecture Notes in Computer Science, pages 199–212. Springer Berlin / Heidelberg, 2009.

M. A. Grando, D. Glasspool, and A. Boxwala. Argumentation logic for the flexible enactment

of goal-based medical guidelines. Journal of Biomedical Informatics, 45(5):938 – 949, 2012.

J. Guckenheimer and J. M. Ottino. Foundations for complex systems research in the physical

sciences and engineering. In Report from an NSF Workshop in September, 2008.

C. Guerra-García, I. Caballero, and M. Piattini. Capturing data quality requirements for

web applications by means of dqwebre. Information Systems Frontiers, 15(3):433–445,

2013.

P. Hamill. Unit test frameworks. O’Reilly, 1 edition, 2004.

A. Hartfelt, A. S. Järvinen, and M. A. S. Vila. Rule-based argumentation. Master’s thesis,

ITU, 2010.

P. Harvey, C. Chang, and A. Ghose. Support-based distributed search: A new approach for

multiagent constraint processing. In Argumentation in Multi-Agent Systems, volume 4766

of Lecture Notes in Computer Science, pages 91–106. Springer Berlin Heidelberg, 2007.

B. Haugset and G. Hanssen. Automated acceptance testing: A literature review and an

industrial case study. In Agile, 2008. AGILE ’08. Conference, pages 27–38, 2008.

S. Heras, J. Jordán, V. Botti, and V. Julián. Case-based strategies for argumentation

dialogues in agent societies. Information Sciences, 223(0):1 – 30, 2013a.

S. Heras, J. Jordán, V. Botti, and V. Julián. Argue to agree: A case-based argumentation

approach. International Journal of Approximate Reasoning, 54(1):82 – 108, 2013b.

Z. Houhamdi. Multi-agent system testing: A survey. International Journal of Advanced

Computer Science and Applications (IJACSA), 2(6):135–141, 2011.

L. Hsairi, K. Ghedira, M. Alimi, and A. Benabdelhafid. Resolution of conlicts via argu-

ment based netotiation: Extended enterprise case. In International Conference on Service

Systems and Service Management, 2006., volume 1, pages 828–833, 2006.

L. Hsairi, K. Ghedira, A. Alimi, and A. Benabdelhafid. Trust and reputation model for

R2-IBN framework. In IEEE International Conference on Systems Man and Cybernetics

(SMC), 2010., pages 2137–2144, 2010.

147

BIBLIOGRAPHY

S.-L. Huang and C.-Y. Lin. The search for potentially interesting products in an e-

marketplace: An agent-to-agent argumentation approach. Expert Systems with Appli-

cations, 37(6):4468 – 4478, 2010.

C. A. Iglesias, M. Garijo, J. C. González, and J. R. Velasco. Analysis and design of multia-

gent systems using mas-commonkads. In Intelligent Agents IV Agent Theories, Architec-

tures, and Languages, volume 1365 of Lecture Notes in Computer Science, pages 313–327.

Springer Berlin Heidelberg, 1998.

N. K. Janjua and F. K. Hussain. WebIDSS - Argumentation-enabled Web-based IDSS for

reasoning over incomplete and conflicting information. Knowledge-Based Systems, 32:9 –

27, 2012.

M. Jarke and K. Lyytinen. Complexity of systems evolution: Requirements engineering

perspective. ACM Trans. Manage. Inf. Syst., 5(3):11:1–11:7, 2015.

B. Jennings, S. van der Meer, S. Balasubramaniam, D. Botvich, M. ó Foghlú, W. Don-

nelly, and J. Strassner. Towards autonomic management of communications networks.

Communications Magazine, IEEE, 45(10):112–121, 2007.

S. Jiang, B. Carpenter, and M. Behringer. General gap analysis for autonomic networking.

Technical report, Internet Research Task Force, 2015.

A. Kakas and P. Moraitis. Argumentation based decision making for autonomous agents.

In Proceedings of the Second International Joint Conference on Autonomous Agents and

Multiagent Systems, AAMAS ’03, pages 883–890, New York, NY, USA, 2003. ACM.

A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for logic programs.

In ICLP, volume 94, pages 504–519, 1994.

M. Kamalrudin and S. Sidek. Automatic acceptance test case generation from essential use

cases. In Intelligent Software Methodologies, Tools, and Techniques, 2014. SOMET 2014.

13th International Conference on. IOS Press, 2014.

P. Katina, C. Keating, and R. Jaradat. System requirements engineering in complex situa-

tions. Requirements Engineering, 19(1):45–62, 2014.

J. Kephart, J. Kephart, D. Chess, C. Boutilier, R. Das, J. O. Kephart, and W. E. Walsh.

An architectural blueprint for autonomic computing. IEEE internet computing, 18(21),

2007.

148

BIBLIOGRAPHY

J. Keppens. On extracting arguments from bayesian network representations of evidential

reasoning. In Proceedings of the 13th International Conference on Artificial Intelligence

and Law, ICAIL ’11, pages 141–150, New York, NY, USA, 2011. ACM.

B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Reviews

in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham

University Joint Report, 2007.

U. B. Kjaerulff and A. L. Madsen. Bayesian Networks and Influence Diagrams. Information

Science and Statistics. Springer New York, 2008.

F. Klügl. Measuring complexity of multi-agent simulations–an attempt using metrics. In

Languages, Methodologies and Development Tools for Multi-Agent Systems, pages 123–

138. Springer, 2008.

J. R. Koiter. Visualizing inference in Bayesian networks. PhD thesis, Delft University of

Technology, 2006.

G. Koslovski, P. B. Primet, and A. Charao. Vxdl: Virtual resources and interconnection

networks description language. In Networks for Grid Applications, volume 2 of Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, pages 138–154. Springer Berlin Heidelberg, 2009.

P. Kraaijeveld, M. Druzdzel, A. Onisko, and H. Wasyluk. Genierate: An interactive gen-

erator of diagnostic bayesian network models. In Proc. 16th Int. Workshop Principles

Diagnosis, pages 175–180, 2005.

O. Landsiedel, K. Wehrle, and S. Götz. Accurate prediction of power consumption in sensor

networks. In Proc. of the Second Workshop on Embedded Networked Sensors, 2005.

C. Laurent et al. Autonomic network engineering for the self-managing Future Internet

(AFI); Generic Autonomic Network Architecture (An Architectural Reference Model for

Autonomic Networking, Cognitive Networking and Self-Management), 2013.

P. Leitão, J. Barbosa, and D. Trentesaux. Bio-inspired multi-agent systems for reconfigurable

manufacturing systems. Engineering Applications of Artificial Intelligence, 25(5):934 –

944, 2012.

I. Letia and A. Groza. Justifying argument and explanation in labelled argumentation. In

IEEE International Conference on Intelligent Computer Communication and Processing

(ICCP), 2012, pages 11–18, 2012.

149

BIBLIOGRAPHY

X. Liu, R. Wanchoo, and R. Arvapally. Intelligent computational argumentation for evalu-

ating performance scores in multi-criteria decision making. In International Symposium

on Collaborative Technologies and Systems (CTS), 2010., pages 143–152, 2010.

S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. MASON: A Multiagent

Simulation Environment. Simulation, 81(7):517–527, 2005.

H. Luo, S. lin Yang, X. jian Hu, and X. xuan Hu. Agent oriented intelligent fault diagnosis

system using evidence theory. Expert Systems with Applications, 39(3):2524 – 2531, 2012.

P. Maio, N. Silva, and J. Cardoso. Generating arguments for ontology matching. In 22nd

International Workshop on Database and Expert Systems Applications (DEXA), 2011,

pages 239–243, 2011.

P. Maio and N. Silva. A three-layer argumentation framework. In Theorie and Applications

of Formal Argumentation, pages 163–180. Springer, 2012.

P. Maio and N. Silva. An extensible argument-based ontology matching negotiation ap-

proach. Science of Computer Programming, 95, Part 1(0):3 – 25, 2014. Special Issue on

Systems Development by Means of Semantic Technologies.

A. Marnewick, J.-H. Pretorius, and L. Pretorius. A perspective on human factors con-

tributing to quality requirements: A cross-case analysis. In Industrial Engineering and

Engineering Management (IEEM), 2011 IEEE International Conference on, pages 389–

393, 2011.

G. Marreiros, C. Ramos, and J. Neves. Dealing with emotional factors in agent based

ubiquitous group decision. In Lecture Notes in Computer Science, pages 41–50, 2005.

A. Martín, C. León, J. Luque, and I. Monedero. A framework for development of integrated

intelligent knowledge for management of telecommunication networks. Expert Systems

with Applications, 39(10):9264 – 9274, 2012.

R. Martin and G. Melnik. Tests and requirements, requirements and tests: A möbius strip.

Software, IEEE, 25(1):54–59, 2008.

M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring system:

design, implementation, and experience. Parallel Computing, 30(7):817–840, 2004.

N. Maudet, S. Parsons, and I. Rahwan. Argumentation in multi-agent systems: Context

and recent developments. In Argumentation in Multi-Agent Systems, pages 1–16. Springer,

2007.

150

BIBLIOGRAPHY

P. McBurney, R. Van Eijk, S. Parsons, and L. Amgoud. A dialogue game protocol for agent

purchase negotiations. Autonomous Agents and Multi-Agent Systems, 7(3):235–273, 2003.

J. L. Méndez. Bayesian Reasoning Module for BDI Agent Architectures. Application for

diagnosis in FTTH networks. Master’s thesis, Escuela Técnica Superior de Ingenieros de

Telecomunicación - Universidad Politécnica de Madrid, 2011.

B. Mendoza, P. Xu, and L. Song. A multi-agent model for fault diagnosis in petrochemical

plants. In Sensors Applications Symposium (SAS), 2011 IEEE, pages 203 –208, 2011.

B. Middleton, M. Shwe, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and G. Cooper.

Probabilistic diagnosis using a reformulation of the internist-1/qmr knowledge base.

Medicine, 30:241–255, 1991.

Mockito Project. Mockito Framework. http://mockito.org, 2012. Accessed December

15, 2015.

M. E. Monteiro, R. C. Favoreto, F. B. Silva, P. Negri, and P. P. F. Barcelos. An ontology-

based approach to improve snmp support for autonomic management. In Network and

Service Management (CNSM), 2014 10th International Conference on, pages 280–283.

IEEE, 2014.

A. Monteserin and A. Amandi. Argumentation-based negotiation planning for autonomous

agents. Decision Support Systems, 51(3):532 – 548, 2011.

A. d. Moor and M. Aakhus. Argumentation support: from technologies to tools. Commu-

nications of the ACM, 49(3):93–98, 2006.

P. Moraitis and N. Spanoudakis. Argumentation-based agent interaction in an ambient-

intelligence context. Intelligent Systems, IEEE, 22(6):84–93, 2007.

M. Morge and P. Beaune. A negotiation support system based on a multi-agent system:

Specificity and preference relations on arguments. In Proceedings of the 2004 ACM Sym-

posium on Applied Computing, SAC ’04, pages 474–478. ACM, 2004.

R. Mugridge and W. Cunningham. Fit for developing software: framework for integrated

tests. Prentice Hall, 2005.

P. Müller. Future internet design principles. Technical report, European Commission -

Information Society and Media, 2012.

J. D. Myers. The background of internist i and qmr. In Proceedings of ACM conference on

History of medical informatics, pages 195–197. ACM, 1987.

151

http://mockito.org

BIBLIOGRAPHY

C. D. Nguyen, A. Perini, and P. Tonella. Goal oriented testing for mass. Int. J. Agent-

Oriented Softw. Eng., 4(1):79–109, 2010.

C. D. Nguyen. Testing Techniques for Software Agents. PhD thesis, International Doctorate

School in Information and Communication Technologies, 2009.

C. Nguyen, A. Perini, C. Bernon, J. Pavón, and J. Thangarajah. Testing in multi-agent

systems. In Agent-Oriented Software Engineering X, volume 6038 of Lecture Notes in

Computer Science, pages 180–190. Springer Berlin Heidelberg, 2011.

D. Nguyen, A. Perini, and P. Tonella. A Goal-Oriented Software Testing Methodology. In

Agent-Oriented Software Engineering VIII, volume 4951 of Lecture Notes in Computer

Science, pages 58–72. Springer Berlin / Heidelberg, 2008.

M. Nikulin. Hellinger distance. Encyclopaedia of Mathematics. Kluwer Academic Publishers,

2002.

D. North. Introducing: Behaviour-driven development. http://dannorth.net/

introducing-bdd, 2007. Accessed December 15, 2015.

D. North. JBehave. A framework for Behaviour Driven Development (BDD). http://

jbehave.org, 2011. Accessed December 15, 2015.

O. Ntofon, D. Hunter, and D. Simeonidou. Towards semantic modeling framework for future

service oriented networked media infrastructures. In Computer Science and Electronic

Engineering Conference (CEEC), 2012 4th, pages 200–205, 2012.

N. Obeid and A. Moubaiddin. On the role of dialogue and argumentation in collabora-

tive problem solving. In 9th International Conference on Intelligent Systems Design and

Applications (ISDA), 2009., pages 1202–1208, 2009.

A. Oniśko, M. J. Druzdzel, and H. Wasyluk. Learning bayesian network parameters from

small data sets: application of noisy-or gates. International Journal of Approximate

Reasoning, 27(2):165 – 182, 2001.

L. Padgham and M. Winikoff. Prometheus: A Methodology for Developing Intelligent

Agents. In Agent-Oriented Software Engineering III, volume 2585 of Lecture Notes in

Computer Science, pages 174–185. Springer Berlin Heidelberg, 2003.

R. Pan, Y. Peng, and Z. Ding. Belief update in bayesian networks using uncertain evidence.

In Tools with Artificial Intelligence, 2006. ICTAI ’06. 18th IEEE International Conference

on, pages 441–444, 2006.

152

http://dannorth.net/introducing-bdd
http://dannorth.net/introducing-bdd
http://jbehave.org
http://jbehave.org

BIBLIOGRAPHY

L. Paolino, H. Paggi, F. Alonso, and G. Lopez. Solving incidents in telecommunications

using a multi-agent system. In Intelligence and Security Informatics (ISI), 2011 IEEE

International Conference on, pages 303 –308, 2011.

K. Pashaei, F. Taghiyareh, and K. Badie. A negotiation-based genetic framework for multi-

agent credit assignment. In Multiagent System Technologies, volume 8732 of Lecture Notes

in Computer Science, pages 72–89. Springer International Publishing, 2014.

J. Pavon, J. J. Gomez-Sanz, and R. Fuentes. The INGENIAS methodology and tools.

Agent-oriented methodologies, 9:236–276, 2005.

J. Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning.

University of California (Los Angeles). Computer Science Department, 1985.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, 1988.

J. Pearl. Causality: models, reasoning and inference. Cambridge Univ Press, 2000.

C. Perelman and L. Olbrechts-Tyteca. The New Rhetoric: A Treatise on Argumentation.

University of Notre Dame Press, 1969.

T. Plevyak and V. Sahin. Next generation telecommunications networks, services, and man-

agement, volume 15. John Wiley & Sons, 2011.

A. Pras, J. Schönwälder, M. Burgess, O. Festor, G. M. Perez, R. Stadler, and B. Stiller. Key

research challenges in network management. Communications Magazine, IEEE, 45(10):

104–110, 2007.

G. Provan. Abstraction in belief networks: the role of intermediate states in diagnostic rea-

soning. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence,

pages 464–471. Morgan Kaufmann Publishers Inc., 1995.

I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. Sonenberg.

Argumentation-based negotiation. The Knowledge Engineering Review, 18:343–375, 2003.

A. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In Agents

Breaking Away, volume 1038 of Lecture Notes in Computer Science, pages 42–55. Springer

Berlin Heidelberg, 1996.

S. T. Redwine, Jr. and W. E. Riddle. Software technology maturation. In Proceedings of

the 8th International Conference on Software Engineering, ICSE ’85, pages 189–200, Los

Alamitos, CA, USA, 1985. IEEE Computer Society Press.

153

BIBLIOGRAPHY

J. Rowe, K. Levitt, S. Parsons, E. Sklar, A. Applebaum, and S. Jalal. Argumentation logic

to assist in security administration. In Proceedings of the 2012 workshop on New security

paradigms, NSPW ’12, pages 43–52, New York, NY, USA, 2012. ACM.

J. Rubio-Loyola, A. Astorga, J. Serrat, W. Chai, L. Mamatas, A. Galis, S. Clayman, A. Che-

niour, L. Lefevre, O. Mornard, A. Fischer, A. Paler, and H. de Meer. Platforms and

software systems for an autonomic internet. In Global Telecommunications Conference

(GLOBECOM 2010), 2010 IEEE, pages 1–6, 2010.

J. Sammon, J.W. A nonlinear mapping for data structure analysis. IEEE Transactions on

Computers, C-18(5):401 – 409, 1969.

M. Sanz-Bobi, M. Castro, and J. Santos. Idsai: A distributed system for intrusion detection

based on intelligent agents. In Internet Monitoring and Protection (ICIMP), 2010 Fifth

International Conference on, pages 1 –6, 2010.

K. Schwaber and J. Sutherland. Scrum Guide. Scrum Alliance, 19(6):21, 2009.

G. Shafer. A mathematical theory of evidence. Princeton University Press., 1967.

M. A. Shwe, B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and

G. Cooper. Probabilistic diagnosis using a reformulation of the internist-1/qmr knowledge

base. Methods of information in Medicine, 30(4):241–255, 1991.

C. Sierra, N. Jennings, P. Noriega, and S. Parsons. A framework for argumentation-based ne-

gotiation. In Intelligent Agents IV Agent Theories, Architectures, and Languages, volume

1365 of Lecture Notes in Computer Science, pages 177–192. Springer Berlin Heidelberg,

1998.

S. Skiena. Dijkstra’s algorithm. Implementing Discrete Mathematics: Combinatorics and

Graph Theory with Mathematica, Reading, MA: Addison-Wesley, pages 225–227, 1990.

C. Solis and X. Wang. A study of the characteristics of behaviour driven development.

In Software Engineering and Advanced Applications (SEAA), 2011 37th EUROMICRO

Conference on, pages 383–387, 2011.

H. H. Song, L. Qiu, and Y. Zhang. NetQuest: a flexible framework for large-scale network

measurement. IEEE/ACM Transactions on Networking (TON), 17(1):106–119, 2009.

S. Staab and R. Studer. Handbook on ontologies. Springer Science & Business Media, 2013.

J. Strassner. DEN-ng: achieving business-driven network management. In Network Opera-

tions and Management Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP, pages 753–766,

2002.

154

BIBLIOGRAPHY

J. Strassner, N. Agoulmine, and E. Lehtihet. FOCALE: A novel autonomic networking

architecture. International Transactions on Systems Science and Applications, 3(1):67–

79, 2007.

R. Subbaraj and N. Venkatraman. A systematic literature review on ontology based con-

text management system. In Emerging ICT for Bridging the Future - Proceedings of the

49th Annual Convention of the Computer Society of India CSI Volume 2, volume 338 of

Advances in Intelligent Systems and Computing, pages 609–619. Springer International

Publishing, 2015.

L. Sun, K. Ousmanou, and M. Cross. An ontological modelling of user requirements for

personalised information provision. Information Systems Frontiers, 12(3):337–356, 2010.

Y. Tang and S. Parsons. Argumentation-based dialogues for deliberation. In Proceedings

of the Fourth International Joint Conference on Autonomous Agents and Multiagent Sys-

tems, AAMAS ’05, pages 552–559. ACM, 2005.

S. Tannai, Y. Goto, Y. Maruyama, T. Itoya, T. Hagiwara, and H. Sawamura. A versa-

tile argumentation system based on the logic of multiple-valued argumentation. In 11th

International Conference on Hybrid Intelligent Systems (HIS), 2011, pages 370–376, 2011.

X. Tao, Y. Miao, Y. Zhang, and Z. Shen. Collaborative medical diagnosis through fuzzy petri

net based agent argumentation. In Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International

Conference on, pages 1197–1204, 2014.

J. Thangarajah, G. Jayatilleke, and L. Padgham. Scenarios for system requirements trace-

ability and testing. In The 10th International Conference on Autonomous Agents and

Multiagent Systems - Volume 1, AAMAS ’11, pages 285–292, Richland, SC, 2011. Inter-

national Foundation for Autonomous Agents and Multiagent Systems.

R. Thomopoulos, M. Croitoru, and N. Tamani. Decision support for agri-food chains: A

reverse engineering argumentation-based approach. Ecological Informatics, 2014.

A. Tiryaki, S. Oztuna, O. Dikenelli, and R. Erdur. SUNIT: A Unit Testing Framework

for Test Driven Development of Multi-Agent Systems. In Agent-Oriented Software Engi-

neering VII, volume 4405 of Lecture Notes in Computer Science, pages 156–173. Springer

Berlin Heidelberg, 2007.

S. E. Toulmin. The uses of argument. Cambridge University Press, 2003.

C. Tschudin and C. Jelger. An autonomic network architecture research project. Praxis der

Informationsverarbeitung und Kommunikation, 30(1):26–31, 2007.

155

BIBLIOGRAPHY

G. Tselentis and A. Galis. Towards the Future Internet: Emerging Trends from European

Research. IOS press, 2010.

T. L. van der Weide, F. Dignum, J.-J. C. Meyer, H. Prakken, and G. A. W. Vreeswijk. Multi-

criteria argument selection in persuasion dialogues. In The 10th International Conference

on Autonomous Agents and Multiagent Systems - Volume 3, AAMAS ’11, pages 921–928,

Richland, SC, 2011. International Foundation for Autonomous Agents and Multiagent

Systems.

F. H. van Eemeren, R. F. Grootendorst, and F. S. Henkemans. Fundamentals of argu-

mentation theory: A handbook of historical backgrounds and contemporary applications,

1996.

N. R. Velaga, N. D. Rotstein, N. Oren, J. D. Nelson, T. J. Norman, and S. Wright. De-

velopment of an integrated flexible transport systems platform for rural areas using argu-

mentation theory. Research in Transportation Business and Management, 3(0):62 – 70,

2012.

R. M. Vicari, C. D. Flores, A. M. Silvestre, L. J. Seixas, M. Ladeira, and H. Coelho. A multi-

agent intelligent environment for medical knowledge. Artificial Intelligence in Medicine,

27(3):335 – 366, 2003. Software Agents in Health Care.

M. Voortman. Using Cases To Refine Bayesian Networks. Master of science thesis, Delft

University of Technology, 2005.

G. Vreeswijk. Argumentation in bayesian belief networks. In Argumentation in Multi-Agent

Systems, volume 3366 of Lecture Notes in Computer Science, pages 111–129. Springer

Berlin Heidelberg, 2005.

K. R. Wallace. The substance of rhetoric: Good reasons. Quarterly Journal of Speech, 49

(3):239–249, 1963.

D. Walton. Argumentation theory: A very short introduction. In Argumentation in Artificial

Intelligence, pages 1–22. Springer US, 2009.

B. Wang and G. Luo. Extend argumentation frameworks based on degree of attack. In

Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on, pages 771–

776, 2010.

G. Wang, T. N. Wong, and X. Wang. A negotiation protocol to support agent argumenta-

tion and ontology interoperability in mas-based virtual enterprises. In 7th International

Conference on Information Technology: New Generations (ITNG), 2010., pages 448–453,

2010.

156

BIBLIOGRAPHY

Y. Wang, L. Yao, B. Liu, and J. Xu. An argumentation based feedback system for ac-

tion planning of service robots. In Multisensor Fusion and Information Integration for

Intelligent Systems (MFI), 2014 International Conference on, pages 1–7, 2014.

M. Wardeh, F. Coenen, and T. Bench-Capon. Multi-agent based classification using argu-

mentation from experience. Autonomous Agents and Multi-Agent Systems, 25(3):447–474,

2012.

M. J. Wooldridge. Reasoning about rational agents. Intelligent robotics and autonomous

agents. MIT Press, 2000.

M. Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.

M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology for agent-oriented

analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

M. Wynne and A. Hellesy. Cucumber. Behaviour driven development with elegance and joy.

https://cucumber.io/, 2008. Accessed December 15, 2015.

C. Xiong, W. Xiang, and Y. Ouyang. Argumentation in multi-agent system based on JADE.

In 3rd International Conference on Intelligent Control and Information Processing (ICI-

CIP), 2012, pages 88–91, 2012.

D. Xue-jie, C. Jian, H. Ying-lan, J. Guo-rui, and H. Ti-yun. Multi-attribute negotiation

model based on internal factors argumentation. In Management Science and Engineering

(ICMSE), 2013 International Conference on, pages 20–27, 2013.

Y. Ye, H. Lin, G. Chen, and Z. Liu. Argumentation-based negotiation in multi-agent system

of drying oven for automobile body. In IEEE International Conference on Intelligent

Computing and Intelligent Systems (ICIS), 2010., volume 2, pages 453–456, 2010.

J. Yuan, A. Bao, L. Yao, X. Qi, and F. Liu. Defeasible logic base bdi agent for argumenta-

tion. In IEEE International Conference on Intelligent Computing and Intelligent Systems,

2009., volume 1, pages 223–228, 2009.

J. Yuan, L. Yao, Z. Hao, F. Liu, and T. Yuan. Multi-party dialogue games for distributed

argumentation system. In Proceedings of the 2011 IEEE/WIC/ACM International Con-

ferences on Web Intelligence and Intelligent Agent Technology - Volume 02, WI-IAT ’11,

pages 329–332, Washington, DC, USA, 2011. IEEE Computer Society.

W. Zhang, Y. Liang, S. Ji, and Q. Tian. Argumentation agent based fire emergency rescue

project making. In IEEE Symposium on Robotics and Applications (ISRA), 2012, pages

892–895, 2012.

157

https://cucumber.io/

BIBLIOGRAPHY

Z. Zhang, J. Thangarajah, and L. Padgham. Automated testing for intelligent agent systems.

In Agent-Oriented Software Engineering X, volume 6038 of Lecture Notes in Computer

Science, pages 66–79. Springer Berlin / Heidelberg, 2011.

158

List of Figures

1.1 Overview of the solution proposed in this thesis. 5

2.1 Overview of the Beast Methodology. 12

2.2 Architecture of an FTTH network. 15

2.3 Steps of the Agent Level Testing Phase. 18

2.4 BEAST Mock Agents. 19

2.5 Overview of agents involved in the exemplified scenario. 20

2.6 Steps of the exemplified scenario. 21

2.7 Outcomes of BEAST phases. 21

2.8 Example of traceability in the BEAST Methodology. 22

2.9 Screenshot of a failing BEAST Test Case. 23

2.10 MAS Level Testing. 24

2.11 M1 - Number of Completed Diagnoses. 28

2.12 M2 - Correct Symptom Detection. 29

2.13 M3 - Correct Diagnosis Conclusions. 29

2.14 M4 - Heterogeneity of Diagnosis Cases. 30

2.15 M5 - Time To Diagnose. 31

2.16 M6 - Spectrometer Usage Rate. 31

2.17 M7 - Agents Population. 32

2.18 M8 - Available Resources. 33

2.19 M9 - Global Efficiency Rate. 34

159

LIST OF FIGURES

2.20 M10 - Number of Messages per Diagnosis. 34

2.21 M11 - Number of Sent Messages. 35

2.22 M12 - Number of Received Messages. 35

2.23 M13 - Time To Reason. 36

2.24 M14 - Time To Test. 37

2.25 M15 - Time to Detect. 37

2.26 Java classes generated in the parsing process. 39

2.27 Relation between BEAST TestCase class and a BDD scenario. 40

2.28 MAS Platform Selector for Beast Test Case. 41

2.29 Test code lines (Y axis) per Test Case (X axis) comparison for JADEX. . . . 45

2.30 Test code lines (Y axis) per Test Case (X axis) comparison for JADE. 45

3.1 Main classes of the Infrastructure and Network Description Language. 55

3.2 Two layers model of Bayesian network. 57

3.3 Three layers model of Bayesian network. 58

3.4 Example of the structure of a Causal Model following the BN3M Model. . . . 59

3.5 Example of a CPT which relates variables of a Causal Model. 59

3.6 Prime Diagnostic Method. 60

3.7 Symptom Detection Task. 61

3.8 Hypothesis Generation Task . 62

3.9 Hypothesis Discrimination Task . 62

3.10 Main classes of the Diagnosis Model. 64

3.11 B2D2 Agent Architecture. 67

3.12 Example of SPIN rule to add routers to a Path. 68

3.13 Technical infrastructure for providing the Internet Business service. 74

3.14 Diagnosis results graph. 75

160

LIST OF FIGURES

3.15 A portion of the Causal Model used in the case study. The associated CPT

of each node is omitted. 76

3.16 Example of Ontology Individuals obtained with the mapping process. 77

3.17 Normalised entropy of various root causes of faults. 78

3.18 Fault root cause clusters. 79

3.19 Histogram of diagnosis duration (in seconds). 79

3.20 Snapshot of the simulated WSN scenario. 81

3.21 Example of SPIN rule to detect edge routers. 83

3.22 Structure of the Causal Model developed for this case study. 84

3.23 Ratio of lost messages to number of deployed sensors. 85

3.24 Ratio of lost messages to ratio of number of routers and number of deployed

sensors. 86

3.25 Ratio of lost messages to ratio of number of edge routers and number of total

routers. 86

3.26 Normalised entropy of the fault root causes of the simulated WSN scenario. . 87

3.27 Global Success Rate of the Validation Process. 88

3.28 Success Rate with no missing data. 88

3.29 Success Rate with 25 % missing data. 89

3.30 Success Rate with 50 % missing data. 89

4.1 Overview of B2D2 Argumentative Agents in Federated Domains. 105

4.2 Phases of the B2D2 Coordination Protocol. 105

4.3 Coalition Formation Phase. 106

4.4 Argumentation Phase. 108

4.5 Conclusion Phase. 109

4.6 Main classes of the Argumentation Model. 110

4.7 Agent deployment in motivational scenario. 120

4.8 Simplified overview of the example of the federated network scenario. 121

161

LIST OF FIGURES

162

List of Tables

2.1 User Story template (North, 2007). 13

2.2 Scenario template (North, 2007). 13

2.3 Example of User Story. 14

2.4 Examples of Agent Stories. 17

2.5 Exemplified Scenario of an Agent Story. 20

2.6 Requirement Metrics for an autonomic Fault Diagnosis system. 26

2.7 Design Metrics for an autonomic Fault Diagnosis system. 27

2.8 Implementation of the exemplified scenario in a BEAST Test Case. 44

3.1 Examples of the usage of INDL to describe the Strcutural Model. 56

3.2 Example of application of the Diagnosis Model. 66

3.3 Symptom Detection Task in AgentSpeak language. 69

3.4 Hypothesis Generation Task in AgentSpeak language. 70

3.5 Hypothesis Discrimination Task in AgentSpeak language. 72

3.6 System KPIs . 80

4.1 Studies per argumentation framework. 94

4.2 Studies per agent level behaviour. 95

4.3 Maturity level of included studies per year. 96

4.4 Maturity level. 97

4.5 Application example for the Argumentation Model. 111

4.6 Initiating an Argumentation for Hypothesis Discrimination Task. 113

163

LIST OF TABLES

4.7 Conforming coalitions for an Argumentation process. 114

4.8 Initiating the argumentation phase. 115

4.9 Processing arguments. 116

4.10 Concluding the distributed Hypothesis Discrimination Task. 118

4.11 Variables of the Problem Domain for the worked example. 122

4.12 Summary of considered classification techniques. 128

4.13 Datasets Summary. 129

4.14 Error Rate without uncertainty (all available data). 130

4.15 Error Rate with 25% of missing attributes. 131

4.16 Error Rate with 50% of missing attributes. 132

164

Glossary

AAF Assumption-based Argumentation Framework

ABN Argumentation-based Negotiation

AOSE Agent Oriented Software Engineering

ATDD Acceptance Test Driven Development

AUT Agent Under Test

B2D2 BDI for Bayesian Diagnosis

BARMAS B2D2 ARgumentative Multi-Agent System

BDD Behaviour Driven Development

BDI Belief-Desire-Intention

BEAST BEhavioural Agent Simple Testing

BN Bayesian Network

BPMN Business Process Model and Notation

BRAS Broadband Remote Access Server

CDF Cumulative Distribution Function

CIM Common Information Model

CM Causal Model

CPT Conditional Probability Table

DAF Dung’s Argumentation Framework

DAG Directed Acyclic Graph

DEN-ng Directory Enabled Networking-next generation

165

DPN Distributed Perception Network

DSLAM Digital Subscriber Line Access Multiplexer

ETSI European Telecommunications Standards Institute

ER Error Rate

FTTH Fiber To The Home

GANA Generic Autonomic Network Architecture

HAN Home Area Network

IDCP Inter-Domain Controller Protocol

INDL Infrastructure and Network Description Language

IRTF Internet Research Task Force

KPI Key Performance Indicator

LPwNF Logic Programming without Negation as Failure

MADL Media Applications Description Language

MAPE Monitor-Analyze-Plan-Execute

MAS Multi-Agent System

MPLS Multiprotocol Label Switching

MSBN Multiply Sectioned Bayesian Network

MTTD Mean Time to Diagnose

NML Network Markup Language

OLT Optical Line Termination

ONT Optical Network Terminal

OSPF Open Shortest Path First

OSPF-TE Traffic Engineering Extensions to Open Shortest Path First

OSS Operation Support Systems

OWL Ontology Web Language

166

P2P Peer-to-Peer

PAF Preference-based Argumentation Framework

PLDM Prior/Likelihood Decomposable Model

PPP Point-to-Point Protocol

PR-OWL Probabilistic OWL

PSM Problem-Solving Method

REN Regional Ethernet Network

RFC Request For Comments

SBE Specification by Example

SDN Software-Defined Networking

SDSL Symmetric Digital Subscriber Line

SLA Service Level Agreement

SM Structural Model

SNMP Simple Network Management Protocol

SPIN SPARQL Inference Notation

SRDL Semantic Resource Description Language

TDD Test Driven Developoment

TLAF Three-Layer Argumentation Framework

TTD Time To Diagnose

UML Unified Modelling Language

VAF Value-based Argumentation Framework

VoD Video On Demand

VPN Virtual Private Network

VXDL Virtual private eXecution infrastructure Description Language

WSN Wireless Sensor Network

167

168

APPENDIXA
Publications

The results of this thesis have produced a number scientific publications in journals and in

conference proceedings. The list of those publications is shown below:

A.1 Journal Articles

• Álvaro Carrera, Carlos A. Iglesias, Javier García-Algarra, and Dušan Kolařík. A real-

life application of multi-agent systems for fault diagnosis in the provision of an internet

business service. Journal of Network and Computer Applications, 37:146-154, 2014.

ISSN 1084-8045. doi: 10.1016/j.jnca.2012.11.004. Impact Factor (2014): 2.229 Q1.

• Álvaro Carrera, Carlos A. Iglesias, and Mercedes Garijo. Beast methodology: An

agile testing methodology for multi-agent systems based on behaviour driven devel-

opment. Information Systems Frontiers, 16(2):169-182, 2014. ISSN 1387-3326. doi:

10.1007/s10796-013-9438-5. Impact Factor (2014): 1.077 Q2.

• Álvaro Carrera and Carlos A. Iglesias. A systematic review of argumentation tech-

niques for multi-agent systems research. Artificial Intelligence Review, 44(4):509-535,

2015b. ISSN 0269-2821. doi: 10.1007/s10462-015-9435-9. Impact Factor (2014):

2.111 Q2.

169

• J. García-Algarra, J. González-Ordás, P. Arozarena, R. Afonso, and Á. Carrera. A

probabilistic approach to g-pon self healing. Revista Iberoamericana de Automática

e Informática Industrial RIAI, 11(1):80-85, 2014. ISSN 1697-7912. doi: 10.1016/

j.riai.2013.11.005. Impact Factor (2014): 0.118 Q4.

A.2 Conference Proceedings

• Álvaro Carrera and Carlos A. Iglesias. Towards fault diagnosis based on agent technol-

ogy for wireless sensor networks. In Future Generation Communication Technology

(FGCT), 2015 Fourth International Conference on, pages 68-73, July 2015. ISBN

978-1-4799-8266-0. doi: 10.1109/ FGCT. 2015.7300248.

• Álvaro Carrera, Jorge J. Solitario, and Carlos A. Iglesias. Behaviour driven develop-

ment for multi-agent systems. In Proceedings of The Third International Workshop

on Infrastructures and Tools for Multiagent Systems - ITMAS 2012, pages 107-120,

June 2012. ISBN 978-84-8363-850-7.

• Álvaro Carrera and Carlos A. Iglesias. Improving diagnosis agents with hybrid hy-

potheses confirmation reasoning techniques. In Massimo Cossentino, Michael Kaisers,

Karl Tuyls, and Gerhard Weiss, editors, Multi-Agent Systems, volume 7541 of Lecture

Notes in Computer Science, pages 48-62. Springer Berlin Heidelberg, 2012. ISBN

978-3-642-34798-6. doi: 10.1007/978-3-642-34799-3 4.

• Álvaro Carrera and Carlos A Iglesias. B2DI - A Bayesian BDI Agent Model with

Causal Belief Updating based on MSBN. In Proceedings of the 4th International Con-

ference on Agents and Artificial Intelligence, pages 343-346, 2012. ISBN 978-989-8425-

95-9. doi: 10.5220/0003746003430346.

• Álvaro Carrera, Javier Gonzalez-Ordás, Javier García-Algarra, Pablo Arozarena, and

Mercedes Garijo. A multi-agent system with distributed bayesian reasoning for net-

work fault diagnosis. In Yves Demazeau, Michal Pěchoucěk, JuanM. Corchado, and

Javier Bajo Pérez, editors, Advances on Practical Applications of Agents and Multia-

gent Systems, volume 88 of Advances in Intelligent and Soft Computing, pages 113-118.

Springer Berlin Heidelberg, 2011. ISBN 978-3-642-19874-8. doi: 10.1007/978-3-642-

19875-5 15.

• Álvaro Carrera and Carlos A. Iglesias. Multi-agent architecture for heterogeneous

reasoning under uncertainty combining msbn and ontologies in distributed network

diagnosis. In Proceedings of the 2011 IEEE/WIC/ACM International Conferences on

170

Web Intelligence and Intelligent Agent Technology - Volume 02, WI-IAT2011, pages

159-162, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-

4513-4. doi: 10.1109/WI-IAT. 2011. 106.

• Javier García-Algarra, Pablo Arozarena, Sergio García-Gómez, Álvaro Carrera-Barroso,

and Raquel Toribio-Sardón. A lightweight approach to distributed network diagnosis

under uncertainty. In Santi Caballé, Fatos Xhafa, and Ajith Abraham, editors, In-

telligent Networking, Collaborative Systems and Applications, volume 329 of Studies

in Computational Intelligence, pages 95-116. Springer Berlin Heidelberg, 2011. ISBN

978-3-642-16792-8. doi: 10.1007/978-3-642-16793-5 5.

• Pablo Arozarena, Raquel Toribio, and Álvaro Carrera. Distributed fault diagnosis

using bayesian reasoning in Magneto. In Reliable Distributed Systems Workshops

(SRDSW), 2011 30th IEEE Symposium on, pages 96-101, Oct 2011. ISBN 978-0-

7695-4451-9. doi: 10.1109/SRDSW.2011.20.

• Andrés Sedano-Frade, Javier González-Ordás, Pablo Arozarena-Llopis, Sergio García-

Gómez, and Álvaro Carrera-Barroso. Distributed Bayesian diagnosis for telecommu-

nication networks. In Yves Demazeau, Frank Dignum, Juan M. Corchado, and Javier

Bajo Pérez, editors, Advances in Practical Applications of Agents and Multiagent

Systems, volume 70 of Advances in Intelligent and Soft Computing, pages 231-240.

Springer Berlin Heidelberg, 2010. ISBN 978-3-642-12383-2. doi: 10.1007/978-3-642-

12384-9 28.

171

172

APPENDIXB
Developed Tools and Ontologies

A number of different open-source resources have been developed during the course of this

thesis. They have been used in the validation of the contributions presented in the thesis

and have the aim of fostering further research works.

B.1 Open-source Tools

A set of open-source tools are available in public source code repositories hosted by Github

web platform. A brief description of these tools are provided below.

BEAST Tool Support tool for the application of the BEAST Methodology.

This tool offers a set of facilities for the testing process of a MAS following the proposed

BEAST Methodology. It automates the translation process of both types of stories: User

Stories and Agent Stories, and generates test case skeletons for agent unit testing. Moreover,

it includes a set of mock agents ready to be used in any test case. It is fully compatible with

JADE 4.0 and JADEX 2.0.

Available at: http://github.com/gsi-upm/BeastTool.

173

http://github.com/gsi-upm/BeastTool

SHANKS Framework Simulation framework for heterogeneous and autonomous networks

based on the MASON framework.

This framework offers a wrapper of the MASON framework focusing on the simulation

of MAS in telecommunication networks. It provides a set of capabilities to facilitate the

implementation of agents in the simulation framework. Moreover, it offers integration with

other agent frameworks, such as JASON framework, or Bayesian inference libraries, such as

SMILE or UnBBayes.

Available at: http://github.com/gsi-upm/Shanks.

WSN SHANKS Module Extension Module for Wireless Sensor Networks.

This package extends the basic SHANKS framework to simulate a WSN scenario. It

has been used to execute a B2D2 Agent used for the evaluation process of the B2D2 Agent

Architecture. It emulates MicaZ devices in a motion detection application. It follows the

ZigBee standard to build the sink tree topology of the network. The B2D2 Agent in running

in the ZigBee Coordination node.

Available at: http://github.com/gsi-upm/shanks-wsn-module.

BARMAS Framework Experimentation framework for distributed argumentation process.

Built on the top of SHANKS, this framework is used to validate the B2D2 Argumenta-

tive Framework for distributed hypothesis discrimination. It reproduces federated domain

conditions to execute argumentative agents. Those conditions are key for the motivational

problem, such access restriction for cross-domain information or private background knowl-

edge for every agent.

Available at: https://github.com/gsi-upm/BARMAS.

B.2 Ontologies

Moreover, a set of the different ontologies have been developed as knowledge models for

the proposed Fault Diagnosis Agents. Those ontologies are listed below.

B2D2 Diagnosis Ontology Diagnosis Model used in the B2D2 Agent Architecture.

It is designed to describe the concepts involved in a Fault Diagnosis process, such as ob-

servation, symptom or hypothesis. Moreover, it supports the usage of probabilistic concepts

174

http://github.com/gsi-upm/Shanks
http://github.com/gsi-upm/shanks-wsn-module
https://github.com/gsi-upm/BARMAS

for handling the uncertainty of the diagnosis process.

Available at: http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis.

B2D2 Argumentation Ontology Argumentation Model used in the B2D2 Argumentative

Agent Architecture.

It is designed to describe the concepts involved in a Distributed Fault Diagnosis process

based on the proposed B2D2 Argumentation Framework. It includes concepts such as state-

ment, argument or coalition. Moreover, it extends the B2D2 Diagnosis Ontology to enable

the argumentative capability in a B2D2 Agent.

Available at: http://www.gsi.dit.upm.es/ontologies/b2d2/argumentation.

B2D2 WSN Ontology Diagnosis Model of a B2D2 Agent for Fault Diagnosis of a WSN.

This ontology is a extension of the B2D2 Diagnosis Ontology which includes an Structural

Model used in the WSN SHANKS Module to validate the B2D2 Agent Architecture. It

includes concepts such as ZigBeeSensorNode, ZigBeeBaseStation, ZigBeeRouter, SensorLink

or MicaZ device.

Available at: http://www.gsi.dit.upm.es/ontologies/b2d2/wsn.

175

http://www.gsi.dit.upm.es/ontologies/b2d2/diagnosis
http://www.gsi.dit.upm.es/ontologies/b2d2/argumentation
http://www.gsi.dit.upm.es/ontologies/b2d2/wsn

176

	Resumen
	Abstract
	Contents
	Introduction
	Motivation
	Objectives
	Solution Outline
	Thesis Organization

	Knowledge Gathering for Autonomic Fault Diagnosis
	Introduction
	Related Work
	BEAST Methodology
	System Behaviour Specification
	MAS Behaviour Specification
	Agent Level Testing
	MAS Level Testing

	BEAST Tool
	Story Parser
	BEAST Test Case Model
	MAS Platform Interface
	Mock Definition
	Implementing Test Cases
	Impact of BEAST Tool

	Summary

	Agent Architecture for Autonomic Fault Diagnosis
	Introduction
	Related Work
	B2D2 Knowledge Model
	Domain Model
	Inference Model

	B2D2 Agent Architecture
	Monitoring the network
	Detecting possible faults
	Reaching diagnosis conclusions

	Case Study
	Internet Business Scenario
	Wireless Sensor Network Scenario

	Summary

	Coordination for Autonomic Fault Diagnosis in Federated Domains
	Introduction
	Related Work
	B2D2 Argumentation Framework
	Framework Definition
	Relations between arguments

	B2D2 Coordination Protocol
	Coalition Formation Phase
	Argumentation Phase
	Conclusion Phase

	B2D2 Argumentative Agent Architecture
	Argumentation Model
	Argumentative Capability

	Case Study
	Federated Network Scenario
	Deployment of Argumentative Agents
	Distributed Diagnosis Example
	Evaluation

	Summary

	Conclusions and Future Research
	Conclusions
	Future Research

	Bibliography
	List of Figures
	List of Tables
	Glossary
	Appendix Publications
	Journal Articles
	Conference Proceedings

	Appendix Developed Tools and Ontologies
	Open-source Tools
	Ontologies

