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Abstract. This work presents an agent based model of radicalization
growth based on social theories. The model aims at improving the under-
standing of the influence of social links on radicalism spread. The model
consists of two main entities, a Network Model and an Agent Model. The
Network Model updates the agent relationships based on proximity and
homophily, it simulates information diffusion and updates the agents’
beliefs. The model has been evaluated and implemented in Python with
the agent-based social simulator Soil. In addition, it has been evaluated
using a sensitivity analysis.

Keywords: Radicalization - Terrorism - Agent-based social simulation.

1 Introduction

Research works on political terrorism began in the early 1970s. These works were
focused on collecting empirical data and analyzing it for public policy purposes.
Terrorist activity was usually attributed to personality disorders or “irrational”
thinking [1]. However, later research paint a richer picture, and suggest that
there are many additional factors that should be considered.

Many scholars, government analysts and politicians point out that since the
mid 1990s terrorism has changed. This “new” form of terrorism is is often mo-
tivated by religious beliefs and it is more fanatical, deadly, and pervasive. It
also differs in terms of goals, methods and organization [1,2]. However, this the
drivers of current terrorism involve not only political or religious interests but
also include fanaticism. Consequently, terrorism is the result of a complex pro-
cess of radicalization. i.e., a progressive adoption of extreme political, social or
religious ideals.

Nevertheless, this process does not always lead to violence acts such as ter-
rorism [3]. It is of vital importance to understand the properties of radicalization
in order to anticipate said violence. The main challenge with regard to under-
standing how these organizations work is that information is not always available.
And, when it is available, it is often incomplete or inaccurate.
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One common approach to face terrorism is trying to understand its roots,
motivation and practices. In particular, it is of vital importance nowadays to
understand how terrorist organizations recruit new members and isolate them.
Moreover, terrorist organizations have effectively used social media and social
networks to expand their networks through real-time information exchange.

As society and new forms of communications evolve, terrorists are developing
new forms of organization for their purposes. Organizations can thus flatten
out their pyramid of authority and control. The resulting structure can take
different forms, from a dense network to a group of more or less autonomous,
dispersed entities, linked by communications and perhaps nothing more than
a common purpose [4]. Thus, terrorist organizations can be modelled as Social
Networks (SNs) where vertices represents members of the organization and links
represent communication between members.

Regardless of their structure, terrorist organizations are by definition SNs,
and can be modelled as such. Hence, a research based on Agent-based Social
Simulation (ABSS) could be a good starting point for understanding the infor-
mation flow within the network.

This paper proposes an agent-based model of a terrorist organization growth
which has been implemented in Soil [5], an agent-based social simulator designed
for modelling social networks.

This remainder of the paper is structured as follows. Sect. 2 introduces the
ABSS Soil, paying special attention to its modelling approach as well as specific
features developed for modeling problems with a geographical component, as it
happens in the radicalization process. Sect. 3 introduces the agent-based model of
radicalization. Sect. 4 describes the implementation of the model using Soil, and
provides an overview of the simulation results, including a sensitivity analysis of
the simulation results to evaluate the developed model. Finally, some conclusions
and insights are presented in Sect. 5.

2 ABSS Soil

Soil [5] is a modern ABSS for modelling and simulation of SNs. It has been
applied to a number of scenarios, ranging from rumour propagation to emo-
tion propagation and information diffusion. Each simulation consists of a set of
agents, which typically represent humans, and a network that represents social
links between agents.

Agents are characterized by their state and the behaviours they can carry
out in every simulation step, usually depending on user state. Each behaviour
defines the actions carried out and how agent state evolves, depending on exter-
nal factors or social factors. Those external or social factors are controlled by
environment agents, which are not assigned to any network node.

The main reason for using this simulator is that it is one of the few ABSS
platforms that support social network analysis [5]. Two other alternatives were
considered: Hashkat and Krowdix.
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HashKat [6] is a C++ ABSS platform specifically designed for the study
and simulation of social networks. It includes facilities for network growth and
information diffusion, based on a kinetic Monte Carlo model. It exports infor-
mation to be processed by machine learning libraries such as NetworkX [7] or
R’s iGraph [8] and network visualization with Gephi [9]. The simulator is highly
performant, but has two major drawbacks. Firstly, simulations are expressed in
a descriptive language. Agents are created by specifying a set of highly config-
urable parameters. As a result, adding behaviours beyond those already included
in the platform involves adding new capabilities to the framework. Secondly, and
most importantly, modifications to these behaviours are very tied to the archi-
tecture of the platform, rather than being isolated for every type of agent. This
makes customization costly, especially for someone without a C++ background.

On the other hand, Krowdix [10] is built on Java ABSS. It uses JUNG [11] for
network functions and JFreeChart [12] for visualization. The simulation model
considers users, their relationships, user groups and interchanged contents. Its
main drawback is that it is not open source.

Conversely, Soil is open source and built using Python and benefits from
all the Python ecosystem. Regarding the alternatives, Krowdix project is not
longer active, while Hashkat provides many facilities for modifying the settings
of the provided agent models, but makes hard the integration of new models. In
contrast, Soil has being conceived for experimenting and developing easily new
simulation models in Python. This has the advantage of Python’s increased pop-
ularity, its very gradual learning curve, readability, clear syntax and availability
of libraries for network processing and machine learning. The network features
of Soil are based on NetworkX, which is the defacto standard library for So-
cial Network Analysis (SNA) of small to medium networks. NetworkX provides
functionalities for manipulating and representing graph models, generators of
classical and popular graph models, including generators for geometric graphs,
and graph algorithms for analyzing graph properties. In addition, NetworkX is
interoperable with a great number of graph formats, including GEXF, GML,
GraphML and JSON among others.

2.1 Architecture

As previously stated, simulations in Soil consist of agents and a network that
represents social links between agents. Agents are characterized by their state
(e.g. infected) and the behaviours they can carry out in every simulation step,
which usually depend on the user state. Each behaviour defines the actions
carried out (e.g. tweeting, following a user, etc.) and how the agent state evolves
depending on external factors (e.g. news about a topic) or social factors (e.g.
opinion of their friends). The likelihood or frequency of each action is typically
configurable by either globally or agent-level variables.

This simulation model has been implemented in the architecture shown in
Fig. 1 and consists of four main components.
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Fig. 1. Simulation components

The NetworkSimulation class is in charge of the network simulator engine.
It provides forward-time simulation of events in a network based on nxsim 3
and Simpy [13]. Based on configuration parameters, a graph is generated with
NetworkX and an agent class is populated to each network node. The main
parameters are the network type, number of nodes, maximum simulation time,
number of simulations and timeout between each simulation step.

The BaseAgentBehaviour class is the basic agent behaviour that should be
extended for each social network simulation model. It provides a basic function-
ality for generation of a JSON file with the status of the agents for its analysis
with machine libraries such as Scikit-Learn [14].

The SoilSimulator class is in charge of running the simulation pipeline de-
fined in Sect. 2.2, which consists in running the simulation and generating a
visualization file in Graph Exchange XML Format (GEXF) which can be visu-
alized with Gephi. In addition, interactive analysis can be done with IPython
web interface.

Settings groups the general settings for simulations and the settings of the
different models available in Soil’s simulation model library.

2.2 Simulation workflow

An overview of the system’s flow is shown in Fig. 2. The simulation workflow
consists of three steps: configuration, simulation and visualization.

In the first step, the main parameters of the simulation are configured in the
JSON or YAML settings file. The main parameters are: network graph type,
number of agents, agent types and weights, maximum time of simulation and
time step length. In addition, the parameters of the behaviour model should

3 https://pypi.python.org/pypi/nxsim
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Fig. 2. Social simulator’s workflow

be configured (e.g. initial states or probability of an agent action). Agent be-
haviours should be selected from the provided library or developed extending
the BaseAgentBehaviour class.

Once the simulation is configured, the next step is the simulation, that can be
done step by step or a number of steps. The class BaseAgentBehaviour stores the
status of every agent in every simulation step into a JSON file to be exported once
the simulation is finished. This allows us to automatize the process of generating
the .gexf file.

Finally, users can carry out further analysis with the JSON file as well as
visualize the evolution the simulation with the generated .gexf file with Gephi.

3 Radical Simulation Model

3.1 Problem

As previously discussed, in the last years, the way people communicate has
changed, becoming more relevant social networks, where everyone can exchange
messages, images and videos. Terrorist organizations also have moved forward
by setting up radio stations, TV channels or Internet websites. These activities
allow them to increase their strength, their funds and better recruit new people.

Since terrorist organizations can be modeled as social networks we can study
how information is shared and how people become members of groups or even
new relationships. Within the proposed model (Sec. 3.2), terrorist groups will
be represented as graphs where vertices represent members and edges represent
communication between those members.

However, radicalism is not only sustained by flow information. Multiple
causes, rather than a single cause should be considered, including social and
spacial relations which evolve over time. Estimating their evolution is important
for management, command and control structures, as well as for intelligence
analysis research purposes. By knowing future social and spacial distributions,
analysts can identify emergent leaders, hot spots, and organizational vulnerabil-
ities [15].

In order to approach to the radicalism spread, a spatial distribution is used
based on Geometric Graph Generators [16], which provides geographical posi-
tions to agents, being able to manage real environments.
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The physical space aims to produce more insightful results when considering
the spread of terrorism [17]. Properties of space and place are vital components
of terrorist training, planning, and activities.

Besides, based on the principle of homophily, as a contact between similar
people occurs at a higher rate than among dissimilar people, it is more likely to
have contact with those who are closer to us in geographic location than those
who are distant [18]. It is theorized that, in general, close proximity in geographic
space strongly influences closeness in social space [17].

As it was discussed above, the proposed model will try to approach to the
fact of the rise of radicalism within a specified geographic area considering real
geographical connections between members.

3.2 Model development

Three levels of analysis are widely accepted for the radicalization process [19]:
micro-level (i.e. the individual level involving feelings of grievance, marginaliza-
tion, etc.), meso-level (i.e. the social environment surrounding radicals and the
population and lead to the formation of radical groups), and macro-level (i.e.
impact of government policies, religion, media, including radicalization of the
public opinion and political parties).

The model here proposed is focused on analyzing the macro-level, including
limited aspects of the micro-level (such as the vulnerability level).

Several aspects have been considered for modeling the radicalism growth at
the meso-level. First, the model considers the impact of havens [20] and training
areas [21]. Havens, also known as sanctuaries, provide radical groups the possi-
bility to obtain long term funding and serve the purposed of solidifying group
cohesion. Terrorist training camps aim at providing indoctrination and teaching
for terrorism and are distributed around the world. They foster group identity
formation and group cohesion, and require geographical isolation and easy access
to weapons.

The modelling of the radicalism spread involves population and places as it
was discussed above. People can play two roles: (1) population as the people
that can be radicalized and (2) terrorist that spread their message to locals and
try to recruit civilians to join the terrorist network.

Based on a previous model proposed by Cummings [17], terrorists have little
opportunities for effective training, planning, and other logistic necessities. Those

Update radicalisation
Initalize agent social update exchange level based on Change
context and vision relationships information neighbours and agent role

vulnerabilty

Fig. 3. General workflow of the simulation
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areas are modelled by (1) training environments, which increase the influence to
the nodes that are attached to them, and (2) havens where people is save. The
nodes that are joined to havens get less influenced if the havens is not radicalized,
but it could get radicalized and its behaviour will change.

For implementing the environment described, we will use four different mod-
els that interact with each other.

— Spread model in charge of the information flow which determine the state of
population. Each node contains a threshold where once reached, the node is
marked as informed and it will pass from a civilian state to a radical state.

— Network model in charge of controlling spatial and social relations between
population.

— Havens model which will modify nodes vulnerability depending on haven
state as it is going to be explained below.

— Training areas model which will decrease neighbouring nodes vulnerability.

The network consists on IV nodes that have two coordinates, as since Geo-
metric Graph Generators [16] are used, that position each node on a map. The
edge between two nodes, indicates direct bidirectional communication between
both of them.

All agents are assumed to have similar parameters but are heterogeneous
in their representation. Within the spread model, each node develops its own
belief about whether the information is valid by calculating weighted mean belief
B; from it neighbors, and combining that with its initial belief By, which is
normalized between 0 and 1 [22]. In addition, in every step two agents will
exchange information given a probability of interaction.

The mean belief is calculated given its own vulnerability and the neighbours
influence as well as the information spread intensity («) which is also normalized
and consider how much information is exchanged in every step of the simulation.

" B; D;
Be=) =i (1)
; ijo D,

The node influence D; parameter has been included in Eq. 1 — where n is the
number of neighbours of the node — as the change in behavior that one person
causes in another as a result of an interaction [23] measured as degree centrality
that is defined as the number of adjacencies upon a node, which is the sum of
each row in the adjacency matrix representing the network. It can be interpreted
within social networks as a measure of immediate influence — the ability to infect
others directly or in one time period [24]. This SNA function returns values that
are normalized by dividing by the maximum possible degree in a simple graph
N — 1 where N is the number of nodes in G.

B,=B.a+By(l-a) ; 0<a<l (2)

As it was explained above, in Eq. 2 the parameter to indicate the information
spread intensity is included. When its value is 0%, no information is exchanged
and when it increases, the knowledge diffusion grows.
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Bi=B, N,+By (1-N,) ; 0<N,<1 (3)

The node vulnerability (N, ) parameter is included in Eq. 3 as the extent to
which individuals conform or adopt variable attributes such as opinions from
their attached nodes. In other words, if IV, = 1, the node will be fully influenced
by their connected nodes, where a value of N,, = 0, would mean it would not be
influenced by connected nodes, so no change in the network is expected. Thus,
individuals who are merely sympathetic may be influenced to more extreme
opinions by their friends after they join the terrorist network.

Once the mean belief developed by the agent reach the threshold, it is marked
as informed and it will change its state from civilian to radical. Every agent in
radical state will be only influenced by radical agents since the radical experience
no restraining influence from non-radicals [25]. Furthermore, once an agent is in
the radical state, the information spread intensity will began to value 100%, as
once you are radical the most information you get from another radical agents.

With the purpose of determining the most important nodes within the terror-
ist network, they are marked as leaders based on the SNA function: betweenness
centrality [22], that is defined of a node v as the sum of the fraction of all-pairs
shortest paths that pass through v.

As node vulnerability (V,) was explained above, training areas and havens
will modify this attribute depending on their status. Training areas will decrease
the parameter from its neighbours, where a value of 1 for training area influence
will make all its neighbours fully vulnerable. However, a value of 1 for haven
influence will make invulnerable all its neighbours when the state of the haven
is not radical. Nevertheless, once the haven is marked as radical, its behaviour
will be similar to training areas.

Finally, the network model in charge of controlling spacial and social relations
takes into account that agents have the opportunity to interact with other agents.
They select an agent to interact with according to a probability of interaction
— different from the one mentioned above — based on two parameters: (1) social
distance and (2) spatial proximity.

On one side, social distance (SD) take into account the fact that if two agents
must cross many social links, then the probability should be low and vice versa.
It compute it by finding the shortest path between to agents and then dividing
one by the number of links in that path.

1

Dj=—
5Ds; |A A

(4)
where |A A; ;| is the shortest path from ¢ to j. When computing the social
distance, each agent can only reach all those nodes that are withing its sphere
of influence parameter. An agent can recognize and distinguish the closeness
of other agents withing the sphere of influence, but it can’t differentiate the
closeness when the interacting agent is outside the perimeter.

On the other side, spatial proximity (SP) takes into account that two agents
at the same location are more likely to talk than being in different locations.



A Model of Radicalization Growth using Agent-based Social Simulation 9

Some might argue that SP is not significant in the Internet age. However, in the
terrorism domain, attending the same training area or the same location is a
critical interaction indicator [15].

As Geometric Graph Generators returns coordinates normalized between 0
and 1, the probability of being at the same location will be computed as the
inverse of the distance between two agents.

SP; ;= (1—|di;l) (5)

where |d; ;| is the distance between the nodes. Like in SD the probability is
bounded by a sphere of influence parameter, in SP the probability will be
bounded by a vision range parameter. All agents outside this perimeter will

be unreachable by the current agent.

Table 1. Simulation input parameters.

Model Name Implication
Terrorist information_spread_intensity The amount of information exchanged in
Spread every step of the simulation.
terrorist_additional_influence Additional influence added to agents whom
status is radical.
min_vulnerability The minimum vulnerability that an agent
could have (default 0).
max_vulnerability The maximum vulnerability that an agent
could have. The allocation of this param-
eter follows a continuous uniform distribu-
tion. The maximum value that this param-
eter can take is the unit.
prob_interaction The probability that two agents exchange
information in one step.
Training  training_influence The influence that a training area applies
Area to its neighbours.
Haven haven_influence The influence that a haven applies to its
neighbours.
Terrorist  sphere_influence The maximum number of social links that
Network an agent can cross for a new interaction.

vision_range

weight_social_distance

weight_link_distance

The range on the spatial-route network
specifying the maximum distance an agent
can move for a new interaction.

The weight of social distance (SD) to cal-
culate the interaction probability.

The weight of spatial proximity (SP) to cal-
culate the interaction probability.




10 T. Méndez et al.

Once defined both parameters, we can compute the probability of interaction
that it will be calculated as following.

Pi{;_zteraction =w SDi,j + woy S-Pi,j (6)

where wy and wo are the weights of SD and SP respectively with the purpose of
customizing the environment.

None of the parameters will limit the probability of interaction. Thus, the
candidate agents will be the sum of all the agents that are inside the perimeter
of the sphere of influence or the vision range.

Thereby, an agent can establish a new way of communication with its can-
didate agents, so the probability of interaction is calculated between each agent
and its candidate agents.

As it was explained, the aim of the model is trying to approach to the fact
of the radicalism spread withing a specified geographic area. For that reason, in
Table 1 all parameters of the simulation are detailed for representing a scenario
as real as possible. Aside from all the parameters explained, the network can be
modelled using one of the random network generation methods from NetworkX.
It is also possible to control the ratio of each type of agent.

4 Experimental results

The model has been implemented using the Soil Simulator as it was discussed
above. The scenario represents a specified geographic area that can be cus-
tomized with the purpose of approaching a real scenario.

Every agent exchange information several times during the simulation and
every portion of time is known as step. One one hand, in every step an agent
belonging to the Network Model will update its relationships based on the input
parameters. After this action, the control is passed to the Spread Model that will
be in charge of how the information will flow in that step. The current agent will
be influenced by its neighbours depending on their internal parameters values.

On the other hand, if the current agent is a haven or a training area, the
step will consist on modifying the internal parameters of their neighbours as it
was explained in the previous section.

With the purpose of making the simulations more interactive, a web appli-
cation has been developed using D3.js [26] for visualizing the results. As we can
notice in Fig. 4 the simulation returns a graph that is presented in the main area
of the web application. The graph can be positioned in a map, and it could be
represented depending on the step, being able to see it evolve over time. Further-
more, the interface allows users filtering the results or changing the simulation
parameters.

The application not only allows the user to visualize the results, it also pro-
vides statistics and the option of running more simulations changing the input
parameters as it is displayed in Fig. 5. The web application also allows users to
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export the results of the simulation in different formats such as GEXF [27] or

JSONGraph* to be analyzed with any other tool.

The model has been evaluated using two different sensitivity analysis meth-
ods. The first one is a local approach known as One-at-Time (OAT) approach,
that studies small input perturbations on the model output. To bring about

* http:/ /netflix.github.io/falcor /documentation /jsongraph.html
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(a) Scale Free output (b) Small World output

Fig. 6. Morris method results representation for radical population output for 200
trajectories

this method, 1.000 simulations have been launched with different input values
and have been analyzed using the Seaborn [28] library available for Python for
exploring and understanding the results.

The other method applied is the Morris method [29] that is referred to as
“global sensitivity analysis” that in contrast to local sensitivity analysis, it con-
siders the whole variation range of the inputs [30]. This method is computed
using the SALib [31] library for Python.

The primary model outputs of interest for the sensitivity analysis are the
radical population understood as the number of agents that have become radical
from those who were not radical at the beginning and the mean radicalism within
the network.

Both outputs will be measured taking into account different types of simula-
tions. On one side, the network model will be studied assuming that the spread
model inherit the another. On the other side, three different topologies (small
world, scale free and random clustered) will be analyzed.

In Table 2 the Morris indices are detailed for the network model and mean
radicalism output order by up*. A total of 200 trajectories were built for the
model which results in 1.800 samples. Fig. 7 plots results on the graph (u*, o)
and identifies the probability of interaction, the maximum vulnerability and the
information spread intensity as the strongest influence on the mean radicalism
within the network.

The analysis have been made using a random clustered topology that is
created based on proximity between nodes for 100 nodes, and with same number
of radical agents at the beginning.
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Table 2. Morris indices for network model and mean radicalism output.

\ Parameter \ m \ w \ o \
prob_interaction 0.320631 | 0.367384 | 0.51795
max_vulnerability 0.243827 | 0.349831 | 0.413981
information_spread_intensity 0.252602 | 0.324202 | 0.379572
terrorist_additional_influence 0.036039 | 0.128335 | 0.206 991
weight_social_distance —0.004388 | 0.110129 | 0.186007
vision_range 0.019502 | 0.10909 0.18097
sphere_influence 0.006 756 | 0.107522 | 0.173183
weight_link_distance 0.007996 | 0.101815 | 0.17993

020
"

Fig. 7. Morris method results representation for network model and mean radicalism
output for 200 trajectories

However, taking into account the population radicalized in a simulation as
we can notice in Table 3 and Fig. 8 are similar, but the maximum vulnerability
and the information spread intensity is in this case more influential than the
probability of interaction.

Morris indices for the three different topologies have similarities as the weight
of the radical agents for the distribution through the network is the most influ-
ential parameter for both outputs as it can be noticed in Fig. 6 for Scale Free
and Small World topologies. In addition, the model output linearly depends on
the weight of the agents. Nevertheless, the size of the network have no influence
on the two model outputs.

The methods presented attempt to validate certain factors such as types of
network connections and the presence of certain kinds of meeting sites which
facilitate radicalization while other plausible factors such as community size
have little effect. Network types can play an important part in understanding
how radicalism spreads, and can be equally important when trying to destabilize
or destroy a network.
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Table 3. Morris indices for network model and radicalized population output.

\ Parameter \ m \ w \ o \
max_vulnerability 0.466 355 | 0.484857 | 0.596371
information_spread_intensity 0.392325 | 0.402566 | 0.541922
prob_interaction 0.268 707 | 0.331403 | 0.568 499
terrorist_additional_influence 0.092038 | 0.186473 | 0.415794
weight_link_distance —0.012333 | 0.181102 | 0.401011
vision_range —0.001680 | 0.176981 | 0.380602
sphere_influence 0.005437 | 0.169812 | 0.358775
weight_social_distance 0.003899 | 0.165475 | 0.375792

Fig. 8. Morris method results representation for network model and radicalized popu-
lation output for 200 trajectories

5 Conclusions and Future work

Understanding radicalization roots is a first step for being able to define and
apply suitable counter-terrorism measures. There are many challenges for ana-
lyzing terrorism networks, given the lack of public datasets and the sensibility of
this information. Nonetheless, the application of agent based social simulation is
an effective technique for modeling non linear adaptive systems, and they enable
analyzing and validating social theories of the radicalization process.

In this work we present a model and a tool for agent-based modeling of radi-
cal terrorist networks. We have propose building the agent-based model around
two main concepts, the Network Model and the Agent Model. While the first
is in charge of managing agent relationships, the second defines the specific be-
haviour of every agent. This approach has been applied for modeling terrorist
growth. The proposed model is focused on analyzing the impact of the informa-
tion exchange and environmental radicalization in the radicalization process.The
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evaluation and analysis of the simulation results provides insight regarding the

importance of the simulation parameters, including the network characteristics.
Future work should include a broader and deeper perspective of absolute and

relative deprivation and how each can influence the spread of radicalism.

Acknowledgements

This work is supported by the Spanish Ministry of Economy and Competitive-
ness under the R&D projects SEMOLA (TEC2015-68284-R), by the Regional
Government of Madrid through the project MOSI-AGIL-CM (grant P2013/ICE-
3019, co-funded by EU Structural Funds FSE and FEDER); by the European
Union through the project Trivalent (Grant Agreement no: 740934) and by the
Ministry of Education, Culture and Sport through the mobility research stay
grant PRX17/00417.

References

1. Martha Crenshaw. The psychology of terrorism: An agenda for the 21st century.
Political psychology, 21(2):405-420, 2000.

2. Alexander Spencer. Questioning the concept of ‘new terrorism’. Peace, Conflict
and Development, pages 1-33, 2006.

3. Oliver Gruebner, Martin Sykora, Sarah R Lowe, Ketan Shankardass, Ludovic Trin-
quart, Tom Jackson, SV Subramanian, and Sandro Galea. Mental health surveil-
lance after the terrorist attacks in Paris. The Lancet, 387(10034):2195-2196, 2016.

4. David Tucker. What is new about the new terrorism and how dangerous is it?
Terrorism and Political Violence, 13(3):1-14, 2001.

5. Jests M. Sanchez, Carlos A. Iglesias, and J. Fernando Sédnchez-Rada. Soil: An
Agent-Based Social Simulator in Python for Modelling and Simulation of Social
Networks. In Bajo J. Vale Z. Demazeau Y., Davidsson P., editor, Advances in Prac-
tical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection,
volume 10349 of LNAI pages 234-245. PAAMS 2017, Springer Verlag, June 2017.

6. Kevin Ryczko, Adam Domurad, Nicholas Buhagiar, and Isaac Tamblyn. Hashkat:
large-scale simulations of online social networks. Social Network Analysis and
Mining, 7(1):4, 2017.

7. Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using NetworkX. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

8. Gabor Csardi and Tamas Nepusz. The igraph software package for complex net-
work research. InterJournal, Complex Systems, 1695(5):1-9, 2006.

9. Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. Gephi: an open
source software for exploring and manipulating networks. Icwsm, 8:361-362, 2009.

10. Diego Blanco-Moreno, Rubén Fuentes-Ferndndez, and Juan Pavén. Simulation of
online social networks with Krowdix. In Computational Aspects of Social Networks
(CASoN), 2011 International Conference on, pages 13-18. IEEE, 2011.

11. Joshua O’Madadhain, Danyel Fisher, Padhraic Smyth, Scott White, and Yan-Biao
Boey. Analysis and visualization of network data using JUNG. Journal of Statis-
tical Software, 10(2):1-35, 2005.



16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

T. Méndez et al.

David Gilbert. The jFreeChart class library. Developer Guide. Object Refinery, 7,
2002.

Norm Matloff. Introduction to discrete-event simulation and the simpy language.
Davis, CA. Dept of Computer Science. University of California at Davis. Retrieved
on August, 2:2009, 2008.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal of
machine learning research, 12(Oct):2825-2830, 2011.

II-Chul Moon and Kathleen M Carley. Modeling and simulating terrorist networks
in social and geospatial dimensions. IEEE Intelligent Systems, 22(5), 2007.
Mathew Penrose. Random geometric graphs. Oxford university press, 2003.

Paul Cummings and Chalinda Weerasinghe. Modeling the characteristics of radical
ideological growth using an agent based model methodology. In MODSIM World,
2017.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather:
Homophily in social networks. Annual review of sociology, 27(1):415-444, 2001.
Rositsa Dzhekova, N Stoynova, A Kojouharov, M Mancheva, D Anagnostou, and
E Tsenkov. Understanding Radicalisation. Review of Literature. Center for the
Study of Democracy, Sofia, 2016.

Ari Jean-Baptiste. Terrorist Safe Havens: Towards an Understanding of What
They Accomplish for Terrorist Organizations. PhD thesis, University of Kansas,
2010.

James JF Forest. Terrorist Training Centers Around the World: A Brief Review.
The Making of a Terrorist: Recruitment, Training and Root Causes, 2, 2005.
Paul Cummings. Modeling the characteristics of radical ideological growth using
an agent basedmodel methodology. Master Thesis, George Mason University, 2017.
Lisa Rashotte. Social influence. The Blackwell encyclopedia of sociology, 2007.
Stephen P Borgatti. Centrality and network flow. Social networks, 27(1):55-71,
2005.

Michael Genkin and Alexander Gutfraind. How do terrorist cells self-assemble:
Insights from an agent-based model of radicalization. Technical report, SSRN,
July 2011.

Nick Qi Zhu. Data visualization with D3.5s cookbook. Packt Publishing Ltd, 2013.
GEXF Working Group and others. GEXF file format, 2015.

Kevin Sheppard. Introduction to Python for econometrics, statistics and data
analysis. Self-published, University of Oxford, version, 2, 2012.

Max D Morris. Factorial sampling plans for preliminary computational experi-
ments. Technometrics, 33(2):161-174, 1991.

Bertrand Iooss and Paul Lemaitre. A review on global sensitivity analysis methods.
In Uncertainty management in simulation-optimization of compler systems, pages
101-122. Springer, 2015.

Jon Herman and Will Usher. SALib: an open-source Python library for sensitivity
analysis. The Journal of Open Source Software, 2(9), 2017.



