
Engineering Agent Systems for Decision Support *

Sascha Ossowski 1, Josefa Z. Hernández 2, Carlos A. Iglesias 3, Alberto Fernández 1

1AI Group, University Rey Juan Carlos, Campus de Móstoles s/n, E-28933 Madrid,
{s.ossowski,al.fernandez}@escet.urjc.es

2AI Dpt., Tech. University of Madrid, Campus de Montegancedo s/n, E-28660 Madrid
phernan@dia.fi.upm.es

3 Technical Innovation Dpt., Germinus XXI, Gran Vía 1 - 2º Izq, E-28013 Madrid
cif@germinus.com

Abstract. This paper discusses how agent technology can be applied to the de-
sign of advanced Information Systems for Decision Support. In particular, it
describes the different steps and models that are necessary to engineer Decision
Support Systems based on a multiagent architecture. The approach is illustrated
by a case study in the traffic management domain.

1 Introduction

Decision Support Systems (DSS) are information systems that provide assistance to
humans involved in complex decision-making processes. Early DSS were conceived
as simple databases for storage and recovery of decision relevant information [19].
Despite some intends to improve organisation and presentation of such data by means
of additional deductive facilities, it soon became apparent that the key problem for a
decision-maker is not such much to access pertinent data but rather to understand its
significance. So, the fundamental task for modern DSS is to help decision-makers in
building up and exploring the implications of their judgements, so as to take decisions
based on understanding [6].

DSS are particularly relevant in domains where human operators have to take deci-
sions regarding the management of complex industrial or environmental processes:
controlling road traffic flows [7], managing dams in a watershed basin [8], or admin-
istering large computer networks [20]. The increasing data volume and the decreasing
time horizon within which control decisions have to be taken, have generated a need
for DSS; they evaluate data about the system state, collected either directly or through
real-time databases, so as to warn operators of any undesired evolution and to answer
their questions concerning potential reasons, effects and countermeasures [4].

Recently, the concept of Intelligent DEcision-making Assistants (IDEA) has been
proposed [18]. These are intelligent agents that render support to their human opera-

* Work supported by the Spanish Ministry of Science and Technology (MCyT) under grant
TIC2000-1370-C04

tors in the various stages of their decision-making processes by means of flexible
dialogues. Suppose a DSS that assists operators in a traffic control centre to generate
and choose among alternative signal plans for traffic control devices (Variable Mes-
sage Panels, Traffic lights etc.), so as to assure a smooth flow of traffic, as well as to
avoid and/or overcome potentially critical situations. It is important for such a system
to support a reactive mode of interaction. Once an operator detects some abnormal
system parameters or receives alarm messages (e.g. from traffic observers), she
initiates a dialogue with the DSS in order to prepare her decision. There are several
questions that she will put forward to the agent, e.g. respecting the cause of the current
situation (What is happening?), the reason for it (Why is it happening?), as well as
action alternatives (What can be done?) and their potential effect of different alterna-
tives (What may happen if ?). These questions will trigger several processes in the
course of which the agent autonomously gathers relevant data from the different
information sources available. On the basis of this information, it will apply its do-
main knowledge to generate answers to the questions, taking into account rationality
constraints with respect to the operator's objective of minimising negative impacts on
the part of the road network that she is responsible for. Another scenario is given
when the intelligent assistant monitoring the road network detects symptoms of
deterioration of the traffic situation or of dysfunctional active signal plans (initiated,
or not adequately updated, for instance, by a less trained or experienced operator). In
this case, it is to proactively issue warnings, initiating a dialogue with the decision-
maker, in the course of which the latter explores the reasons and implications of that
warning in a flexible and intuitive manner.

This paper discusses how agent technology can be applied to the design of ad-
vanced DSS. In particular, setting out from our past experience in this field, it de-
scribes the different steps and models that are necessary to engineer intelligent multi-
agent systems for Decision Support. It is organised as follows: Section 2 describes
how agent-based methodologies can be used for a principled design of IDEAs. Section
3 presents a case study respecting analysis, design, implementation and operation of
such systems. We conclude this paper pointing to present and future lines of research.

2 Engineering IDEAs

Current research in Agent Oriented Software Engineering examines principled ways
for constructing complex software systems based on the agent metaphor [10,12,21].
Often, traditional object-oriented methodologies such as UML [11] are extended to
account for the characteristics of agent systems, paying particular attention to the
modelling of agent interactions and agent architecture. Such methodologies also
appear to be an adequate choice for the construction of IDEAs, but need to be com-
plemented by techniques from the knowledge engineering field, as decision support
agents draw heavily upon complex, knowledge-based reasoning processes. To this
respect, the well-known CommonKADS approach [1], that supports advanced knowl-
edge modelling, is particularly relevant.

In the sequel we describe how to apply agent-oriented software engineering tech-
niques from both fields in order to engineer intelligent assistants for decision support.
First, we use the UER modelling technique, an extension of UML, for analysis. Then,
a CommonKADS-like approach is used for the identification of basic reasoning tasks
of IDEAs. Finally, we show how to obtain and structure reasoning methods based on
such a knowledge-oriented approach [5].

2.1 Analysis

In this section we describe how to obtain a conceptualisation of IDEAs on the basis of
the UER (User-Environment-Responsibility) technique [9]. It is particularly conven-
ient for our purposes, as it allows for both, monolithic decision support agents as well
as for IDEAs that are themselves based on a multiagent architecture which, according
to our experiences, will often be the case. The UER technique analyses the system
from three different perspectives:
− User-Centred Analysis. The potential users (called actors) of the agent system are

identified, together with their possible tasks or functions. The result of this analysis
is the set of use cases. This analysis answers the question: What are the possible
uses of the multiagent system?

− Environment-centred Analysis. Agents are situated in an environment, and this
environment needs to be modelled. In particular, we are interested in modelling
how the system can act and react to this environment. The result of this analysis is
the set of reaction cases. This analysis answers the question: How does the agent
system react to the environment?

− Responsibility-driven Analysis. In contrast with usual software systems, agent
systems can act proactively. The user can desire that the system has some responsi-
bilities, that is, the user can assign some goals or responsibilities to the system and
the system carries out these responsibilities without a direct demand. This analysis
answers the question: What are the goals of the system? The main difference be-
tween goal cases and use cases, is that the latter show how the system gives an an-
swer to a user request, while the former show how the system behaves when some
condition is fulfilled.

UER defines different UML stereotypes
(see Fig. 1) for every modelling element:
use cases are UML standard ellipses, goal
cases are ellipses with wider lines, reac-
tive cases are ellipses with discontinued
lines, environment objects have an ir-
regular form, human actors are standard
UML actors and software actors are
square headed actors). In the sequel, we
model a generic Intelligent Decision
Support Agent System in these terms. Fig.
1 summarises the results.

Not surprisingly, in the general case, Fig. 1. UER Model of IDEAS

user-centred analysis identifies at least two actors: the decision-maker and the deci-
sion support system, i.e. the IDEA. The most relevant generic use cases that these
actors are involved in include:
• Conversation: The user requests some explanation from the system.
• Exchange-beliefs: another DSS interchanges plans with the systems to get a

broader understanding of the situation.
The use case conversation can be detailed as:
• Why: the decision-maker requests an explanation of information provided by the

DSS.
• What: the decision-maker requests relevant data to take a decision.
• What-if: the decision-maker asks to evaluate the results of a decision and its

consequences.
• Suggestions: the decision-maker requests possible actions to be taken.

Depending on the particular domain about which the IDEA is knowledgeable, the
environment-centred analysis identifies relevant environment objects, and every
possible event generated from these objects and possible actions carried out on them.
For example, in a financial DSS, we could identify an object share. The possible input
events are new values of this share, and the possible actions to buy or to sell.

Finally, in the goal-driven analysis we need to identify the autonomous behaviours
of an IDeA. Its most important responsibilities usually are:
• Monitoring: observe the environment and detect problematic behaviours;
• Alarm generation: raise alarms if there is a critical situation;
• Warning: warning respecting undesired consequences of “bad” actions and

potentially suggesting better ones.

2.2 Task Design

In methodologies that go back to the knowledge engineering field, a task is usually
conceived as an abstract description of how the world (or an agent’s “mental model”
of it) needs to be transformed in order to achieve a desired behaviour or functionality.
In this section we identify the different tasks that an IDEA needs to cope with so as to
be able to behave successfully in the aforementioned conversation cases.

To generate answers for the different classes of questions in our conversation
framework, we have identified essentially four tasks.
• Problem identification. From the analysis of the information received from a

communication infrastructure or directly from the operator, an IDEA classifies the
state of the monitored system.

• Diagnosis. The presence of unacceptable events or situations requires an expla-
nation in terms of causal features of the situation.

• Action planning. Once a problem has been identified, a possible sequence of
actions applicable on the causes may be established.

• Prediction. the consequences of events and operator actions are simulated.

Suppose some system components S, some external events E and operator actions A.
By combining the above tasks in different manners, several questions that a decision-
maker typically faces can be answered. For instance:
• “What is happening in S ?”: problem identification + diagnosis.

A diagnosis D for some potential malfunction is produced.
• “What to do on D in S ?”: action planning + prediction

Decision options are shaped and their potential effects evaluated.
• “What may happen if E in S ?”: prediction + problem identification + diagnosis

Potential future problems in evolution of the system are identified.
• “What to do if E in S ?”: prediction + problem ident. + diagnosis + planning

Decision options respecting potential future problems are outlined.
Still, in complex domains, like the ones that DSS are usually being applied to, the
system designer often has to deal with different types of a priori distribution [17],
which makes it unfeasible to cope directly with these tasks. This distribution may be
implied by physical requirements, as many environments show a natural spatial
distribution. DSS that assist decision-makers in managing the spill gates of several
dams in a watershed basin, for instance, rely on data on weather conditions and water
levels from sensors that are geographically distributed. But distribution may also be
implied by organisational requirements. To be successful, a DSS aimed at helping
managers to maintain a smooth flow of work in a company will have to respect the
context of its existing human organisation, e.g. its a priori distribution of responsibili-
ties and tasks. Another source of distribution is the availability of knowledge. If, as in
the road traffic management domain, a DSS relies on the knowledge elicited from
human experts, and by experience these experts conceive traffic behaviour in terms of
certain problem areas, then the system will have to reflect this a priori distribution.

A common way of dealing with these issues it to conceive an IDEA itself as a mul-
tiagent system, where each distributed entity is controlled by an agent. By conse-
quence, any of the aforementioned tasks of problem identification, diagnosis, action
planning and prediction can be performed locally by each agent within the multiagent
system that makes up an IDeA. These local tasks will be of less complexity, but they
are also interdependent: the cause of a rising water level at a certain dam may be the
opening of a spill gate further upstream, the predicted completion of a work process in
a company will depend on the timeliness of any of its work cells, and the effectiveness
of action plan in road traffic management will rely on a globally consistent use of
control devices. The co-ordination task, that such a multiagent system faces, refers to
the management of these dependencies between local tasks.

2.3 Method Design

Most knowledge-oriented methodologies make use of the concept of problem-solving
methods in order to cope with tasks. In particular, such methods indicate how a task is
achieved, by describing the different steps by which its inputs are transformed into its
outputs. The problem-solving process associated to a task is structured: each of its
steps may set up several subtasks, which again are to be solved by simpler methods
etc, until some elementary tasks can be achieved directly. In the sequel, we identify

different such “reasoning skeletons” that our IDEAs will need to apply so as to cope
effectively with the tasks identified in the previous section.

Problem identification methods
A classification method with two options may be applied:
• Identification of a reference situation and classification of the differences between

the reference and the current situation.
• Direct classification of the current situation based on a predefined taxonomy

where problems of different types are described.
The first approach requires: (1) to infer from the current situation the evolution of
parameters consistent with the functional and structural constraints which optimises a
collection of predefined criteria (e.g. in a given congested situation an ideal assign-
ment of traffic flows could be identified, adapted to the available capacity of the
network and to the traffic demand between entries and exits to the network), and (2) to
classify the differences between the observed situation and the resulting class of
situations according to a hierarchy similar to the one previously commented.

The first approach, then, applies a method in two steps. The first step derives a
possible new state from the current situation that may be supported by an ad hoc
procedure, adapted to the characteristics of the domain model. For the second subtask
a primary representation based on rules and/or frames may be applied in a hierarchical
establish & refine model [3]. The second approach is similar to the first one, but in
this case a complete description of the situation is required, not only the differences
with the reference situation.

Diagnosis methods
This task infers a collection of causes explaining the problems identified by the
previous one. Several methods may be directly applied: (1) The classification method,
which extends problem type frames by additional cause attributes in such a way that
once a problem pattern has been selected, the cause features assumed for this problem
type are assumed. (2) A version of the cover & differentiate method [16] where a
hierarchical approach to an explanatory set of causes is generated through the follow-
ing reasoning steps: (i) from the attributes of the type of problem detected a collection
of possible causes may be inferred covering these values (i.e. if the causes inferred are
true the problem feature values are also true), (ii) since this first set of causes may be
too large, a deeper analysis to differentiate subsets explanatory enough is necessary.
To do this, knowledge about the individual impact of sets of causes should be used to
decide which causes may be erased. To obtain those enlarged impact estimates knowl-
edge relating cause sets and impacts must be available in terms of relations or in terms
of simulator.

A hierarchy of conjunctive cause sets where the resulting impacts are known may
be established from aggregated sets to more disaggregated ones, every node with the
condition that there is a method to evaluate the resulting effects of the causes included
in the node.

This second analysis may be done in several steps in such a way that several rea-
sonable partitions in subsets of interacting causes are selected in the hierarchy as

potentially explanatory. It may be followed by a step of selection of the more efficient
subset (i.e. which explains better the problem features) that may be also partitioned
until a minimal explanatory set is found in the hierarchy. For instance, in the domain
of traffic it may be identified a problem with three potential congested critical sec-
tions, the initial candidate causes are sets of paths between entry and exit points in the
area network passing through the congested points. The process of differentiation
aims to identify, at the different points, the participation in the traffic excess of a
subset of those paths which provide the significant part of this excess and hence, the
paths where the traffic flow must be withdrawn using control devices (messages or
traffic lights) to reduce the congested demand.

Action planning methods
After the problem identification and diagnosis tasks, some scenarios of causes of
problems have been deduced together with its impacts. The action planning task must
generate a consistent set of actions oriented toward the reduction or elimination of
causes and/or toward the reduction of impact damages where no possible cause
reduction may be produced.

Specifying this task in a general way requires defining the elementary actions that
will be the basis for definition of acceptable decision plans together with their models.
The action planning task may be performed by a method integrating consistent se-
quences of actions to transit to a situation where most damages have been alleviated
and all the problem causes have been cancelled.

The general reasoning method to deal with this functionality is a planner. However,
it is assumed that the area of expertise to be modelled embodies structured knowledge
criteria that are sufficiently precise to generate a plan in a more simple way, using
classification reasoning on predefined plans and subplans. According to this assump-
tion, it is reasonable to apply a stepwise reasoning method derived from the routine
design method proposed by [2].

The declarative knowledge may be organised with collections of plans capable to
perform subtasks that may be integrated to build plans aiming to perform more com-
plex tasks. A plan may be defined by sequences of elementary actions or may include
other subtasks supported by other collections of plans. The method using this domain
knowledge is a type of skeletal plan refinement supporting a progressive refinement of
the subtasks from intermediate partial versions of the plan in the following steps:
− A basic method M is applied which introduces a collection of consistent actions

together with a decomposition of the general task in plans of actions ai integrated
with some subtasks not yet formulated as plans < ai ,a j ,...,Tl ,Tm ,..., as > where Tl,
Tm are subtasks with no plan of elementary actions specified.

− For every subtask not yet described in terms of basic actions (ai, aj,...) such as Tl or
Tm an inference step of the same type is applied by using an instantiation of M with
other premises and domain knowledge. A tree exploring different steps of plan de-
tail is produced until detailed plans are obtained or an application of M fails and a
backtracking is produced to alternative task decompositions.

The general search process of the method M is summarised in Fig. 2 where every node
box symbolises the application of M with different declarative knowledge blocks of
the four types commented before. The interest in using this reasoning strategy is that it
may embed the simple case where only a classification step is considered when a
collection of totally defined plans (i.e. with no Tl or Tm undefined tasks) is given in the
domain model. In this case, the general reasoning strategy will stop after the first step
once some task detail modules are applied proposing several complete plan options.

Behaviour prediction methods
This task has as main goal to propose scenarios of short-term future behaviour of the
different components of the model. There may be specific simulation methods per-
forming this type of task. A library could be considered to support a class of applica-
tions including a collection of typical physical components. However, it could be
considered a simplified model to perform short term general black box behaviour
simulation task, by using an envisionment graph formed by classes of component
situations, described every one by a collection of slot values corresponding to every
state attribute, and transition links representing types of external actions or decisions
producing the change from one state to the other. In simple systems this type of
representations may be useful. They may be generated through the abstraction of the
results obtained from previous numerical model application. It must not be forgotten
that the level of precision required for these models is not very high. It should be
enough to differentiate the possible types of short-term evolution of the controlled
system. The model of reasoning may take the current state from the information
system and the assumptions about the external actions and match it with some node in
the graph. As a result, for every matched situation the predictable short-term changes
are described by the downstream connected states.

Co-ordination methods
Co-ordination is best conceived of as the management of dependencies between
activities [15,17]. Methods that perform this type of management usually comprise
three steps:

Pi k n

initial instance of
task detail

Pi Pk Pn...

plan for subtasks of
type A

Pi Pl Pn... Pi Pk Pn...

Possible plan structure
for the global task

.....

Pi Pk Pn... Pi Pk Pn...

.....

Possibles detailed
subplans for
subtasks of the type
considered

plan for subtasks of
type B

plan for subtasks of
type H

plan for subtasks of
type R

plan for subtasks of
type S

(Pk includes composed
subtask types A, B, ..., H)

(Pl includes task
types R, S, ...)

...P P

Fig. 2. The general plan refinement strategy

− Dependency detection: using domain knowledge about the different dependencies
that may occur (producer-consumer relationships, resource limitations etc. [15])
positive and negative relationships between the different local tasks of the agents
are detected. For instance, two local traffic agents may want to display different
warning messages on the same traffic message panel.

− Option generation: for every dependency, the set of possible management actions
is generated. In our traffic example, any of the involved agents may change its local
action plan, or we may merge the incompatible messages “incident at A” and “con-
gestion at B” to be displayed on the same panel into the message “traffic problems
at A and B”.

− Management decision: finally, a decision must be taken respecting the dependency
management action to be applied. In the traffic example, one possible criterion for
taking this decision is the aim of distributing traffic load equally among the differ-
ent problem areas.

3 An Example: IDEAs for Traffic Control

We now illustrate the above framework for engineering Intelligent Decision-making
Assistants by an example. We will describe the construction of IDEAS for road traffic
management, a real-world domain, and an example of the high degree of complexity
that decision support applications have to deal with. For this purpose, we set on from
the TRYS family of system (e.g. [5,7,17]), agent-based DSS that have been build and
used experimentally in different Spanish towns. In this section, we provide a princi-
pled “redesign” of the architecture of these systems, along the lines proposed in the
previous section. First, our particular traffic management domain is sketched and the
requirements for traffic management IDEAs are analysed in terms of an UER model.
Then, the design of such IDEAs from a knowledge-oriented point of view is described,
so as to finally sketch some implementation issues.

3.1 The traffic problem: analysis

In Barcelona, the local traffic control centre JPT is in charge of managing urban road
transport, so as to maintain and restore the “smooth” flow of vehicles. Traffic engi-
neers continuously receive information about the traffic state, identify potential
problems, and act upon control devices to overcome them. It has become particularly
difficult for the JPT engineers to perform this job in real time, as in the follow-up of
the 1992 Olympic Games the traffic management infrastructure in Barcelona has
become increasingly complex. Nowadays, information about the traffic state of the
urban motorway network, consisting of one ring road and seven adjacent motorways,
is provided by over 300 telemetered sensors (“loop detectors”) via fibre optics com-
munication links. Control actions can be taken by means of 52 Variable Message
Signals (VMS), 3 traffic lights for junction control, as well as by ramp metering on 7

ring-road drives. Fig. 3 illustrates typical
elements of this traffic management infra-
structure.

JPT traffic controllers logically subdivide
the road network into problem areas, for
which they are able to generate efficient
signal plans. Still, problem areas overlap, so
potential conflicts between local signal
plans need to be taken into account in order
to obtain globally consistent signal plans..

Fig. 4 outlines our model of an IDEA-
based DSS for this domain. The ultimate
goal of the traffic decision support system is
to assist human operators in the manage-
ment decision by increasing their awareness
of the traffic situation and the options to influence it. For the purposes of this article,
we consider only a human actor, the operator. A complete analysis might consider
additional actors such as administrator of the system or different levels of operators.
The main use cases of an operator are:
− EnterCaseFromSensors: the operator receives data from the sensors from an

external system and he/she introduces the new case manually.
− EnterAlarmFromPolice: the operator receives an alarm from the police.
Signal plans generated by operators comprise two classes of actions:
− PutAMsgOnPanel: set a warning message on a panel (e.g. “congestion at X”)
− ModifyRegulators: modify a regulator in order to prevent congestion
When communicating with the DSS, the operator is involved in flexible dialogues,
asking for the reason of a diagnosis (why), what is happening (what) or a specific
simulation (what-if). The following goal cases are assigned to the DSS:
− DetectPhysicalConflict: detect when two actions from adjacent areas generate

different actions over the same area elements.
− DetectLogicalConflict: detect if actions from adjacent areas generate a bad overall

solution.
The DSS can modify an environ-
ment problem (publishAPanel,
switchRegulator). There are no
current requirements for real
reactivity, but one might consider
reactive extensions like speed
limitations in case a severe incident
is detected. Once the UER cases
have been defined, a first identifi-
cation of the agents can be done. In
this case, since we had distributed
expertise in the problem, each one
agent has been assigned each
problem area of the road network.

Fig. 3. Traffic infrastructure ([13])

Fig. 4. UER Diagram for the traffic domain

3.2 IDEAS for traffic management: Design

The magnitude of a traffic problem in certain part of the road network can be ex-
pressed by the amount of traffic demand that exceeds the capacity of a certain road
segment (in vehicles per hour). This is called the segment’s traffic excess. The quality
of a traffic management action can be measured by the reduction of traffic excess, that
they are expected to produce. In consequence, traffic management agents use the
overall reduction of excess in their problem areas (i.e. the sum over all road segments
that belong to their area) as a local utility measure. Setting out from this notion, in the
sequel we show how to design methods that cope with an IDEA’s tasks.

Problem identification and diagnosis
Every couple of minutes, a traffic management agent receives temporal series of
magnitudes such as traffic speed, flow and occupancy from the road sensors of its
area. This raw data is initially pre-processed in order to filter out noisy and erroneous
data. Subsequently, fuzzy data abstraction is performed (see Fig. 5), and aggregate
magnitudes such as temporal and spatial gradients are calculated for the different
sections.

The actual problem identification is performed by matching the abstracted traffic
data against a knowledge base of frames, which model problem scenarios. Fig. 6
shows one such frame that matches the abstracted traffic data. Suppose that as a result
of data abstraction low speed and high occupancy are identified in Ronda de Dalt en
Diagonal and medium to high speed and low occupancy in Ronda en d’Eslugues.
These facts match the frame shown in Fig. 6, so that an incident in the central lane of
Diagonal road is identified, which manifests itself as a traffic excess (with respect to
the road’s capacity) of 2200 veh/h between Diagonal and Llobregat in the Dalt ring-
road. Traffic from Collcerola to Llobregat and, in a minor degree, from Diagonal
heading towards Llobregat contributes to this excess.

Action Planning and Prediction tasks
The action planning and prediction tasks adhere to the following line of reasoning:
first, the historic traffic demand between nodes is retrieved and the contribution of
each path to the problem in the critical section calculated. This is done by matching
the current abstract traffic state and the state of the control devices against a knowl-
edge base of frames, representing traffic distribution scenarios.

Finally, coherent alternative signal plans are generated by using the distribution
scenario frames once again: every frame applicable to the current situation is pre-
selected. Assume that this is the case for the frame shown in Fig. 6. Its short-term
effects are estimated by simulating its impact on the current traffic situation. This is
done by using network structure knowledge to assign traffic demand to the road
network, in accordance with the distribution of traffic volume among paths that the
frame specifies. In the example about one half of the traffic volume from Collcerola to
Llobregat will pass through the Dalt ring-road, while a smaller amount chooses a path
through Can Caralleu or other alternative paths, if the corresponding signal plan is set.
If the simulation shows a reasonable decrease of excess in the critical section, the

frame’s signal plan constitutes one recommendation of the system. In the example, it
is suggested to display congestion warnings at Diagonal for panels 17PIV1, 13PIV2
and 8PIV1, while setting the contention level of regulator R1 to medium. As a result
of this process, a set of alternative signal plan recommendations, together with their
utility (i.e. their expected reduction of local traffic excess) is produced.

Co-ordination
Methods for co-ordinating the different traffic management agents may be either
centralised or decentralised, leading to different architectures for traffic management
IDEAs. The InTRYS system [5] relies on a distinguished co-ordinator agent to per-
form co-ordination. Local traffic management agents send their control plans to that
agent. Dependency detection and option generation relies on a knowledge base of
rules. The dependency management decision is taken on the basis of priority knowl-
edge, indicating which problem area is most critical, and thus determining which
traffic agent needs to revise its control proposal. By contrast, the TRYSA2 system [17]
relies on a decentralised co-ordination mechanism. Dependency detection and option
generation is done in a similar fashion as in the InTRYS system, although the corre-
sponding knowledge bases are distributed and contain only the information necessary
to deal with dependencies among neighbouring agents. Still, the management decision
emerges from a negotiation among agents, which is based on a game-theoretic frame-
work. The traffic management agents are supposed to be self-interested and mutually
“threaten” each other with the potential consequences of failing to reach on agreement
(although this never happens, as in this domain agents are always better off if the co-
operate). The compromise, that they finally converge on, is a reflection of the rele-
vance of an agent in a particular situation. When tuning the system, the designer can
bias this basic compromise in a desired direction be issuing certain “prescriptions” on
the use of resource by agents [17].

low

SPEED
(Km/h)10 20 30 40 50 60 70 80 90 100 110 120 130

medium hig h

low

OCCUPA NC Y
(Percentage)

10 20 30 40 50 60 70 80 90 100

medium hig h

low

SATURATION
(Flo w/C apacity)*100

10 20 30 40 50 60 70 80 90 100

medium hig h

POS

1.0

1.0

POS

1.0

POS

Fig. 5. Possibility functions to abstract traffic values

4 Conclusions

In this paper we have argued in favour of an agent-based approach to the construction
of advanced Decision Support Systems. We have introduced the concept of an Intelli-
gent Decision-making Assistant (IDEA), and outlined how agent-oriented knowledge
and software engineering techniques can be used to guide the process of a principled
construction of IDEAs based on a (multi-)agent architecture. Our approach has been
illustrated in the road traffic management domain.

We are aware of the fact that an IDEA-based design of DSS puts much burden on
the agents’ knowledge models, which leads to rather “fat” agents and puts limits to the
scalability of the approach in this present shape. This is especially true for our traffic
management agents, as each of them is to be endowed with domain knowledge to
manage a complete problem area. Still, this seems hard to avoid, as real-world traffic
engineers conceive traffic flows in this manner, and the decision support dialogues are
to follow their lines of reasoning, so as to provide explanations that are understand-
able, and acceptable, to human operators. Furthermore, the decentralised coordination
mechanism of the TRYSA2 system already allows for a significant reduction in the
need for coordination knowledge. Nevertheless, improving the scalability of our
approach is a major line of future work.

In addition, we are current working on a tighter integration of the different phases
of engineering IDEAs. For this purpose, particular attention is paid to the extension of
the knowledge-oriented methods for design that have been outlined in this paper [4].
The principled and structured construction of the domain knowledge bases of IDEAs
will be complemented by additional structured models (e.g. deeper interaction models,
acquaintance models, strategic models etc.) which will eventually lead to a particular

Critical section: between Ronda de Dalt en Diagonal
 and Ronda de Dalt en d'Espluges

excess: 2200 veh/h
paths:

 From Collcerola to Llobregat -> [60, 80] %
 From Diagonal to Llobregat -> [20, 40] %

Llobreg
at Collcerola

17PIV124PIV1

R1

13PIV2 8PIV1

Diagonal Can Caralleu

Congestion warning in Ronda de Dalt at Diagonal

State of
control
devices

Paths
use

State of
control
zones

Incident congestion in the central lane
at Diagonal

Section: Ronda de Dalt en Diagonal
speed: low
occupancy: high

Section: Ronda de Dalt en d'Esplugues
speed: medium, high
occupancy: low

Panel 17PIV1 : congestion at Diagonal
Panel 13PIV2 : congestion at Diagonal
Panel 8PIV1 : congestion at Diagonal
Regulator R1 : contention level medium

From Collcerola to Llobregat
through Ronda de Dalt -> [40,60] %

From Collcerola to Llobregat
through Can Caralleu -> [30,40] %

From Collcerola to Llobregat
through alternative paths -> [10,20] %

From Collcerola to Can Caralleu : free
From Can Caralleu to Diagonal : with problems
From Diagonal to Llobregat : with problems

Fig. 6. An example scenario

(multi-)agent architecture for IDEAs. We are particularly interested in different
methods that support the design of structured interaction plans that allow for a dy-
namic configuration of the questions and answers produced during a decision support
dialog between user and IDEA [18]. Decision support for road traffic control in an
urban motorway network in the Basque Country, as well as for the management of bus
fleets in Southern Spain, are target domains for the evaluation of this approach.

References

1. Breuker, J.; van de Velde, W. (1994): CommonKADS Library for Expertise Modelling. IOS
Press.

2. Brown D.C., Chandrasekaran B. (1989): Design Problem Solving, Morgan Kaufmann,
3. Chandrasekaran B. (1983): Towards a Taxonomy of Problem Solving Types. A.I. Magazine

4 (1), 9–17.
4. Cuena J., Ossowski S. (1999): Distributed Models for Decision Support. In: Weiß (ed.):

Multi-Agent Systems — A Modern Approach to DAI. MIT Press, 459–504
5. Cuena, J.; Hernández, J.; Molina, M. (1996): Knowledge-Oriented Design of an Applica-

tion for Real Time Traffic Management. In: Proc. Europ. Conf. on Artificial Intelligence
(ECAI-96), Wiley & Sons, 217–245

6. French, S. (2000): Decision Analysis and Decision Support. John Wiley & Sons
7. Hernández, J.; Ossowski, S.; García-Serrano, A. (2002): Multiagent Architectures for

Intelligent Traffic Management Systems. Transportation Research C, Kluwer
8. Hernández, J.; Serrano, J. (2000): Environmental Emergency Management Supported by

Knowledge Modelling Techniques. AI Communications 14 (1)
9. Iglesias, C.A.; Garijo Ayestarán, M. (1999): UER Technique - Conceptualisation for Agent

Oriented Development. In: Proc. Intl. Conf. on IS Analysis and Synthesis (ISAS'99)
10. Iglesias, C.A.; Garijo Ayestarán, M.; González, J.C. (1999): A Survey of Agent-Oriented

Methodologies. In: Intelligent Agents V. Springer-Verlag.
11. Jacobson, I.; Booch, G.; Rumbaugh, J. (1999): The Unified Software Development Process.

Addison-Wesley
12. Kinny, D.; Georgeff, M. Rao (1996): A. A methodology and modelling technique for

systems of BDI agents. In: Agents Breaking Away, Springer-Verlag
13. Kirschfink H. (1999) Collective Traffic Control in Motorways. Tutorial at the 11th EURO-

Mini Conference on AI in Transportation Systems and Science. Helsinki
14. Klein, M.; Methlie, L. (1995): Knowledge-Based Decision Support Systems. John Wiley
15. Malone, T.; Crowston, K. (1994): The Interdisciplinary Study of Co-ordination. Computing

Surveys 26 (1), 87–119
16. McDermott J.(1988): Preliminary Steps Toward a Taxonomy of PSMs. In: Marcus (ed.),

Automating Knowledge Acquisition for Expert Systems, Kluwer
17. Ossowski, S. (1999): Co-ordination in Artificial Agent Societies, Springer-Verlag
18. Ossowski, S.; Serrano, J.M. (2001): Agent-based Architectures for Advanced Decision

Support. In: Proc. Workshop on Intelligent Physical Agents (WAF), URJC
19. Silver, M. (1991): Systems that Support Decision Makers. John Wiley & Sons
20. Vlahavas, I. et al (2002): An Intelligent Multiagent System for WAN Management. IEEE

Intelligence Systems 17(1), 62–72
21. Wooldridge, M.; Jennings, N.; Kinny, D. (2000): The Gaia Methodology for Agent-

oriented Analysis and Design. Autonomous Agents and Multiagent Systems 3(3). Kluwer
Academic Publishers, 285–312

