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Abstrac t .  Hybridization of connectionist and symbolic systems is being 
proposed for machine learning purposes in many applications for differ- 
ent fields. However, a unified framework to analyse and compare learn- 
ing methods has not appeared yet. In this paper, a multiagent-based 
approach is presented as an adequate model for hybrid learning. This 
approach is built upon the concept of bias. 

1 I n t r o d u c t i o n  

In her work "Bias and Knowledge in Symbolic and Connectionist Induction" 
[3], M. Hilario addresses a key issue in the Machine Learning field: the need 
of a unified framework for the analysis, evaluation and comparison of different 
(symbolic, cormectionist, hybrid . . . .  ) learning methods. This need is justified 
upon the fact that  there are no universally superior methods for induction. She 
builds this unified framework upon the concept of bias. 

This paper follows the same line, but  from a different perspective. The main 
point here is tha t  the conceptual-level framework put  forward by Hilario can be 
complemented with its counterpart  at the operational level. The purpose of this 
work is, then, three-fold: 

- Firstly, showing that  the agent-based paradigm can provide a neutral, un- 
biased, operational model for such a unified framework. 
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- Secondly, showing that this model includes most the known forms of meta- 
learning proposed by the machine learning community. 

- Thirdly, showing that this kind of model may help to overcome some of the 
traditionally weak points of the work around meta-learning. 

2 A D i s t r i b u t e d  T o o l  f o r  E x p e r i m e n t a t i o n  

In the MIX project, several models of hybrid systems integrating connectionist 
and symbolic paradigms for supervised induction have been studied and applied 
to well-defined real world problems in different domains. These models have been 
implemented through the integration of software components (including connec- 
tionist and symbolic ones) on a common platform. This platform was developed 
partially under and for the MIX project. Software components are encapsulated 
as agents in a distributed environment. Agents in the MIX platform offer their 
services to other agents, carrying them out through cooperation protocols. 

In the past, the platform has been mainly used for building object-level hy- 
brids, i.e. hybrid systems developed to improve performance (in comparison with 
symbolic or connectionist systems alone) when carrying out particular tasks (pre- 
diction or classification) on specific real-world problems. 

This application-oriented work has led to good results (in terms of increase 
of performance, measured as a reduction of task error rates). Some amount of 
qualitative knowledge about hybridization was derived from these experiences. 
However, this knowledge is not enough for guiding the selection of an adequate 
problem-solving strategy in face of a particular problem. Summing up, what we 
should look for are general and well-founded bias management techniques, calling 
bias "any basis for choosing one generalization over another, other than strict 
consistency with accepted domain knowledge and the observed training instances" 
[3]. 

Our proposal is that the same platform used until now for object-level hy- 
brids, be used to explore different bias management policies. A general archi- 
tecture to do so can be seen in Fig. 1. This architecture will be particularised 
for several interesting cases. But, before that, a brief overview of the concept of 
bias, classified along four levels, will be presented. 

3 C l a s s e s  o f  B i a s  

Hilario distinguishes between two kinds of bias, representational and search bias, 
that can be studied at different grain levels. We classify these granularity levels 
as follows: 

- Hypothetical level. 
On the representational side, it has to do with the selection of formalisms or 
languages used for the description of hypothesis and instances in the prob- 
lem space. 
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F i g .  1 .  A multi-agent architecture for bias management 

Regarding search, this level deals with the kind of task we are trying to ac- 
complish through automatic means: classification, prediction, optimization, 
etc. 

- Strategic level. 
A particular representation model (production rules, decision trees, per- 
ceptrons, etc.) has to be selected, compatible with the formalism preferred 
at the previous level. This model is built by a particular learning algorithm 
by searching the hypothesis space. 

- Tactical level. 
Once a pair model/algorithm has been selected, some tactical decisions may 
remain to be taken about the representation model (e.g., model topology 
in neural nets) or the search model (number of generations in genetic al- 
gorithms, stopping criteria when inducing decision trees, etc.) 

- Semantic level. 
This level concerns the interpretation of the primitive objects, relations and 
operators. Concerning representation, this level includes the selection, com- 
bination, normalization (scaling, in general), discretization, etc. of attributes 
in the problem domain. Semantic level search bias includes the selection of 
weight updating operator in neural nets and fitness updating operator in 
genetic algorithms, the information-content measure used for the selection 



53 

of the most informative attribute in algorithms for the induction of decision 
trees, etc. 

4 C a s e  1 .  S e m a n t i c  L e v e l  B i a s :  A t t r i b u t e  S e l e c t i o n  

The determination of the relevant attributes for a particular task is a funda- 
mental issue in any machine learning application. Statistical techniques should 
play a fundamental role for this purpose. However, commercial tools integrating 
statistical analysis along with symbolic or connectionist machine learning al- 
gorithms have appeared only recently. For instance, the researcher needs to have 
a clear idea about the correlation between variables for guiding the experiments: 
dropping variables, crating new ones by combination of others, etc. The evalu- 
ator may compare the results obtained by a particular learning algorithm applied 
to different subsets or supersets of the source data-set looking for statistically 
significant differences. 

The data analyser in Fig. 1 takes a data set in the machine learning repos- 
itory as input and produces a description of this data set in terms of problem 
type (classification, prediction or optimization), size (amount of variables and 
samples), statistical measures (variable distribution and correlation), consistency 
measures (amount of contradictory samples), information measures (absolute 
and conditional entropy of variables, presence of missing values), etc. 

A transformation agent (not shown in the figure) can be coupled in this 
architecture. The goal of this agent is proposing experiments from data sets 
generated from the source one. Transformed data sets may be obtained by several 
methods: 

- Sampling: it is almost compulsory for data sets too big for machine learn- 
ing processes. Moreover, random or stratified sampling techniques can be 
necessary for experimental purposes. 

- Dropping of variables: the less informative variables can be considered as 
noise. Noise makes learning more difficult. 

- Replacing or adding variables: the new ones can be formed by combination 
of others (to be deleted or not). 

- Clustering of samples: the activity of a system may fall in different macro- 
states where the behaviour of the system may be qualitatively different. 
These differences can be associated with completely different deep models, 
in such a way that learning algorithms might perform better when trained 
from cases in one individual macro-state. 

- Discretization of variables: the precision used to represent a continuous vari- 
able can hide the fact that precision does not imply relevance. Some ma- 
chine learning algorithms handle only discrete variables, but discretization 
can attain performance improvements with algorithms capable of managing 
continuous and discrete attributes. Discretization can be achieved by crisp 
methods (splitting the range of a variable in homogeneous sub-ranges in 
terms of size or number of cases falling in the range), or non-crisp ones (by 
connectionist or fuzzy clustering techniques). 
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Fig. 2. Architecture for tactical bias selection 

5 C a s e  2. T a c t i c a l  L e v e l  Bias :  P a r a m e t e r  S e l e c t i o n  

A good amount of work can be found in the literature about systems intended for 
the selection of adequate representational or search bias at the tactical level. For 
instance, the C45TOX system, developed for a toxicology application in the MIX 
project, uses genetic algorithms for optimising the parameters used by the C4.5 
learning algorithm. A work with the same goal had been previously developed 
by Kohavi and John [4]. They used a wrapper algorithm for parameter setting. 

In the C45TOX system, the genetic algorithm acts as a specialised config- 
uration manager. It provides the experiment designer with candidate sets of 
parameters that are used for training a decision tree. This tree is tested using 
cross-validation. The evaluator agent estimates the performance of the decision 
tree and transmits the error rate to the genetic agent to update the fitness of the 
corresponding individual of the population. The knowledge base of the genetic 
system evolves through the application of genetic operators. When a new genera- 
tion is obtained, new experiments are launched until no significant improvement 
is achieved. 

The architecture of this system is shown in Fig. 2. 
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6 Case 3. Hypothetical/Strategic Level Bias: Algorithm 
Selection 

Advances in software technology, and specially in the field of distributed pro- 
cessing permit the easy integration of several algorithms co-operating to carry 
our a particular task: classification, prediction, etc. Differences in performance 
estimated at training time can be used to configure strategies for bias man- 
agement through arbiters or combiners. Both, arbiters and combiners, can be 
developed according to fixed policies (e.g., a majority voting scheme in the case 
of arbiters) or variable policies. 

One interesting research avenue in the field of meta-learning concerns the se- 
lection of the most adequate algorithm for a task according to variable inductive 
policies. One of the biggest efforts done following this line has taken place in the 
framework of the STATLOG project [5, 2]. 24 different algorithms were applied 
to 22 database classical in the machine learning literature. Finding mappings 
between tasks and biases was proposed first as a classification problem (to se- 
lect the best candidate algorithm for an unseen task). For this purpose, C4.5 
was used. Afterwards, meta-learning was implemented as a prediction problem 
intended to estimate the performance of a particular algorithm in comparison 
with others in face of an unseen database. 

Some difficulties are evident with this approach. First, 22 data-sets are too 
few for meta-learning. Second, standard (default) parameters were used to con- 
figure each algorithm. Nobody knows, then, if the low performance of an in- 
dividual system comes from itself or from a bad selection of parameters.  All 
the meta-learning systems described in the literature [7,1, 8] suffer from similar 
drawbacks. 

In Fig. 3 we show the instantiation of the proposed distributed architecture 
for strategic bias selection. Systems are characterised according to their perform- 
ance (basically, error rate, error cost, computing time and learning time) on a 
particular data-set. 

The architecture has several appealing features: 

- Full integration. The meta-learning agents are exactly the same used for 
object-level learning. In the same way, several learning agents can be launched 
simultaneously for meta-learning, and their results can be compared or in- 
tegrated in an arbiter or combiner structure. 

- On-line learning. Meta-learning can be achieved simultaneously with object- 
level learning. 

- Use of transformed and artificial data-sets. The lack of source data-bases is 
a difficulty that  can be overcome through the generation of new data-sets 
obtained from the transformation of the original ones. New attr ibutes can 
be derived or noise can be added in order to test noise-immunity. Even fully 
artificial data-bases can be generated from rules or any other mechanism, 
controlling at the same time the level of noise to be added. 
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Fig. 3. Architecture for strategic bias selection 

7 Current Work 

The ideas and the architecture proposed in this paper are being implemented 
at this moment in the project M2D2 ( "Meta-Learning in Distributed Data Min- 
ing"), funded by CYCIT, the Spanish Council for Research and Development. 
This approach has been successfully used, for instance, for the development of 
the C45TOX system. 
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