
Improving Hardware Reuse through
XML-based Interface Encapsulation

Miguel A. Sánchez∗, Marisa Lopez-Vallejo∗, Carlos A. Iglesias† and Carlos A. Lopez-Barrio∗
∗Dpto. Ingenierı́a Electrónica †Dpto. Ingenierı́a de Sistemas Telemáticos

E.T.S.I. Telecomunicación

Universidad Politécnica de Madrid, Spain
∗{masanchez, marisa, barrio}@die.upm.es †cif@gsi.dit.upm.es

Abstract—This work proposes an encapsulation scheme aimed
at simplifying the reuse process of hardware cores. This hardware
encapsulation approach has been conceived with a twofold
objective. First, we look for the improvement of the reuse
interface associated with the hardware core description. This is
carried out in a first encapsulation level by improving the limited
types and configuration options available in the conventional
HDLs interface, and also providing information related to the
implementation itself. Second, we have devised a more generic
interface focused on describing the function avoiding details
from a particular implementation, what corresponds to a second
encapsulation level. This encapsulation allows the designer to
define how to configure and use the design to implement a
given functionality. The proposed encapsulation schemes help
improving the amount of information that can be supplied with
the design, and also allow to automate the process of searching,
configuring and implementing diverse alternatives.

Index Terms—hardware IP core; component interface; encap-
sulation; reuse;

I. INTRODUCTION

Current technologies have allowed the integration of mil-

lions of transistors in a single chip. However, the complexity of

hardware design makes the design cycle too long and compli-

cated. A serious improvement in productivity is required, and

this is only affordable by component reuse [1], which makes

possible to cope with even larger designs, simultaneously

reducing the time needed to get the final product available.

Reused components, known as cores, may come from former

designs or from third parties. In the last case, they are

usually called by hardware designers Intellectual Property
(IP), because of licensing reasons.

System design is thus simplified by proper assembly of

such cores, and the identification of the best ones and the

parameters that better configure a given IP is typically a time

consuming task. Hence, IP-based design actually needs tools

to simplify component assembly and core generation, and also

to provide quality assessment measures (area, speed, power,

accuracy) that ease the selection. These goals can only be

accomplished if the cores offer a good reuse interface to

allow automated subcomponent customization, instantiation

and interconnection, with the corresponding simplification of

the design of hierarchical collections of modules.

Classical Hardware Description Languages (HDLs) like

VHDL[2] or Verilog[3], are widely used to describe hardware

cores. However, their interface offers limited possibilities for

reuse. The part of the interface which comes with the core

implementation is only used to declare the ports that connect

the core with other components in a system, and parameters

that allow configuring a limited set of design features.

In general, the remaining interface information, which is

needed to integrate the core in other designs, is commonly ap-

pended as external documentation. This documentation usually

includes parameter description and port functionality, as well

as the relationships between these elements. VHDL/Verilog

encapsulation is not able to consider this kind of information.

Typical core documentation should include chronograms to

describe component port protocols, functions that establish

restrictions on parameter values, and even application notes

to help the user of the core to understand how to use the

design practically.

Furthermore, each core provides interface information in

a different way. In the case of two cores implementing

the same function, each interface is specifically designed to

encapsulate a particular implementation, so it is strongly linked

to implementation. To include a core described with traditional

HDLs in a larger system often requires a deep knowledge

of the implementation, which is a serious drawback if the

automation of the design space exploration process is desired.

This work addresses the improvement of hardware reuse by

defining two encapsulation schemes at different abstraction

levels: structural and functional. Both schemes have been

conceived with different goals to solve problems we found

when trying to reuse IPs designed by means of conventional

HDLs. The idea behind the proposed encapsulation is to

extend the features of conventional HDL interfaces following

the component-based design paradigm[4] to ease both the

parameterization of designs and the reuse of previous IPs.

Even though VHDL or Verilog are the most extended HDLs

for core descriptions, other languages have been proposed to

describe reusable cores.

Previous proposals range from specific DSLs[5], for exam-

ple HML[6] that targets hardware synthesizable descriptions,

but also software languages have been used to describe hard-

ware, such as C o Java, for instance Handel-C[7] or JHDL[8].

Although these DSLs were conceived to improve IP core

description, their interface is still close to the one provided

by conventional HDLs.

XML has also been used in the context of hardware de-

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-0-7695-4700-8/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.21

49

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-0-7695-4700-8/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.21

49

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-2-9541-8100-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.21

49

Fig. 1. Proposed encapsulation layers.

scription, for instance as intermediate language to carry out

HDL code transformations[9] or to specify low level structural

descriptions[10]. An approach closer to the work described

here is[11], [12] where XML is used for interface specification

to improve the reusability of cores in reconfigurable platforms.

This approach uses XML to generate HDL wrappers for

cores that are described in different languages or can even

be generated from different tools. These wrappers are used

within integration tools to implement more complex cores. The

proposal is oriented to offer cores from different sources with

a unified interface description, but higher abstraction levels

are not considered. Also in this proposal it is not possible to

access to implementation information because it is hidden.

Finally, IP customizable cores are available from commer-

cial tools like Xilinx LogiCORE IP[13], whose limitations

have in part inspired this work.

The structure of this paper is the following. First an

overview of the proposed encapsulation layers will be pre-

sented. Then it will be described in detail the different

proposed encapsulation schemes, structural and functional. A

highly versatile component will be used as design example all

through the paper. Finally some conclusions will be drawn.

II. APPROACH OVERVIEW

A key goal of this work is to provide support to the

utomatization of reuse-related tasks. These tasks cover the

search, selection, configuration and implementation of pre-

viously designed hardware cores or IPs. Conventional HDLs

were conceived for the description of hardware, being their

interface just a list of input/output ports. Thus it is first neces-

sary to improve the interface of conventional HDLs, to extend

the information related to the implementation. This is carried

out in the interface provided by the structural encapsulation.

More complex configuration elements are defined enhancing

their possibilities of configuration. Furthermore, it is possible

to report on particular implementation data, what cannot be

done in conventional HDLs. Finally, the proposed structural

interface simplifies the automation of core interconnection and

instantiation.

The structural encapsulation is specified with XML by using

a template based on its definition in XML-Schema. This kind

of specification is convenient to support tool development, in

particular in our case we target the automation of IP selection,

configuration and integration tools. It can be also used to

implement automated design space exploration.

However, as its own name states, structural encapsulation is

linked to a specific implementation. Elements declared in this

encapsulation level are oriented to describe the underlying de-

sign, whereas this design is the implementation of a particular

functionality. In the case of different cores implementing the

same function we would find different interfaces. A second

level of encapsulation specification is then required. The aim

of this encapsulation is to describe the function without paying

attention to specific implementation details. Instead, it will

offer alternative implementations at a higher abstraction level,

so it is called functional encapsulation.

Figure 1 illustrates the different abstraction levels in the

proposed encapsulation scheme. From bottom to top we can

find:

• At the lowest level there are conventional HDL cores.

These cores provide a limited reuse interface. In order

to complete the core interface specification, they must

provide extensive external documentation, represented in

the figure with the dark boxes.

505050

• The next level corresponds to cores with interface based

on structural encapsulation. More flexible than the VHDL

interface, it also offers to the designer to include imple-

mentation information as part of encapsulation, so the

amount of information that must be provided externally

is reduced (dark boxes are smaller).

• At the upper level functional encapsulation is defined.

This encapsulation is not tied to a particular imple-

mentation, but to a function description. It can cover

possible implementations described by different structural

encapsulates.

Also in Figure 1 the relationships between the proposed

elements are shown:

• Structural encapsulation is linked to a core description

with a domain specific language, dHDL [14]. This lan-

guage has been designed to provide support to new

characteristics defined into structural encapsulation. This

language offers to the designer the possibility of wrapping

HDL cores, but also a full design can be described with

this language.

• Functional encapsulation does not have a specific imple-

mentation, however, multiple structural encapsulates can

be configured to implement the same function. This is

carried out through packaging.

Next, the proposed encapsulation schemes will be presented

in detail.

III. STRUCTURAL ENCAPSULATION

As mentioned before, a first step to simplify the reuse

of cores described with conventional HDLs is to improve

the reuse interface which is attached to the implementation.

Structural encapsulation is aimed at improving the possibilities

for configuring the core, and incorporating information related

to the implementation. The improvements offered by this

encapsulation against the conventional approaches are:

• A core described with traditional HDLs typically uses

parameterization as a method for reuse, where a single

implementation can be adapted to different applications

through micro-structural modifications. The parameters

of these languages can only define a limited set of

types and can only perform very simple function calls,

so often structural modifications are limited to changes

in bit-widths. Structural encapsulation enhances these

possibilities, for example evaluating complex functions or

even functions based on the value of other configuration

elements.

• The structural encapsulation scheme allows to declare

elements that inform about implementation characteristics

(for instance, required area and latency, throughput, . . .).

This information, which is never provided by conven-

tional HDLs, is useful to simplify automatic core inte-

gration in a new system, or even help in exploring the

design space.

• To simplify component integration and interconnection,

core ports are grouped into a single statement, which

Fig. 2. Levels of encapsulation.

contains all HDL port declarations in a group, and it is

oriented to implement a predefined input/output protocol.

Therefore, the structural encapsulation declares as configu-

ration elements the parameters, as reporting elements the

attributes, and macroports as elements which define

the input/output.

Wrapping one or more VHDL cores using structural encap-

sulation is the simplest mechanism which allows to use the

proposed elements and improve their reuse. Figure 2 represents

the correspondence between elements defined in the structural

encapsulation and elements defined in a VHDL interface

(ports and generics). We have used as example for component

encapsulation, a well-known low level element of current

Xilinx FPGAs, the DSP Slice [15]. DSP Slices are designed

to implement most of the basic operations related to signal

processing (mainly based on additions and multiplications).

They are extremely useful, but their interface is rather complex

both regarding the number of ports and configuration options.

We target several objectives when defining the structural

encapsulation of this component:

• Information only provided by data-sheets regarding con-

figuration parameters, ports, and the relationships among

them is incorporated to the interface. This way, the

instantiation of the desired component is simplified.

• Constraints for the configuration space can be carried out

by avoiding misconfigurations.

• Most of unused ports and parameters can be hidden.

• Significant attributes can be incorporated, reporting infor-

mation like the latency or throughput that the component

provides.

Figure 3 shows the structural encapsulate which corresponds

to the wrapping for the component in Figure 2.

Structural encapsulation is defined in four sections:

• Definitions, which provide a space to define re-

stricted types, based on unions and ranges, from basic

types (int8, int16, float, etc.).

• Parameters, where component configuration elements

can be declared. Both basic or user defined types can be

used for the declaration of parameters.

515151

<declaration coreid="dhdl_dsp48e"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xsdhdl.xsd">
<definitions>

<deftype id="optype">
<union type="string">
<item>MULT</item>
...

</union>
</deftype>

</definitions>
<parameters>

<parameter id="AREG">
<type>boolean</type>
<value>true</value>

</parameter>
...

</parameters>
<attributes>

<attribute id="LATENCY">
<type>int</type>
<value>3</value>

</attribute>
...

</attributes>
<macroports>

<macroport id="DSP_A">
<type>lvi</type>
<property id="width">
<value><vall>25</vall></value>

</property>
</macroport>
<macroport id="DSP_B">

<type>lvi</type>
<property id="width">
<value><vall>18</vall></value>

</property>
</macroport>
...

</declaration>

Fig. 3. Structural encapsulation: DSP Slice from Xilinx.

• Attributes allow to declare and initialize elements

which will be used to report on component characteris-

tics.

• Macroports are related to input/output declarations.

A. Definitions section

A set of basic data types are the basis for declaring the ele-

ments of next sections: string, boolean, int8, int16,

int32, float, double. This section allows defining new

types based on the basics, by defining ranges and unions.

Figure 4 shows an example of range declaration.

...
<deftype id="a_port_widthtype">

<range type="int8">
<from>2</from>
<to>25</to>
<step>1</step>

</range>
</deftype>
...

Fig. 4. Range Declaration: constrained input type.

The DSP Slice component does not allow an arbitrary

configuration value for its ports bit width. There are multiple

ports defined in the component, for both data and control. For

instance, port A and B are used to provide input data and

their implementation is fixed to 25 and 18 bits respectively.

Figure 4 shows how to define a range which will be used to

restrict configuration options related to the component port A
up to 25 bits.

B. Parameters section

Parameters are the elements of the structural encapsulation

that define the configuration options of the implementation.

They are similar to VHDL generics, but their definition is

significantly improved. First, parameters can be constrained

using the previously defined types. Example of Figure 5 shows

how to declare the parameter that will configure A port width

using the type predefined in Figure 4.

...
<parameter id="a_data_width">

<type>a_port_widthtype</type>
<value><vall>25</vall></value>

</parameter>
...

Fig. 5. Parameter Declaration.

Parameters can be also initialized by means of the value

returned from a function. Functions admit as arguments other

parameters, so it is possible to establish relationships between

parameters. Back to the DSP Slice example, certain modes of

operation are only available if other options have been previ-

ously configured. For instance, structural encapsulation allows

defining a function that can check if a given requirement to

set a mode is met.

C. Attributes section

If the parameters can be considered as an input to the

design configuration, attributes can be seen as output elements

for reporting information from the implementation. Attributes

provide a simple mechanism to report characteristics of a

design, hiding implementation details.

...
<attribute id="latency">

<type>int8</type>
<value>4</value>

</attribute>
...

Fig. 6. Attribute declaration.

Attribute values are obtained after implementing the design,

so they can be used to inform on design characteristics. For

example, Figure 6 shows the declaration of attribute latency
for the DSP example. It will return the latency in cycles

required to perform an operation. This attribute depends on

how configuration is translated to implementation, and it can

vary from 0 to 4 cycles.

D. Macroports section

Macroports define the set of signals that are input and output

to the design. In contrast to conventional HDL port declaration,

a macroport groups a whole set of signals in a single decla-

ration. Furthermore, the macroport declaration establishes the

functionality and timing characteristics that the set of signals

525252

must meet, that is the protocol. This element of the structural

encapsulation simplifies the process of interconnecting and

synchronizing signals between different cores, and therefore

helps when building tools that support reuse.

...
<macroport id="DSP_A">

<type>lvi</type>
<property id="width">
<value><vall>"a_data_width"</vall></value>

</property>
</macroport>
...

Fig. 7. Macroport declaration.

Figure 7 shows an example with the macroport declaration

for A port in the DSP Slice component. This is a data port

so it is declared with a type compatible with the macroport

definition, lvi, which is an input data vector synchronized

with enable and clock signals. The chosen type allows the

configuration of some parameters, like the width of the

vector, which are configured by means of previously declared

parameters.

IV. FUNCTIONAL ENCAPSULATION

Structural encapsulation provides a high degree of pa-

rameterization, but it is also possible to incorporate further

information in the core interface. This information can be

used to automatically integrate the component within another

design.

In this case, in addition to information related to the imple-

mentation itself, it is interesting if the interface incorporates

information defining how a core can be used. For this purpose

a new encapsulation level has been added. Two elements

compose this new level. On the one hand, the functional

encapsulation itself, which is oriented to describe a function

independently from how it is implemented. On the other hand,

a packaging of the structural encapsulation, which connects

both encapsulation levels. With the packaging the designer

defines how to configure the component to implement the

function described by the functional encapsulate.

Functional encapsulation does not declare parameters that

configure a particular implementation. The functionality is

described by a set of features that the design must fulfill.

Therefore, functional encapsulation is not a substitute for

the structural encapsulation, but it is based on this. Actually

functional encapsulation offers a feature-based description of

the functionality that must be implemented by a design, but it

is the designer responsibility to transform these features into

a valid configuration for the structural encapsulate of a core.

Functional encapsulation is divided into three sections:

• Function declaration, which provides an identi-

fier and information of the described function.

• Features, which allow to refine the function declara-

tion.

• Flows, which model input/output to/from the declared

function.

...
<function id="mult">

<description>...</description>
<library>arith</library>
<version>

<ver n="1">
<description>...</description>

</ver>
</version>

</function>
<features>

<feature id="precision">
<description>...</description>
<version ver="1">

<description>...</description>
<union type="string">

<item>byte</item>
...
<item>long</item>

</union>
</version>

</feature>
...

</features>
...

Fig. 8. Functional encapsulation: multiplication.

A. Function declaration

The most important information related to the functional

encapsulation is the function itself. A function is declared with

an identifier within a namespace. The identifier must be unique

in the namespace and descriptive enough for the function.

This identifier will be used as a reference for designs that

implement it. Figure 8 begins with mult function declaration

within namespace arith.

The function section also describes version fields which

allow to introduce modifications in the encapsulation, while

maintaining the compatibility with already defined implemen-

tations from structural encapsulation.

B. Features

Function description can be refined by declaring features.

Features have been designed to cover different objectives:

• Classify implementations. For example, a feature can be

defined to separate between implementations with fixed

or floating point arithmetic.

• Parameter configuration. For instance, a feature may

define the bitwidth of the function.

• Design space exploration. For example, a feature can

be defined to bound the area or performance of the

implementation.

Figure 8 shows the declaration of a feature that defines

the precision for the function mult within a set defined

by a union. Structural encapsulation can use this feature to

configure input bit-widths, or to configure if a given implemen-

tation can use rounding/truncation options. It can be used to

determine if a design meets the minimum required precision.

C. Flows

Input-output data to/from the function is modeled by flows.

Flows are a convenient mechanism for describing data streams.

A flow collects the basic input-output information: number and

type of each piece of data, and even basic timing.

535353

...
<flow id="input_op" io="in">

<description>Input data stream.</description>
<version ver="1">
<description>...</description>
<dt>

<mean>1.0</mean>
<peak>0.0</peak>

</dt>
<op>

<opid id="op_a" type="int8"/>
<opid id="op_b" type="int8"/>

</op>
</version>

</flow>
...

Fig. 9. Flow specification.

As can be seen in Figure 9, a flow declaration defines:

• Normalized data rates that characterize the performance

and timing information associated to the set of in-

put/output data.

• A list of the different operands or input/output data

subjected by the flow.

Whereas macroports from the structural encapsulation de-

fine a specific signaling required by the implementation, the

objective of flows is to provide a mechanism to uniformly

describe different implementations.

V. PACKAGING

Packaging is the last element of the proposal, and establishes

the link between both encapsulations.

• It is an extension of structural encapsulation which allows

the designer to define how an IP or design implements a

function described by a functional encapsulate

• It is used to translate features which have been restricted,

into valid configurations and interconnections for the

design.

• It allows to verify if the implementation obtained from

a configuration satisfies the constraints imposed by the

features.

Packaging is divided into three sections. The first section,

function, establishes the link between structural and func-

tional encapsulations. Then a configuration section is

devoted to specify how to configure parameters or macroports

through feature and flow definitions and values. Finally a last

section, verification, checks if all the functional features

are fulfilled.

Figure 10 shows an example of packaging for the DSP

Slice component previously introduced. This packaging maps

the structural encapsulate of the DSP Slice with a functional

encapsulation of mult, expressing that this component can

perform the function mult.

VI. EXPLORATION OF ALTERNATIVES

The main purpose of defining the functional encapsulation

is to support the exploration of alternatives when designing

complex systems. This encapsulation level provides the access

point to select and configure among the possible available

implementations for a function. Both encapsulation levels

<function>
<core id="dhdl_dsp48e" />
<proto library="arith"

id="mult" ver="1" />
</function>
<configuration>

<parameter id="AREG">
<value><vall>true</vall></value>

</parameter>
...
<parameter id="OPERATION">

<value><vall>MULT</vall></value>
</parameter>

</configurtation>
<verification>

<feature id="precision">
<value default="false">

...
</value>

</feature>
</verification>
...

Fig. 10. Packaging DSP48E: Multiplication.

can interact in a descending and ascending flow as will be

described next.

A. Finding alternatives

Figures 11 and 12 show the relation between the elements

proposed when exploring alternatives. Encapsulates and pack-

agings are stored into different libraries.

Packaging allows to define the correspondence between

functional and structural encapsulates. It specifies how to con-

figure the structural encapsulation from the elements defined in

the functional encapsulation (top-down flow), and also checks

if the configuration obtained satisfies the constraints defined

at the functional level (bottom-up flow).

To obtain an implementation from a functional encapsulate

corresponds to a broad process, where it is unknown which

is the implementation that better fits the requirements. This

process is designated as finding alternatives. The objective of

this process is to offer to the designer, among the possible

implementations represented by the packaging, if a design or

set of designs are close to fulfill the requirements defined by

the function.

The search for alternatives process is therefore divided into

two processes:

1) The first process seeks for the implementation of a

VHDL core based on information supplied from the

functional encapsulation. This process is represented

in Figure 11. In this top-down process, where a user

(the system designer) configures the elements defined

in the functional encapsulation (features and flows),

generating a set of constraints that must be met by

all candidate implementations. Then those packagings

which offer implementing that function translate the

constraints into the parameters defined in the interface

constituted by their structural encapsulation. Then dHDL

components configured through structural encapsulation

are generated and produce the corresponding VHDL

core.

545454

Fig. 11. Top-down process: finding alternatives. Fig. 12. Bottom-up process: validate implementations.

2) The second process, bottom-up, is shown in Figure 12.

Once several alternatives have been generated, the veri-

fication process starts. The previous process generates

VHDL cores, but also the information related to the

code generation process, which is collected by the

structural encapsulate through attributes. Then, with the

returned information the packaging verification starts,

which is oriented to determine what functional features

are met by the given implementation. At the functional

encapsulation level, the user obtains a list of possible

implementations of the function, and also how many

constraints have been satisfied by each design.

B. Example
Figure 13 shows an example of the application of the pro-

posed reuse methodology to encapsulate a previously designed

component, the well-known DSP Slice.

1) The structural encapsulate and dHDL language define a

wrap for the VHDL component with an extended reuse

interface.

• The new encapsulate offers the same set of param-

eters and ports for communication than the VHDL

component instance.

• Structural parameters allow to verify the correctness

of the values which will be used to configure the

hardware core. It is also possible to define relation-

ships between parameters.

• Depending on the chosen configuration, it is pos-

sible to enable and disable ports though the dHDL

code.

• Design attributes have been defined to inform about

the particular implementation under study; their

value is calculated when the VHDL code is gen-

erated.

2) The component can implement multiple functions, such

as addition or multiplication. Packaging is used to define

how to configure the structural encapsulation to imple-

ment each function (top-down flow).

• Packaging allows the designer to specify how to

configure and how to connect the component to

implement the function.

• Packaging also defines how to check from the

information obtained through structural attributes,

if they really meet the constraints imposed by the

function.

• Packaging allows to offer the design as a solution

to implement the function.

3) At functional level, the DSP Slice packagings are alter-

natives of implementation. Other components may also

offer an implementation with another different packag-

ing.

• Functional encapsulation does not describe specific

implementations, but features that may have multi-

ple implementations.

• Once features of the functional encapsulation are

set, they become constraints that must be verified

by the candidate implementations.

VII. CONCLUSION

This paper has presented a hardware reuse approach based

on the specification of two encapsulation layers: structural and

functional encapsulation. Structural encapsulation is close to

the implementation, but improves the information that can be

offered by designs described using conventional HDLS. This

encapsulation layer defines parameters, attributes and macrop-

orts as key elements of the reuse interface of a hardware core.

Functional encapsulation is used as a higher abstraction level

to describe a functionality by means of features and flows.

The proposal adds new elements to improve the interface

information of the cores described in conventional HDLs in

order to support the creation of reuse tools. For instance, the

proposed encapsulation can simplify the process of exploring

alternatives when integrating a new core or IP in a complex

design.

555555

Fig. 13. The DSP Slice example illustrates all proposed encapsulation levels.

ACKNOWLEDGMENT

This work was funded by the CICYT project DELTA

TEC2009-08589 of the Spanish Ministry of Economy and

Competitiveness and Avanza Telcodev TSI-020100-2010-1092

of the Spanish Ministry of Industry, Tourism and Commerce.

REFERENCES

[1] D. Gajski, “IP-based design methodology,” in Proceedings. 36th of the
Design Automation Conference, 1999. IEEE, 1999, p. 43.

[2] D. L. Perry, “VHDL : Programming by Example,” New York, p. 476,
2002.

[3] J. Bhasker, A Verilog HDL Primer. Star Galaxy Press, 1997.
[4] E. A. Lee and A. L. Sangiovanni-Vincentelli, “Component-based design

for the future,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2011, pp. 1–5.

[5] A. Raja and D. Lakshmanan, “Domain Specific Languages,” Interna-
tional Journal of Computer Applications IJCA, vol. 1, no. 21, pp. 105–
111, 2010.

[6] M. Leeser, “HML, a novel hardware description language and its trans-
lation to VHDL,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 8, no. 1, pp. 1–8, Feb. 2000.

[7] M. Aubury, J. Saul, G. Randall, and R. Watts, “Handel-C Language
Reference,” 1996.

[8] M. J. Wirthlin and B. McMurtrey, “IP delivery for FPGAs using applets
and JHDL,” in Proceedings of the 39th annual Design Automation
Conference. ACM, 2002, pp. 2–7.

[9] J.-H. Oetjens, R. Görgen, J. Gerlach, and W. Nebel, “An automated
flow for integrating hardware IP into the automotive systems engineering
process,” in Proceedings of the Conference on Design, Automation and
Test in Europe. European Design and Automation Association, 2009,
pp. 1196–1201.

[10] C. Fulong, Z. Zhaoxia, and F. Xiaoya, “XML component-based mod-
eling for digital circuits,” in 2010 Second Pacific-Asia Conference on
Circuits, Communications and System. IEEE, Aug. 2010, pp. 148–151.

[11] N. Rollins, A. Arnesen, and M. Wirthlin, “An XML Schema for
Representing Reusable IP Cores for Reconfigurable Computing,” in 2008
IEEE National Aerospace and Electronics Conference. IEEE, July
2008, pp. 190–197.

[12] A. Arnesen, N. Rollins, and M. Wirthlin, “A multi-layered XML schema
and design tool for reusing and integrating FPGA IP,” in 2009 Inter-
national Conference on Field Programmable Logic and Applications.
IEEE, Aug. 2009, pp. 472–475.

[13] Xilinx, “Xilinx LogiCORE IP, http://www.xilinx.com.”
[14] M. A. Sánchez, M. López-Vallejo, and C. A. Iglesisas, “xHDL: Ex-

tending VHDL to improve core parameterization and reuse,” IEEE
International Symposium on Parallel and Distributed Processing with
Applications, (ISPA-12), July 2012.

[15] Xilinx, “Virtex-5 FPGA XtremeDSP Design Considerations User Guide,
http://www.xilinx.com.”

565656

