
Hardware Reuse Improvement through the Domain

Specific Language dHDL

Miguel A. Sánchez, Marisa López-Vallejo

Dpto. Ingenierı́a Electrónica, UPM, Spain

{masanchez, marisa}@die.upm.es

Carlos A. Iglesias

Dpto. Ingenierı́a de Sistemas Telemáticos, UPM, Spain

cif@gsi.dit.upm.es

Abstract—The dHDL language has been defined to improve
hardware design productivity. This is achieved through the
definition of a better reuse interface (including parameters,
attributes and macroports) and the creation of control structures
that help the designer in the hardware generation process.

I. RATIONALE: WHY A NEW DSL IS DEFINED

Current technologies deep in the nanometer regime allow

the integration of millions of transistors in a single FPGA.

Consequently, the development of parallel machines with

hardware co-processors has now become a reality. However,

the complexity of hardware design makes the design cycle too

long and complicated. A serious improvement in productivity

is required, and this is only affordable by component reuse,

which makes possible to cope with even greater designs,

simultaneously reducing the time to market. Reused compo-

nents, known as cores, may come from former designs or from

third parties. In the last case, they are known as Intellectual

Property (IP), based on licensing reasons.

System design is thus simplified by proper assembly of

such parts, and the identification of the best ones and their

parameters is typically a time consuming task. Hence, IP-based

design actually needs tools to simplify component assembly

and core generation, and also to provide quality assessment

measures (area, speed, power, accuracy) that ease the selection.

These goals can only be accomplished if the cores are specified

with a language that allows subcomponent customization,

instantiation and interconnection, with the corresponding sim-

plification of the design of hierarchical collections of modules.

In this sense, conventional hardware description languages,

as VHDL or Verilog, do not satisfy all the requirements that IP

reuse may have. For instance, these languages exhibit serious

limitations in parameterizable design or do not allow the

specification of additional attributes which could drive a design

space exploration process.

To overcome these limitations, in this work we present

dHDL (dynamic HDL), a domain specific language [1] that

helps the designer in the difficult task of IP core descrip-

tion and reuse. The idea behind dHDL is to extend the

features of conventional HDLs (currently VHDL) following

the component-based design paradigm[2] to ease both the

This work was funded by the CICYT project DELTA TEC2009-08589 of
the Spanish Ministry of Economy and Competitiveness and Avanza Telcodev
TSI-020100-2010-1092 of the Spanish Ministry of Industry, Tourism and
Commerce.

Fig. 1. Role of dHDL description.

parameterization of designs and the reuse of previous works.

In this way, dHDL provides a simple and clear way to describe

complex systems, while being easy to learn and use.

The language is accompanied by a compiler that generates

VHDL source code that can be input to commercial synthesis

tools. dHDL provides a wrapper to VHDL cores extending

their conventional reuse capabilities. Therefore, not only core

configuration and generation is allowed, but also information

regarding the core implementation can be reported to the new

core interface in the form of attributes (Figure 1).

II. DHDL ESSENCIALS

dHDL seeks to improve the generalization, generation and

reuse of traditional HDLs. The possibilities offered by VHDL

parameterization are rather limited, largely due to the rigidity

imposed by the language itself.

We want to improve the information offered by VHDL cores

first by extending the interface, as shown in Fig. 2. More

complex configuration parameters can be defined. Further-

more, attributes reporting on particular implementation data

can be also declared, what cannot be done in VHDL. Finally,

to simplify the core interconnection and instantiation processes

we have defined macroports.

Regarding the language itself it provides great flexibility

when defining variables, instantiating components or creating

structures. Additionally, these mechanisms allow the collection

of information during the generation phase that is fed back that

2012 10th IEEE International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4701-5/12 $26.00 © 2012 IEEE

DOI 10.1109/ISPA.2012.133

857

Fig. 2. dHDL interface.

to the interface as design attributes.

A. Interface

The dHDL interface allows to declare three basic elements:

• Parameters, which can be considered as inputs to config-

ure the core. Differently from VHDL, where the generics

are interpreted by the synthesizer, in dHDL parameters

disappear after code generation, being substituted by their

values.

• Attributes are elements that inform on the component

characteristics (output information). When VHDL code

is generated, attributes behave as global variables which

can be read and modified. After code generation, attribute

values are returned to the interface to inform about the

result of the generation process (area, latency, etc.).

• Macroports constitute the input-output for data inter-

facing. Each macroport gathers an entire set of signals,

which are also tied to a protocol. Macroports can be con-

ditionally declared based on the evaluation of particular

parameter values.It is also possible to use a unique iden-

tifier to declare an array of macroports. Macroports have

been designed to simplify component interconnection.

B. Core Description

dHDL cores are oriented to describe a core based on other

cores, where structural description is more suitable than be-

havioral description: a core is a set of instances of components,

the interconnections between these components and the ports

of the core itself.

Types declared in dHDL allow the designer to control how

an when VHDL code is generated, so which elements will

construct the structure defined by control structures. Control

structures defined in dHDL are more flexible, and use interface

configuration to guide the structural description.

It is also possible to include behavioral descriptions with

dHDL. VHDL cores can be instantiated, and the language

includes a mechanism to insert customized VHDL code.

The language constructs for the core description are:

• Control Structures, that allow the designer to control the

flow of generation of the core and thus the component

structural description. These structures also bring visibil-

ity to the types defined and can be chained and nested

together. dHDL control structures are of two types: con-

ditional structures, based on theif-else construct, and

iterative following the while construct. Both structures

are based on the evaluation of a condition. Conditions

can be simple (evaluated with relational operators) or

complex conditions, which are constructed with logical

operators allowing the evaluation of a chain of simple

conditions.

• Declarations: dHDL code can access to elements de-

clared in the interface (parameters, attributes and macrop-

orts). But it can also declare and use new types: variables,

signals, ports, entities and components. Declarations are

allowed all along the code. Scope of variables and signals

is also considered.

• Code insertions. To properly describe a component, it is

also necessary to perform VHDL code insertions in the

language. Those insertions can be customized by using

data types, through the substitution of their actual values

during generation. In code insertions, VHDL is inter-

preted as plain text, but accepts substitutions anywhere,

triggered by brackets around language expressions, which

use formerly defined types (e.g. parameters, functions,

properties, variables). This allows extensive code cus-

tomization.

III. DESIGN EXAMPLES

To check the usefulness of dHDL, showing its customiza-

tion and interconnection capabilities, several cores have been

implemented and integrated into different dHDL libraries.

These libraries contain from simple components, as adders

or registers, to more sophisticated ones, as general KCMs,

CORDIC rotators, filters of FFTs. Additionally, basic dHDL

structures/modules have been built, such as input/ouput macro-

ports, connectors, etc.

IV. CONCLUSIONS

The use of FPGA-based hardware accelerators is character-

ized by very long design cycles. We have conceived the dHDL

language to improve hardware reuse targetting the increase of

design productivity. The main advantages of dHDL are the

following:

• It is conceived to emphasize reuse.

• It allows a high degree of parameterization of the cores.

• It simplifies the specification with constructs that ease the

designer’s work.

• No conditions are imposed to the HDL used to describe

the designs.

• It is easy to learn, since it stays close to conventional

HDLs used by designers.

• It allows design space exploration based on the mech-

anisms defined to provide feedback information to the

interface in the form of attributes.

REFERENCES

[1] A. Raja and D. Lakshmanan, “Domain Specific Languages,” International

Journal of Computer Applications IJCA, vol. 1, no. 21, pp. 105–111,
2010.

[2] E. A. Lee and A. L. Sangiovanni-Vincentelli, “Component-based design
for the future,” in Design, Automation & Test in Europe Conference &

Exhibition (DATE). IEEE, 2011, pp. 1–5.

858

