
Senpy: A Pragmatic Linked Sentiment Analysis
Framework

J. Fernando Sánchez-Rada, Carlos A. Iglesias, Ignacio Corcuera and Óscar Araque

Intelligent Systems Group

Universidad Politécnica de Madrid

{jfernando,cif}@dit.upm.es, {ignacio.cplatas,oscar.aiborra}@alumnos.upm.es

Abstract—Sentiment and emotion analysis technologies have
quickly gained momentum in industry and academia. This
popularity has spawned a myriad of service and tools. Due
to the lack of common interfaces and models, each of these
services imposes specific interfaces and representation models.
Heterogeneity makes it costly to integrate different services,
evaluate them or switch between them. This work aims to remedy
heterogeneity by providing an extensible framework and an API
aligned with the NLP Interchange Format service specification.
It also includes a reference implementation, a first step towards a
successful and cost-effective adoption. The specific contributions
in this paper are: (i) the Senpy framework; (ii) an architecture
for the framework that follows a plug-in approach; (iii) a
reference open source implementation of the architecture; (iv)
the use and validation of the framework and architecture in
a big data sentiment analysis European project. Our aim is to
foster the development of a new generation of emotion aware
services by isolating the development of new algorithms from the
representation of results and the deployment of services.

Keywords—sentiment analysis; emotion analysis; framework;
linked data;

I. INTRODUCTION

Sentiment analysis is a blooming field of research and
application, fueled by the popularity of social media and
the need to make sense of collective opinions [1]. A vast
number of sentiment analysis tools and services have emerged
in recent years. Most of these tools and services use ad-
hoc representation and schemas. This heterogeneity not only
prevents reusing tools, but it also hinders the establishment
of common terminology and models. Initiatives like NLP
Interchange Format (NIF) [2] paved the way to standardiza-
tion by publishing a semantic format and an API for NLP
services. Thence, applications like the NIF combinator [3]
appeared, demonstrating that a semantic format eases the
integration of different services. Other works have applied this
notion to multimodal sentiment analysis by extending NIF
with existing and new ontologies [4]. The new ontologies
for emotion representation enable a better and unambiguous
annotation, as well as other interesting applications such as
automatic mapping of emotions between different models (e.g.
from Plutchik’s categories to the Valence-Arousal-Dominance
space). However, the concepts behind ontologies and linked
data publishing are unfamiliar to both the linguistic community
and developers. As a consequence, there are still few solutions
in the field that use semantic technologies. This is a known
problem that motivated the creation of JSON-LD [5].

The contributions of this paper are: (i) Senpy, a generic
framework for NLP services based on the vocabularies NIF,
Marl and Onyx; (ii) the architecture of a service in this
framework; (iii) the reference implementation of the Senpy
architecture, which follows a plug-in architecture and demon-
strates the practical feasibility of the framework [6], as well as
several plugins for custom algorithms and wrappers of popular
services; (iv) the extensive use of the reference implementation
in a big data sentiment in the context of a big data sentiment
analysis platform and other research projects.

The ultimate goal of this work is to ease the adoption of
the proposed linked data model for sentiment and emotion
analysis services, so that services from different providers
become interoperable. With this aim, the design of the ref-
erence implementation has focused on its extensibility and
reusability. A modular approach allows organizations to re-
place individual components with custom ones developed in-
house. Furthermore, organizations can benefit from reusing
prepackaged modules that provide advanced functionalities,
such as algorithms for sentiment and emotion analysis, linked
data publication or emotion and sentiment mapping between
different providers.

The rest of this paper is structured as follows. Section II
introduces the main concepts behind Senpy and its linked data
approach. Section III describes the architecture of the Senpy
framework. Section IV describes the reference implementation
of the framework. Section V illustrates how this architecture
and existing tools can be used to develop and use an emotion
analysis service; Lastly, Section VI presents our conclusions
and future work.

II. BACKGROUND

A key aspect of Senpy is its linked data approach. Its model
is based on the following specifications:

• Marl [7], a vocabulary designed to annotate and de-
scribe subjective opinions expressed on the web or in
information systems

• Onyx [8], which is built on the same principles as
Marl to annotate and describe emotions, and pro-
vides interoperability with Emotion Markup Language
(EmotionML) [9]

• NIF 2.0 [2], which defines a semantic format and API
for improving interoperability among natural language

2016 IEEE International Conference on Data Science and Advanced Analytics

978-1-5090-5206-6/16 $31.00 © 2016 IEEE

DOI 10.1109/DSAA.2016.79

735



processing services NIF follows a linked data princi-
pled approach so that different tools or services can
annotate a text. To this end, texts are converted to RDF
literals and an URI is generated so that annotations
can be defined for that text in a linked data way.
NIF offers different URI Schemes to identify text
fragments inside a string, e.g. a scheme based on
RFC5147 [10], and a custom scheme based on context.
In addition to the format itself, NIF 2.0 defines a REST
API for Natural Language Processing (NLP) services
with standardized parameters.

The integration of these ontologies has been covered
in previous works [4]. For the sake of clarity, Listing 1
provides an example of annotation by a sentiment anal-
ysis service. In particular, it consists of the analysis of
a microblog post with the text “The example they used
was really good, I really enjoyed it” and whose URL
is http://microblog.com/User1/Post1. The ser-
vice response shown in Listing 1 indicates that an opinion
(:Opinion1) has been detected. The properties of the en-
tity are shown as well. Finally, it provides details of the
analysis, such as the algorithm used, its confidence, polarity
range and provenance (using the PROV-O ontology [11]).
Note that a query to the service has the following format:
http://{endpoint}?i={text}&prefix={prefix}.

<http://microblog.com/User1/Post1#char=0,49>
rdf:type nif:RDF5147String, nif:Context;
nif:beginIndex "0";
nif:endIndex "75";
nif:isString "The example they used in their last paper

↪→ was very clear, I really liked it";
marl:hasOpinion :Opinion1.

:Opinion1
rdf:type marl:Opinion;
marl:describesObject "paper";
marl:describesObjectPart "example";
marl:describesFeature "clarity";
marl:polarityValue "0.8";
marl:hasPolarity: marl:Positive;
prov:wasGeneratedBy :Analysis1.

:Analysis1
rdf:type marl:SentimentAnalysis;
marl:maxPolarityValue "1";
marl:minPolarityValue "-1";
marl:algorithm "dictionary-based";
prov:wasAssociatedWith http://www.gsi.dit.upm.es/.

Listing 1: NIF + Marl output
of a service call http://senpy.cluster.gsi.dit.upm.es/api?i=The
example they used in their last paper was very clear, I really
liked it&prefix=http://microblog.com/User1/Post1#

III. FRAMEWORK

This section describes a framework for natural language
processing services, with a special focus on sentiment and
emotion analysis.

The main component of a sentiment analysis service is the
algorithm itself. However, for the algorithm to work, it needs to
get the appropriate parameters from the user, format the results
according to the defined API, interact with the user when errors
occur or more information is needed, etc. All this boilerplate
of sorts, albeit essential for the service, is a burden on service
developers. The situation is even worse when dealing with

different algorithms at the same time, which usually requires
developing and deploying them separately. For this reason,
Senpy proposes a modular and dynamic architecture that
allows: i) implementing different algorithms in an extensible
way, yet offering a common interface, ii) offering common
services that facilitate development, so developers can focus
on implementing new and better algorithms. Furthermore, it
fosters the creation of common tools such as service validators,
evaluation suites and testing tools.

The framework covers all the aspects of developing, pub-
lishing and using a sentiment analysis service. These aspects
are grouped into layers. In addition to giving a clearer view
of the components of a service, separating the framework in
aspects serves another purpose: it later helps with transfer-
ring this modularity to its implementations. Finally, modular
implementation fosters the creation of new services and func-
tionalities by reducing the cost of adding new features and
algorithms.

As of this writing, we have identified five different layers:
the Analysis Layer includes the core NLP process and the
libraries to connect it to the rest of the layers; the Semantic
Layer deals with conceptual models and their integration; the
Syntactic Layer handles issues such as formatting, serialization
and input/output validation; the User Interface (UI) is the
way in which users interact with services; the Evaluation
Layer allows users to benchmark different algorithms; and the
Service Administration Layer offers tools and information to
control running services. Figure 1 depicts these layers and the
main components within each of them. The rest of this section
describe each layer in detail.

The Analysis Layer includes those components that are
directly involved in generating new annotations for a given
input. More specifically, it comprises the implemented analysis
algorithms and the libraries used in the implementation that
are responsible for integrating one particular algorithm with
the rest of the components. For instance, a specific service
may include one or more sentiment analysis algorithms to
choose from, a Named Entity Recognition algorithm, a gender
detection algorithm, etc. Each of these algorithms should be
developed independently from the rest, and should contain only
the logic that concerns the generation of new annotations. The
interface between every algorithm and the rest of the layers is
well defined. The set of libraries that implement this interface
are the Senpy SDK, which is also part of the framework.

The Semantic Layer provides semantic consistency to the
service and adapts the results from the Analysis Layer to every
request. To exemplify the role of this layer, let us consider
the case of an emotion analysis service. The Analysis Layer
of this service would consist of at least one implementation
of an emotion analysis algorithm. This algorithm generates
annotations using Ekman’s six categories. In a traditional
service, this would mean that the output of the service could
only contain these categories. If an application requires a
different representation, such as the VAD (valence, arousal,
dominance) dimensional model, the conversion of the results
is external to the analysis service. In a Senpy service, the
Semantic Layer could include mappings to transparently adapt
the annotations to the desired representation. In addition to
mappings and conversion, the Semantic Layer could include
other steps, such as validation and inference.

736



The lowest level of abstraction corresponds to the Syntactic
Layer. Its role is to validate and adapt input from and output
to the user. On the input side, it extracts all the necessary
information from every request, and processess it so that it
is understood by other layers. If there is an error in the
request, such as missing parameters or wrong syntax, this layer
communicates it to the user. When the output from other layers
is ready to be sent back to the user, the Syntactic Layer formats
it using the appropriate is to validate both the input and the
output of the service, to process the input so that it can be
understood by other layers, and to process the output so that
it has the requested format and structure.

The User Interface (UI) Layer handles the interactions
between users and the service. The way in which users make
requests and receive the results back is different depending on
the medium used. For instance, the same underlying analysis
could be accessed through a Command Line Interface (CLI)
and a web service (Web UI). This difference should be
transparent to developers. Hence, the main task of the UI
Layer is to gather requests from the user, forward them to
the rest of the framework, and then adapt the output to the
medium in use. Another element in this layer is the Playground
aspect, which will be explained further in Section IV. The
main idea behind it is that users want to experiment with new
services before integrating them in their workflow or using
them programmatically. The Playground is a simple UI that
presents users with all available algorithms and options, and
guides them through their use.

All previous layers cover functional aspects, i.e. developing
a service and allowing users to make requests. The last two
layers in this section cover aspects that do not concern users
but developers and service administrators.

A key aspect of developing a new analysis algorithm is to
evaluate it and compare it to others. The Evaluation Layer
contains benchmarking and evaluation tools. Evaluation is
facilitated by the fact that the framework imposes a common
API. i.e., services of the same type will use the same annotation
scheme and will be called in the same way. Using the common
API and a set of gold standard corpora, it is possible to evaluate
and compare different algorithms. The same concept applies
to testing.

Lastly, the Service Administration Layer includes aspects
useful to maintain a service and control its lifecycle. Some of
its main functions would be: logging, which is used to control
execution and find possible errors; resource manager, to control
processing, memory and storage consumption; usage statistics,
for an overview on how the service is being used; process
monitoring, to control what tasks are running and when; and
configuration manager, to view and change the parameters
used in the service, such as activating or deactivating modules
within the service.

IV. REFERENCE IMPLEMENTATION

Providing a reference implementation of the conceptual
framework serves three main purposes. Firstly, it allows us
to assess the feasibility and completeness of the framework.
Secondly, it acts as a showcase of the purpose and the concepts
behind the framework. Thirdly, it can be used as a reference
or gold standard for future implementations.

Fig. 1: Senpy framework. Each layer represents a functional
block in a service.

The architecture of the reference implementation consists
of two main modules: Senpy core, which is the building block
of the service, and Senpy plugins, which contain the code
for each analysis algorithm. The modularity of the architec-
ture serves the overall goal of Senpy of providing seamless
integration of different analysis algorithms while minimizing
code duplication and development effort. Several plugins may
coexist in the same service, accessing different resources and
algorithms while benefiting from the nurturing environment of
the common platform. Figure 2 depicts a simplified version
of the processes involved in an analysis with Senpy. The
following sections describe each component of the architecture
in further detail.

The implementation is fully Open Source and published on
GitHub1, and a live demo is publicly available2.

A. Core

As its name implies, the core of Senpy provides the main
functionalities of the platform: an HTTP server/CLI interface,
parameter extraction and validation, serialization of results
using different formats and an abstraction and publication of
results as Linked Data. It manages the lifecycle of plugins as
well, orchestrating their execution and all interaction with the
user. To better understand the features of the core, let us follow
a typical analysis request from a user.

First of all, there are two ways in which a user may want to
run their analysis: as a one-off local process or as a service. For

1http://www.github.com/gsi-upm/senpy
2http://senpy.cluster.gsi.dit.upm.es

737



Fig. 2: Modules involved in an analysis with the reference implementation of Senpy

one-off commands, Senpy provides a command line interface
(CLI), configurable via arguments. For long running processes
or services, Senpy provides an HTTP server. In this case, users
send their requests using HTTP queries to the server. Both the
CLI and HTTP server use an API aligned with NIF, but using
a JSON-LD representation and a JSON-schema by default.
This difference makes it friendlier and more appealing to
developers, as well as compatible with a wider range of tools.
The API defines the parameters that are allowed (Table I),
and is complemented by the extra parameters that each plugin
declares in its definition (see Listing 2 for an example).

parameter description

input(i) serialized data (i.e. the text or other formats, depends
on informat)

informat(f) format in which the input is provided: turtle, text
(default) or json-ld

outformat(o) format in which the output is serialized: turtle (de-
fault), text or json-ld

prefix(f) prefix used to create and parse URIs
emodel(e) emotion model in which the output is serialized (e.g.

WordNet-Affect, PAD, etc.)
minpolarity (min) minimum polarity value of the sentiment analysis
maxpolarity (max) maximum polarity value of the sentiment analysis
language (l) language of the sentiment or emotion analysis
domain (d) domain of the sentiment or emotion analysis
algorithm (a) plugin that should be used for this analysis

TABLE I: Parameters of an Emotion or Sentiment analysis
service using Senpy

Senpy uses these parameters in every request to extract all
parameters from the request, and to warn the user whenever
there are missing parameters.

If the basic arguments provided are correct, Senpy uses its
selection algorithm to determine the plugin that will receive
the request. Typically, users select the plugin manually using
the algorithm parameter. Senpy will then check if the extra
parameters defined in the selected plugin are met as well. If
this validation succeeds, the plugin is asked to run an analysis,
using the validated parameters.

Senpy leverages different ontologies (e.g. Marl, Onyx) to
represent different types of information. For simplicity, the

main types of results as well as their required and optional
properties have been defined using JSON schema. This means
that results are provided in a documented format that can also
be validated before passing them to the user. Plugins use these
models to return their results.

Once the analysis is done, its results are further modified
before they are returned to the user. First of all, values are
transformed to fit the parameters specified by the user. For
instance, when a plugin uses a sentiment value in the interval
(-1, 1), and the user requested a value in the (0, ) interval. This
phase is very useful when dealing with emotions. Senpy has
several mappings from dimensional models to categories, and
vice versa. An example of this can be seen in Section V.

Lastly, Senpy generates the final results in the appropriate
format, including metadata and proper URI identifiers, so it
can be published as Linked Data.

For convenience, Senpy includes a web interface to test
all available plugins: the Senpy Playground (Figure 3). The
Playground lists all available services, and dynamically adds
fields for every parameter they accept, such as language.

B. Plugins

The components in the Analysis Framework from Figure 1
are plugins in the implementation. Hence, each plugin repre-
sents a different analysis process. For instance, we may have
a plugin for emotion analysis using WordNet-Affect, and a
plugin for sentiment analysis using SVM and the Sentiment140
corpus. In future versions of the implementation we plan to
extend plugins to also cover components in other layers of the
architecture.

A plugin is defined by two elements: a definition file and
the plugin code. The definition file can be written in JSON
or YAML (a JSON superset), and has the .senpy extension.
It contains important information about the plugin such as:
name, version, location of the plugin code, parameters needed
and attributes of the plugin. Listing 2 shows the description file
of an example plugin, which we will use in Section V. In this
description we see that the plugin accepts an extra parameter

738



Fig. 3: Senpy Playground web interface.

in requests, language. When not provided, this parameter
defaults to en. It also contains an attribute specific to this
plugin, default_value, which determines the default value
for words that are not found in ANEW.

Listing 2: Plugin definition using YAML

---
name: EmoTextANEW
module: emotextANEW
version: "0.1"
description: "Emotion classifier using rule-based

↪→ classification."
extra_params:
language:
aliases:
- language
- l
default: en
options:
- es
- en
required: true
default_value: [0,0,0]

The module attribute indicates the module that will
be loaded. In this case, that module corresponds to the
code in Listing 3. A Senpy (Senpy) plugin has to imple-
ment three methods: activate, for allocation of resources;
deactivate for their release; and analyse, which takes
the user-supplied parameters and performs the analysis. Re-
source allocation may seem needlessly complicated, but it
is an important process when dealing with models that take
gigabytes of memory. Section V covers the creation of a this
specific plugin in more detail.

There are three main states in the lifecycle of a plugin:
unloaded, inactive and active. Only active plugins can be used
in requests. For a plugin to be active, two things have to

happen. First, the core has to load it. Once a plugin has been
loaded, it gets in the inactive state. In this state, a plugin is
listed by the core, but the variables necessary for analysis may
not have been initialized. When a plugin is loaded, a special
method in the plugin is called that initializes these variables. If
the activation process is successful, the plugin enters the active
state and can be used by users. If there are errors during the
activation, the plugin remains inactive and all errors are logged.
Active plugins can also be deactivated, which puts them in the
inactive state again and should free up any variables that were
initialized during activation.

To exemplify this process, let us consider the case of
a sentiment analysis that uses a naive bayes classifier. This
plugin requires a trained classifier to analyze text. However,
when the plugin is loaded the classifier is not ready yet. The
classifier is trained upon activation. Training may take a long
time, depending on the size of our corpus and the features used.
For this reason, changes of state are asynchronous operations
for the core. When the activation finishes, our plugin will
be automatically marked as active. Meanwhile, the core may
handle other requests. Once our plugin is active, we can use
it to analyze text. When our plugin is no longer needed, we
may deactivate it. Deactivation will free up the memory used
by the trained model.

Releasing resources when a plugin is not needed means
that many resource hungry plugins can be loaded at the same
time, and only activate them when they are needed. Resource
initialization during activation also means that plugin variables
will be consistent after it is activated. On the other hand, it also
means that costly operations, such as training a model, have
to be repeated several times. To avoid repetition and speed up
start-up time considerably, Senpy ships with a special type of
plugins that provide persistence. These persistent plugins have
access to special variables that can be used to store the results
of costly operations. When these variables are used, the plugin
automatically checks the filesystem for a saved version of the
variable. If if does, it loads the variable. If not, the plugin runs
the appropriate operation and stores the value of the result in
the filesystem.

The reference implementation Senpy has been validated
by implementing wrappers to several available sentiment and
emotion services, such as Sentiment 140 [12], Meaning-
Cloud [13], Cogito [14], Vader [15] and Paradigma [16].

V. USE CASE

In this section we briefly cover the process of using Senpy
in a real scenario. Our use case is a Big Data platform that uses
a series of NLP services on social media. In fact, the scenario
is a simplification of one of the pilots in the MixedEmotions
project. This platform is made up of several modules from
different parties. Some of them are existing NLP and sentiment
analysis services. The rest of the modules depend on one
or more of these analysis services. Integrating the different
modules and their interfaces would require a big effort from
every parties involved. Senpy reduces the cost of integration
with its common interface and tools.

Figure 4 depicts the main elements. There are two parts
in the platform of this use case. Firstly, there is a live brand
monitoring dashboard. The dashboard shows the opinions of

739



Fig. 4: Using Senpy in a Big Data Sentiment Analysis Platform

social media users about a brand. For this, it uses an external
sentiment analysis service (sentiment140 3), to annotate social
media content with opinions. Secondly, there is a social context
analysis module that finds the most influential users and
content, as well as the evoluation of emotion of all relevant
users. The social context analysis module uses a NER (named
entity recognition) module to gather only relevant content, and
an emotion analysis module to annotate the emotions in the
content. Social media content is provided by a separated mod-
ule, labeled Crawler in Figure 4. A server running senpy will
provide the NER, Sentiment and Emotion Analysis Analysis
services.

Instead of accessing the external sentiment analysis service
directly, we choose to use a custom sentiment analysis service
in senpy that acts as a wrapper/proxy to the actual service. The
main advantage of this approach is that it avoids having to deal
with more than one API and schema for NLP service. Addi-
tionally, we gain access to all the extra capabilities of Senpy,
such as the polarity conversion, benchmarking and service
evaluation. Developing the wrapper is very straightforward and
requires very little code 4.

The emotion analysis analysis relies on the ANEW [17]
lexicon to analyze the emotion in text, using a simple bag-
of-words approach. Turning this code into a Senpy plugin is
trivial, and merely a matter of implementing the analyse
method. We have already covered the description file in
Listing 2. The accompanying code is shown in Listing 3.

Listing 3: Code for the EmoTextANEW plugin

from os.path import dirname, abspath
from senpy.plugins import SenpyPlugin, tokenize
from senpy.models import Results, EmotionSet,

Emotion, VAD
from emotextanew import Analyser

class EmoTextANEW(SenpyPlugin):

def activate(self, *args, **kwargs):
self._local_path = dirname(abspath(__file__))

3http://www.sentiment140.com/
4https://github.com/gsi-upm/senpy/tree/master/senpy/plugins/sentiment140

self._analyser = Analyser(self._local_path)

def deactivate(self, *args, **kwargs):
del self._analyser

def analyse(self, params):
r = Results.from_params(params)
for i in r.entries:

es = EmotionSet()
e = Emotion()
valence = 0
arousal = 0
dominance = 0
for j in i.nif__isString:

# Find V,A,D for each word
v, a, d = self._analyser.get_vad(j)
valence += v
arousal += a
dominance += d

e[VAD.arousal] = a
e[VAD.valence] = v
e[VAD.dominance] = d
es.onyx__hasEmotion.append(e)
i.emotions = es

return results

Since ANEW uses the VAD emotion model, that is what
our plugin will use as well. Normally, this would mean users
would need to use the VAD model themselves. However, since
we are using Senpy to publish our service, we can make
use of its additional features, such as mapping of emotion
models. Emotion mapping can be used by setting the emodel
parameter in the request. Listing 4 shows the response to a
request using the WordNet-Affect model. Notice the addition
of the emotion category (joy) based on the VAD dimensions.
In particular, the conversion from VAD to WordNet-Affect
categories is based on centroids [18]. The information about
the centroids is displayed in the results, which together with the
use of the provenance ontology makes the process transparent
and repeatable.

Listing 4: Requesting an emotion analysis with a different
emotion than the one provided in the plugin.

{
"@context": "http://senpy.cluster.gsi.dit.upm.es/api/

↪→ contexts/context.jsonld",
]
"analysis": [
{

"analysis": [
{

"@id": "EmoTextANEW_0.1",
"@type": "onyx:EmotionAnalysis",
"onyx:usesEmotionModel": "onyx-anew:ANEWModel"

},
{

"@id": "ANEW_Mappings_0.1",
"@type": "onyx:EmotionAnalysis",
"onyx:usesEmotionModel": "wnaffect:WNAModel"
"centroids": {

"wnaffect:anger": {
"A": 6.95,
"D": 5.1,
"V": 2.7

},
"wnaffect:disgust": {

"A": 5.3,
"D": 8.05,
"V": 2.7

},
"wnaffect:fear": {

"A": 6.5,
"D": 3.6,
"V": 3.2

},
"wnaffect:joy": {

"A": 7.22,

740



"D": 6.28,
"V": 8.6

},
"wnaffect:sadness": {

"A": 5.21,
"D": 2.82,
"V": 2.21

}
}

}
],
"entries": [
{

"emotions": [
{

"onyx:hasEmotion": [
{

"prov:wasGeneratedBy": "EmoTextANEW_0.1",
"onyx-anew:arousal": 5.0,
"onyx-anew:dominance": 5.62,
"onyx-anew:valence": 6.23,

},{
"prov:wasGeneratedBy": "ANEW_Mappings_0.1",
"onyx:hasEmotionCategory": "wn-affect:joy"

}]
}
],
"language": "en",
"nif:isString": "I am feeling excited"

}
]

}

This section illustrates how easy it is to develop a new
service from scratch and to integrate it in a bigger scenario.
As shown in Listing 3, a plugin code is made up entirely of
the analyse function, which almost perfectly matches the
pseudocode of the algorithm. This succinct code provides a
web service and a CLI tool that does parameter extraction and
validation automatically. Furthermore, the platform provides
additional features such as automatic linked data conversion
and publication or mapping of emotions. Finally, the common
interfaces and schemas provide loose coupling to the platform.
This means that once a module is adapted for senpy to make
use of a service, it can be made to use any equivalent service
just by pointing it to a different endpoint.

VI. CONCLUSIONS AND FUTURE WORK

The sentiment and emotion analysis community would
highly benefit from a common framework for service and
language resources. Such a framework would ease adoption,
development, integration and evaluation of services. A linked
data approach further adds to these benefits, but its use needs
to be transparent to users and developers.

This paper proposes a generic framework that combines
both worlds and a reference implementation of that framework
that is currently being used in MixedEmotions5, a European
R&D project. The linked data model for sentiment and emotion
services is based on the combination of NIF, Marl and Onyx
vocabularies. Moreover, a number of parameters (e.g. min, max
and e) have been defined following NIF Service specification
so that sentiment and emotion service calls are interoperable.

We want to increase the adoption of the framework and
to foster a community approach, where most plugins and
features are provided by third parties. For this reason, we are
currently working on easing the development of new plugins,
and on making it possible to create plugins for any part of the

5http://mixedemotions-project.eu/

framework. Other lines of research would be the connection
between different plugins (e.g. pipelining), the integration of
the framework with other distributed and big data systems, and
the addition of authentication and rate limiting.

In conclusion, the framework proposed in this paper has
already proven useful in a multilingual sentiment analysis
scenario. It has enabled the integration of multiple services
from different parties and eased the creation of novel algo-
rithms. This new approach paves the way for new testing
and validation tools, as well as advanced capabilities such as
deployment in high availability and cluster environments.

VII. ACKNOWLEDGEMENTS

This work has been partially funded by the European
Union - Horizon 2020 (Industrial Leadership) through the
MixedEmotions project (number H2020 644632). Part of this
work has been carried out in the context of the MOSI-AGIL-
CM research programme (grant S2013/ICE-3019, supported
by the Autonomous Region of Madrid and co-funded by EU
Structural Funds FSE and FEDER, and the SEMOLA project,
funded by the Ministry of Economy and Competitiveness of
Spain (TEC2015-68284-R).

REFERENCES

[1] B. Liu, “Sentiment analysis and opinion mining,” Synthesis Lectures on
Human Language Technologies, vol. 5, no. 1, pp. 1–167, 2012.

[2] S. Hellmann, J. Lehmann, S. Auer, and M. Brümmer, “Integrating nlp
using linked data,” in The Semantic Web–ISWC 2013. Springer, 2013,
pp. 98–113.

[3] S. Hellmann, J. Lehmann, S. Auer, and M. Nitzschke, “Nif combinator:
Combining nlp tool output,” in Knowledge Engineering and Knowledge
Management. Springer, 2012, pp. 446–449.

[4] J. F. Sánchez-Rada, C. A. Iglesias, and R. Gil, “A linked data model for
multimodal sentiment and emotion analysis,” ACLIJCNLP 2015, p. 11,
2015.

[5] M. Lanthaler and C. Gütl, “On using json-ld to create evolvable
restful services,” in Proceedings of the Third International Workshop
on RESTful Design. ACM, 2012, pp. 25–32.

[6] E. Dalci, E. Fong, and A. Goldfine, “Requirements for gsc-is refer-
ence implementations. national institute of standards and technology,”
Information Technology Laboratory, 2003.

[7] A. Westerski, C. A. Iglesias, and F. Tapia, “Linked opinions: Describing
sentiments on the structured web of data,” in Proceedings of the
Fourth International Workshop on Social Data on the Web (SDoW2011).
CEUR, Oct. 2011, pp. 21–32.

[8] J. F. Sánchez-Rada and C. A. Iglesias, “Onyx: A linked data approach
to emotion representation,” Information Processing & Management,
vol. 52, no. 1, pp. 99–114, 2016.

[9] M. Schröder, P. Baggia, F. Burkhardt, C. Pelachaud, C. Peter, and E. Zo-
vato, “Emotionml – an upcoming standard for representing emotions
and related states,” in Affective Computing and Intelligent Interaction,
ser. Lecture Notes in Computer Science, S. D’Mello, A. Graesser,
B. Schuller, and J.-C. Martin, Eds. Springer Berlin Heidelberg, 2011,
vol. 6974, pp. 316–325.

[10] E. Wilde and M. Duerst, “URI Fragment Identifiers for the text/plain
Media Type,” Internet Engineering Task Force, Apr. 2008.

[11] P. Missier, K. Belhajjame, and J. Cheney, “The w3c prov family of
specifications for modelling provenance metadata,” in Proceedings of
the 16th International Conference on Extending Database Technology.
ACM, 2013, pp. 773–776.

[12] P. Chikersal, S. Poria, and E. Cambria, “Sentu: sentiment analysis of
tweets by combining a rule-based classifier with supervised learning,”
in Proceedings of the International Workshop on Semantic Evaluation,
SemEval, 2015, pp. 647–651.

741



[13] I. Segura-Bedmar, P. Martı́nez, R. Revert, and J. Moreno-Schneider,
“Exploring spanish health social media for detecting drug effects,” BMC
medical informatics and decision making, vol. 15, no. Suppl 2, p. S6,
2015.

[14] Expert System, COGITO Intelligence Platform, 2015.

[15] C. J. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model
for sentiment analysis of social media text,” in Eighth International
AAAI Conference on Weblogs and Social Media, 2014.

[16] J. F. Sánchez-Rada, M. Torres, C. A. Iglesias, R. Maestre, and
R. Peinado, “A Linked Data Approach to Sentiment and Emotion
Analysis of Twitter in the Financial Domain,” in Second International
Workshop on Finance and Economics on the Semantic Web (FEOSW
2014), vol. 1240, May 2014, pp. 51–62.

[17] M. M. Bradley and P. J. Lang, “Affective norms for english words
(ANEW): Instruction manual and affective ratings,” Technical Report C-
1, The Center for Research in Psychophysiology, University of Florida,
Tech. Rep., 1999.

[18] S. M. Kim, A. Valitutti, and R. A. Calvo, “Evaluation of unsupervised
emotion models to textual affect recognition,” in Proceedings of the
NAACL HLT 2010 Workshop on Computational Approaches to Analysis
and Generation of Emotion in Text. Association for Computational
Linguistics, 2010, pp. 62–70.

742


