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Abstract

Given that telecommunications networks are constantly growing in com-
plexity and heterogeneity, management systems have to work with incomplete
data, handle uncertain situations and deal with dynamic environments. In
addition, the high competitiveness in the telecommunications market requires
cost cutting and customer retention by providing reliable systems. Thus, im-
proving fault diagnosis systems and reducing the mean time to repair with au-
tomatic systems is an important area of research for telecommunications com-
panies. This article presents a Fault Diagnosis Multi-Agent System (MAS)
applied for the management of a business service of Telefónica Czech Repub-
lic. The proposed MAS is based on an extended Belief-Desire-Intention (BDI)
model that combines heterogeneous reasoning processes, ontology-based rea-
soning and Bayesian reasoning. This hybrid diagnostic technique is described
in detail in the article. The system has been evaluated with data collected
during one and a half years of system operation on a live network. The main
benefits of the system have been a significant reduction in both the average
incident solution time and the mean diagnosis time.
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(Dušan Kolař́ık)
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1. Introduction

Fault Diagnosis is one of the most important network management tasks
for telecommunications companies. Traditionally, this process has been car-
ried out by humans and software systems that work in a cooperative way.
The constant increase in the size and complexity of the network, makes fault
diagnosis a critical task that should be handled quickly and in a reliable
way. High skilled engineers are required to carry out this task, although
even these individuals are not always able to deal with the increasing hetero-
geneity and complexity of the networks. These fault diagnosis tasks require
the processing of uncertain knowledge from geographically distributed de-
vices or systems from different vendors with different interfaces or protocols,
making data collection and understanding difficult. Although automated
fault diagnosis processes have been developed, such as surveillance systems
for symptom detection in the core or backbone networks, fault diagnosis is
mainly a manual process managed by human operators.

Nevertheless, operators have the goal of fully automating fault diagnosis
to reduce operation costs and improve customers’ experiences through the
automated operation of standardised diagnostic processes. Moreover, the
increasing heterogeneity of networks makes it difficult to cope with their
complexity, necessitating an automated approach.

This article presents a Multi-Agent System (MAS) architecture designed
to assist human operators in diagnosis of network faults. The proposed MAS
architecture is based on an extended BDI model that combines Bayesian rea-
soning to handle the uncertainty with ontology-based reasoning for domain
knowledge inference. This system has been applied to a service of Telefónica
Czech Republic. The system has been evaluated based on data collected
during one and a half years of operation. The results show that the system
is being widely used by human operators and that the incident solution time
has been reduced.

The rest of this article is structured as follows. First, Section 2 provides
an overview of the MAS design following the Prometheus methodology [1].
Then, Section 3 describes the scenario in which the system has been de-
ployed. Section 4 presents the results of implementation of the system in a
real scenario. Finally, we discuss related works in Section 5 and Section 6
provides conclusions and discusses potential future work.
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Figure 1: Analysis Overview Diagram for a Fault Diagnosis Scenario.

2. Design of a MAS for Fault Diagnosis

To cope with the complex requirements of users in the telecommunica-
tions industry, an agile methodology has been defined, BEhavioural Agent
Simple Testing (BEAST) based on Behaviour Driven Development (BDD).
This methodology is focused on the iterative validation of user requirements
with executable acceptance tests as detailed in [2]. This section describes
the design and analysis of the MAS. For this purpose, we use the well
known methodology Promotheus [1], which is compatible with BEAST, al-
though other Agent Oriented Software Engineering (AOSE) methodologies
such INGENIAS [3] or MASE [4] could have been selected. The Prometheus
methodology supports the development of intelligent agents by non-expert
users in a practical, leading to its application in both industry and academia.
Prometheus consists of three design phases that are explained in the follow-
ing subsections: system specification(Section 2.1), the architectural design
phase (Section 2.2) and the detailed design phase (Section 2.3). The follow-
ing images depicting the system design were created with the Prometheus
Design Tool (PDT) [5].

Fig. 1 presents an overview diagram of the developed system, indicating
the goals of the different roles and the interactions of the system with external
actors (human operators and network devices).

2.1. System Specification

This phase provides a general overview of the system, specifying the global
goals (Section 2.1.1) and a set of roles identified (Section 2.1.2) for the fault
diagnosis scenario.
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2.1.1. Scenario and Goals

Based on Benjamins’ model of diagnosis [6], there are three well-distinguished
steps in any diagnosis scenario: (a) symptom detection, (b) hypothesis genera-
tion and (c) hypothesis confirmation (see Fig. 1). Each time a new symptom
is found, a set of hypotheses is generated. This set contains possible root
causes of the fault based on the symptoms. Then, each hypothesis must be
confirmed or discarded to obtain reliable conclusions. Tests are executed to
determine the state of the system and the results are fed back to the hypoth-
esis generation step in order to update the current set of hypotheses with the
available knowledge.

2.1.2. System Roles

The subtasks identified in the model (see Fig. 1) must be carried out by
agents in the automated fault diagnosis system. Based on these tasks, a set
of roles has been modelled for the proposed MAS: Watchdog, Diagnosis and
Tester.

The Watchdog role is responsible for detecting new symptoms and start-
ing the diagnosis process. This type of agent must be specialised to interact
with its environment, providing integration with devices and/or services. For
example, an agent that plays the Watchdog role should recognise if a Real
Time Streaming Protocol (RTSP) session has poor quality (i.e. issues such
as packet loss or jitter). Thus, the Watchdog role must be integrated with
network management systems.

The Diagnosis role is responsible for generating plausible hypotheses
(fault root causes) based on symptoms and test results. This role chooses
which tests must be performed to confirm hypotheses. In addition, test
scheduling and prioritisation can also be defined. This agent should also be
tailored for a particular diagnosis domain, such as a specific network region
such as the outer edge or technology such as Fiber To The Home (FTTH)
or a provisioning subsystem.

The Tester role is responsible for performing tests on demand to obatin
updated information about the environment, including device or service states
and configurations. As for the rest of the roles, this role should also be spe-
cialised for interaction with its environment. For example, an agent that
plays the Tester role could be required to perform a test to determine the
CPU load of a server.

The main difference between the Watchdog and Tester roles is the proac-
tive nature of the Watchdog role. The Watchdog is continuously monitoring
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the status of a set of variables to achieve its goal of detecting new fault
symptoms. In contrast, the Tester role performs tests on demand.

These roles have been defined to enable the propose multi-agent archi-
tecture to be deployed in a flexible progressive system, as some roles can be
played by either human operator or software agents.

Note that one single agent can play one or several roles depending on the
available resources.

The proposed roles have been defined as simply as possible so that agents
at critical nodes can carry out the minimum required tasks, while nodes with-
out resource consumption restrictions can employ fully functional agents.
Following this approach, a Diagnosis agent can play both Diagnosis and
Tester roles if these tests are performed in the same node, while in a lightweight
device such as a user home gateway, a Tester agent must play only this role
due to computational restrictions.

Furthermore, several advanced roles can be modelled to offer enriched
fully autonomous fault diagnosis. Other interesting features, including self-
learning, self-healing, self-configuration and self-adaptation, may be added
to the model using other roles. For example, Healer and Worker roles can be
used to add self-healing capabilities using the output of a Diagnosis agent.
The Healer role is responsible for choosing healing actions to restore the
diagnosed system to the correct behaviour, while the Worker role performs
actions chosen by Healer agents. For example, a Worker agent could execute
an action to close a specific port in a firewall. To add self-learning capabilities,
Reporter and Trainer roles could be added to the system. The Reporter role
is responsible for determining whether a healing action achieved the expected
result i.e., to check whether the symptoms have disappeared and the status
of the diagnosed system has been properly restored. Finally, the Trainer role
is responsible for machine learning based on previous diagnoses, to improve
the hypothesis generation and symptom detection phases.

2.2. Architectural Design Phase

This phase defines the interactions among the agents in the system based
on the roles defined in the previous phase (Section 2.1).

2.2.1. Agent-Role Grouping

The grouping of roles to agents is straightforward (see Fig. 1). The Watch-
dog role is played by the Interface agent, which receives symptoms and starts
the process of diagnosis. The Diagnosis role is directly associated with the
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Figure 2: Interactions among agent roles.

Diagnosis agent. Finally, the Tester role is played by a set of Observation
agents that are specialised to test for different device types.

2.2.2. Message flow

The interaction flow in a standard diagnostic process starts when a Watch-
dog agent detects a failure symptom. This symptom is sent to a Diagnosis
agent, which then generates a set of hypotheses and requests several spe-
cialised Tester agents to perform tests. Once enough information about the
environment is available to reason about the situation and the hypotheses
have been confirmed or discarded, the diagnostic process ends. This pro-
cess is shown in Fig. 2, where one human actor has been included. In this
case, the human actor reports a new symptom and receives the results of the
diagnosis.

2.3. Detailed Design Phase

This phase details the internal design of the proposed agent architecture
for a diagnosis scenario. Uncertainty is one of the main challenges facing
a diagnostic process. At the beginning of the diagnostic process, only par-
tial information is known, and it is not feasible to collect or even model all
the available information in complex environments such as telecommunica-
tions networks that are composed of multiple subnetworks and equipment in
constant evolution. Thus, diagnosing telecommunications networks requires
reasoning under uncertainty.

6



Reasoning Technique Rules systems CBR Fuzzy logic Bayesian inference
Coherence/Consistency Good Good Bad Good

Handle uncertainty Null Null Good Good
Failures tolerance Medium Bad Medium Medium

Maintain private data Good Medium Good Medium
Uncompleted data set Bad Good Medium Good

Table 1: Comparison among reasoning techniques [8].

Figure 3: Extended BDI Model.

The reasoning technique chosen to meet these requirements is the prob-
abilistic reasoning offered by Bayesian Networks (BNs) in a distributed way
( Multiply Sectioned Bayesian Networks (MSBNs) [7]). Table 1 presents a
comparison of reasoning techniques in accordance with Zhang [8]. Compared
with other alternatives like rule-based or case-based reasoning, Bayesian in-
ference performs better on incomplete data sets and in the presence of un-
certainty while maintaining coherence and consistency. Zhang presented a
good review and comparison of these reasoning techniques [8]. Thus, agents
that handle uncertainty use a Causal Model CM , i.e. a BN. This BN is
used to perform distributed causal inference to update beliefs. The CM is a
subnet that is part of the MSBN [7], allowing to maintain coherence during
the distributed reasoning process.

An extended BDI model has been designed to meet the requirements
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discussed above such as coherent distributed reasoning and handle incomplete
datasets. In this model, distributed Bayesian reasoning is used to handle
uncertainty in a scalable way. The overall causal model is partitioned across
the multi-agent system, based on its domain specialisation and geographical
distribution in the network. Thus, agents can generate beliefs and/or goals
based on the perceived environmental data (e.g., alarms of new faults or
monitoring processes). Agents with the Diagnosis role use the distributed
causal model based on MSBN to determine the root cause and are able to
reason about potential repair actions using a specialised ontology.

Given that the classical BDI architecture does not include probabilis-
tic reasoning, the BDI model has been extended to deal with uncertainty.
Moreover, we have extended the model to reason with Distributed Bayesian
Reasoning because the findings in a particular domain (or region) can be
causally connected to the findings in another domain (or region). Fig. 3
shows the agent architecture and Alg. 1 presents the extended control loop
of the proposed extended BDI model.

The proposed architecture is composed of three main modules: Control
Module (see Section 2.3.1), Distributed Bayesian Reasoning Module (see Sec-
tion 2.3.2) andOntology-based Reasoning Module (see Section 2.3.3).

2.3.1. Agent Control Loop

The standard BDI control loop [9] has been extended to provide coherence
and consistency in the causal distributed reasoning. The Control Module
executes the control loop and interacts with the rest of the modules. In the
proposed extended control loop (Alg. 1), an agent begins with initial beliefs
and intentions. These beliefs are added to the CM and synchronised with
other agents through the MSBN. In this algorithm, the CM variable denotes
the Causal Model used by an agent during its reasoning process and B, D
and I stand for agent Beliefs, Desires and Intentions, respectively.

This algorithm uses several functions. This control loop is similar to the
classic BDI model, but it has been extended with the following functions:
connect function, belief initialisation function, update notification function,
belief update function and communicate belief function.

The proposed algorithm starts with the initialisation of the beliefs and
intentions of the agent. B0 and I0 represent the Initial Beliefs and Initial In-
tentions as in a standard BDI control loop [9]. Then, the connect function is
used to set-up the agent CM with the distributed Bayesian inference engine.
Once the CM is ready, the belief initialisation function is called to synchro-
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nise the shared knowledge among all agents. When beliefs are initialised and
synchronised, the control loop starts. Now, the agent waits until a percep-
tion or a notification is received. If the agent receives a notification of belief
update from the update notification function of another agent, it updates its
own beliefs through a local inference process (belief update function). If the
agent receives a new perception, it updates its own beliefs using the belief
revision function (brf) function as in a standard BDI control loop [9].

After this, the agent propagates its updated beliefs to other agents using
the communicate belief function. This function simply notifies agents when
a change occurs in the set of shared beliefs.

Finally, the standard BDI functions (options, filter and plan)are per-
formed by the Ontology-based reasoning module to choose which plans must
be executed. This control loop ends as follows. A set of possible plans
are chosen (options function) among all available plans and the best plan to
achieve the current goals is selected (filter function) and executed (plan func-
tion). After this, the agent waits again until a perception or a notification is
received.

The proposed algorithm (Alg. 1) is robust because agents can join or leave
the MAS using update notification and belief update functions. Upon receiv-
ing a notification that a new agent is operating or that an old agent has left
the system, agents start the reconfiguration process to maintain coherence
in the MSBN (for more details, please refer to the work of Xiang [7]).

A mapping process has been defined to communicate between the Bayesian
and Ontology reasoning modules (Fig. 3). This mapping process extracts
ontology individuals from the Bayesian network and populates them in the
ontology module.

The details of the reasoning processes in the Bayesian and Ontology mod-
ules are described in the following subsections, Section 2.3.2 and 2.3.3, re-
spectively.

2.3.2. Causal Modelling and Reasoning

As described previously, we propose to use Bayesian reasoning to cope
with uncertainty in the process of diagnosis. The Bayesian network design
follows the BN3M [10] model, which classifies network nodes (variables) into
three groups: evidence, root causes and context (including auxiliary vari-
ables). Once the variables of one domain are defined, the next step is defining
their connections through a Conditional Probability Table (CPT).

These probabilistic relationships (domain knowledge) can be obtained
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Algorithm 1 Extended BDI Agent Control Loop
1: B := B0;
2: I := I0;
3: CM := connect(CM);
4: B := belief initialisation(B,CM)
5: while true do
6: if update notification(CM) then
7: B := belief update(B,CM);
8: else
9: get next percept ρ;

10: B := brf(B, ρ);
11: end if
12: CM := communicate belief(B,CM);
13: D := options(B, I, CM);
14: I := filter(B,D, I, CM);
15: π := plan(B, I);
16: execute(π);
17: end while

from human experts, based on data-mining techniques applied to historical
data or based on a mixed process.

During a diagnostic process, the causal model is used in the hypothesis
generation step. Available information about the diagnosis scenario is added
progressively to the BN (symptoms, tests results, context variables, etc.).
These data are managed as evidence, i.e., beliefs with 100% confidence.

Each time a new piece of evidence becomes available, a set of hypotheses
with an associated degree of confidence is generated by the Bayesian Rea-
soning Module. The MSBN reasoning technique allows for several agents
to reason concurrently with their own local Bayesian Network and then dis-
tributing their findings to the other Bayesian networks. This requires causal
models to be properly connected as described in Alg. 1. Some variables of
the Bayesian Networks behave as bridges for connecting the local Bayesian
Network, and an initialisation and update algorithm is used to maintain
coherence among the subnets, as detailed by Xiang et al. [7].
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Figure 4: Diagnosis Ontology.

2.3.3. Ontology Modelling and Reasoning

An ontology has been developed to reason about the outcomes of the
Bayesian Reasoning Module. Thus, agents can reason about the best strategy
to repair a diagnosed fault based on their local knowledge of the potential
repair actions. This ontology, as shown in Fig. 4, is based on the following
main concepts (highlighted in italics). A diagnosis is composed of a body
of evidence (symptoms and test results, referred to as observations) and
hypotheses of failure. A set of tests can be carried out to obtain information
about the environment and feed that information back to the hypothesis
generation step.

Depending on the available information, the Ontology-based Reasoning
Module chooses a test to execute to achieve a rapid and reliable diagnosis.

The acquisition of the knowledge from the causal model is performed to
create individuals of the ontology following the steps outlined below. Each
time a diagnostic process starts, the individuals for this ontology are ex-
tracted from the causal model. All nodes of the causal model can be classified
into one of three types mentioned above for the BN3M [10] model: evidence,
fault root causes and context. Initially, individuals representing symptoms
are created based on the information received in the diagnosis request mes-
sage (see Fig. 2) and individuals representing hypotheses are extracted from
the causal model based on the nodes that represent fault root causes. Later,
individuals representing tests are extracted to analyse which evidence can
be used in the causal model. These test individuals are classified as possible
tests for the current diagnosis. At this point, the hypothesis confirmation
loop begins (see Fig. 2). Each time a new test result is received, a new obser-
vation individual is generated to represent the result, and the test is marked
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as performed. Now, Bayesian inference is performed again and a new set of
updated hypotheses are generated to replace the previous set. When all pos-
sible tests have been executed or one or several hypotheses reach a threshold,
the diagnostic process is complete and the final hypotheses are sent to the
agent that had requested the diagnosis.

To summarise, the design of the MAS presented in this section is based
on a BDI architecture that has been extended to cope with uncertainty man-
agement. The proposed model combines the uncertain reasoning abilities of
the Bayesian network with domain knowledge about the network equipment.
This domain knowledge is modelled using the proposed ontology, which stores
the information required to carry out the diagnosis tasks. The scalability of
the solution is dealt with in two ways. First the solution is distributed thanks
to the MAS architecture we have defined based on different agent roles. Then,
Bayesian reasoning is distributed using MSBN. In conclusion, the solution
proposed here is scalable and adaptable to the growing heterogeneous sys-
tems that must be managed by a telecommunication company.

3. Case study

This section presents practical experience in the application of the Fault
Diagnosis MAS proposed in the previous sections. The system has been
implemented at Telefónica O2 Czech Republic to manage a Internet Busi-
ness service. This scenario is described in Section 3.1. Then, the agents
deployed and the specific features developed to adapt the model to the client
requirements are presented in Section 3.2.

3.1. Scenario

Internet Business is a service for business subscribers offered and op-
erated by Telefónica O2 Czech Republic. The service provides secure In-
ternet access to corporate users based on Virtual Private Network (VPN)
technology. This system was selected for this study because it is easy to
understand but provides an interesting scenario with enough complexity to
evaluate the proposed diagnosis system. Fig. 5 depicts the technical infras-
tructure required to offer this service. In this infrastructure, subscribers
communications equipment connections are realised via a multi Symmetric
Digital Subscriber Line (SDSL) to a Digital Subscriber Line Access Multi-
plexer (DSLAM). Traffic from the DSLAM is transported through the Re-
gional Ethernet Network (REN) to the entry point of the Multiprotocol La-
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bel Switching (MPLS) network where MPLS pseudo-wire connections are
established to the MPLS provider equipment at a central site. Finally,
the customers communication equipment establishes a Point-to-Point Pro-
tocol (PPP) session with the Broadband Remote Access Servers (BRASs)
at the central site using this transport path. The use of technology from
different vendors for the different network elements increases the complexity
of the diagnosis.

Figure 5: Technical infrastructure for providing the Internet Business service.

This comprehensive technical solution imposes strong requirements on
the inventory and configuration systems.

One of the main causes of failure in this service is configuration issues
of inventory systems. An inventory system allows for the precise identifica-
tion of the network elements (physical or virtual, including their technical
characteristics) that are being used to offer a service to a subscriber. The
scenario includes a combination of automatic configuration systems based on
even networks and on a human based configuration of the inventory system
(e.g. assigning a new IP address or VLAN). When a configuration change
request process is initiated, a service outage or a decrease in the quality of
service could occur if the Operation Support Systems (OSS) or inventory
systems fail. Other potential causes of service outages may be hardware or
software failures or last mile problems. Hence, in summary, there are many
possible root causes of failure in this scenario. The data required to carry
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out a diagnosis are geographically distributed. Moreover, the information
can be missing, outdated or even unreachable. Thus, this diagnosis scenario
is suitable for the application of uncertainty reasoning techniques.

The main reason for using the proposed diagnosis system in Telefónica
O2 Czech Republic is to decrease the Mean Time to Diagnose (MTTD) [11]
. In addition, a more effective diagnosis system would also increase customer
satisfaction and decrease the human resources required for diagnosis tasks.
The Internet Business service was selected for automated diagnosis because
of the high number of customers using this solution, the high number of
trouble tickets and the high level of complexity of the service.

3.2. Fault Diagnosis MAS Deployment

Following the model presented in Section 1, a MAS based diagnosis sys-
tem has been developed and deployed to the OSS servers. This system was
developed using the JADE platform [12], which offers an open agent model
that allowed us to build the proposed extended BDI model (see Fig. 3).
For testing purposes, the MASON framework [13] has been used to simulate
network devices and services.

Human operators are able to interact with the Fault Diagnosis MAS to
request diagnoses using a web interface. In this request, they provide the
detected symptom to an Interface Agent that is responsible for collecting
data from inventory databases.

Once the required information has been collected, the Interface Agent
sends a diagnosis request message to the Diagnosis Agent. Detected symp-
toms are added to the Bayesian inference engine, which handles the causal
model of the fault, to generate a set of hypotheses that represents possible
root causes of the fault. Later, the Diagnosis Agent requests Tester agents
to perform tests.

There are six Tester agents deployed in this scenario, with each agent spe-
cialising in a device type: customer equipment, provider equipment, BRAS,
DSLAM, REN and inventory databases. For this task, shell scripts and Sim-
ple Network Management Protocol (SNMP) commands are used to interact
with network elements. Each time a test is performed, the result is fed back
to the causal model and Diagnosis Agent generates new updated hypotheses.

If one or more hypotheses attain a sufficiently high level of confidence,
the final hypothesis set is shown to the network operator who requested the
diagnosis through the web interface. To make the diagnosis results easy to
understand, the output of the diagnosis system is presented to the human
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Figure 6: Diagnosis results graph.

operator in a diagram, as shown in Fig. 6. This diagram summarises all the
information retrieved in the diagnostic process.

In this scenario, the Diagnosis Agent carries out the hypothesis genera-
tion and reasons under uncertainty as shown in Section 2.3.2. The Bayesian
network that represents the fault causal model used by this agent is com-
posed of 27 evidence nodes (i.e., symptoms and test results), 17 hypothesis
nodes (i.e., possible root causes of the fault) and 18 auxiliary nodes (62 nodes
in total). A portion of this causal model is presented to explain the diag-
nostic process used in the case study (see Fig. 7).We highlight the node that
represents the detected symptoms (e.g., Manifestation), the three nodes that
represent fault root causes hypotheses (shown with a blue background) and
the six nodes that represent tests results (shown with a yellow background).
The rest of the nodes are auxiliary nodes.

These nodes are translated into ontology individuals to reason with them,
as was described in Section 2.3.3. Fig. 8 presents the result of the mapping
process that generated individuals based on the causal model subnet shown
in Fig. 7.

In summary, the proposed fault diagnosis model has been successfully
applied to an Internet Business service. A web interface has been developed
to allow human operators to interact with the diagnosis MAS through an
Interface Agent that receives symptoms and collects information to start a
diagnosis. The Diagnosis Agent performs Bayesian inference using a causal
model that represents the relationhip between network status and possible
failures of the Internet Business service. Six different Observation Agents
perform tests using shell scripts in accordance with the demands of the Di-
agnosis Agent. Finally, the diagnosis result is shown to the human operator
(see Fig. 6).

In the diagnosis system deployed here, the roles described in Section 2.1.2
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Figure 7: A portion of the causal model used in the case study. The associated CPT of
each node is omitted.

Figure 8: Example of Ontology Individuals obtained with the mapping process.

are played by both human and software agents. The symptom detection step
is carried out by human operators who use a web page to request the MAS
to perform a diagnosis. Then, an agent collects the required parameters to
perform tests from the inventory system, and a set of tests are executed
to retrieve information about the current status of the network. For this
task, shell scripts and SNMP commands are used to interact with networks
elements such as REN devices, DSLAMs and BRASs.

4. Evaluation

This system was evaluated during the one and a half year period from
November 2010 to March 2012. During this time, the fault diagnosis MAS
deployed in the scenario presented in Section 3 was operating and recording
data on diagnosis cases stored in a database in internal Telefónica Czech
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Republic servers. This database represents around 8600 different cases. Ev-
ery diagnosis case contains information about which tests were performed,
what information was available during the diagnosis process and what final
conclusions were reached at the end of the diagnostic process.

The evaluation methodology consisted of two steps. First, we analysed the
coverage of the dataset relative to the global problem to check whether these
data are sufficiently representative as explained below. Then, we defined
several Key Performance Indicators (KPIs) to evaluate the business benefit
of the system.

To analyse the complexity of the scenario, the entropy of possible diagno-
sis cases has been calculated and compared with the entropy of each possible
root cause. This entropy represents how a same fault root cause can be
manifested in the environment for different test results. Many different test
result sets can result from the same fault type. In this case, 17 different fault
types have been identified. The Bayesian network has been successfully used
to reason under this uncertainty. The normalised entropy of each possible
root cause was compared to determine which fault root cause (fault type) is
more complex. Fig. 9 shows that some root causes have entropy values close
to zero, because these fault types almost always present the same symptoms.
In contrast, other fault root causes exhibit high entropy because these fault
types can be manifested as different symptoms and test results.

To graphically represent all diagnoses stored in the database, a Sammon
mapping algorithm [14] has been used to represent the diagnoses in a two
dimensional graph (see Fig. 10). Using this algorithm, the relative euclidean
distance among all stored diagnoses is maintained. As shown in Fig. 10,
diagnoses with the same highest percentage hypothesis (i.e., the same most
probable cause of failure) are close to one another in the graph (Fig. 10). To
highlight these clusters, each one has been rounded and labelled properly.
Furthermore, to confirm that the Sammon mapping algorithm is a good way
to represent the complexity of each fault root cause, the area of each region
is directly related with its entropy (a high entropy is represented with a
large region). To interpret this graph, note that two diagnosis cases that
are graphically in the same place in Fig. 10 represent cases with the same
symptoms and the same final hypotheses, i.e., the euclidean distance between
these cases is zero.

The duration of diagnosis is presented in a histogram in Fig. 11. Note
that Y axis of Fig. 11 is on a logarithmic scale. The result of this histogram
can be understood as a Gaussian distribution with a mean value of 48.365
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Figure 9: Normalised entropy of various root causes of faults.

Figure 10: Fault root cause clusters.
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Figure 11: Histogram of diagnosis duration (in seconds).

seconds and a standard deviation of 7.462 seconds.
The main conclusion of this analysis is that the available database covers

the majority of the possible diagnosis cases that can occur in the scenario
under study, as the normalised entropy and the Sammon mapping graphs
show that there are many variations of these diagnosis cases in the dataset.
Thus, several KPIs have been defined (see Table 2) to evaluate the business
benefits of the system. In summary, the KPIs values are meaningful as the
available dataset is sufficiently representative relative to the global problem.

KPI1 is used to measure the usage of the system by human operators,
i.e., the acceptance rate of the diagnosis system. This KPI was initially
24.74%, and after the introduction of the MAS diagnosis system, it increased
to 92.00%. In other words, 92% of diagnosis cases use the solution presented
by the system.

KPI2 is used to measure the average incident solution time (i.e., the
diagnosis and repair time). Initially, this KPI was 9.51 hours, and the MAS,
it has decreased this value to 5.2 hours, representing 45.32% time savings.

KPI3 is used to measure the mean time before a work order is created
(i.e., the diagnosis time). This KPI was initially 0.56 hours, and the MAS
system has decreased this metric to 0.17 hours, representing 33.93% time
savings.

Table 2 collects the initial and final metrics. During this evaluation pe-
riod, a human technical expert has periodically improved the causal model,
i.e., the Bayesian network, based on historical data and on feedback from

19



KPIs 1st Month 18th Month
KPI1 24.74% 92.00%
KPI2 9.51 hours 5.2 hours
KPI3 0.56 hours 0.37 hours

Table 2: System KPIs

human operators using the fault diagnosis system.

5. Related Work

Both the size and complexity of telecommunications networks have in-
creased exponentially in recent decades. However, methods of managing
these networks and handling their faults have not kept pace. Thus, the diag-
nosis process is still an almost entirely manual process, and new alternatives
are being explored. The use of MAS for network diagnosis has been previ-
ously discussed by several researchers [15, 16, 17]. Mart́ın et al.[18] present
a framework based on intelligent agents for network management that used
rule-based reasoning. Telefónica has largely used rule-based systems, but
rule-based maintenance has been an issue. The use of Bayesian networks
has considerably reduced the required effort, and introduced capabilities of
learning and uncertainty management. Both Leitão et al. [19] and Mendoza
et al. [20] present MAS focused on the reconfigurability of the system for col-
laborative tasks using adaptable agents. In our evaluation, we have defined
agents with specialised roles, although in future research we will evaluate
whether the system is improved by allowing all the agents to play all the
roles. Luo et al. [21] proposed a fault diagnosis system using Dempster-
Shafer evidence theory [22, 23] with combination rules to resolve the possible
conflicted information from multi-sensors systems. In our work, we solve this
issue using Bayesian networks to handle the uncertainty of the incomplete or
unreliable data.

6. Conclusions and Future Work

This article has proposed a Multi-Agent System (MAS) for fault diagno-
sis, and has been validated in a real scenario in the business internet service
provided by Telefónica O2 Czech Republic.
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The performance of the system has been measured with several KPIs (see
Section 4) that demonstrate the acceptance of the new diagnosis system by
human operators and the reduction in time of the incident solution time.
Furthermore, the diagnosis results stored in a database during the one and
a half year period of operation of the diagnosis MAS have been analysed to
measure the entropy of all available diagnoses (see Fig. 9) and to graphically
represent the similarity among the diagnoses (see Fig. 10).

An important conclusion of this research work is that agent technology
is suitable for distributed diagnosis. Agent technology has proven to be very
useful for adapting the identified roles to different domains without requiring
extensive training.

The proposed MAS architecture is sufficiently flexible to enable progres-
sive deployment of agents to replace human-based tasks. This strategy has
also be a key in the success of the deployment of the system.

To ensure scalability, the MSBN approach offers the ability to use local
causal models (BNs) that can work together. This feature allows for the
Bayesian knowledge to be split into several agents that can dynamically re-
configure their causal reasoning models dynamically, depending on changes
to the environment. From a different point of view, the ability to split the
causal model facilitates the design, maintenance and reuse of Bayesian net-
works. Furthermore, the MSBN approach has been followed in the case study
for Telefónica O2 Czech Republic to allow for knowledge sharing (test results,
hypothesis sets, environmental data, etc.) to maintain coherence during the
Bayesian reasoning process among agents that diagnose different services.

Now that the architecture has been validated in the scenario presented
here, several possible paths can be explored. To enable rapid development
and validation cycle, we are working in a simulation environment based on
the MASON [13] environment to simulate advanced information retrieval
from the network. Since the MAS works in a simulated environment, we can
experiment with self-healing and self-configuration capabilities in ways that
are not possible ni real environments due to the possibility of misconfiguring
any device that is assigned to human operators. Furthermore, we plan to
develop an advanced knowledge management agent that will be able to deploy
agents on demand depending on the requirements of each diagnostic process.
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