
Task Automation Services: Automation for the masses

Miguel Coronado and Carlos A. Iglesias
Universidad Politécnica de Madrid, Spain

Keywords: task automation, mashup, internet service, connected device, Ifttt, automation.

Abstract. A simple model of mashup technology for combining services and connected devices is now
becoming popular. This model is frequently known as 'task automation' based on ECA (Event-Condition-
Action) rules. The most popular online services that follow this approach are Ifttt and Zapier. In addition,
this model is being followed by several mobile frameworks, such as on{x}, AutomateIt or Tasker, to
automate how the phone deals with the incoming Internet events and phone sensors. This article outlines
the features and components of task automation services, and proposes a generic architecture that
supports the current challenges. Finally, as task automation services are a growing trend, this article
surveys their characteristics, comparing existing platforms and discussing their evolution and future
tendencies.

Introduction
Task automation permeates our daily lives, from the weather forecast that appears when the alarm clock
rings, to the smartphone toast-notification that pops up every time we receive an incoming email. These
automations orchestrate gadgets, Internet services and apps in a way that makes our life easier [1]. We are
so accustomed to task automations, that sometimes it is hard to identify them, and even harder to realise
that some years ago we used to perform those tasks manually.

While these predefined task automations are spreading across the web, a new user-centred fully-
customizable approach is beating them all, the so-called task automation service (TAS). These services
are typically web platforms or smartphone apps that provide a visual programming environment, where
non-technical users can seamlessly create and manage their own personal automations [2]. The
automation in these services takes the form of Event-Condition-Action rules that execute an action upon a
certain triggering event i.e. “when triggering-event then do action”. In the former examples, the alarm
clock and the incoming email would be the triggers, whereas querying the weather forecast and displaying
a notification are the respective actions.

Some TASs such as Ifttt1 [3] or AutomateIt2 have become mainstream. In 2014, Ifttt reported more

than 14 million web tasks created by end users. AutomateIt, an Android application, has more than
500,000 users. There are three success factors that explain their growing adoption. The first key factor is
usability. TASs provide a simple-yet-powerful intuitive interface for programming task automations.
Hence, users experiment almost no learning curve when they start using them. Secondly, customisability.
TASs allow their users to program the automations they need. Although simple, automations are
powerful. The capability of creating their own rules awakes in them a sense of control and immediacy.
They get the automations they need when they need them. Thirdly, integration with existing Internet

1 http://iftt.com
2 http://automateitapp.com

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

services. Thus, users can automate tasks that access the Internet services they already use and are familiar
with.

Given the novelty of Tasks Automation Services, this work aims to shed light on them, presenting and

exemplifying their main characteristics. Motivated by their relevance and penetration in the market, we
survey some of the most prominent TASs and classify them according to different dimensions. The paper
also defines a reference TAS architecture that identifies the key elements of TASs as well as their
interactions. This architecture provides a common vocabulary and serves as a reference that can
accelerate the development, adoption and evolution of TASs.

Scenario and Challenges
To better understand what a TAS might look like, consider the following scenario. Sarah uses a TAS

every day, so she has defined a set of useful automations. Some automations notify her when something
relevant to her happens, such as “when I’m mentioned on Twitter, send me an email” notify her when
something relevant to her happens. Others, save her the bore of repeating a simple task, e.g. “when I’m
tagged in a Facebook picture, save it to my Dropbox” or “convert incoming invoice emails to PDF and
store them in my Evernote”. Furthermore, Sarah also uses the smartphone app provided by the TAS. Once
installed, the TAS can access several resources from her smartphone, so she can set up rules involving
incoming calls, camera, Bluetooth or GPS among others. Rules such as “when my smartphone’s battery
level is under 10%, text my parents” or “when I get to work, lower the volume of my ringtone” take
advantage of those capabilities. Moreover, the TASs feature Sarah enjoys most is the discovery of
compatible services around –using smartphone communication capabilities such as Bluetooth. This
feature can automatically integrate her SmartTV or her home automation lighting system with the TAS,
allowing her to set rules for home automation such as “when my alarm clock rings, switch on the
bedroom lights”.

This brief journey with Sarah illustrates how services and sensors can be connected by means of

automation rules defined with a single TAS. It aims to give a clear view of the functioning and main
features of TASs, and it also outlines some challenges, such as embracing smartphone resources or auto
discovery of services; we will address these challenges in the following sections. Now, we are ready to
discuss the elements this scenario introduced.

TAS Components: Channels and execution profiles
Our scenario combines events from Internet services, Sarah’s smartphone, and connected devices. These
services and devices are managed by channels. We define channels as abstractions for receiving events or
emitting actions to Internet services (i.e. web channels) and connected devices (i.e. device channels).
Channels should be registered in a channel directory service provided by the TAS. In this way, users can
activate available channels when programming automations.

Web channels
Many TASs rely on third party Internet services to supply a pack of useful, popular, user-tested channels.
Hence, users benefit from using TASs to manage the services they are already subscribed to (e.g.
Evernote, Gmail). As a result, TASs provide users with a new layer of control to manage their services
and they are not required to migrate.

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

By analysing the behaviour of web channels, we identify three characteristic dimensions. Consider a

user that wants to define a new automation rule. First of all, that user needs to grant the TAS access to the
Internet service, usually by providing access credentials –this is what privacy paradigm defines. In
addition, some channels require to be configured. This is the case of the weather forecast channel, in
which users need to provide a location for the forecast –this is defined within the configuration paradigm.
Finally, channels may behave differently triggering the rule or being the consequence that takes place, i.e.
they may generate events, provide actions or both –this is the input-output paradigm.

From the point of view of their privacy paradigm, channels may be public or private. In order to

activate a channel, and let the platform act on behalf of the users, they need to grant access to the service.
In our former example, Sarah previously had to allow the TAS to access her Dropbox account and email
inbox in order to manage her files and emails. When this authentication is required, the channel is private.
The privacy paradigm defines who will have access to events and actions provided by the channel.
Information regarding private channels are for the user’s eyes only, and it is tailored to the user. On the
contrary, channels that do not ask for authentication are public channels, and every user gets the same
information when using them. This is the case of news feeds or weather forecast channels. The privacy
paradigm also covers private group channels, where every group member receives all the events the
channel generates. These channels are common in scenarios like home automation, where family
members are likely to share home channels.

The configuration paradigm defines the setup needed to activate a channel –apart from authentication.

Public channels usually require configuration for the sake of better user experience and also as a matter of
efficiency. For instance, in our example to activate a weather channel Sarah provided the location where
she lives. Hence, she will receive weather events related to that location. In general, private channels
don’t require configuration since they are already tailored to the user.

Finally, when activated, channels may generate events, provide actions or both. This is what the input-

output (IO) paradigm defines. Events are changes in the state of the service, e.g. a new email on Sarah’s
inbox. On the other hand, channels may also offer action capabilities, e.g. switching on the bedroom light.
IO paradigm also covers pipe channels: those that process the input to generate a different output, that can
be wired to another channel, For instance, the PDF converter channel that saves the content of Sarah’s
email into a PDF file is then connected to the Evernote channel to store the file.

From an integration perspective, most of the efforts in offering a new web channel are related to

implementing the protocol to communicate with the Internet service behind the channel. This is TAS
administrators’ duty, which depends on the availability of an API for the Internet service. The
authorization process involved in accessing the Internet service API determines the privacy paradigm.
Besides communication with the service, the TAS administrators define what events and actions will be
offered as part of the IO paradigm as well as the configuration paradigm.

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

Device channels
In comparison to web channels, device channels manage data from the connected devices they manage. In
Sarah’s scenario, her home automation lighting system and the Smart TV provide device channels to
control all the switches of her home and her Smart TV, respectively.

From a behavioural approach, device channels respond to the same three dimensions analysed for web
channels. In addition, device channels implement two additional dimensions, the communication
paradigm and the discovery paradigm. The communication paradigm defines how the communication
between the devices and the channel will be carried out: wired, wireless, through the Internet, etc. It also
defines on what conditions the channel is available. As opposed to web channels, which may be accessed
from all around the world through Internet connection, access to device channels may depend on local
aspects. These aspects are part of the communication paradigm. For instance, when using wireless
communication, availability is subject to the distance between devices, i.e. being under coverage area or
not. Finally, device channels may announce themselves so that they are available for automations as in
Sarah’s scenario. This is what the discovery paradigm defines. It provides standard operations and APIs
to enable self-identification of devices, capabilities discovery, and access to device data using pre-defined
message structures. As a result, the system provides a "plug and play" capability.

From the point of view of implementation, each TAS administrator decides which communication

protocols will be supported in the platform. Each protocol has its own restrictions about range, power
consumption, number of connected devices, etc.. They also provide mechanisms such as security and
device discovery. To communicate two devices, they need to support the same protocol. However, this
should not be an issue, as a device may implement several protocols. In fact, many devices are compatible
with the most widespread protocols, e.g. WiFi, ZigBee, Z-Wave, even Bluetooth [4].

Rule Execution profiles
This section describes automation rules, which provide the logic to connect channels. As previously
stated, TASs automations address simple Event-Condition-Action rules (ECA) [5]. The rule’s event and
action may come from the same or different channels. However, more complex rules could be devised:
multi-action rules can execute several actions in parallel when the rule is executed; multi-event rules are
triggered by a combination of events; and chain rules execute a list of actions in sequential order, so the
output of an action may be used to trigger the next rule. Complex rules require the TAS to support
additional features. For instance, multi-event rules require Complex Event Processing (CEP) support to
evaluate complex patterns of events, and chain rules make use of pipe channels, so they must be
supported by the TAS.

Group rules are a particular kind of rules that involve several users and are susceptible to collisions
with other rules. For instance, Sarah's Smart lighting system is a shared resource managed by a group
channel. If Sarah defines a rule to switch off the corridor lights while she is asleep, and her flatmate had a
rule that turns them on when the alarm clock rings, both rules collide. It is easy to get to a point where the
TAS cannot determine if the lights should be on or off. As a rule of thumb, rules that include group
channels are group rules.

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

The rule execution profile defines where the execution of the rule is taking place. Rules may be
executed according to different execution profiles to increase performance and enable offline rule
execution. In Sarah’s scenario, she uses a TAS hosted in the web, but we can imagine other scenarios
where a smartphone or a set-top-box performs the automation. Rule execution may be accomplished
according to three different execution profiles: entirely on the web, on the mobile client, and mixed
execution. A web driven execution profile centralises the execution on the server, allowing the existence
of lightweight clients at the cost of requiring internet connection. A mobile driven execution profile is
orchestrated on the client (e.g. smartphone, set-top-box), allowing offline rule execution when only local
device channels are involved. A mixed execution profile takes the advantages of both profiles. It may shift
the execution to the client or to the web, which also reduces communication payload between client and
server.

A Reference Task Automation Service Architecture
Once we have described the main components of TASs, we define Task Automation Service as a service
that lets users create automation rules that connect channels using a visual editor. A reference TAS
architecture must incorporate the features and components previously described (channels, rules,
execution profiles) and also provide support for some of the challenges presented in Sarah's scenario. The
architecture requirements are:

● To provide a visual rule editor for creating rules;
● to include both web and device channels;
● to feature channel discovery, providing adapters for connected devices so that they are reachable

directly by the platform;
● to enable multi-event, multi-action and chain rules;
● to manage group channels and group rules;
● to detect collisions with rules that involve group channels;
● and to support mixed execution profile.

The architecture must provide a visual automation rule editor that users could use to create their

automations, but also to activate channels according to the privacy paradigm. To provide access to web
and device channels, the architecture must provide the logic needed to connect with Internet services and
connected devices. Moreover, the TAS must be notified without delay when an event is generated by the
channels, and it must be able to send actions. In addition, it must be able to discover channels according
to the discovery paradigm of device channels.

Advanced rule features such as multi-action rules and chained rules do not imply additional

requirements, since they can be translated in a set of simpler rules. Multi-event rules involve temporal
reasoning of events, and so the TAS requires CEP facilities [6]. Nevertheless, a trade-off among usability
for end users and expressivity should be reached for multi-event rules. Group rules require group channels
support and rule collision handling. To handle collisions, the architecture must be able to first detect
them, and then act when the collision occurs and prevent any unwanted effects.

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

Supporting mixed execution profiles requires some additional logic to coordinate server and device
automation rule engines while they orchestrate rule execution, and to guarantee the information about the
user and the rules are synchronised on the device and on the server.

Once the requirements to support these novel features are clear, we introduce a reference architecture

shown in Fig. 1 which fulfils them.

Fig 1. Reference Task Automation Service Architecture general diagram3.

Rules may be created using an editor on a web client or a mobile client. They are stored in a central

rule repository on the TAS server. However, since those rules that can be executed on the client according
to the mobile driven execution profile, they are synchronised with a local rule repository for offline
access. Mobile and web clients also allow users to activate channels. Once a channel is activated, it is
saved in the channel directory together with the authorisation credentials. These credentials are used by
the adapters to access the channels.

Adapters provide a uniform access to all kinds of devices. They are responsible for notifying the TAS

of incoming events, commanding the execution of actions and taking charge of channel authentication.
Adapters can be implemented following a publish-subscribe [7] or polling strategy to get notified of
device events depending on their nature. The implementation of adapters can be done by the TAS

3 Elements in dashed lines are optional in some implementations.

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

administrator or by third parties if the TAS provides an adapter SDK. Adapters to sensor channels provide
two different paths: access through a web-protocol, or direct access using access protocols such as
ZigBee, Z-wave, Bluetooth or WiFi. They usually expose a set of sensors, i.e. a sensor network, but
single device channels are also feasible.

To support a mixed execution profile modules involved in rule execution and channel access must

work in coordination. This is the case of the automation rule engine responsible for executing rules and
managing rule lifecycles within the execution query. Rule execution consists in fetching the incoming
triggering event, extracting the arguments and using those parameters to request the action execution. The
Execution Planner guides the orchestration from a higher level according to the active rule execution
profile. It manages the state of the channels (within the channel directory), tracking when channels are
down and new channels are discovered. For instance, when Sarah arrives at home the Smart TV channel
is discovered and added to the channel directory. In turn, when she leaves home, the channel will be down
because it is out of range.

Finally, the collision handler analyses the rules in the repository, searching for possible collisions

among them. Some patterns of collision are easy to detect e.g. the simplest collision consists of two rules
with the same triggering event that try to execute two opposite actions. It takes into consideration which
users are currently connected to each channel (as registered in the channel directory), since rules of two
users can only collide if they both are connected to the same channel. Recall the example where Sarah
wants to have the corridor lights off while she is asleep, and her flatmate set a rule to switch them on
when the alarm clock rings. If Sarah's flatmate is not at home, there is no possibility of collision because
the channel is not active for Sarah’s flatmate. The execution planner consults the collision handler before
executing a rule, and in case that rules collides with other rules, its execution is skipped.

Analysis of current TAS platforms
To determine which of the features discussed are supported by the state of the art of task automation,

we have analyzed web platforms for general audience (Ifttt), web platforms for business and enterprises
(Zapier4, Cloudwork5, elastic.io6, itduzzit7), a web platform for cloud storage synchronization
(wappwolf8), mobile apps (Tasker, Atooma, AutomateIt9, on{x}10), and smart-home systems (wigwag11,
webee12). A summary of the results is presented in Fig. 2. and the complete report is available online13.

4 https://zapier.com
5 https://cloudwork.com
6 http://elastic.io
7 https://itduzzit.com
8 http://wappwolf.com
9 Tasker, Atooma and AutomateIt are available in Google Play
10 http://onx.ms
11 http://wigwag.com
12 http://webeelife.com/
13 http://bit.ly/TASStudy

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

As expected, web channel support is much larger than device channel support. Although the studied
apps manage the resources in the smartphone, only home automation related TASs provide device
channels that connect directly to devices. Pipe channels are only fully-supported by elastic.io. It is a
powerful concept, and it integrates perfectly in their interface; however, it is barely used. It is worth
mentioning that home automation TASs feature channel discovery and group channels. Unfortunately,
their support is still very limited.

Regarding different types of rules, few TASs support multi-event rules giving its complexity in

comparison to simpler rules. Multi-action rules have wider support, but still many TAS managers do not
include them in their platform in order to keep rule editors simple. In the end, a user may achieve the
same functionality by implementing a rule for each action in the multi-action rule. Elastic.io, that supports
pipe channels, features chain rules, and wigwag and webee, that support group channels, feature group
rules –however, none of them handles collisions in group rules. Finally, some of the TASs provide their
users with a pack of predefined rules that proved to be useful for previous users, i.e. this is a shortcut for
creating those automations.

At the time this study was made, none of these platforms supported a mixed execution profile. Thus,

we split them into those with a web-driven execution profile (Ifttt, Zapier, Cloudwork, elastic.io, itduzzit
and wappwolf) and those with a device-driven execution profile (Tasker, Atooma, AutomateIt, on{x},
wigwag and webee). By their nature, platforms with a web driven execution profile have more limited
access to device channels than those executed on the smartphone. The latter has access to all the
smartphone resources. For that reason, Ifttt has already released a smartphone app that grants Ifttt server
access to smartphone resources. In turn, Zapier includes Tasker as a channel that effectively grants access
to those channels too.

Several TASs offer advanced features for users with programming skills to set up automations using a

programming language. This is the case of On{x} (javascript), AutomateIt (bash), elastic.io (javascript),
Itduzzit (proprietary), wigwag (Arduino/Raspberry/javascript) and webee (boss). Moreover, Zapier,
elastic.io, Tasker and webee provide an API for developing channels (some call them plugins).

 Web Smartphone Home

If
tt

t

Z
ap

ie
r

C
lo

ud
w

or
k

E
la

st
ic

.io

It
D

uz
zi

t

W
ap

pw
ol

f

O
n{

x}

Ta
sk

er

A
to

om
a

A
ut

om
at

eI
t

W
ig

W
ag

W
eb

ee

C
ha

nn
el

s

Web Channel support few few

Device Channel support few

Smartphone resources as
channels

Public channels support

Pipe channel support few few

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

Group channel support few

Device Channel discovery few

R
ul

es

Multi-event rules

Multi-action rules

Chain rules few few

Group rules few

Collision handling

Predefined common rules

Rule Execution Profile WD WD WD WD WD WD DD DD DD DD DD DD

Visual rule editor

TA
S Provides API

Programming language few

= supported; = not supported; few= few support

WD=web-driven execution profile; DD=device-driven execution profile; MD=Mixed execution profile

Fig 2. Summary of the comparison of Task Automation Services

Discussion and Outlook

Task Automation Services have gained popularity. While existing TASs increase their number of users,
new services appear and compete for them. We identified three main trends in the market. First, web-
based TASs are developing smartphone apps in order to integrate smartphone resources as channels of
their catalogue. Second, existing Web TASs are starting to offer Rest APIs in order to delegate channel
integration to Internet service developers. Thus, Internet service developers interested in integrating their
services as channels will have a way to do it themselves. Finally, home automation systems are acquiring
this vision, incorporating custom rule automations in their platforms, moving from ‘remote control’ to
‘automate control’.

Nevertheless, this is a novel domain with many challenges to accomplish. First of all, a certain degree
of standardization is required. Since each TAS wages war on its own, Internet service developers may
find their services available as channels in some TASs, but not in all of them. Moreover, when users
define rules within the scope of a TAS, these rules cannot be exported to others, nor shared. Secondly,
TASs should evolve into a mixed execution profile that is able to interact with web and device channels.
Thirdly, TASs that include device channels to manage shared devices, such as a Smart TV or a smart
lighting system should allow group rules and consider the mechanism for detecting and handling
collisions. This is really challenging and it will involve usage of complex algorithms. And finally, TASs
should include mechanisms for discovering device channels so their configuration is almost transparent to
the end user.

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

Acknowledgements: This work was supported by funds from the Spanish Ministry of Economy and
Competitiveness (project CALISTA, TEC2012-32457), and by the Autonomous Region of Madrid
through programme MOSI-AGIL-CM (grant P2013/ICE-3019, co-funded by EU Structural Funds FSE
and FEDER).

References

1. K. Parks and D. Watkins, “How to Automate Your Way to Freedom”, 2012.
2. A. R. Meisel, “Optimize, Automate, and Outsource Everything In Your Life: How to Make

Email, IFTTT, and Virtual Assistants Your Ultimate Productivity Weapons”, CreateSpace
Independent Publishing Platform. 2014.

3. A. Martinez et al., “The Ultimate IFTTT Guide: Use The Web’s Most Powerful Tool Like A
Pro”, 2013.

4. H. Labiod et al., “Wi-Fi Bluetooth, Zigbee and WiMax", Springer Science and Business Media,
2007.

5. W. Beer et al., “Modeling Context-Aware Behavior by Interpreted ECA Rules”, Euro-Par 2003
Parallel Processing, Springer Berlin Heidelberg, 2003, pp 1064-1073.

6. M. Eckert et al., “A CEP Babelfish: Languages for Complex Event Processing and Querying
Surveyed”, Reasoning in Event-Based Distributed Systems, Springer Berlin Heidelberg, 2011, pp
47-70.

7. P. Th. Eugster et al., “The many faces of publish/subscribe”, ACM Comput. Surv. 35, 2003, pp
114-131.

Miguel Coronado is a PhD student in the School of Telecommunications Engineering at the Technical
University of Madrid. His research interests include semantic web, linked data, personal assistants, and
Internet of Things. Miguel has an MSc in telecommunications engineering from the Technical University
of Madrid.

email: miguelcb@dit.upm.es

Carlos A. Iglesias is an associate professor and head of the Intelligent Systems Group in the
Telecommunications Engineering School at the Universidad Politécnica de Madrid, Spain. His research
interests include web technologies, agent systems, social intelligent systems, IoT and Big Linked Data
analytics. Carlos A. has a PhD in telematics from the Technical University of Madrid.

email: cif@dit.upm.es

Digital Object Indentifier 10.1109/MIC.2015.73 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

