
PROYECTO FIN DE CARRERA

DESIGN AND IMPLEMENTATION
OF A PREDICTIVE MODULE FOR

THE INTRUSION DETECTION
SYSTEM SNORT BASED ON

SUPERVISED MACHINE
LEARNING ALGORITHMS

RUBÉN JIMÉNEZ CALVO

2018

PROYECTO FIN DE CARRERA

Título: Diseño e implementación de un módulo predictivo para el
sistema de detección de intrusos snort basado en
algoritmos de aprendizaje automático supervisado

Título (inglés): Design and implementation of a predictive module for the
intrusion detection system snort based on supervised
machine learning algorithms

Autor: D. Rubén Jiménez Calvo

Tutor: D. Carlos A. Iglesias Fernández

Departamento: Departamento de Ingeniería de Sistemas Telemáticos

TRIBUNAL:

Presidente:

Vocal:

Secretario:

Suplente:

Fecha de lectura:

Calificación:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR

DE INGENIEROS DE TELECOMUNICACIÓN

PROYECTO FIN DE CARRERA

DESIGN AND IMPLEMENTATION
OF A PREDICTIVE MODULE FOR

THE INTRUSION DETECTION
SYSTEM SNORT BASED ON

SUPERVISED MACHINE
LEARNING ALGORITHMS

RUBÉN JIMÉNEZ CALVO

2018

”It is during our darkest

moments that we must

focus to see the light”.

Aristotle Onassis

Abstract

Security on computer networks has become a critical topic for many companies and

organizations due the security concerns and costs associated that can have a severe impact.

Due to increasing traffic using encryption techniques which on one hand increase security

on the other hand it helps attackers to hide their illegitimate activities making harder for

defenders to detect and protect its infrastructure. This final project defines a machine

learning based approach that can be included in Snort by the addition of rules generated by

machine learning algorithms. This flow can be continued over the time with supervision to

update detection capabilities of the system. Algorithms C5.0, J48, random forest, generalized

boosting method and JRip will be evaluated against the NSL-KDD dataset for a binary

scenario (normal or anomaly) and for a multiclass scenario (Dos, probe, R2L, U2R and

normal).

Keyword: Machine learning, Snort, NSL-KDD, network intrusion detection system, security

IX

Resumen

La seguridad en las redes de computadoras se ha convertido en un tema cŕıtico para muchas

compañ́ıas y organizaciones debido a las preocupaciones y los costos asociados que pueden

tener un impacto severo en ellas. Debido al aumento del tráfico encriptado que, por un

lado, aumentan la seguridad, por otro lado, ayuda a los atacantes a ocultar sus actividades

ileǵıtimas, lo que dificulta que los defensores puedan detectar y proteger su infraestructura.

Este proyecto final define un enfoque basado en el aprendizaje automático que se puede

incluir en Snort mediante la adición de reglas generadas por algoritmos de aprendizaje

automático. Este flujo se puede continuar durante el tiempo con supervisión para actualizar

las capacidades de detección del sistema. Los algoritmos C5.0, J48, random forest, generalized

boosting method y JRip se evaluarán con el conjunto de datos NSL-KDD en un escenario

binario (normal o anómalo) y en un escenario multiclase (Dos, probe, R2L, U2R y normal).

Palabras clave: Aprendizaje automático, Snort, NSL-KDD, sistema de detección de

intrusos en red, seguridad

XI

Agradecimientos

Agradecer a todas las personas que me han acompañado durante este tiempo.

Agradecer a Carlos Angel Iglesias por la inmensa paciencia durante este tiempo.

También especial mención a mis amigos, lolo, diego y marta que tanto apoyo me han dado

durante todo este tiempo aunque fuera en la distancia.

Ha sido un largo viaje, lleno de recuerdos, de personas, de paises, y como todo, ha de

terminar en algún momento.

Por último recordar a todos los que ya no pueden estar...

XIII

Contents

Abstract IX

Resumen XI

Contents XV

List of Figures XXI

List of Tables XXIII

Acronyms XXV

1 INTRODUCTION 1

1.1 Context . 3

1.2 Problem statement . 4

1.3 Motivation and approach . 5

1.4 Methodology . 6

1.5 Project Outline . 7

2 BACKGROUND 9

2.1 Intrusion Detection Systems . 11

2.1.1 Signature Based Detection . 11

2.1.2 Anomaly Based Detection . 11

2.2 Machine Learning . 12

2.2.1 Supervised Learning . 12

XV

2.2.2 Unsupervised Learning . 13

2.3 Available NIDS . 13

2.3.1 BRO IDS . 13

2.3.2 SNORT . 14

2.3.3 Suricata . 15

2.4 Datasets . 15

2.4.1 UNB ISCX IDS 2012 . 15

2.4.2 KDD cup99 . 17

2.4.3 NSL-KDD . 18

2.5 Machine leaning tools . 19

2.5.1 Python . 19

2.5.2 R . 20

3 PROJECT APPROACH 21

3.1 Overview . 23

3.2 Objectives . 24

3.3 NSL KDD Dataset . 24

3.3.1 Dataset Overview . 25

3.3.2 Data files . 25

3.3.3 Attack distributions . 26

3.3.4 Feature/fields . 29

3.4 Snort . 30

3.4.1 Snort components . 30

3.4.2 Snort rules . 31

3.4.3 KDD features in Snort . 33

3.5 R Caret package . 33

3.5.1 Models available . 34

3.5.2 Optimizing tuning parameters . 34

3.5.3 Re-sampling . 34

3.5.4 Performance measurements . 35

3.5.5 Best tuned parameters . 37

3.5.6 Runtime performance . 37

3.5.7 Model Evaluation Metrics in R . 38

4 EXPERIMENT DESIGN 41

4.1 Overview . 43

4.2 Environment . 44

4.3 Model selection . 44

4.3.1 J48 . 45

4.3.2 C50 . 45

4.3.3 JRip . 46

4.3.4 GBM . 47

4.3.5 Random Forest . 48

4.4 Data and pre-processing . 49

4.5 Resampling and model validation . 50

4.6 Reproducibility . 51

4.7 Parallel processing . 51

4.8 Rules generation . 52

4.9 Output files . 53

4.10 Results evaluation metrics . 54

5 RESULTS ANALYSIS: BINARY CLASSIFICATION 55

5.1 Training phase results . 57

5.1.1 C50 . 57

5.1.2 J48 . 57

5.1.3 JRip . 59

5.1.4 GBM . 59

5.1.5 Random Forest . 61

5.1.6 Training time consumption . 62

5.1.7 Summary . 62

5.2 Test Dataset results . 63

5.2.1 C50 . 63

5.2.2 J48 . 64

5.2.3 JRip . 64

5.2.4 GBM . 65

5.2.5 Random Forest . 65

5.2.6 Performance on novel attacks . 66

5.2.7 Overall . 67

6 RESULTS ANALYSIS: MULTICLASS CLASSIFICATION 69

6.1 Training phase results . 71

6.1.1 C50 . 71

6.1.2 J48 . 72

6.1.3 JRip . 72

6.1.4 GBM . 74

6.1.5 Random Forest . 75

6.1.6 Training time consumption . 76

6.1.7 Overall . 76

6.2 Test Dataset results . 77

6.2.1 C50 . 77

6.2.2 J48 . 78

6.2.3 JRip . 79

6.2.4 GBM . 80

6.2.5 Random Forest . 81

6.2.6 Performance on novel attacks . 82

6.2.7 Summary . 82

7 CONCLUSION AND FUTURE WORKS 85

7.1 Conclusion . 87

7.2 Future works . 88

Bibliography 89

List of Figures

1.1 Cumulative attacks by Cisco report 2017 [1] 3

1.2 Attack cost by Cisco report 2018 [1] . 4

1.3 Volume of malicius encrypted network communication by Cisco report 2018 [1] 5

1.4 Machine learning taxonomy by Cisco report 2018 [1] 6

3.1 NIDS machine learning flow . 23

3.2 Snort component flow . 30

3.3 Caret parameter tuning flow . 33

3.4 Confusion matrix example . 38

3.5 Metrics calculated from the confusion matrix Caret 38

4.1 Experiment flow . 43

5.1 C50 class accuracy evaluation . 57

5.2 J48 class accuracy evaluation all results . 58

5.3 J48 class accuracy evaluation detail . 58

5.4 JRip class accuracy evaluation . 59

5.5 GBM class accuracy evaluation all results 60

5.6 GBM class accuracy low performance zoom 60

5.7 GBM class accuracy evaluation . 61

5.8 Random Forest class accuracy evaluation . 61

5.9 Algorithm accuracy evaluation cross validation 62

5.10 Best tuned results accuracy and kappa . 63

XXI

5.11 Test Dataset Specificity Results . 67

5.12 Test Dataset Sensitivity Results . 67

5.13 Test Dataset Accuracy Results . 68

5.14 Novel attacks detection performance class 68

6.1 C50 multi class accuracy all results . 71

6.2 C50 multi class accuracy evaluation detail . 71

6.3 J48 multi class accuracy evaluation all results 72

6.4 J48 multi class accuracy zoom . 73

6.5 JRip multi class accuracy evaluation . 73

6.6 GBM multi class training accuracy all results 74

6.7 GBM multi class training accuracy zoomed 75

6.8 Random Forest parameter tuning multiclass 75

6.9 Algorithm accuracy evaluation cross validation 76

6.10 Algorithm accuracy on best parameter set 76

6.11 Sensitivity by class Multi class scenario . 83

6.12 Specificity by class Multi class scenario . 83

6.13 Overall accuracy multi class scenario . 84

6.14 Percentage of novel attacks with class correctly detected 84

List of Tables

3.1 Normal/Anomaly samples on NSL KDD dataset files 26

3.2 Attack profile samples on NSL KDD dataset files 26

3.3 Distribution of attacks in train dataset . 27

3.4 Distribution of attacks in test dataset . 28

3.5 NSL KDD Basic features of individual TCP connections 29

3.6 NSL KDD: Content features within a connection suggested by domain knowledge 29

3.7 NSL KDD features:Traffic features computed using a two-second time window 30

4.1 CARET models selected for evaluation . 44

4.2 Additional fields added to dataset, novel attacks 50

5.1 Training time binary classification . 62

5.2 Confusion matrix C50 binary classification 63

5.3 C50 binary classification main metrics . 63

5.4 Confusion matrix J48 binary classification 64

5.5 J48 binary classification main metrics . 64

5.6 Confusion matrix JRip binary classification 64

5.7 JRip binary classification main metrics . 64

5.8 Confusion matrix GBM binary classification 65

5.9 GBM binary classification main metrics . 65

5.10 Confusion matrix Random Forest binary classification 65

5.11 RF binary classification main metrics . 65

XXIII

5.12 Novel Attacks detected in Test Dataset, class scenario 66

6.1 Training time binary classification . 76

6.2 C50 multi class confusion matrix . 77

6.3 C50 multi class overall statistics . 77

6.4 C50 overall statistics per class test dataset 77

6.5 J48 multi class confusion matrix . 78

6.6 J48 multi class overall statistics . 78

6.7 J48 Multi class metrics on test dataset . 78

6.8 JRip multi class confusion matrix . 79

6.9 JRip multi class overall statistics . 79

6.10 JRip Multi class metrics on test dataset . 79

6.11 GBM multi class confusion matrix . 80

6.12 GBM multi class overall statistics . 80

6.13 GBM Multi class metrics on test dataset . 80

6.14 RF multi class confusion matrix . 81

6.15 RF multi class overall statistics . 81

6.16 RF Multi class metrics on test dataset . 81

6.17 Detected novel attacks multi class scenario 82

Acronyms

RF: Random Forest

IDS: intrusion Detection System

NIDS: Network Intrusion Detection System

HIDS: Host Based Intrusion Detection System

OISF: Open Information Security Foundation

UNB: University of New Brunswick

RMSE: Root Mean Squared Error

GBM: Generalized Boosting Method

KDD: Knowledge Discovery in Databases

XXV

CHAPTER1
INTRODUCTION

In this chapter we will introduce the objectives of this Final Project as well as the

motivation behind it. It will also describe the structure of this document.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

Internet services have encouraged people to communicate and exchange information on a daily

basis. This provides convenience and benefits such as shortening the effective geographical

distances and efficiently sharing information. On the other hand, with the information

exchange over the computing environment, a possible problem is that communications over

the network may be compromised by hackers.

With the rapid increase of our everyday life dependency to Internet-based services network

security has become a critical issue. According to the Cisco 2017 Annual Security Report

[1] the trend in the number of alerts continues upwards during the recent years.

Figure 1.1: Cumulative attacks by Cisco report 2017 [1]

Computer attacks, e.g. the use of specialized methods to overcome the security policy of

an organization, are becoming more and more common. Fortunately, policies and tools are

being developed to provide increasingly efficient defence mechanisms. For instance IDSs are

installed to identify such attacks and to react by usually generating an alert or blocking

suspicious activity. The goal of intrusion detection is to identify malicious activity in a

stream of monitored data.

Cisco report [1] also states that despite advances by the security industry, criminals continue

to evolve their approaches to break through security defences, so keeping up to date all

security systems is nowadays a big challenge for many organizations.

3

CHAPTER 1. INTRODUCTION

The majority of current intrusion detection systems (IDS) is based on signatures, specific

pre-defined patterns matching known functionality of attacks. The main limitation of the

signature-based approach is its inability to identify novel attacks.

Machine learning offers a major opportunity to improve quality and to facilitate up to date

security system by using detected attacks. If an intrusion is detected quickly enough, an

intruder can be identified quickly and ejected from the system before any damage is done or

any data are compromised.

1.2 Problem statement

Networks attacks have raised concerns about security of customer personal data and impact

on activities in companies from all different backgrounds. These concerns have a financial cost

and issues occurring due to attacks can take months or years to resolve. All these breaches

inside company infrastructure can have a real economic damage to the organizations.

As it has been highlighted in studies from Cisco 2017 Annual Security Report [1] more than

half (53 percent) of all attacks resulted in financial damages of more than US $500.000,

including, but not limited to, lost revenue, customers, opportunities, and out-of-pocket costs.

This is illustrated in Figure 1.2.

Figure 1.2: Attack cost by Cisco report 2018 [1]

4

1.3. MOTIVATION AND APPROACH

1.3 Motivation and approach

In order to preserve user privacy encryption techniques over the web has been taken as a

standard approach for a secure way of transferring sensitive information such passwords,

credit card details. While this is positive and harden attackers to obtain illegitimate

information it is also used by them to hide their illegal activities from Telecom operators

and organizations. This increase in encrypted traffic by attacker is showed in Figure 1.3:

Figure 1.3: Volume of malicius encrypted network communication by Cisco report 2018 [1]

The increasing volume of encrypted traffic, whether is legitimate or malicious, create more

challenges for defenders to identify and monitors possible threats to their organizations. To

overcome this situation organizations would need to adapt and include more automated

and advanced techniques like machine learning and artificial intelligence to enhance their

prevention, monitoring, detection and correction capabilities.

These capabilities will enhance network security defences and over the long term they will

”learn” how to automatically detect unusual patterns in web traffic that may indicate

malicious activity both known and novel threats. This would reduce time to operate from

attackers and reduce cost and impact associated with attacks. Machine learning and artificial

intelligence taxonomy is showed in 1.4 by Cisco 2018 Annual Security Report.

Real value of those techniques, specially when considering encrypted traffic, is the ability to

detect ”known-unknown” threats (previously unseen variations of known threats, malware

subfamilies, or related new threats) and ”unknown-unknown” (net-new malware) threats.

This project would evaluate this capabilities attempting to prove that novels attacks can be

detected by learning from previous known attacks through machine learning.

5

CHAPTER 1. INTRODUCTION

Figure 1.4: Machine learning taxonomy by Cisco report 2018 [1]

1.4 Methodology

Development of this final thesis has followed several phases which are explained in the

following points:

Research. This phase has covered compilation of information in areas such as machine

learning and network intrusion detection systems. Different tools and datasets were evaluated

in detail to choose the one that fits more for purpose.

Development. This phase comprises dataset preparation and script development used for

executing the experiments. For this phase a subset of full dataset was used in order to

improve efficiency of the whole programming cycle and hence reduce time.

Performance evaluation. Once everything is in place specified experiments were executed

to the whole dataset and results collected.

Results analysis and conclusion. With all results available from different algorithms,

they were studied and processed to obtain the final conclusions of this project.

6

1.5. PROJECT OUTLINE

Documenting project work. Task of documenting all information produced during all

the previous stages was done in parallel to the previous steps. However, a final review and

completion of produced information was required as final phase. Final document has been

produced using LATEX.

1.5 Project Outline

This final project is divided into 7 chapters:

� Chapter 1 called Introduction: It gives an understanding of the problem statements

and why a machine learning approach can provide additional value to standard NIDS.

� Chapter 2 called Background: It provides understanding of current NIDS platforms,

machine learning approaches and available datasets.

� Chapter 3 called Project approach, it provides general description of the system flow

including all elements involved such NSL-KDD dataset, Snort and R Caret package.

� Chapter 4 called Experiment Design outlines different algorithms used and how relevant

functionality was configured.

� Chapter 5 called Result Analysis: Binary. It shows obtained results for all experiments

performed on the binary scenario, i.e normal/anomaly.

� Chapter 6 called Result Analysis: Multiclass. It shows obtained results for all

experiments performed in multiclass scenario that consist of several classes: normal,

Dos, Probe, R2L and U2R.

� Chapter 7 called Conclusion: A final summary of the project where main conclusions

obtained from the experimental results are showed.

7

CHAPTER 1. INTRODUCTION

8

CHAPTER2
BACKGROUND

In this chapter an overview of intrusion detection systems, machine learning techniques,

available tools and datasets is provided.

9

CHAPTER 2. BACKGROUND

10

2.1. INTRUSION DETECTION SYSTEMS

2.1 Intrusion Detection Systems

An intrusion detection system (IDS) is a device or software application that monitors a

network or systems for malicious activity or policy violations.

The most common classifications are network intrusion detection systems (NIDS) and host-

based intrusion detection systems (HIDS). A system that monitors important operating

system files is an example of a HIDS, while a system that analyses incoming network traffic is

an example of a NIDS. A Host based IDS resides on the system being monitored. It consists

of an agent on a host which identifies intrusions by analyzing system calls, application logs,

file system modifications and other host activities and state. A Network Based Intrusion

Detection System monitors and analyses the traffic on its network segment to detect intrusion

attempts.

It is also possible to classify IDS by detection approach: the most well-known variants are

signature-based detection (recognizing bad patterns, such as malware) and anomaly-based

detection (detecting deviations from a model of ”good” traffic, which often relies on machine

learning). This will be covered in more detail in following sections with information from [2]

[3].

2.1.1 Signature Based Detection

Commonly called signature detection, this method uses specifically known patterns of

unauthorized behaviour to predict and detect subsequent similar attempts. These specific

patterns are called signatures. The occurrence of a signature might not signify an actual

attempted unauthorized access (for example, it can be an honest mistake), but it is a

good idea to take each alert seriously. Depending on the robustness and seriousness of a

signature that is triggered, some alarm, response, or notification should be sent to the proper

authorities.

The main advantage of misuse detection system is their ability to detect known attacks and

the relatively low false alarm rate when rules are correctly defined. On the other hand only

known attacks can be detected.

2.1.2 Anomaly Based Detection

These techniques are designed to uncover abnormal patterns of behaviour, the IDS establishes

a baseline of normal usage patterns, and anything that widely deviates from it gets flagged

as a possible intrusion.

11

CHAPTER 2. BACKGROUND

Anomaly-based intrusion detection systems were primarily introduced to detect unknown

attacks. The basic approach is to use machine learning to create a model of trustworthy

activity, and then compare new behaviour against this model. Although this approach

enables the detection of previously unknown attacks, it may suffer from false positives:

previously unknown legitimate activity may also be classified as malicious.

As this detection technique allow detections of new attacks it will be the base for this project

as one of the main goals is that through machine learning new anomalies can be detected

through training with previous known attacks.

2.2 Machine Learning

Machine learning is a sub-field of artificial intelligence (AI). The goal of machine learning

generally is to understand the structure of data and fit that data into models that can be

understood and utilized by people.

Although machine learning is a field within computer science, it differs from traditional

computational approaches. In traditional computing, algorithms are sets of explicitly

programmed instructions used by computers to calculate or problem solve. Machine learning

algorithms instead allow for computers to train on data inputs and use statistical analysis

in order to output values that fall within a specific range. Because of this, machine learning

facilitates computers in building models from sample data in order to automate decision-

making processes based on data inputs.

In machine learning, tasks are generally classified into broad categories. These categories

are based on how learning is received or how feedback on the learning is given to the system

developed.These are supervised learning which trains algorithms based on example input

and output data that is labelled by humans, and unsupervised learning which provides the

algorithm with no labelled data in order to allow it to find structure within its input data.

2.2.1 Supervised Learning

In supervised learning, the computer is provided with example inputs that are labelled with

their desired outputs. The purpose of this method is for the algorithm to be able to “learn”

by comparing its actual output with the “taught” outputs to find errors, and modify the

model accordingly. Supervised learning therefore uses patterns to predict label values on

additional unlabelled data.

12

2.3. AVAILABLE NIDS

Supervised learning problems can be further divided into two parts, namely classification,

and regression. A classification problem is when the output variable is a category or a group

and a regression problem is when the output variable is a real value.

2.2.2 Unsupervised Learning

In unsupervised learning, data is unlabelled, so the learning algorithm is left to find

commonalities among its input data. As unlabelled data are more abundant than labelled

data, machine learning methods that facilitate unsupervised learning are particularly valuable.

The goal of unsupervised learning may be as straightforward as discovering hidden patterns

within a dataset, but it may also have a goal of feature learning, which allows the

computational machine to automatically discover the representations that are needed to

classify raw data.

2.3 Available NIDS

This section will cover an overview of several NIDS currently available: BRO IDS, Suricata

and SNORT.

2.3.1 BRO IDS

Bro [4] is a passive, open-source network traffic analyser. It is primarily a security monitor

that inspects all traffic on a link in depth for signs of suspicious activity. More generally,

however, Bro supports a wide range of traffic analysis tasks even outside of the security

domain, including performance measurements and helping with trouble-shooting.

Bro provides the following capabilities including:

� Deep packet inspection

� Attack and anomaly detection

� Event correlation

� Alert generation

� Full IPv6 and IPv4 support

� A powerful, flexible policy scripting language

� Scalable, clustering architecture

13

CHAPTER 2. BACKGROUND

BRO is based in a modular software stack with three components: packet processing layer,

event engine and a policy script interpreter. This IDS is both a signature and anomaly-based

IDS. Its analysis engine will convert traffic captured into a series of events. An event could

be a user logon to FTP, a connection to a website or practically anything. The power of

the system is what comes after the event engine and that’s the Policy Script Interpreter.

This policy engine has it’s own language (Bro-Script) and it can do some very powerful and

versatile tasks.

Tool is very flexible but that comes to be a disadvantage and it is fairly complicated to use,

compared to other tools, including its own scripting language for those reason this tool was

discarded.

2.3.2 SNORT

Snort is a free and open source network intrusion detection and prevention tool. It was

created by Martin Roesch [5] in 1998. Snort is now developed by Sourcefire which has

been owned by Cisco since 2013. It is based on rules which are easy to write for intrusion

detection and it is highly flexible. The main advantage of using Snort is its capability to

perform real-time traffic analysis and packet logging on networks. With the functionality of

protocol analysis, content searching and various pre-processors, Snort is widely accepted as

a tool for detecting varied worms, exploits, port scanning and other malicious threats.

It can be configured in three main modes — sniffer, packet logger and network intrusion

detection.

� In sniffer mode, the program will just read packets and display the information on the

console.

� In packet logger mode, the packets will be logged on the disk.

� In intrusion detection mode, the program will monitor real-time traffic and compare it

with the rules defined by the user.

This is the tool that has been chosen for this project being the main reason the easy and

flexible way of rule format and also because of the good community support for solving

problems which is something positive. The availability of plugins supporting KDD metrics

was also a critical reason.

14

2.4. DATASETS

2.3.3 Suricata

Suricata[6] is an open source threat detection engine that was developed by the Open

Information Security Foundation (OISF), a non-profit foundation committed to ensuring

Suricata’s development and sustained success as an open source project.

Main features of Suricata are:

� Suricata is written in C, Lua

� JSON output supported

� Support for Lua scripting

� Support for pcap (packet capture)

Suricata is rules-based and while it offers compatibility with Snort Rules, it also introduced

multi-threading, which provides the theoretical ability to process more rules across faster

networks, with larger traffic volumes, on the same hardware.

Suricata inspects the network traffic using a powerful and extensive rules and signature

language, and has powerful Lua scripting support for detection of complex threats.

The Suricata engine is capable of real-time intrusion detection, inline intrusion prevention and

network security monitoring. Suricata consists of a few modules like Capturing, Collection,

Decoding, Detection and Output. It captures traffic passing in one flow before decoding,

which is highly optimal.

The downside to Suricata it is a little more complex to install and the community is smaller

than what Snort has amassed for that reason Snort was the preferred NIDS to use.

2.4 Datasets

Several datasets were evaluated in order to define which one to be used for the purpose of

this project.

2.4.1 UNB ISCX IDS 2012

ISCX 2012 is a benchmark intrusion detection dataset with contains 7 days of synthetically

recorded packet details replicating the real time network traffic by labelling the attacks. It

consists of labelled network traces, including full packet payloads in pcap format.

newpage This dataset is built on the concept of profiles that include the details of intrusions.

15

CHAPTER 2. BACKGROUND

As described in [7] and [8] where the creators of the dataset identify a set of requirements

for effective dataset generation, the datasets were collected using a real-time testbed by

incorporating multi-stage attacks. They used two profiles α and β during the generation of

the datasets. α profiles are constructed using the knowledge of specific attacks and β profiles

are built using the filtered traffic traces. Real packet traces were analysed to create α and

profiles for agents that generate real-time traffic for HTTP, SMTP, SSH, IMAP, POP3 and

FTP protocols. Various multi-stage attack scenarios were explored to generate malicious

traffic.

The UNB ISCX 2012 Intrusion Detection Evaluation Data Set has following characteristics

according to official dataset description [9]:

� Realistic network and traffic: Ideally, a dataset should not exhibit any unintended

properties, both network and traffic wise. This is to provide a clearer picture of the real

effects of attacks over the network and the corresponding responses of workstations.

For this reason, it is necessary for the traffic to look and behave as realistically as

possible. This includes both normal and anomalous traffic.

� Labelled dataset: Creating a dataset in a controlled and deterministic environment

allows for the distinction of anomalous activity from normal traffic and therefore

eliminates the impractical process of manual labelling.

� Total interaction capture: The amount of information available to detection mechanisms

are of vital importance as this provides the means to detect anomalous behaviour.

Thus, it is a major requirement for a dataset to include all network interactions, either

within or between internal LANs.

� Complete capture: Most of traces are either used internally, which limits other

researchers from accurately evaluating and comparing their systems, or are heavily

anonymized with the payload entirely removed resulting in decreased utility to

researchers. For this dataset the need of any sanitization is removed as network

traces were generated in a controlled testbed environment.

� Diverse intrusion scenarios: Dataset contains several types of threats attempting to

cover more complex schemes observed nowadays by using multi-stage attacks each

carefully crafted and aimed towards recent trends in security threats.

Files are available for researchers and only it is required to contact researcher to get temporary

access to a remote server with all files. Files have a considerable size with several GB per

day, from 4GB up to 23GB. For each day it is specified if there attacks present or if it just

contains normal traffic.

16

2.4. DATASETS

Besides the pcap files dataset contains more files such as listofmaliciousips which contains

all IPs involved in different attack scenarios and labelled flows xml which contains detailed

flow information in XML format for each day. The flows were generated using IBM QRadar

appliance. The XML files contain the following features: appName, totalSourceBytes,

totalDestinationBytes, totalDestinationPackets, totalSourcePackets, sourcePayloadAsBase64,

destinationPayloadAsBase64, destinationPayloadAsUTF, direction, sourceTCPFlagsDescrip

tion, destinationTCPFlags Description, source, ”protocolName”, sourcePort, destination,

destinationPort, startDateTime, stopDateTime and Tag.

Due to the huge size of the dataset, the limited number of features provided in the xml files,

while more could be obtained from the raw file, it was decided to chose other datasets in

order to focus on the machine learning field rather than spending too much time processing

the dataset.

2.4.2 KDD cup99

Since 1999, the KDDcup99 dataset [10] has been the most widely used dataset for evaluation

of network based anomaly detection methods and systems.

This dataset was built based in the data captured in the DARPA98 [11] IDS evaluation

program prepared and managed by MIT Lincoln Labs and it was used for a competition

whose task [15] was to build a network intrusion detector, a predictive model capable of

distinguishing between bad connections, called intrusions or attacks, and good normal

connections. The database contains a standard set of data to be audited, which includes a

wide variety of intrusions simulated in a military network environment.

Lincoln Labs set up an environment to acquire nine weeks of raw TCP dump data for a

local-area network (LAN) simulating a typical U.S. Air Force LAN. They operated the LAN

as if it were a true Air Force environment, but peppered it with multiple attacks.

The raw training data was about four gigabytes of compressed binary TCP dump data from

seven weeks of network traffic. This was processed into about five million connection records.

Similarly, the two weeks of test data yielded around two million connection records.

A connection is a sequence of TCP packets starting and ending at some well defined times,

between which data flows to and from a source IP address to a target IP address under

some well defined protocol. Each connection is labelled as either normal, or as an attack,

with exactly one specific attack type. Each connection record consists of about 100 bytes.

17

CHAPTER 2. BACKGROUND

The KDD training dataset consists of approximately 4.900.000 single connection vectors,

each of which contains 41 features and is labelled as either normal or attack of a specific

attack type. The test dataset contains about 300.000 samples with a total 24 training types,

with an additional 14 attack types in the test dataset only.

The represented attacks are mainly four types:

� Denial of Service (DoS): An attacker attempts to prevent valid users from using a

service provided by a system.

� Remote to Local (r2l): Attackers try to gain entrance to a victim machine without

having an account on it.

� User to Root (u2r): Attackers have access to a local victim machine and attempt to

gain privilege of a superuser.

� Probe: Attackers attempt to acquire information about the target host.

Background traffic was simulated and the attacks were all known. The testing set also

consists of simulated background traffic and known attacks, including some attacks that are

not present in the training set.

2.4.3 NSL-KDD

NSL-KDD is a dataset suggested to solve some of the inherent problems of the KDD’99 data

set which are mentioned in [12]. NSL-KDD has been generated by removing redundant and

duplicate instances, also by decreasing size of dataset.

The NSL-KDD data set has the following advantages over the original KDD data set

according dataset description [13]

� This dataset doesn’t contain superfluous and repeated records in the training set, so

classifiers or detection methods will not be biased towards more frequent records.

� There are no duplicate records in the test set. Therefore, the performance of learners

is not biased by the methods which have better detection rates on frequent records.

� The number of selected records from each difficulty level is inversely proportional to

the percentage of records in the original KDD dataset. As a result, the classification

rates of various machine learning methods vary in a wider range, which makes it more

efficient to have an accurate evaluation of various learning techniques.

� The number of records in the training and testing sets is reasonable, which makes

it practical to run experiments on the complete set without the need to randomly

select a small portion. Consequently, evaluation results of different research groups

are consistent and comparable.

18

2.5. MACHINE LEANING TOOLS

The NSL-KDD dataset consists of two parts: (i) KDDTrain+ and (ii) KDDTest+. The

KDDTrain+ part of the NSL-KDD dataset is used to train a detection method or system

to detect network intrusions. It contains four classes of attacks and a normal class dataset.

The KDDTest+ part of NSLKDD dataset is used for testing a detection method or a system

when it is evaluated for performance. It also contains the same classes of traffic present in

the training set.

This dataset was chosen for using it in this project as it addressed issues present in previous

KDD99 dataset and also it directly provide labelled files in text format that can be directly

used as input for any machine learning framework.

2.5 Machine leaning tools

Machine learning and data analysis are two areas where open source has become almost the

de facto license for innovative new tools. Both the Python and R languages have developed

robust ecosystems of open source tools and libraries that help data scientists of any skill

level more easily perform analytical work. Next subsections will provide an overview of R

and Python related to machine learning including mention to some relevant packages [14].

2.5.1 Python

Even though Python is naturally disposed toward machine learning, it has packages that

further optimize this attribute. PyBrain is a modular machine learning library that offers

powerful algorithms for machine learning tasks. The algorithms are intuitive and flexible,

but the library also has a variety of environments to test and compare your machine learning

algorithms.

Scikit-learn is the most popular machine learning library for Python. Built on NumPy and

SciPy, scikit-learn offers tools for data mining and analysis that bolster Python’s already-

superlative machine learning usability. NumPy and SciPy impress on their own. They are

the core of data analysis in Python and any serious data analyst is likely using them raw,

without higher-level packages on top, but scikit-learn pulls them together in a machine

learning library with a lower barrier to entry.

When it comes to data analysis, Python receives a welcome boost from several different

packages. Pandas, one of its most well-known data analysis packages, gives Python high-

performance structures and data analysis tools.

19

CHAPTER 2. BACKGROUND

2.5.2 R

R, like Python, has plenty of packages to boost its performance. When it comes to

approaching parity with Python in machine learning, Nnet improves R by supplying the

ability to easily model neural networks. Caret is another package that bolsters R’s machine

learning capabilities, in this case by offering a set of functions that increase the efficiency of

predictive model creation.

But data analysis is R’s domain, and there are packages to improve it beyond its already-

stellar capabilities. Packages for the pre-modelling, modelling, and post-modelling stages

of data analysis are available. These packages are directed at specific tasks like data

visualization, continuous regression, and model validation.

Caret package provide a very easy way to run experiments and one of the very interesting

options is the fact that hyperparameter tuning can be performed to chose the best set

of parameters to be used. This was found a very interesting feature to not necessarily

use default parameters in selected algorithm and has make R with Caret package the tool

selected for the machine learning part if the project.

20

CHAPTER3
PROJECT APPROACH

In this chapter the general flow of the system is described including all elements

involved such NSL-KDD dataset, Snort and R Caret package.

21

CHAPTER 3. PROJECT APPROACH

22

3.1. OVERVIEW

3.1 Overview

This section will cover general flow that could be used so a NIDS could benefit from machine

learning generated knowledge. The system is based on SNORT which consists of user defined

rule sets for the identification of specific attacks. With the help of various plugins and rule

sets, SNORT is capable of performing signature based, protocol based and anomaly based

detections on given input traffic.

Main idea is that additional set of rules generated by machine learning models are included

into SNORT which has some additional plugins in the preprocessor and in the output

modules to use defined fields on the KDD dataset. Those plugins come from an external

project covered in section 3.4.3. General flow is illustrated in Figure 3.1.

Figure 3.1: NIDS machine learning flow

Initially a set of rules is generated with the existing NSL-KDD dataset and a rule files is

obtained from different models evaluated. Objective of the project is to identify best model

that suits for this dataset features.

Next steps would be based on identifying new data from Snort execution on the network.

This would produce a new dataset either from standard Snort rules or from rules generated

by machine learning models. This dataset would be combined and reviewed by an individual

to re-train the system and obtain an updated set of rules. This process would be repeated

in the time so new set of rules can be developed with new attack detection capabilities.

23

CHAPTER 3. PROJECT APPROACH

Next sections would cover following topics:

� Highlight main objectives of the project

� Describe in detail NSL KDD dataset: available files, attacks, fields..

� SNORT description and KDD features implementation

� R package CARET used for model evaluation

3.2 Objectives

The main objective of this final project consists of evaluating the benefits of including

machine learning algorithms to Snort NIDS. The main task will be to build a predictive

model capable to distinguishing between attack connections and normal traffic.

Several academic research papers have suggested that anomaly detection have the potential

for addressing novel attacks and also that most novel attacks are variants of known attacks.

Therefore a NIDS that can effectively learn and correlate unknown attacks is desirable.

So one of the objectives will attempt to prove that new attacks can be detected by the

knowledge of patterns obtained through machine learning algorithms that are defined by

other attacks.

During the development of the project several algorithms, which can directly produce rules,

will be evaluated and performance will be compared in order to find the optimal model.

In addition, evaluation of what is best approach for defining anomaly behaviours, meaning

categorizing traffic only in normal/anomaly or having several categories for anomaly traffic,

in our case DoS, probe, U2R, R2l would be performed.

3.3 NSL KDD Dataset

NSL KDD dataset has been chosen as data to be used for evaluation of different models in

this project. As it has been explained in [12] this dataset address several problems on the

original KDD dataset. It also provide labelled data with train and test dataset making it

convenient for this project. Following sections will describe in detail this dataset that still

have similarities with legacy KDD 99 dataset.

24

3.3. NSL KDD DATASET

3.3.1 Dataset Overview

NSL KDD Dataset is based on original KDD data set which includes multiple attacks falling

into four main categories Dos (denial-of-service, e.g. syn flood), probe (surveillance and

other probing, e.g., port scanning), R2L (unauthorized access from a remote machine, e.g.

guessing password) and U2R (unauthorized access to local superuser (root) privileges, e.g.,

various buffer overflow). In addition also normal traffic is included.

The NSL-KDD data set has the following advantages over the original KDD data set as

described in [13]:

� It does not include redundant records in the train set, so the classifiers will not be

biased towards more frequent records.

� There are no duplicate records in the proposed test sets; therefore, the performance of

the learners are not biased by the methods which have better detection rates on the

frequent records.

� The number of selected records from each difficulty level group is inversely proportional

to the percentage of records in the original KDD data set. As a result, the classification

rates of distinct machine learning methods vary in a wider range, which makes it more

efficient to have an accurate evaluation of different learning techniques.

� The number of records in the train and test sets are reasonable, which makes it

affordable to run the experiments on the complete set without the need to randomly

select a small portion. Consequently, evaluation results of different research works will

be consistent and comparable.

3.3.2 Data files

Full dataset includes several files:

� KDDTrain+.ARFF: The full NSL-KDD train set with binary labels in ARFF format

� KDDTrain+.TXT: The full NSL-KDD train set including attack-type labels and

difficulty level in CSV format

� KDDTrain+ 20Percent.ARFF: A 20% subset of the KDDTrain+.arff file

� KDDTrain+ 20Percent.TXT: A 20% subset of the KDDTrain+.txt file

� KDDTest+.ARFF: The full NSL-KDD test set with binary labels in ARFF format

� KDDTest+.TXT: The full NSL-KDD test set including attack-type labels and difficulty

level in CSV format

25

CHAPTER 3. PROJECT APPROACH

� KDDTest-21.ARFF: A subset of the KDDTest+.arff file which does not include records

with difficulty level of 21 out of 21

� KDDTest-21.TXT: A subset of the KDDTest+.txt file which does not include records

with difficulty level of 21 out of 21

Approach taken for this project would be make use of txt files that contains attack label and

process them to generate additional columns such attack profile (Dos, Probe, U2R, R2L,

normal), class (normal, anomaly) so both class and multi class evaluation can be performed,

this is covered in more detail is Section 4.4.

3.3.3 Attack distributions

Dataset was loaded into R environment for inspection. This section will cover attack

distribution over the train, 20 % train and test datasets.

Following tables shows traffic type distribution for binary or multi class classification obtained

by inspecting dataset.

Traffic Type Train Dataset Train Dataset 20% Test Dataset

Normal 67343 11743 12833

Anomaly 58630 13449 9710

Table 3.1: Normal/Anomaly samples on NSL KDD dataset files

Traffic profile distribution is presented in following table:

Traffic Type Train Dataset Train Dataset 20% Test Dataset

DoS 45927 9234 7458

normal 67343 13449 9710

Probe 11656 2289 2421

R2L 995 209 2887

U2R 52 11 67

Table 3.2: Attack profile samples on NSL KDD dataset files

26

3.3. NSL KDD DATASET

On the train dataset attack distribution is presented in following table:

Traffic

profile

Attack Train Dataset Train Dataset 20%

DoS

back 956 196

land 18 1

neptune 41214 8282

pod 201 38

smurf 2646 529

teardrop 892 188

Probe

ipsweep 3599 710

nmap 1493 301

portsweep 2931 587

satan 3633 691

R2L

ftp write 8 1

guess passwd 53 10

imap 11 5

multihop 7 2

phf 4 2

spy 2 1

warezclient 890 181

warezmaster 20 7

U2R

buffer overflow 30 6

loadmodule 9 1

perl 3 NA

rootkit 10 4

normal normal 67343 13449

Table 3.3: Distribution of attacks in train dataset

27

CHAPTER 3. PROJECT APPROACH

Similarly test dataset attack distribution is showed in the following table where an additional

column indicating that the specific attack is novel or not is included. An attack is consider

novel if it is not part of the training dataset.

Traffic profile Attack Test dataset count Is novel attack

DoS

apache2 737 TRUE

back 359 FALSE

land 7 FALSE

mailbomb 293 TRUE

neptune 4657 FALSE

pod 41 FALSE

processtable 685 TRUE

smurf 665 FALSE

teardrop 12 FALSE

udpstorm 2 TRUE

Probe

ipsweep 141 FALSE

mscan 996 TRUE

nmap 73 FALSE

portsweep 157 FALSE

saint 319 TRUE

satan 735 FALSE

R2L

ftp write 3 FALSE

guess passwd 1231 FALSE

httptunnel 133 TRUE

imap 1 FALSE

multihop 18 FALSE

named 17 TRUE

phf 2 FALSE

sendmail 14 TRUE

snmpgetattack 178 TRUE

snmpguess 331 TRUE

warezmaster 944 FALSE

worm 2 TRUE

xlock 9 TRUE

xsnoop 4 TRUE

U2R

buffer overflow 20 FALSE

loadmodule 2 FALSE

perl 2 FALSE

ps 15 TRUE

rootkit 13 FALSE

sqlattack 2 TRUE

xterm 13 TRUE

normal normal 9710 FALSE

Table 3.4: Distribution of attacks in test dataset

28

3.3. NSL KDD DATASET

3.3.4 Feature/fields

NSL KDD does not modify fields given in original KDD dataset therefore description is the

same as the one provided for the KDD Cup task [15] a complete listing of the set of features

defined for the connection records is given in the three tables below:

feature name description type

duration length (number of seconds) of the connection continuous

protocol type type of the protocol, e.g. tcp, udp, etc. discrete

service network service on the destination, e.g., http, telnet, etc. discrete

src bytes number of data bytes from source to destination continuous

dst bytes number of data bytes from destination to source continuous

flag normal or error status of the connection discrete

land 1 if connection is from/to the same host/port; 0 otherwise discrete

wrong fragment number of “wrong” fragments continuous

urgent number of urgent packets continuous

Table 3.5: NSL KDD Basic features of individual TCP connections

feature name description type

hot number of “hot” indicators continuous

num failed logins number of failed login attempts continuous

logged in 1 if successfully logged in; 0 otherwise discrete

num compromised number of “compromised” conditions continuous

root shell 1 if root shell is obtained; 0 otherwise discrete

su attempted 1 if “su root” command attempted; 0 otherwise discrete

num root number of “root” accesses continuous

num file creations number of file creation operations continuous

num shells number of shell prompts continuous

num access files number of operations on access control files continuous

num outbound cmds number of outbound commands in an ftp session continuous

is hot login 1 if the login belongs to the “hot” list; 0 otherwise discrete

is guest login 1 if the login is a “guest”login; 0 otherwise discrete

Table 3.6: NSL KDD: Content features within a connection suggested by domain knowledge

29

CHAPTER 3. PROJECT APPROACH

feature name description type

count
of connections to the same host as the

current connection in the past two secs
continuous

Note: The following features refer to these

same-host connections.

serror rate % of connections that have “SYN” errors continuous

rerror rate % of connections that have “REJ” errors continuous

same srv rate % of connections to the same service continuous

diff srv rate % of connections to different services continuous

srv count
#r of connections to the same service

as the current connection in the past two secs
continuous

Note: The following features refer to these

same-service connections.

srv serror rate % of connections that have “SYN” errors continuous

srv rerror rate % of connections that have “REJ” errors continuous

srv diff host rate % of connections to different hosts continuous

Table 3.7: NSL KDD features:Traffic features computed using a two-second time window

3.4 Snort

Snort is an open source network intrusion prevention and detection system initially developed

by developed by Martin Roesch [5]. It uses a rule-based language combining signature,

protocol and anomaly inspection methods. A NIDS, which stands for network intrusion

detection system, is an intrusion detection system that tries to detect malicious activity

such as denial of service attacks, port scans or even attempts to crack into computers.

3.4.1 Snort components

Snort consist of several modules. It takes as input traffic from the network and will produce

as output alerts on the system and log files. This information is created based on applying

a different sets of rules by the detection engine. This modular architecture provides great

flexibility. Snort modules and flows are showed in Figure 3.2.

Figure 3.2: Snort component flow

30

3.4. SNORT

Now each module will be briefly explained:

� Packet Decoder: Main function is to capture all network packets using libcap libray.

First it identify link layer protocol, then it will decode IP layer and then will look at the

transport layer to identify relevant protocol such TCP,UDP.. If there are malformed

headers Snort will alert about it.

� Preprocessors: This module will prepare data obtained from previous module for

detection by obtaining additional information. There are several types of preprocessors

depending on the traffic to be analysed, for instance HTTP, telnet, IP reassembly. In

our case an additional preprocessor will provide metrics defined in KDD dataset.

� Detection engine: Its responsibility is to detect if any intrusion activity exists in

a packet. The detection engine employs Snort rule for this purpose. The rules are

read into internal data structures or chains where they are matched against all packets.

It a packet matches any rule, relevant action is taken, otherwise packet is discarded.

Actions may be logging the packet or alert generation. It will use of several detection

plugins, in our case a specific plugin that can make use of KDD features.

� Rulesets: It defines the sets of individual rules that will control the analysis of

the detected packets. Detection plugins, protocol, flow direction are defined. More

information is provided in section Section 3.4.2.

� Logging and alerting sytem: Depending on what is found inside the packet from

the detection engine activity.

� Output module:It controls the type of output generated by the logging and alerting

system. Those notifications (alerts, logs) can be saved in different formats: text files,

database, server system logs ...

3.4.2 Snort rules

Rules are used by Snort detection engine to compare received packets and generate alerts

in case packets match with the content defined on the rules. There are two types of rules:

official sets of rules provided by Snort, subscription fee applies, and rules provided by the

community, free to use under GPL licence.

Snort uses a simple, lightweight rules description language that is flexible. As an example

one rule is showed in box below:

alert tcp any any ->192.168.1.0/24 111 (content:”—00 01 86 a5—”; msg: ”mountd access”;)

31

CHAPTER 3. PROJECT APPROACH

There are many web pages containing information about how to write Snort rules, official

documentation section provide a detail of all available options, some of the fields are described

below [16].

The text up to the first parenthesis is the rule header and the section enclosed in parenthesis

is the rule options. The words before the colons in the rule options are called option

keywords.

Rule Actions: The rule header contains the information that defines the ”who, where, and

what” of a packet, as well as what to do in the event that a packet with all the attributes

indicated in the rule should show up. The first item in a rule is the rule action. The rule

action tells Snort what to do when it finds a packet that matches the rule criteria. There

are five available default actions in Snort, alert, log, pass, activate, and dynamic.

Protocols: The next field in a rule is the protocol. There are three IP protocols that Snort

currently analyses for suspicious behavior, tcp, udp, and icmp.

IP Addresses: The next portion of the rule header deals with the IP address and port

information for a given rule. The keyword ”any” may be used to define any address. Snort

does not have a mechanism to provide host name lookup for the IP address fields in the

rules file.

Port Numbers: Port numbers may be specified in a number of ways, including ”any”

ports, static port definitions, ranges, and by negation. ”Any” ports are a wildcard value,

meaning literally any port. Static ports are indicated by a single port number, such as 111

for portmapper, 23 for telnet, or 80 for http, etc. Port ranges are indicated with the range

operator ”:”.

The Direction Operator The direction operator ”->” indicates the orientation, or

”direction”, of the traffic that the rule applies to. The IP address and port numbers

on the left side of the direction operator is considered to be the traffic coming from the

source host, and the address and port information on the right side of the operator is the

destination host. There is also a bidirectional operator, which is indicated with a ”<>”

symbol. This tells Snort to consider the address/port pairs in either the source or destination

orientation.

Rule Options: Rule options form the heart of Snort’s intrusion detection engine, combining

ease of use with power and flexibility. All Snort rule options are separated from each other

using the semicolon ”;” character. Rule option keywords are separated with a colon ”:”.

32

3.5. R CARET PACKAGE

3.4.3 KDD features in Snort

It is possible to add features implemented in KDD database into Snort by the addition

of a preprocessor and a detection-plugin. I has been found an existing implementation

named s-predator [17]. Preprocessor will add implementation of the features and it is just

required to include new fields to be calculated for each packet after loading of the module.

Last addition to make use of KDD features is detection plugin which adds the capability

to understand rules extrapolated from KDD features and will check conditions on new

parameters and trigger relevant configured actions, alerts or logging.

3.5 R Caret package

Existing CARET package in R, which stands for Classification And REgression Training,

is a set of functions that attempt to simplify the process to create predictive models. The

package contains tools for:

� data splitting

� pre-processing

� feature selection

� model tuning using resampling

� variable importance estimation

For train phase the train function is specified. This function provides following functionalities:

evaluate, using resampling, the effect of model tuning parameters on performance; choose

the “optimal” model across these parameters and estimate model performance.

This will allow to evaluate different models and to estimate the better parameter set before

evaluating the test dataset. The training and hyperparameter tuning algorithm is shown

below as specified in official documentation [18] which include a detail view of all modules:

Figure 3.3: Caret parameter tuning flow

33

CHAPTER 3. PROJECT APPROACH

3.5.1 Models available

CARET package provides a wide set of models to be used. Currently there are 238 models

defined that cover both classification and regression scenarios. It is also possible to define

your own model that can be integrated in the package.

For the purpose of this project evaluation of several model was done, one of the main reasons

to chose an algorithm is the capabilities to generate rules so they can be easily included

in the workflow. While some models provide rules directly from the trained model for

some other it was investigated additional package to convert for instance trees to rules. An

additional condition when choosing a model for the purpose of this project was the fact that

both binary and multi class classification can be performed as some models only support

binary scenario.

A total of five models have been chosen which include: C50, J48 (C4.5-like Trees), JRip,

Gradient Boosting Machine and Random Forest. All these models will be explained in more

detail in Section 4.3.

3.5.2 Optimizing tuning parameters

Hyperparameter tuning evaluation is performed by specifying a grid containing the

parameters list and possible values to be evaluated. Argument tuneGrid can take a data

frame with columns for each tuning parameter. If parameter tuneGrid is not specified

default grid would be used.

In addition to the approach mentioned below, it is also possible to use a random selection

of tuning parameter combination or a combination of a grid search and racing to find best

suitable values.

3.5.3 Re-sampling

In CARET there are 5 different methods that you can use to estimate model accuracy. These

are as specified in [19]:

Data Split

Data splitting involves partitioning the data into an explicit training dataset used to prepare

the model and an unseen test dataset used to evaluate the models performance on unseen

data. It is useful when you have a very large dataset so that the test dataset can provide a

meaningful estimation of performance, or for when you are using slow methods and need a

quick approximation of performance.

34

3.5. R CARET PACKAGE

Bootstrap

Bootstrap re-sampling involves taking random samples from the dataset (with re-selection)

against which to evaluate the model. In aggregate, the results provide an indication of the

variance of the models performance. Typically, large number of resampling iterations are

performed (thousands or tens of thousands). This resampling technique is specified as an

example: trainControl(method=”boot”, number=100)

k-fold Cross Validation

The k-fold cross validation method involves splitting the dataset into k-subsets. For each

subset is held out while the model is trained on all other subsets. This process is completed

until accuracy is determine for each instance in the dataset, and an overall accuracy estimate is

provided. The following example uses 10-fold cross validation to estimate Naive Bayes on the

iris dataset. This resampling technique is specified as an example: trainControl(method=”cv”,

number=10)

Repeated k-fold Cross Validation

The process of splitting the data into k-folds can be repeated a number of times, this

is called Repeated k-fold Cross Validation. The final model accuracy is taken as the

mean from the number of repeats. This resampling technique is specified as an example:

trainControl(method=”repeatedcv”, number=10, repeats=3)

Leave One Out Cross Validation

In Leave One Out Cross Validation (LOOCV), a data instance is left out and a model

constructed on all other data instances in the training set. This is repeated for all data

instances. This resampling technique is specified as an example:

trainControl(method=”LOOCV”)

3.5.4 Performance measurements

After re-sampling, the process produces a profile of performance measures is available to

guide the user as to which tuning parameter values should be chosen. There are several

metrics that can be used to evaluate the machine learning algorithm in R. Caret supports a

wide range of evaluation metrics:

� Accuracy and Kappa

� RMSE and Rˆ2

� ROC (AUC, Sensitivity and Specificity)

� LogLoss

35

CHAPTER 3. PROJECT APPROACH

Default metrics used are accuracy for classification problems and RMSE for regression.

For evaluation of different sets of parameters in this project accuracy has been used. For

reference all possible options that CARET provides are briefly explained below [20]:

Accuracy and Kappa

Accuracy is the percentage of correctly classifies instances out of all instances. It is more

useful on a binary classification than multi-class classification problems because it can be less

clear exactly how the accuracy breaks down across those classes (e.g. you need to go deeper

with a confusion matrix). Learn more about Accuracy here. Kappa or Cohen’s Kappa is

like classification accuracy, except that it is normalized at the baseline of random chance on

your dataset. It is a more useful measure to use on problems that have an imbalance in the

classes (e.g. 70-30 split for classes 0 and 1 and you can achieve 70% accuracy by predicting

all instances are for class 0).

RMSE and Rˆ2

RMSE or Root Mean Squared Error is the average deviation of the predictions from the

observations. It is useful to get a gross idea of how well (or not) an algorithm is doing, in

the units of the output variable. Learn more about RMSE here. Rˆ2 which stands for R

Squared or also called the coefficient of determination provides a goodness of fit measure for

the predictions to the observations. This is a value between 0 and 1 for no-fit and perfect fit.

Area Under ROC Curve

ROC metrics are only suitable for binary classification problems (e.g. two classes). To

calculate ROC information, you must change the summaryFunction in your trainControl

to be twoClassSummary. This will calculate the Area Under ROC Curve (AUROC) also

called just Area Under curve (AUC), sensitivity and specificity. ROC is actually the area

under the ROC curve or AUC. The AUC represents a models ability to discriminate between

positive and negative classes. An area of 1.0 represents a model that made all predicts

perfectly. An area of 0.5 represents a model as good as random. ROC can be broken down

into sensitivity and specificity. A binary classification problem is really a trade-off between

sensitivity and specificity. Sensitivity is the true positive rate also called the recall. It is the

number instances from the positive (first) class that actually predicted correctly. Specificity

is also called the true negative rate. Is the number of instances from the negative class

(second) class that were actually predicted correctly.

36

3.5. R CARET PACKAGE

Logarithmic Loss

Logarithmic Loss or LogLoss is used to evaluate binary classification but it is more common

for multi-class classification algorithms. Specifically, it evaluates the probabilities estimated

by the algorithms.

3.5.5 Best tuned parameters

For all caret models, the final model is trained on the full dataset. caret::train uses the

cross-validation scheme you chose to select model parameters and estimate out-of-sample

performance of the model. After performance of all parameter combinations is known train

function automatically chooses the tuning parameters associated with the best value.

Once the cross-validation is done, caret retrains the model on the full dataset, using the

parameters it selected during cross-validation. The model does not average the trained

model’s coefficients. It re-fits the model on the full dataset.

As model would be trained with the full train dataset for comparison purposes cross validation

performance would be used to compare performance on every parameter combination.

Accuracy an kappa has been chosen as relevant metric to be optimized as it will provide a

good view for both binary and multi class scenarios of the samples detected correctly even

more metrics will be used for analysis purposes.

3.5.6 Runtime performance

Training task can be quite time consuming. The caret package supports parallel processing

in order to decrease the compute time for a given experiment. It is supported automatically

as long as it is configured. Caret package use R support for parallel core computations (by

parallel package).

The train instruction of the caret package has built-in support for parallel backends, but

you have to call and set it up. If you do not register a backend, train will resort to

single-core computations. With a registered parallel backend, any caret model training will

use multi-cores of the CPU, since by default the trainControl argument is already set as

allowParallel=TRUE.

This effectively means that several cores will be running independent training for a single

parameter combination which reduce total time to evaluate whole parameter grid defined.

37

CHAPTER 3. PROJECT APPROACH

3.5.7 Model Evaluation Metrics in R

Caret provide a very convenient way to obtain most relevant metrics by the use of the

confusionmatrix() function. It compares predicted values against the reference and provide

absolute values for confusion matrix, as an example for two class problem:

Figure 3.4: Confusion matrix example

One of the main metrics that we would consider is accuracy defined as A+D/(A+B+C+D).

Accuracy measures how well a binary classification test correctly identify or excludes a

condition. That is, the accuracy is the proportion of true results (both true positives and

true negatives) among the total number of cases examined. Multiple metrics are calculated

which are shown in the following picture from the official documentation [18]:

Figure 3.5: Metrics calculated from the confusion matrix Caret

38

3.5. R CARET PACKAGE

For two class problems, the sensitivity, specificity, positive predictive value and negative

predictive value is calculated using the positive argument. Also, the prevalence of the ”event”

is computed from the data, the detection rate (the rate of true events also predicted to be

events) and the detection prevalence (the prevalence of predicted events).

For more than two classes, these results are calculated comparing each factor level to the

remaining levels (i.e. a ”one versus all” approach).

Sensitivity or Recall: When it is actually ”yes” how often it predicts ”yes”. From the

observed class 1, what percentage cases are actually classified by the model predicted class 1

is measured by a measure which is called Sensitivity.

Specificity: Specificity measures true negative rate. When it is actually ”No”, how often

it is ”No”. In our case would be when traffic is normal how often it is consider as normal.

Specificity= TN/(TN+FP) = TN/(Actual No)

Another useful performance measure is the balanced accuracy which avoids inflated

performance estimates on imbalanced datasets. It is defined as the arithmetic mean of

sensitivity and specificity, or the average accuracy obtained on either class

Cohen’s Kappa: This is essentially a measure of how well the classifier performed as compared

to how well it would have performed simply by chance. In other words, a model will have a

high Kappa score if there is a big difference between the accuracy and the null error rate.

39

CHAPTER 3. PROJECT APPROACH

40

CHAPTER4
EXPERIMENT DESIGN

This chapter explains how the experiments are designed, covering from the environment

used, models selected, data pre-processing, rule generations and output produced from

the execution.

41

CHAPTER 4. EXPERIMENT DESIGN

42

4.1. OVERVIEW

4.1 Overview

This section will cover details on how the experiment has been designed. Main tasks of the

experiment which have been performed by several R scripts developed are:

� Process NSL KDD dataset to get adequate input for algorithms

� Obtain best set of parameter for each model

� Train models with best set and evaluate performance on test dataset

� Produce rules for each algorithm

High level flow of the experiments is presented in Figure 4.1 where inputs and outputs for

each script is specified. Explanation of what each script do is listed below:

� Data Process R Script. This script takes as input raw NSL KDD dataset, it will

convert the script to add additional columns like profile attack (Dos, Probe, R2L,

U2R, normal), flag for novel attack in test data, class (anomaly, normal). Details on

implementation are provided in Section 4.4.

� Parameter tuning R Script. This script will perform the parameter tuning task by

the use of Caret package. For each model a grid of parameters is specified and training

is performed with a re sampling technique. Trained model is part of the output so it

can be inspected at later stage and best parameter set is provided.

� Train and Test R Script. Once best parameters are known training on the full

dataset is performed, and model is evaluated against the test data set. Rules and

results for each algorithm are generated so analysis on performance can be done.

Figure 4.1: Experiment flow

Next sections will cover in more detail implementation of the experiment, what models have

been selected, parameters to be tuned, files and rules generated, and different options used

during the process.

43

CHAPTER 4. EXPERIMENT DESIGN

4.2 Environment

All experiments were executed under a Windows 7 laptop with following characteristics:

� Intel Core i7-4810MQ CPU @2.8GHz

� 8 cores

� RAM memory 24GB

� System type 64-bit Operating System

Software levels that have been used are:

� RStudio Version 1.1.383

� R Version 3.5.0 64bit

4.3 Model selection

From all the available models in CARET package a total of five algorithms which can

perform classification were chosen for evaluation.

One of the main reasons for selecting them is the fact that algorithm can produce directly

rules. This is very important and relevant as rule files are the main input into Snort NIDS

for attack detection.

Next sections will add more information about those models, outline available parameters

that can be tuned and how rules can be generated, in some cases using others R packages

which functionality is not part of CARET package itself.

A summary of selected models is presented in Table 4.1:

Model
Method

Value
Type Libraries

Tunning

Parameters

C5.0 C5.0 Classification C50, plyr
trials, model,

winnow

C4.5-like Trees J48 Classification RWeka C, M

Rule-Based Classifier JRip Classification RWeka

NumOpt,

NumFolds,

MinWeights

Generalized Boosted

Regression Models
gbm

Classification,

Regression
gbm, plyr

n.trees,

interaction.depth,

shrinkage,

n.minobsinnode

Random Forest

Rule-Based Model
rfRules

Classification,

Regression

randomForest,

inTrees, plyr
mtry, maxdepth

Table 4.1: CARET models selected for evaluation

44

4.3. MODEL SELECTION

4.3.1 J48

CARET method J48 makes use of Weka J48 implementation and it is used for classification.

J48 is an extension of ID3. The additional features of J48 are accounting for missing values,

decision trees pruning, continuous attribute value ranges, derivation of rules, etc. In the

WEKA, J48 is an open source Java implementation of the C4.5 algorithm from Ross Quinlan

[21].

At a high level C4.5 tree tries to recursively partition the data set into subsets by evaluating

the normalized information gain (difference in entropy) resulting from choosing a descriptor

for splitting the data. The descriptor with the highest information gain is used on every

step. The training process stops when the resulting nodes contain instances of single classes

or if no descriptor can be found that would result to the information gain.

For this model following parameters are available for tuning, range used in the experiments

is also included:

� Confidence Threshold (C, numeric). From 0 to 0.5 in 0.05 steps

� Minimum Instances Per Leaf (M, numeric). From 1 to 10 in steps of 1 to get better

visualization and from 10 to 375 in steps of 25.

4.3.2 C50

C5.0 algorithm is an enhanced version of C4.5 algorithm with following enhancements [22]:

� Speed - C5.0 is significantly faster than C4.5 (several orders of magnitude)

� Memory usage - C5.0 is more memory efficient than C4.5

� Smaller decision trees - C5.0 gets similar results to C4.5 with considerably smaller

decision trees.

� Support for boosting - Boosting improves the trees and gives them more accuracy.

� Winnowing - a C5.0 option automatically winnows the attributes to remove those that

may be unhelpful.

Model C5.0 is specified by method = ’C5.0’ in CARET. It uses packages C50 and plyr with

the following tuning parameters:

� Number of Boosting Iterations (trials, numeric). After the first tree is created, weights

are determined and subsequent iterations create weighted trees or rulesets. Subsequent

trees (or rulesets) are constrained to be about the same size as the initial model. The

final prediction is a simple averages of class probabilities generated from each tree or

ruleset (i.e. no stage weights).

45

CHAPTER 4. EXPERIMENT DESIGN

� Winnow (winnow, logical). Winnowing is a feature selection step conducted before

modeling. The data set is randomly split in half and an initial model is fit. Each

predictor is removed in turn and the effect on model performance is determined (using

the other half of the random split). Predictors are flagged if their removal does not

increase the error rate. The final model is fit to all of the training set samples using

only the unflagged predictors.

� Model Type (model, character). The main two modes on this algorithm for model

parameter are tree-based and a rule-based model which are easier to understand

compared to other models. A rule based model has been selected as is able to directly

produce rules which can be later processed to be included as part of Snort functionality.

4.3.3 JRip

Model named JRip in CARET terminology makes use of Weka rule classifier Jrip. This

class implements a propositional rule learner, Repeated Incremental Pruning to Produce

Error Reduction (RIPPER), which was proposed by William W. Cohen [23] as an optimized

version of IREP.

The algorithm is briefly described, according package documentation [24], in following steps:

Initialize RS = {} , and for each class from the less prevalent one to the more frequent one.

DO:

1. Building stage: Repeat 1.1 and 1.2 until the description length (DL) of the ruleset and

examples is 64 bits greater than the smallest DL met so far, or there are no positive

examples, or the error rate ≥ 50%.

1.1. Grow phase: Grow one rule by greedily adding antecedents (or conditions) to

the rule until the rule is perfect (i.e. 100 per cent accurate). The procedure

tries every possible value of each attribute and selects the condition with highest

information gain: p(log(p/t)-log(P/T)).

1.2. Prune phase: Incrementally prune each rule and allow the pruning of any final

sequences of the antecedents. The pruning metric is (p-n)/(p+n) – but it’s

actually 2p/(p+n) -1, so in this implementation we simply use p/(p+n) (actually

(p+1)/(p+n+2), thus if p+n is 0, it’s 0.5).

46

4.3. MODEL SELECTION

2. Optimization stage: after generating the initial ruleset {Ri}, generate and prune two

variants of each rule Ri from randomized data using procedure 1.1 and 1.2. But

one variant is generated from an empty rule while the other is generated by greedily

adding antecedents to the original rule. Moreover, the pruning metric used here is

(TP+TN)/(P+N). Then the smallest possible DL for each variant and the original rule

is computed. The variant with the minimal DL is selected as the final representative

of Ri in the ruleset. After all the rules in Ri have been examined and if there are

still residual positives, more rules are generated based on the residual positives using

Building Stage again.

3. Delete the rules from the ruleset that would increase the DL of the whole ruleset if

they were in it and add resultant ruleset to RS.

END DO

For this model parameters that will be tuned and its specific range are listed below:

� MinWeight from 1 to 6

� Number of optimizations (NumOpt) from 1 to 6

� Number of folds from 2 to 7

4.3.4 GBM

Another algorithm used is named as GBM which stands for Generalized Boosted Regression

Models. Model GBM is specified by method = ’gbm’ in CARET and it uses GBM R package

which implements extensions to Freund and Schapire’s [25] AdaBoost algorithm and J.

Friedman’s [26] gradient boosting machine.

A very simplified explanation about how Gradient boost machine works is based on the

following steps [27]:

� Fit a model to the data, F1(x) = y

� Fit a model to the residuals, h1(x) = y − F1(x)

� Create a new model, F2(x) = F1(x) + h1(x)

From there we can see that the main idea is to keep adding models that correct errors of

the previous model. Since the procedure was initialized by fitting F1(x), our task at each

step is to find hm(x) = y − Fm(x).

47

CHAPTER 4. EXPERIMENT DESIGN

So in summary boosting is the process of iteratively adding basis functions in a greedy

fashion so that each additional basis function further reduces the selected loss function.

More detail is provided in the CRAN GBM package documentation [28].

For the purpose of this project default loss functions have been used which have been

bernoulli for the binary classification and multinomial for multi class scenario.

CARET GBM implementation has following parameters available for tuning:

� interaction.depth. The maximum depth of variable interactions. 1 implies an additive

model, 2 implies a model with up to 2-way interactions, etc.

� n.minobsinnode. minimum number of observations in the trees terminal nodes. Note

that this is the actual number of observations not the total weight.

� Shrinkage. a shrinkage parameter applied to each tree in the expansion. Also known

as the learning rate or step-size reduction.

� n.trees. the total number of trees to fit. This is equivalent to the number of iterations

and the number of basis functions in the additive expansion.

In this model a total of 480 parameter combination will be evaluated. This is the range

selected for the available parameters for this model:

� interaction.depth: from 1 to 4

� n.minobsinnode: 0.1,0.2,0.3,0.4

� Shrinkage: 10

� n.trees: 10,20,40,80,100,140,180,220

4.3.5 Random Forest

Random Forest was implemented and described by Leo Breiman and Adele Cutle [29] as

follow:

Random Forests grows many classification trees. To classify a new object from an input vector,

put the input vector down each of the trees in the forest. Each tree gives a classification,

and we say the tree ”votes” for that class. The forest chooses the classification having the

most votes (over all the trees in the forest).

Each tree is grown as follows:

1. If the number of cases in the training set is N, sample N cases at random - but with

replacement, from the original data. This sample will be the training set for growing

the tree.

48

4.4. DATA AND PRE-PROCESSING

2. If there are M input variables, a number m << M is specified such that at each node,

m variables are selected at random out of the M and the best split on these m is used

to split the node. The value of m is held constant during the forest growing.

3. Each tree is grown to the largest extent possible. There is no pruning.

Reducing m reduces both the correlation and the strength. Increasing it increases both.

Somewhere in between is an ”optimal” range of m - usually quite wide. Using the oob (out

of bag) error rate a value of m in the range can quickly be found. This is the only adjustable

parameter to which random forests is somewhat sensitive.

Out of bag error estimation works as follow: Each tree is constructed using a different

bootstrap sample from the original data. About one-third of the cases are left out of the

bootstrap sample and not used in the construction of the kth tree.

Put each case left out in the construction of the kth tree down the kth tree to get a

classification. In this way, a test set classification is obtained for each case in about one-third

of the trees. At the end of the run, take j to be the class that got most of the votes every

time case n was oob. The proportion of times that j is not equal to the true class of n

averaged over all cases is the oob error estimate. This has proven to be unbiased in many

tests.

Parameter range and description chosen to evaluate this algorithm are:

� mtry Number of variables randomly sampled as candidates at each split. Range

selected: 2,4,6,8,10

� maxdepth. represents the depth of each tree in the forest. The deeper the tree, the

more splits it has and it captures more information about the data. Range selected:

2,3,4,5

� ntree Number of trees to grow. This should not be set to too small a number, to

ensure that every input row gets predicted at least a few times. While not possible to

use a train grid for this parameter value was fixed to 100 to reduce huge time taken to

perform all test.

4.4 Data and pre-processing

As presented before NSL-KDD dataset was used in this evaluation. This dataset contains

files either with binary classification i.e normal or anomaly or specific attack for each sample

in a different file.

49

CHAPTER 4. EXPERIMENT DESIGN

In order to perform multi classification evaluation dataset was process to map each attack

to its profile: Dos, Probe, R2L, U2R and normal in a new column named profile. Once this

is known another column named class is added with normal or anomaly classification.

In addition to evaluate models capabilities for detecting new attacks a new column named

novel was included to indicate that the sample represent a novel attack, this means that the

attack was not present in the whole train dataset but it is now present in test dataset.

Table 4.2 shows mapping performed for all the novel attacks present in the test dataset,

also it illustrate new fields included in the pre-processing step.

attack profile class novel

apache2 DoS anomaly 1

sendmail R2L anomaly 1

sqlattack U2R anomaly 1

mscan Probe anomaly 0

normal normal normal 0

...

Table 4.2: Additional fields added to dataset, novel attacks

Random Forest had the limitation of supporting a maximum number of 52 levels. This

represent a problem as one of the fields in the dataset, service, has 70 different levels. To

overcome this limitation approach taken was to convert 18 less frequent services in the

dataset to service other. Specifically services http 2784, aol, harvest, http 8001, tftp u,

pm dump, red i, tim i, urh i, shell, printer, X11, pop 2, remote job, rje, ntp u, IRC,

sql net were converted to other.

4.5 Resampling and model validation

From the existing option for re sampling a Cross Validation approach was chosen for validate

the different models. In our case a 5-fold cross-validation was selected, meaning that for 4/5

of the data will be used for training and then predictions and evaluation will be done with

the remaining 1/5. As data is split in 5 parts this process is performed the same number of

times, that is, 5. This has been considered to be enough for comparison purposes of different

parameter set.

This is specified in CARET environment with a trainControl object as showed below:

xCtrl <- trainControl(method = ”cv”, number=5,classProbs = TRUE,verboseIter =

TRUE,allowParallel = TRUE)

50

4.6. REPRODUCIBILITY

Parameter classProbs is configured as TRUE and it specify whether class probabilities should

be computed for held-out samples during resample.

Parameter allowParallel is specified as TRUE to allow parallel processing using more than 1

core. Even this is configured number of parallel process to be used needs to be registered.

4.6 Reproducibility

As one easy way to execute fully reproducible tests in parallel mode using the caret package

is by using the seeds argument when the train control is called. This is done with following

command where an integer needs to be specified. Before each model is trained a seed is

specified.

set.seed(1)

4.7 Parallel processing

To allow the use of all cores available on the machine we need to start with setting up a

cluster, a collection of process that will be executing the training. It is possible to specify

an output file to inspect the progress of the activity, note that information will not be in

sequence as each process will write independently. After the cluster is created it needs to

be register. At the end of the script is recommended to stop the cluster to avoid possible

problems with further command executions. All this is done with following commands:

cl = makeCluster(detectCores()-1, outfile= “outputfile.txt”))

registerDoParallel(cl)

. . .

stopCluster(cl)

51

CHAPTER 4. EXPERIMENT DESIGN

4.8 Rules generation

Selected models allow rule generation either directly from the train model produced by the

training on CARET or by other packages which are explained below:

C5.0

This model provides directly rules obtained from the final model, i.e model with best

parameters. This is done by selecting parameter rules from the finalModel object as shown:

fit.c50$finalModel$rules

J48

J48 model produces a tree but it can be converted to rules by using additional package

partykit. First model is converted into a party object which can be used as argument to a

function that will output the rules. This is exemplified in the following box:

library(”partykit”)

pres = as.party(fit.J48$finalModel)

rules = partykit:::.list.rules.party(pres)

JRip

This model supports as well rule generation from the final model produced after training:

fit.JRip$finalModel$rules

GBM

GBM model does not produce rules directly however it is possible to obtain them by using

an additional packaged called inTrees [30] which is a framework for extracting, measuring,

pruning, selecting and summarizing rules from a tree ensemble which includes random forests,

xgboost and gbm models. Steps to produce rules from a GBM final model are showed in

following text box:

treeList = GBM2List(fit.GBM$finalModel,x)

ruleExec = extractRules(treeList,x)

ruleExec = unique(ruleExec)

ruleMetric = getRuleMetric(ruleExec,x,yc)

ruleMetric = pruneRule(ruleMetric,x,yc)

ruleMetric = unique(ruleMetric)

learner = buildLearner(ruleMetric,x,yc)

readableLearner = presentRules(learner,colnames(x))

52

4.9. OUTPUT FILES

Random Forest

Random Forest itself does not produce rules, however RFRules method used implements

inTrees package functionalities internally so rules are provide in text format as part of the

final model. It can be obtained with following command:

fitf.RF$finalModel$model

4.9 Output files

The process as defined in previous sections has two main steps, one that will provide best

tuned parameter for each algorithm and a last step which will use those best parameter to

train the algorithms with the full train dataset and then obtain relevant results.

For first step which can be named as parameter tuning following files are produced by the

script:

� train param.RData - File with the trained model. It has been used for later analysis

� BestTuned.txt - File contains best parameter combination i.e with highest accuracy

� train model.jpeg - Graph showing accuracy for each of the parameter combinations.

� PerformanceBestTuned.txt - Contains accuracy and kappa resulted from the cross

validation of the best parameter combination.

Last step will perform training of the models this time using the full train dataset, and it

will produce several files containing the results against the test dataset. Files are stored in a

specific folder for each algorithm. These files are:

� train.RData - File with the trained model. It has been used for later analysis

� tuned params.txt - File contains parameter used for reference.

� times.txt - Contains time taken for executing the training.

� rules.txt - File with rules in text format.

� VarImp.jpg - Graph showing variable importance

� varImp.txt - Variable importance in text format.

� novelresults.txt - For every novel attack, i.e attacks not present in train dataset, number

of detected samples per attack is provided.

� test model results.txt - Results obtained after predicting and comparing with the

test dataset. It includes the confusion matrix and related metrics calculated.

53

CHAPTER 4. EXPERIMENT DESIGN

4.10 Results evaluation metrics

Evaluation of the results can be divided into two different parts whether the assessment of

the best parameter for each algorithm is done or whether performance is evaluated against

the test dataset.

Training Phase results. This step is based on finding the best parameter combination

for each model. In order to do that Accuracy vs. Parameter graphs will be plotted and

inspected. Caret provides directly the best combination and its performance. Time taken

for training will be collected.

Test Phase results. This phase will cover training of the models with the best set of

parameters with the full train dataset. Next step is based on predicting values on the test

dataset and comparing them with the expected values. This provides the confusion matrix

which will be provided.

In addition metrics calculated from the confusion matrix will be included in the results.

Description has been provided in Section 3.5.7 but metrics will be slightly different depending

on type of classification: binary or multi class.

� Binary: Accuracy, kappa, sensitivity, specificity, balanced accuracy, detection

prevalence, and prevalence

� Multi class. Overall Accuracy and Kappa and several metrics per class which include

sensitivity, specificity, balanced accuracy, detection prevalence, detection rate and

prevalence

In general we would consider a better algorithm when it has a high specificity, as number of

wrong alerts is reduced, and high sensitivity, as more attacks can be detected.

For the multi class scenario metrics are calculated comparing each factor level to the remaining

levels, using class normal as reference would give relevant information for comparison.

54

CHAPTER5
RESULTS ANALYSIS: BINARY

CLASSIFICATION

Following chapter cover analysis of results obtained for all algorithms: C50, J48, JRip,

GBM and Random Forest in the binary scenario: normal or anomaly. Parameter

tuning and evaluation of best parameter set on the test dataset is provided.

55

CHAPTER 5. RESULTS ANALYSIS: BINARY CLASSIFICATION

56

5.1. TRAINING PHASE RESULTS

5.1 Training phase results

5.1.1 C50

Algorithm C50 was evaluated to obtain the best value for its parameters. In this case options

for tuning were the number of boosting iterations, named trials, and winnow with logical

value. Following graph shows obtained accuracy for all possible combination evaluated:

Figure 5.1: C50 class accuracy evaluation

As observed in Figure 5.1 boosting iteration has a positive effect on accuracy when it

increase specially in the first values. Then accuracy remains with not major difference after

approximately 10 iterations. Best parameter values was obtained when winnow is false and

15 boosting iterations obtained a training accuracy of 0.9979358 and a training Kappa of

0.9958519.

5.1.2 J48

J48 was trained using all parameter combinations defined. For this model a set of confidence

threshold with range from 0 to 0.5 with 0.05 as step was configured. Similarly the minimum

instances per leaf was defined in a range from 0 to 375. All results combined are presented

in Figure 5.2. In this figure we can observe a negative trend when instance per leaf increase

with no mayor difference in terms of the confidence threshold used, specially after 100

instances per leaf.

57

CHAPTER 5. RESULTS ANALYSIS: BINARY CLASSIFICATION

Figure 5.2: J48 class accuracy evaluation all results

Some difference is observed related to the confidence threshold used when lowest range of

instances per lead is used. In this range is where highest accuracy can be observed. In order

to get a better view Figure 5.3 provides a zoomed view best performance range.

Figure 5.3: J48 class accuracy evaluation detail

Best train accuracy, 0.9961 was obtained with a 0.5 confidence threshold and 1 minimum

instance per leaf of 1. Kappa was 0.9922 in this case.

58

5.1. TRAINING PHASE RESULTS

5.1.3 JRip

Jrip algorithm was trained to evaluate accuracy of following parameters:

� MinWeight from 1 to 6

� Number of optimizations from 1 to 6

� Number of folds from 2 to 7

For each of the parameter combination obtained cross validation accuracy is shown in the

figure below:

Figure 5.4: JRip class accuracy evaluation

For this algorithm best accuracy was obtained with 5 folds, a minimum weight of 1 and

number of optimizations equals to 5. For that parameter combination performance is

0.9963084 for accuracy and 0.9963084 for Kappa.

5.1.4 GBM

Gradient boosting machine was trained with 4 different shrinkage values: 0.001, 0.05, 0.1

and 0.2, a maximum tree depth of 4 with a highest number of boosting iterations of 140

obtaining values for previous iteration levels. Min number of observations in the node was

fixed to 10. All results obtained are plotted in the Figure 5.5.

59

CHAPTER 5. RESULTS ANALYSIS: BINARY CLASSIFICATION

Figure 5.5: GBM class accuracy evaluation all results

Looking at all results it can be observed that accuracy is very low when shrinkage has

lowest values in the defined range, i.e 0.01 and 0.02 and iterations are low around 0.53. This

behaviour tends to improve when iterations increase to 6 or 7 with shrinkage of 0.01 and it

is only observed with a single iteration for shrinkage of 0.02.

Figure 5.6: GBM class accuracy low performance zoom

In any case for the purpose of this project we are looking to identify best performance so

a deeper view on highest range is needed to identify best combination. This is shown in

Figure 5.7 where highest accuracy was reached with 140 trees, iteration depth of 4, shrinkage

of 0.2 and 10 minimum number of observations. For this parameter combination accuracy

was 0.9971021 with a value for metric Kappa of 0.9941768.

60

5.1. TRAINING PHASE RESULTS

Figure 5.7: GBM class accuracy evaluation

5.1.5 Random Forest

As performed with others algorithms Random Forest was trained and accuracy obtained for

each of the parameter combination which in this case cover a maximum rule depth from 2

to 5 and number of randomly selected predictors from 2 to 10 with step of 2. Results are

shown in the figure below.

Figure 5.8: Random Forest class accuracy evaluation

From the graph can be observed that best performance is obtained with a maximum rule

depth of 5 and 10 randomly selected predictors. In this case accuracy has a value of 0.97134

with a Kappa value of 0.9422744.

61

CHAPTER 5. RESULTS ANALYSIS: BINARY CLASSIFICATION

5.1.6 Training time consumption

It is possible to obtained the time taken by caret to perform training on each of the algorithms.

Available metrics include total time pass considering all possible parameter combinations

and all cross validation performed. It is also possible to get time taken for fitting the final

model that is using the whole training dataset. This measure will allow to compare training

time for each of the algorithms as training dataset is the same. Following table shows total

time taken for training the model with full dataset, this is with the 125K+ samples:

Algorithm C50 J48 JRip GBM RF

Total Time (s) 136.47 21.27 404.56 41.02 5279.65

Table 5.1: Training time binary classification

5.1.7 Summary

This section will summarize results obtained on training phase for all the algorithms covered.

First in Figure 5.9 performance obtained from all samples is showed. It includes minimum,

first quartile, median, mean, third quartile and maximum values.

Figure 5.9: Algorithm accuracy evaluation cross validation

It can be observed in the re sampled distribution that random forest has the lowest

performance with a high variance for both accuracy and kappa.

Best performing model in this case is C50 with less variance and highest performance for

both accuracy and kappa.

Figure 5.10 shows accuracy and kappa obtained from the cross validation training when

the best parameter set was used. Similarly as observed in re sampled distribution from

Figure 5.9 best algorithm is again C50.

62

5.2. TEST DATASET RESULTS

Figure 5.10: Best tuned results accuracy and kappa

It can be observed that all algorithms except random forest provide similar and good

performance in the range of 99.8-99.6 per cent. Best algorithm is C50 followed in order by

gbm, JRip, J48 and RF.

5.2 Test Dataset results

After training evaluation, set of parameters that provide best performance are known for

each algorithm. Next sections outline performance obtained when predictions are obtained

on the test dataset.

5.2.1 C50

For algorithm C50 confusion matrix and associated metrics are presented below:

Reference

Prediction anomaly normal

anomaly 9236 506

normal 3597 9204

Table 5.2: Confusion matrix C50 binary classification

Accuracy Kappa Sensitivity Specificity

80.91% 62.76% 69.20% 96.40%

Balanced Accuracy Detection Rate Detection Prevalence Prevalence

82.80% 39.39% 40.94% 56.92%

Table 5.3: C50 binary classification main metrics

63

CHAPTER 5. RESULTS ANALYSIS: BINARY CLASSIFICATION

This algorithm provides good results, with a 80.91% of accuracy meaning that around 8 of

10 samples are classified correctly. Important to note that specificity is also high 96.40%

so only 3.6% of the normal traffic is considering as attack. Sensitivity has a fair value of

69.20% around 7 of 10 attacks are successfully detected.

5.2.2 J48

Below metrics calculated from confusion matrix for algorithm J48:

Reference

Prediction anomaly normal

anomaly 9349 536

normal 3484 9174

Table 5.4: Confusion matrix J48 binary classification

Accuracy Kappa Sensitivity Specificity

82.17% 64.93% 72.85% 94.48%

Balanced Accuracy Detection Rate Detection Prevalence Prevalence

83.67% 41.47% 43.85% 56.93%

Table 5.5: J48 binary classification main metrics

Overall this algorithm has a good performance, 94.48% of specificity so very few packets are

considered as attacks when they are not, around 7 of 10 attacks are detected by a sensitivity

of 72.85%. This results in a good accuracy of 82.17%.

5.2.3 JRip

Similarly for algorithm JRip results obtained are showed below:

Reference

Prediction anomaly normal

anomaly 6825 186

normal 6008 9524

Table 5.6: Confusion matrix JRip binary classification

Accuracy Kappa Sensitivity Specificity

72.52% 47.78% 53.18% 98.08%

Balanced Accuracy Detection Rate Detection Prevalence Prevalence

75.63% 30.28% 31.10% 56.93%

Table 5.7: JRip binary classification main metrics

64

5.2. TEST DATASET RESULTS

In this case sensitivity is quite low, only 53.18% of the attacks are detected and even

specificity is very high, 98.08% this result in a degraded accuracy of 72.52%.

5.2.4 GBM

In case of GBM confusion matrix and metrics that are calculated from it are listed below:

Reference

Prediction anomaly normal

anomaly 8936 299

normal 3897 9411

Table 5.8: Confusion matrix GBM binary classification

Accuracy Kappa Sensitivity Specificity

81.39% 63.68% 69.63% 96.92%

Balanced Accuracy Detection Rate Detection Prevalence Prevalence

83.28% 39.64% 40.97% 56.93%

Table 5.9: GBM binary classification main metrics

In this case it can be observed a good performing algorithm, specificity is high, less than 1 of

10 packets are considered as attacks being in reality normal traffic (specificity was 96.92%).

Sensitivity is also high, 7 out of 10 attacks are detected which result in an overall accuracy

of 81.39%.

5.2.5 Random Forest

Results for last algorithm Random Forest are showed below:

Reference

Prediction anomaly normal

anomaly 8880 350

normal 3953 9361

Table 5.10: Confusion matrix Random Forest binary classification

Accuracy Kappa Sensitivity Specificity

80.91% 62.76% 69.20% 96.40%

Balanced Accuracy Detection Rate Detection Prevalence Prevalence

82.80% 39.39% 40.94% 56.92%

Table 5.11: RF binary classification main metrics

65

CHAPTER 5. RESULTS ANALYSIS: BINARY CLASSIFICATION

While this algorithm was the one with worst performance from the training results evaluation

it has performed well against the test dataset. It has a high specificity, 96.40%, with most

of the normal traffic correctly categorized. Around 70% of the attacks are detected which

results in a high accuracy of 80.91%.

5.2.6 Performance on novel attacks

Last evaluation would consider novel attacks present on test dataset, this means that those

specific attacks where not part of the train dataset but they are included in the test dataset.

Results can be observed in Table5.14 showing that new attacks can be detected by leaning

from similar attacks. Best performing algorithm in this case was C50 with 74% of the new

attacks being detected. JRip perform worse with only 20% of the attacks detected and

remaining algorithms archive between 40% and 60%.

Detected C50 J48 Jrip GBM RF

Class Attack Total Detected attacks

DoS

apache2 737 732 217 205 683 132

mailbomb 293 1 0 27 0 0

processtable 685 685 598 161 415 685

udpstorm 2 2 2 0 0 2

Probe
mscan 996 880 518 142 436 904

saint 319 318 316 255 307 307

R2L

httptunnel 133 127 10 1 84 109

named 17 8 11 2 1 3

sendmail 14 9 0 0 3 0

snmpget 178 0 0 0 0 0

snmpguess 331 0 0 0 3 0

worm 2 0 0 0 0 0

xlock 9 0 0 0 0 0

xsnoop 4 2 1 1 0 0

U2R

ps 15 6 4 2 0 3

sqlattack 2 2 0 0 0 0

xterm 13 4 3 0 0 2

Total/

detected
3750 2776 1680 796 1932 2147

% detected 74.03% 44.80% 21.23% 51.52% 57.25%

Table 5.12: Novel Attacks detected in Test Dataset, class scenario

66

5.2. TEST DATASET RESULTS

5.2.7 Overall

This section will aggregate some of the main metrics obtained for all algorithms in order to

evaluate and decide which one is better for potentially be included as part of a modified

Snort flow with machine learning capabilities.

First on Figure 5.11 Specificity is presented. Best performing algorithm is JRip with best

result of 98.08% followed by Random Forest and GBM with 96-97%. J48 and C50 have

lowest performance among all evaluated algorithms with values around 94%. This metric is

important because a high value will reduce the number of wrong alerts in the system which

can reduce unnecessary costs.

Figure 5.11: Test Dataset Specificity Results

Sensitivity is presented for each of the algorithms in Figure 5.12. Jrip is the worst algorithm

in this case, only around 5 of 10 attacks are detected by the system which is not something

good enough. Remaining models have around 69% in case of Random Forest and GBM and

72% for J48 and C50. Overall performance obtained has been good and many attacks are

detected.

Figure 5.12: Test Dataset Sensitivity Results

67

CHAPTER 5. RESULTS ANALYSIS: BINARY CLASSIFICATION

Finally overall Accuracy is presented in Figure 5.13. Lowest performing algorithm is Jrip

impacted by lower sensitivity. Other algorithms have similar good performance of around

80%.

Figure 5.13: Test Dataset Accuracy Results

As a final conclusion algorithm that would be selected from the ones evaluated is GBM. Jrip

algorithm would not be consider as sensitivity is too low. J48 and C50 have lower specificity

than the rest and it is preferred to have a better value to reduce wrong alerts that can cause

increasing costs in terms of time and resources in the organizations when there is no reason

to inspect that traffic. Random forest is then discarded against GBM due to the very high

training time required, as presented in Section 5.1.6 being 100 times higher than GBM.

It is also observed that algorithms are able to detect new attacks by learning from previous

known attacks which aggregated for all algorithms in Figure 5.14. GBM archive a decent

rate of 50% of the new attacks being detected.

Figure 5.14: Novel attacks detection performance class

68

CHAPTER6
RESULTS ANALYSIS: MULTICLASS

CLASSIFICATION

Following chapter cover analysis of results obtained for all algorithms: C50, J48, JRip,

GBM and Random Forest in the multiclass scenario: Dos, Probe, R2L, U2R and

normal traffic. Parameter tuning and evaluation of best parameter set on the test

dataset is provided.

69

CHAPTER 6. RESULTS ANALYSIS: MULTICLASS CLASSIFICATION

70

6.1. TRAINING PHASE RESULTS

6.1 Training phase results

6.1.1 C50

Algorithm C50 was evaluated to obtain the best value for its parameters. In this case options

for tuning were the number of boosting iterations, named trials, and winnow with logical

value. Following graph shows obtained accuracy for all possible combination evaluated:

Figure 6.1: C50 multi class accuracy all results

It can be observed that there is no much difference when using winnowing or not and that

performance increase with the number of iterations. From approximately nine iterations

accuracy seems to converge. To get better visibility graph is zoomed around the area and

shown in next figure:

Figure 6.2: C50 multi class accuracy evaluation detail

In this case highest accuracy was obtained when number of trial is 43 and winnow is false.

For that parameter set an accuracy of 0.9978961 and a kappa of 0.9963195 was reached on

the cross validation.

71

CHAPTER 6. RESULTS ANALYSIS: MULTICLASS CLASSIFICATION

6.1.2 J48

Model J48 was evaluated with a parameter set that includes tuning of confidence threshold

and minimum instances per leaf. Values used for confidence threshold start from 0 to 0.5

using a step of 0.05, resulting in a total 11 possible values. Similarly for minimum instance

per leaf a range from 0 to 375 in step of 25 was considered.

Figure 6.3: J48 multi class accuracy evaluation all results

Figure 6.3 shows results for all configured combinations. It can be observed that accuracy

decrease when minimum instances per leaf increase with similar values for confidence

threshold. In the lowest range of parameter minimum instances per leaf there is difference

in terms of the confidence threshold used and in this area highest accuracy is archived.

A more detailed view on best accuracy range is shown in Figure 6.4 where best parameter

set is highlighted and was obtained with 1 minimum instance per leaf and a confidence

threshold of 0.5. For those settings train accuracy was 0.9951572 with a Kappa of 0.9915263.

6.1.3 JRip

Algorithm JRip was trained covering a range for parameters number of folds, minimum

weight and number of optimization presented below:

� MinWeight from 1 to 6

� Number of optimizations from 1 to 6

� Number of folds from 2 to 7

72

6.1. TRAINING PHASE RESULTS

Figure 6.4: J48 multi class accuracy zoom

All results obtained are presented in Figure 6.5 where best parameter combination provided

highest accuracy is highlighted. Best value was obtained with number of optimization equals

to 5, number of folds equals to 3 and a minimum weight of 1. For those settings training

accuracy was 0.9963084 with a Kappa of 0.9935434.

Figure 6.5: JRip multi class accuracy evaluation

73

CHAPTER 6. RESULTS ANALYSIS: MULTICLASS CLASSIFICATION

6.1.4 GBM

Similarly for model GBM all results obtained from training all defined combinations of

parameters are shown in 6.6. It is observed an increase in performance when a higher

number of boosting iterations is performed. Also there is a correlation on maximum tree

depth as accuracy tends to be higher when that parameter increase. In addition a higher

value for shrinkage seems to provide better results however difference between 0.1 and 0.2 is

not that big.

Figure 6.6: GBM multi class training accuracy all results

To visualize where best parameter combination fall a detailed view of the shrinkage equals

to 0.1 and 0.2, that provide best performance, is presented in Figure 6.7. In this graph best

tuned parameter is highlighted and correspond to 120 boosting iterations, a maximum tree

depth of 3 and a shrinkage of 0.2. Accuracy resulting on training with those settings was

0.9977503 with a Kappa of 0.9960653.

74

6.1. TRAINING PHASE RESULTS

Figure 6.7: GBM multi class training accuracy zoomed

6.1.5 Random Forest

Last algorithm evaluated was random forest where performance against different values of

number of random predictors and maximum rule depth was evaluated. Results are presented

in Figure 6.8 where it can be observed that parameter combination that provides highest

accuracy was 8 randomly selected predictors with a maximum rule depth of 5. For this

configuration of the algorithm train accuracy was 0.9570497 with a subsequent kappa of

0.9237541.

Figure 6.8: Random Forest parameter tuning multiclass

75

CHAPTER 6. RESULTS ANALYSIS: MULTICLASS CLASSIFICATION

6.1.6 Training time consumption

Time consumption when the models were trained with the full train dataset, i.e 125K+

samples, was collected for evaluation. Results are showed in Table 6.1. Most of the algorithms

perform fairly quick to complete the training phase, being the slowest algorithm Random

forest which is 100 times more than the others.

Algorithm C50 J48 JRip GBM RF

Total Time (s) 119.70 45.15 442.26 105.86 6371.06

Table 6.1: Training time binary classification

6.1.7 Overall

Below results obtained from all possible parameter combination and all cross validation tests

performed are showed . Random Forest shows lowest performance with approximately 3%

lower accuracy. Remaining algorithms have low deviation from a best tuned performance of

around 99.7% as illustrated in Figure 6.10.

Figure 6.9: Algorithm accuracy evaluation cross validation

Figure 6.10: Algorithm accuracy on best parameter set

76

6.2. TEST DATASET RESULTS

6.2 Test Dataset results

Once parameter settings are defined for each algorithm next step was to obtain predictions

on the test dataset and evaluate performance. This is covered in next sections for each of

the models selected: C50, J48, JRip, GBM and RF.

6.2.1 C50

After predictions are computed using C50 model a comparison with expected values is

performed. This results in the well known confusion matrix which is showed in Table 6.2.

While confusion matrix does not provide too much detail with absolute numbers it can be

observed that no single samples for attack types R2L and U2R are detected. Number of

wrong alerts is low as normal class has a sensitivity of 95.73% meaning that percentage will

be correctly classified as normal when it is actually normal. Overall accuracy is of 72.19%.

Reference

Prediction DoS normal Probe R2L U2R

DoS 4800 52 156 1 0

normal 2349 9295 86 2765 66

Probe 309 363 2179 121 1

R2L 0 0 0 0 0

U2R 0 0 0 0 0

Total 7458 9710 2421 2887 67

Table 6.2: C50 multi class confusion matrix

Overall Statistics

Accuracy 72.19%

Kappa 56.14%

Table 6.3: C50 multi class overall statistics

Metric DOS Normal Probe R2L U2R

Sensitivity 64.36% 95.73% 90.00% 0.00% 0.00%

Specificity 98.61% 58.97% 96.05% 100.00% 100.00%

Prevalence 33.08% 43.07% 10.74% 12.81% 0.30%

Detection Rate 21.29% 41.23% 9.67% 0.00% 0.00%

Detection Prevalence 22.22% 64.59% 13.19% 0.00% 0.00%

Balanced Accuracy 81.49% 77.35% 93.03% 50.00% 50.00%

Table 6.4: C50 overall statistics per class test dataset

77

CHAPTER 6. RESULTS ANALYSIS: MULTICLASS CLASSIFICATION

6.2.2 J48

Next algorithm is J48 below confusion matrix, overall statistics and several metrics per

class are showed. In this case we can observe that a small number of samples have been

correctly classified as R2L and U2R, while sensitivity for those classes is low, 4.64% and

11.94% respectively system can detect some of them. Also number of false detected attacks

is low, observed in sensitivity for normal class which is 94%.

Reference

Prediction DoS normal Probe R2L U2R

DoS 5152 62 207 1 0

normal 2215 9181 610 2472 48

Probe 88 463 1604 277 10

R2L 3 3 0 134 1

U2R 0 1 0 3 8

Total 7458 9710 2421 2887 67

Table 6.5: J48 multi class confusion matrix

Overall Statistics

Accuracy 71.33%

Kappa 54.52%

Table 6.6: J48 multi class overall statistics

Metric DOS Normal Probe R2L U2R

Sensitivity 69.08% 94.55% 66.25% 4.64% 11.94%

Specificity 98.21% 58.35% 95.84% 99.96% 99.98%

Prevalence 33.08% 43.07% 10.74% 12.81% 0.30%

Detection Rate 22.85% 40.73% 7.12% 0.59% 0.04%

Detection Prevalence 24.05% 64.44% 10.83% 0.63% 0.05%

Balanced Accuracy 83.65% 76.45% 81.05% 52.30% 55.96%

Table 6.7: J48 Multi class metrics on test dataset

78

6.2. TEST DATASET RESULTS

6.2.3 JRip

For algorithm JRip we can observe a fair overall accuracy of 75%. Sensitivity of class Normal

is good with 97.31% of the normal samples correctly classified as normal which results in

very low wrong alerts in the system. Also R2L and U2R classes shows some detection which

even low is positive considering the low number of samples present in the train dataset.

Reference

Prediction DoS normal Probe R2L U2R

DoS 5355 52 198 0 0

normal 1924 9449 640 2264 50

Probe 179 204 1583 3 0

R2L 0 3 0 616 7

U2R 0 2 0 4 10

Total 7458 9710 2421 2887 67

Table 6.8: JRip multi class confusion matrix

Overall Statistics

Accuracy 75.47%

Kappa 61.13%

Table 6.9: JRip multi class overall statistics

Metric DOS Normal Probe R2L U2R

Sensitivity 71.80% 97.31% 65.39% 21.34% 14.93%

Specificity 98.34% 61.99% 98.08% 99.95% 99.97%

Prevalence 33.08% 43.07% 10.74% 12.81% 0.30%

Detection Rate 23.75% 41.92% 7.02% 2.73% 0.04%

Detection Prevalence 24.86% 63.55% 8.73% 2.78% 0.07%

Balanced Accuracy 85.07% 79.65% 81.73% 60.64% 57.45%

Table 6.10: JRip Multi class metrics on test dataset

79

CHAPTER 6. RESULTS ANALYSIS: MULTICLASS CLASSIFICATION

6.2.4 GBM

Results for GBM algorithm in multi class scenario are showed below. It can be observed that

none R2L or U2R classes are detected, indicated by a of 0% for those classes. In addition

97.44% of sensitivity for normal class is a positive result as false attack rate would be low in

a system implemented with this algorithm.

Reference

Prediction DoS normal Probe R2L U2R

DoS 5347 33 252 6 1

normal 1888 9461 807 2878 66

Probe 223 216 1362 3 0

R2L 0 0 0 0 0

U2R 0 0 0 0 0

Total 7458 9710 2421 2887 67

Table 6.11: GBM multi class confusion matrix

Overall Statistics

Accuracy 71.73%

Kappa 54.41%

Table 6.12: GBM multi class overall statistics

Metric DOS Normal Probe R2L U2R

Sensitivity 71.69% 97.44% 56.26% 0.00% 0.00%

Specificity 98.06% 56.06% 97.80% 100.00% 100.00%

Prevalence 33.08% 43.07% 10.74% 12.81% 0.30%

Detection Rate 23.72% 41.97% 6.04% 0.00% 0.00%

Detection Prevalence 25.01% 66.98% 8.00% 0.00% 0.00%

Balanced Accuracy 84.88% 76.75% 77.03% 50.00% 50.00%

Table 6.13: GBM Multi class metrics on test dataset

80

6.2. TEST DATASET RESULTS

6.2.5 Random Forest

Last algorithm evaluated is Random Forest, which archive a fair overall accuracy of 76.61%.

Detection capabilities for this algorithm are good, 97.66% of normal samples, 77.89% of DoS

samples and 81.66% of Probe samples are correctly classified. This translates into a good

detection rate of attacks with a low number of false alerts. On the other hand no instances

of U2R and R2L are detected but volumes are low.

Reference

Prediction DoS normal Probe R2L U2R

DoS 5809 57 1 0 0

normal 1590 9484 443 2860 67

Probe 59 170 1977 27 0

R2L 0 0 0 0 0

U2R 0 0 0 0 0

Total 7458 9710 2421 2887 67

Table 6.14: RF multi class confusion matrix

Overall Statistics

Accuracy 76.61%

Kappa 62.71%

Table 6.15: RF multi class overall statistics

Metric DOS Normal Probe R2L U2R

Sensitivity 77.89% 97.66% 81.66% 0.00% 0.00%

Specificity 99.62% 61.35% 98.73% 100.00% 100.00%

Prevalence 33.08% 43.08% 10.74% 12.81% 0.30%

Detection Rate 25.77% 42.07% 8.77% 0.00% 0.00%

Detection Prevalence 26.02% 64.07% 9.91% 0.00% 0.00%

Balanced Accuracy 88.75% 79.51% 90.19% 50.00% 50.00%

Table 6.16: RF Multi class metrics on test dataset

81

CHAPTER 6. RESULTS ANALYSIS: MULTICLASS CLASSIFICATION

6.2.6 Performance on novel attacks

This section will cover detection evaluation of novel attacks, i.e attacks that were not part of

the train dataset. It can be observed that system was able to learn new attacks such probe

saint almost fully detected by all algorithms.

For new U2R and R2L attacks detection is almost null, but itself performance on those

classes is very low mainly caused by the limited number of samples in the train dataset and

its imbalance.

C50 J48 Jrip GBM RF

Class Attack Total # Detected as specific class

DoS

apache2 737 147 80 638 187 527

mailbomb 293 0 0 0 0 0

processtable 685 0 125 0 0 0

udpstorm 2 0 0 0 0 0

Probe
mscan 996 755 217 170 49 572

saint 319 319 306 310 310 313

U2R

httptunnel 133 0 0 0 0 0

named 17 0 0 0 0 0

sendmail 14 0 0 0 0 0

snmpgetattack 178 0 0 0 0 0

snmpguess 331 0 0 0 0 0

worm 2 0 0 0 0 0

xlock 9 0 0 0 0 0

xsnoop 4 0 0 0 0 0

R2L

ps 15 0 1 0 0 0

sqlattack 2 0 2 0 0 0

xterm 13 0 1 2 0 0

Total/

detected
3750 1221 732 1120 546 1412

% Detected 32.56 19.52 29.87 14.56 37.65

Table 6.17: Detected novel attacks multi class scenario

6.2.7 Summary

This section will aggregate most relevant metrics for all the algorithms tested and a evaluation

with the aim of decide which one has better performance will be done.

Figure 6.11 shows sensitivity per class,for each class it shows the percentage of samples

correctly classified for that specific class. The most relevant data to look is for class Normal.

This class specific metric shows for normal traffic what percentage is detected as normal, a

higher value results in a low number or wrong alerts irrespective of the class. Performance

is good for all algorithms with values between 94% to 97%.

82

6.2. TEST DATASET RESULTS

It can be observed as well that algorithms C50, GBM and Random Forest are unable to

detect any single sample for attacks type R2L and U2R. Remaining algorithms J48 and

JRip can detect some of the attacks but performance is low anyway. This is caused by the

fact that train data is unbalance for those classes.

For remaining classes Dos and Probe best results are obtained from algorithm Random

Forest with a detection of 77.69% and 91.86% respectively. It is also the algorithm with

highest sensitivity for normal class.

Figure 6.11: Sensitivity by class Multi class scenario

Similarly Figure 6.12 shows specificity obtained for each class and algorithm. In this case

metric for class Normal shows that around 60% of the other classes, i.e attacks, are not

detected as normal class meaning that the attacks are detected even they fall into a different

category attack.

Figure 6.12: Specificity by class Multi class scenario

83

CHAPTER 6. RESULTS ANALYSIS: MULTICLASS CLASSIFICATION

Next overall accuracy is showed for all algorithms in Figure 6.13. Best performing algorithm

is Jrip followed by J48 with very similar performance. All models archive a decent accuracy

of around 75%.

Figure 6.13: Overall accuracy multi class scenario

Figure 6.14 highlights the number of new attacks that have been correctly detected as its

specific class. Best performing model is in this case RandomForest with 37.65% followed by

C50 with 32.56%. In general results are low, this is partially caused by the fact that in the

novel attacks there are significant number of attacks falling into U2R where performance is

quite low for all algorithms due to data unbalance.

Figure 6.14: Percentage of novel attacks with class correctly detected

Still presented information indicates that novel attacks can be detected by learning from

previous known attacks, this is possible because in some cases new attacks are variations of

other attacks.

From all the information presented algorithm that has overall best performance would

be JRip, it has the highest overall accuracy, 97.31% of the normal samples are correctly

categorized so wrong attack numbers would be low. Detection of attack classes is fair, 71.80%

of Dos attacks, 65.39% of Probe are detected. For classes R2L and U2R which have worst

performance by far this algorithm is the best with 21.34% of R2L samples and 14.93% U2R

samples classified correctly.

84

CHAPTER7
CONCLUSION AND FUTURE WORKS

In this chapter we present the final conclusion of this project, taking a look to overall

results for both types of experiments to finally propose several possible improvements

for future work.

85

CHAPTER 7. CONCLUSION AND FUTURE WORKS

86

7.1. CONCLUSION

7.1 Conclusion

As it has been presented in this final project security on communications over networks is

an important concern for many organizations and users. Illegitimates attacks have increased

during all these years, increasing costs on companies, and approach taken by attackers keeps

evolving over the time. Rise in encrypted traffic as an enhancement in security, used as

a secure way of transferring sensitive information such passwords, credit card details has

also make more difficult for telecom operators and security organizations to detect potential

attacks.

On this project binary (normal or anomaly) and multi class (Dos, probe, R2L, U2R and

normal) classification algorithms have been evaluated. Results on binary experiments on

Section 5.2.7 have highlighted that binary classification provides a better overall accuracy

with algorithms archiving around 80% of accuracy, detecting around of 70% of the anomalies

while having a low number of wrong attacks, measured with a specificity of 94-98%.

Algorithms in multi class scenario have showed a decent performance with an overall accuracy

of 70-75% even lower than binary scenario. However it has also showed that some algorithms

for some specific classes can have a very good performance, for example C50 algorithm

detected 90% and random forest 81.66% of the probe attacks. Approximately for Dos

and probe classes typical performance was around 70%. Main problem was the very poor

performance on R2L and U2R classes with 3 of the 5 algorithm not detecting a single attacks

and the others from 5% to 20% of correctly detected attacks. This was possible caused by

the low number of samples for those classes in the train dataset. Detection on novel attacks

has been lower compared to binary scenario.

Finally on this project it has been showed from the experiments executed that novel attacks

can be detected from learning on previous attacks which have similarities that machine

learning algorithms are able to synthesize. On Section 5.2.6 and Section 6.2.6 it has been

proven that new attacks can be detecting archiving a 74.03% of new attacks detected on

test dataset by C50 algorithm in binary classification. Other algorithms archive lower

performance but some algorithms reach a fair detection rate of 57.25% for random forest ad

51.52% for GBM in binary scenario.

All these results suggest that addition of machine learning capabilities in a NIDS can enhance

their detection capabilities and reduce time taken to detect new attacks. The proposed

approach can directly produce rules to be included to Snort which can also feedback system

to update detection capabilities over the time.

87

CHAPTER 7. CONCLUSION AND FUTURE WORKS

7.2 Future works

One of the limitations on this project related to algorithm selection was the condition of

models been able to produce directly rules or trees that can be transformed to rules in order

that they can be directly included in the Snort workflow.

Further work would be to evaluate other algorithms which may provide better performance

and consider the approach to include them into a NIDS not necessarily SNORT.

In addition also would be interesting to evaluate techniques that minimize impact of unbalance

dataset to improve detection of low recurring attacks types such R2L or U2R in case of NSL

KDD dataset is used.

88

Bibliography

[1] Cisco, “Cisco 2018 annual security report.”

https://www.cisco.com/c/en/us/products/security/security-reports.html. visited on 2017-08-20.

[2] R. Tewatia and A. Mishra, “Introduction to intrusion detection system: Review,”

INTERNATIONAL JOURNAL OF SCIENTIFIC AND TECHNOLOGY RESEARCH, vol. 4,

2015.

[3] P. Innella and O. McMillan, “An introduction to intrusion detection systems.”

https://www.symantec.com/connect/articles/introduction-ids. visited on 2017-12-02.

[4] “Bro ids.” https://www.bro.org. visited on 2016-10-20.

[5] “Martin roesch.” https://en.wikipedia.org/wiki/Martin Roesch. visited on 2017-11-25.

[6] O. I. S. F. (OISF), “Suricata ids.” https://suricata-ids.org/. visited on 2017-11-28.

[7] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Towards generating real-life datasets

for network intrusion detection,” I. J. Network Security, vol. 17, pp. 683–701, 2015.

[8] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a systematic

approach to generate benchmark datasets for intrusion detection,” Computers and Security,

Volume 31, Issue 3, pp. 357–374, 2012. visited on 2016-09-15.

[9] C. i. f. C. University of New Brunswick, “Unb iscx 2012 ids datasets.”

http://www.unb.ca/cic/datasets/ids.html. visited on 2016-09-20.

[10] Information and I. Computer Science University of California, “Knowledge discovery in

databases darpa archive.” https://archive.ics.uci.edu/ml/databases/kddcup99/.

[11] M. I. of technology: Linconln Laboratory, “Darpa intrusion detection evaluation : Detections

list file.” https://www.ll.mit.edu/ideval/docs/detections 1999.html. visited on 2017-11-20.

[12] M. Tavallaee, E. Bagheri W. Lu, , and A. Ghorbani, “A detailed analysis of the kdd cup 99

data set,” 2009. visited on 2017-09-15.

[13] U. of New Brunswick, “Nsl-kdd dataset.” http://www.unb.ca/cic/datasets/nsl.html. visited on

2017-10-15.

[14] T. Radcliffe, “Python versus r for machine learning and data analysis.”

https://opensource.com/article/16/11/python-vs-r-machine-learning-data-analysis. visited on

2017-12-05.

89

BIBLIOGRAPHY

[15] S. Hettich and S. D. Bay, “The uci kdd archive: Kdd 99 task.”

http://kdd.ics.uci.edu/databases/kddcup99/task.html. visited on 2017-11-10.

[16] Snort, “Snort manual: how to create rules.”

http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node27.html. visited on

2017-11-28.

[17] C. Mazzierello, C. Sansone, and F. Olivero, “Snort preprocessor and detection engine.”

https://sourceforge.net/projects/s-predator/.

[18] M. Kuhn, “The caret package.” https://topepo.github.io/caret/index.html. visited on

2017-11-20.

[19] J. Brownlee, “How to estimate model accuracy in r using the caret package.”

https://machinelearningmastery.com/how-to-estimate-model-accuracy-in-r-using-the-caret-

package/. visited on

2018-04-10.

[20] J. Brownlee, “Machine learning evaluation metrics in r.”

https://machinelearningmastery.com/machine-learning-evaluation-metrics-in-r/. visited on

2018-04-10.

[21] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann

Publishers, 1993.

[22] M. Kuhn, “Classification using c5.0 user 2013.” http://appliedpredictivemodeling.com/s/user

C50.pdf. visited on 2018-01-08.

[23] W. W. Cohen, “Fast effective rule induction,” in Twelfth International Conference on Machine

Learning, pp. 115–123, Morgan Kaufmann, 1995.

[24] U. of Waikato, “Jrip weka class documentation.”

http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/JRip.html. visited on 2018-05-28.

[25] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-line learning and an

application to boosting,” pp. 119–139, 1997.

[26] J. Friedman, “Greedy function approximation: A gradient boosting machine,” pp. 1189–1232,

2001.

[27] B. Gorman, “A kaggle master explains gradient boosting.”

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/. visited on

2018-0-30.

[28] G. Ridgeway, “gbm: Generalized boosted regression models.”

https://CRAN.R-project.org/package=gbm. visited on 2018-0-30.

[29] L. Breiman and A. Cutle, “Classification and regression by randomforest,” visited on

2018-01-15.

[30] V. K. Houtao Deng, Xin Guan, “intrees: Interpret tree ensembles.”

https://CRAN.R-project.org/package=inTrees. visited on 2018-03-20.

90

	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Acronyms
	INTRODUCTION
	Context
	Problem statement
	Motivation and approach
	Methodology
	Project Outline

	BACKGROUND
	Intrusion Detection Systems
	Signature Based Detection
	Anomaly Based Detection

	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Available NIDS
	BRO IDS
	SNORT
	Suricata

	Datasets
	UNB ISCX IDS 2012
	KDD cup99
	NSL-KDD

	Machine leaning tools
	Python
	R

	PROJECT APPROACH
	Overview
	Objectives
	NSL KDD Dataset
	Dataset Overview
	Data files
	Attack distributions
	Feature/fields

	Snort
	Snort components
	Snort rules
	KDD features in Snort

	R Caret package
	Models available
	Optimizing tuning parameters
	Re-sampling
	Performance measurements
	Best tuned parameters
	Runtime performance
	Model Evaluation Metrics in R

	EXPERIMENT DESIGN
	Overview
	Environment
	Model selection
	J48
	C50
	JRip
	GBM
	Random Forest

	Data and pre-processing
	Resampling and model validation
	Reproducibility
	Parallel processing
	Rules generation
	Output files
	Results evaluation metrics

	RESULTS ANALYSIS: BINARY CLASSIFICATION
	Training phase results
	C50
	J48
	JRip
	GBM
	Random Forest
	Training time consumption
	Summary

	Test Dataset results
	C50
	J48
	JRip
	GBM
	Random Forest
	Performance on novel attacks
	Overall

	RESULTS ANALYSIS: MULTICLASS CLASSIFICATION
	Training phase results
	C50
	J48
	JRip
	GBM
	Random Forest
	Training time consumption
	Overall

	Test Dataset results
	C50
	J48
	JRip
	GBM
	Random Forest
	Performance on novel attacks
	Summary

	CONCLUSION AND FUTURE WORKS
	Conclusion
	Future works

	Bibliography

