
Towards an Autonomic Bayesian Fault Diagnosis
Service for SDN Environments

based on a Big Data Infrastructure
Fernando Benayas, Álvaro Carrera and Carlos A. Iglesias

Intelligent Systems Group
Universidad Politécnica de Madrid,

Av. Complutense, 30, 28040, Madrid, Spain
f.benayas@upm.es, a.carrera@upm.es, carlosangel.iglesias@upm.es

Abstract—Software Defined Networks (SDN) are gaining mo-
mentum as a solution for current and future networking issues.
Its programmability and centralised control enables a more
dynamic management of the network. But this feature introduces
the cost of a potential increase in failures, since every modification
introduced on the control plane is a new possibility for failures
to appear and cause a decrement of the quality for the offered
service. Following a classical approach, this kind of problems
could be solved increasing the number of high skilled human
operators, which would dramatically increase network operation
cost. Our approach is to apply Machine Learning and Data
Analysis for monitoring and diagnosis SDN networks with the
goal of automating these tasks. In this paper, we present an
architecture for a self-diagnosis service which is deployed on
top of a SDN management platform. In addition, a prototype
of the proposed service with different diagnosis models for SDN
networks has been developed. The evaluation shows encouraging
results which will be explored in future works.

Index Terms—SDN, Bayesian network, fault diagnosis, Ma-
chine Learning.

I. INTRODUCTION

Computer networks are facing challenging times [1]. The
increasing presence of Internet of Things (IoT) devices in
everyday life and the expected growth in the number of mobile
devices will be a considerable burden in current networks [2].
This is further aggravated by the adoption of 5G technologies
and the development in video definition [3]. Moreover, pro-
gressive adoption of cloud services magnifies traffic overload.
In fact, cloud traffic will reach 14.1 ZB in 2020, almost
quadrupling in the 2015-2020 period [4]. In order to face these
challenges, flexible networking policies are needed [5]. SDN
provides a never seen before level of flexibility in computer
networking [6]. This would enable fast re-routing depending
on traffic demand and congestion. SDN decouples forwarding
and control planes, centralises the latter and exposes it through
an API. Therefore, a more responsive network management
is possible by using software systems that interact with such
APIs according to the data collected from the network and
instructions or policies retrieved from managers. This is a
vast improvement over legacy networking, where forwarding
rules had to be manually configured in each network device
by human operators.

As a consequence of these facts, networking industry is
taking interest in SDN. According to a recent study [7], the
adoption of SDN and Network Function Virtualization (NFV)
is currently high up in the strategic technology agenda of major
telcos and Multiple Service Operators (MSO). Furthermore,
more than 80% Cloud Service Providers (CSP) network ex-
ecutives consider significant the impact of NFV and SDN to
the operating model, and more than 50% of them are going
to invest in these technologies for data center and mobile
core [8]. Hence, the SDN and NFV market is expected to grow
at a Compound Annual Growth Rate (CAGR) of 71.4% in
the 2017-2022 period, reaching USD 54.41 billion of market
value [9].

Notwithstanding the advantages mentioned before, SDN has
some issues of resiliency. Frequent changes in networking
rules made by software systems entails constant possibilities
for faulty traffic policies to be introduced in the network.
This could severely hinder the benefits of switching from
legacy to SDN technology. Hence, a system that allows users
auditing these faults is needed. This is the motivation behind
the architecture proposed in this paper.

This paper is structured as follows. In Sect. II, we present
related works in the field of failure management in SDN
environments. Sect. III proposes an architecture for fault
diagnosis based on Bayesian inference, which is applied in the
prototype exposed in the case study in Sect. IV. Sect. V shows
the results of evaluation of the diagnosis module. Finally,
Sect. VI summarises some conclusions and explore possible
paths for future work.

II. RELATED WORK

Most of the research in fault diagnosis in SDN scenarios
focuses on links/switches failover within the data plane, many
aiming at agility improvement by decentralising tasks. For
example, Kempf et al. [10] proposes that link failover is
detected (and fixed) in switch level instead of the controller
using Bidirectional Fowarding Detection (BFD) instead of
Link Layer Discovery Protocol (LLDP) in order to improve
restoration time. A similar approach is taken by Kim et
al. [11], which also use switches for tasks that do not require



full knowledge of the network, switch and link failures are
detected by LLDP, and repaired by calculating multiple paths
with updated information. Cascone et al. [12] uses “heartbeat”
packets sent by nodes to detect faulty routes: when a node does
not receive them and packet rate drops below a threshold, a
node can request heartbeats to detect if the link is down. Then,
a “link down” message is sent along the primary path until a
node can found a detour for that path.

Similarly, Capone et al. [13] proposes an extension to the
OpenFlow protocol, called “OpenState”. It introduces state
machines into OpenFlow switches, triggering transitions by
packet-level events. Therefore, when a node receives notifica-
tion of a packet affected by a failure in some node or link, it
activates a state transition that creates a pre-computed detour
for that flow. This alternative path is calculated considering
link capacities, and cycle and congestion avoidance.

In contrast, some effort has been put also in centralised
management of link failures. Sharma et al. [14] propose
that restoration and protection recovery methods for in-band
networks are fully implemented at the controller, instead of
delegating them to the switches, whose only involvement in
the process is to detect failures through Loss of Signal (LOS)
and BFD.

Another interesting approach to malfunctioning link de-
tection is the one proposed by SDN-RADAR [15], which
relies on agents, acting as clients that report bad performance
on services consumed by them. When bad performance is
reported, the system extracts and stores the path defined for
the network flow related to each client and service, finding
the link that appears in the most number of ‘faulty’ flows.
Withal the original approach on failure detection using agents
feedback, this work focuses only in malfunctioning links.

In the previous research works, failure was only considered
in links or switches. Howbeit, this concept is severely limited,
since failures could happen in any level of a SDN system:
consequently, some research has been made in fault detection
in SDN where failures at other levels are considered. Tang et
al. [16] propose a system mapping by combining the network
topology with the “Policy View” of each service. These views
are reports consisting in a pair of logical end nodes, traffic
pattern specifications for the service, and a list of required
network functions for the provisioning of the service. This
system mapping is known as “Implementation View”. Using
this view and a SDN reference model, a belief network is
built for each service. Many belief networks are combined to
infer the root cause and the fault location. Following the same
global approach, Beheshti and Zhang [17] propose a system
that studies all the possible locations of the controller and
their related routing trees (Greedy Routing Tree, a modified
shortest-path tree for more resiliency), choosing the location
with the most resilient tree.

A different method is proposed by Chandrasekaran and
Benson [18], considering SDN application failures instead
of link/nodes ones. In order to achieve fault tolerance for
SDN applications, a new isolating layer, called “AppVisor”, is
defined between applications and SDN controller. It separates

the address space between both controller and applications
by running them in different Java Virtual Machines (JVM),
so software crashes are contained into their JVM, but keeps
communication open between them. It also defines a module
which enables network transforming transactions between ap-
plication and controller to be atomic and invertible. Therefore,
an application crash in the middle of a network transforming
message does not affect the network itself. Lastly, it defines
a module (the Crash-Pad module) that takes application snap-
shots before it process an event, so it reverts to the previous
state in case of failure during the event processing. In order
to avoid repeating the same failure, the snapshot is modified.
This can be done by either ignoring the failure-inducing event
or modifying it accordingly to pre-defined policies.

There is also other interesting works for our proposal in
other fields related with different SDN aspects. For instance,
one common approach consists in dealing with the issue of
a centralised controller being a single point of failure, as
presented by Botelho et al. [19]. They propose an architecture
with a back-up controller and replicated data stores. A similar
system is proposed by Li et al. [20]. In this paper, many
controllers are defined for a single network, but in this case the
network is also protected against “hacked”. Katta et al. [21]
consider a situation where a controller fails during handling
of a switch state. This is because the entire event-processing
cycle is managed as a transaction, instead of just keeping a
consistent state between the controllers. Nevertheless, all of
them are passive systems. In contrast, an active approach to the
single point of failure issue has been proposed by Bouacida et
al. [22]. In this case, different classification algorithms are able
to predict if work loads at the controller (as the ones caused
by the simultaneous introduction of multiple new flows) are
short or long-term loads, which is quite useful since the latter
is capable of bringing down the controller and shutting down
the network if none actions are taken.

Finally, it is interesting the approach proposed by Sánchez
et al. [23], where a self-healing architecture for SDN is pre-
sented, including monitoring of data, control and service lev-
els. In this architecture, self-modelling techniques are applied
to dynamically build diagnosis models synthesised as Bayesian
networks. These models are based on topology information
requested from the controller. Then, the diagnosis result is
sent to the recovery block, which chooses the appropriate
strategies to fix the failure diagnosed. In order to complement
this approach, our proposal focuses more on the behaviour of
the network than in the topology itself, as described below.

As we can see, most of the related work focuses on
managing link failures, or failures that completely disable SDN
elements (either links, nodes, SDN controllers, or applica-
tions). We would like to take a different approach, extending
failure diagnosis to faulty traffic configurations (which could
hamper the provision of specific services within the network).
We also intend to address the design of a self-healing service.



Figure 1: Overview of the proposed Fault Diagnosis Architecture.

III. FAULT DIAGNOSIS ARCHITECTURE

This section presents a Fault Diagnosis Architecture based
on Bayesian Reasoning for SDN Environments. Fig. 1 shows
an overview of the architecture which is based on a Data Lake
Architecture which ingests data from different sources, such as
enterprise databases, application monitoring systems, or SDN
controllers which are used to monitor the network behaviour.
Data collected from these sources is ingested to the Data
Lake and analysed applying Big Data techniques to provide
refined and useful data and models to the Fault Diagnosis
Service, which will start a complete diagnosis process when
any symptom is detected analysing data in the Data Lake.
Models required to reasoning about fault root causes are
generated using Machine Learning algorithms inside the Big
Data Analysis and Processing Module. Once those models
are available, they are used to infer a possible cause of
fault in the network. This result can be used by Self-Healing
Service, which implements network policies in order to fix
the failure or mitigate its effect, or by a human operator. The
following subsections detail the main modules of the proposed
architecture.

A. Data Ingestion Layer and Data Lake

The aim of this layer is to implement connectors to ingest
data from all sources to the Data Lake, which is a large storage
repository that holds a vast amount of raw data in its native
format until it is needed. Every data source must use its own
connector to ingest data in streaming or in batches. If the
ingestion is performed through a real time streaming, each
data item is imported as generated by the source. But, if it is

performed in batches, data items are imported in bundles at
periodic time intervals.

In our case, one of the most important data sources is the
SDN Controller. It performs monitoring tasks over the network
and provided detailed information about its status. We propose
collecting the data via requests to the SDN controller, using its
northbound API. Here there are several possible information
sources. One of them is requesting the data directly to the
nodes. In this case, we would have to design a module that
implements the OpenFlow protocol, in order to communicate
with network nodes. The other one is to collect some metrics
using probes directly in the physical network. This could be
used to measure congested or abnormally empty links, or
resource’s consumption at nodes.

B. Big Data Analytics and Processing

Independently of the data source, collected data must be
stored and analysed. Big Data software platforms, such as
ElasticSearch, Spark or Hadoop [24], must be used to index
and classify high volume of collected data in order to simplify
further processing. This would also facilitate conversion to
multiple formats, which would enhance collaboration with
external data units and diagnosis modules, and improving
general flexibility.

As mentioned previously, network traffic and status data
must be processed to be ready to be used in the reasoning
module. Moreover, raw data contains much non-relevant infor-
mation for reasoning process. That information could be not
only useless, but also pernicious, since it could lead to wrong
reasoning processes with a lot of noise and false statistical
patterns. Also, some variables may have missing values due



to network failures altering the ability to monitor them. To
avoid such cases, historical data could be used as knowledge
base.

Summarising, we propose the following features for this
module. Based on data collected from the SDN environment,
we process them and select specific variables that can suggest
a type of failures. Some of them will need further processing,
such as time series analysis, ontology-based reasoning or other
variables can be directly discretised, assigning a class depend-
ing on the range that contains the value. Finally, processed
data is converted to the adequate format to generate diagnosis
models or to infer the most probable cause of fault using those
models.

C. Fault Diagnosis Service

The reasoning process for hypothesis discrimination re-
quired to that essential phase of any diagnosis process is
carried out in this module inferring with data provided by
the processing module presented in Section III-B. Multiple
reasoning techniques can be used for this task. For instance,
rule-based reasoning provides a straightforward method to ex-
press domain knowledge. That knowledge can be represented
as rules expressing cause-effect relationships. However, it is
incapable of dealing with situations uncovered by those rules.
Other alternative is the application of probabilistic reasoning
techniques. Specifically, causal models based on Bayesian
reasoning are interesting for our uncertain and complex envi-
ronment. They make a heuristic model that relates symptoms
and cause of fault, obtaining the probability of a failure based
on those observed variables.

Thus, we apply Bayesian networks as causal models for
fault root cause inference models. This reasoning process starts
with information retrieved from the network and properly
processed in the Reasoning Module, as explained in Section
III-B. Then, this information is sent as a set of evidences to
the Reasoning Module. In the Reasoning Module, a Bayesian
network model will infer a hypothesis of the most probable
status of the network. This status will be predicted according to
a Conditional Probability Table (CPT), where the conditional
relations between the values of the set of evidences and the
status of the network are stored. This diagnosis is offered
through an API to human operators and other modules.

D. Self-Healing Service

After diagnosing a failure in the network, some actions must
be taken to either fix or bypass the failure. Therefore, net-
work policies are modified by this module. Information about
failure, guidelines provided by network managers and further
information about network are taken into account to decide any
policy’s change. Then, these policies are sent to the controller
for their application. We take advantage of the ability of SDN
controllers to present a centralised API where we can inject
new traffic policies. In a legacy network, we would have to
send policies to each network element separately, thus creating
scalability issues. Some reasoning is also needed in this
module, but requirements for this reasoning process are quite

different to the ones required by the hypothesis discrimination
process performed in the Fault Diagnosis Service. Thus, here
is not required to use probabilistic reasoning techniques and
other approaches can be considered. But this module could
be not completely autonomous since some decisions can be
delegated to human operators. For example, network policy
templates could be provided by network managers.

The current version of the proposed architecture does not
focus on this module as exposed in the case study in Sec-
tion IV. Thus, further work must be done to define appropri-
ate reasoning techniques for decision making about network
policies updates.

IV. CASE STUDY

The proposed architecture has been implemented as a
prototype based on a simulated network environment. As
mentioned above, we have focused on covering data ingestion
and processing and generating diagnosis results, leaving self-
healing and decision making about reconfiguration for future
work.

The following subsections detail the experimentation test-
bed as follows. Sect. IV-A presents the network simulation
module to generate realistic topologies and traffic. Sect. IV-B
details the selected SDN controller used in the case study.
Then, Sect. IV-C specifies the data selected to be processed
in the Big Data Analytics and Processing module. Finally,
Sect. IV-D explains how the Reasoning Module of the Fault
Diagnosis Service manages the Bayesian networks used to
reason about the most probable cause of fault.

A. Network Simulation

Our experiments will be carried out with synthetic data
obtained from a network simulation environment. For this
purpose, we have selected the network virtualization tool
Mininet [25] which allows users to simulate an entire SDN
network in a single computer. This tool is appropriate for SDN
scenarios, since OpenvSwitch nodes and external controllers
are supported. An OpenvSwitch switch is a virtual switch
that implements the OpenFlow protocol among others. It also
provides an API, through which a plethora of features can be
configured. We will use this API to define a scale-free network
composed by multiple subnetworks. These scale-free networks
have several benefits, such as high error tolerance and very
small diameter [26]. Then, we will connect that network to an
external SDN controller.

A scale-free subnetwork will represent the role of the core
network of the simulated Internet Service Provider (ISP), as
exemplified in Figure 2. This subnetwork will have a random,
but configurable, size (i.e. number of nodes, connections and
datacenters). Each datacenter will be represented by three
hosts. Every of those host provides a streaming service using
Real Time Session Protocol (RTSP) over Real Time Protocol
(RTP). Furthermore, background traffic such as chat, web or
Peer to Peer (P2P) will be emulated using Socat tool. Then,
a configurable number of sub networks will be joined to that
“core” network. They represent ISP’s “last mile” networks.



The number of nodes and hosts (representing end users) is also
configurable. These hosts will communicate among themselves
and will establish connections with streaming servers housed
in datacenters.

To generate faulty data, some failures will be purposely
injected and fixed in the network periodically. Those faults will
be executed periodically either through the SDN controller or
directly at network level through Mininet API. For simulation
purposes, the occurrence of these failures is also configurable.
These changes will be also stored in a network log to enable
machine learning with collected data and then be able to
generate causal models as explained in Section IV-D.

B. SDN Controller

Regarding the SDN controller, we have used Openday-
light [27], supported by companies such as Cisco, Ericsson,
Huawei or ZTE. Opendaylight is designed around a Model-
Driven Service Abstraction Layer (MD-SAL) that describes
network devices and applications as objects. These models are
defined using YANG modelling language. Since a generalised
description of a device or application is given, the specific
implementation does not need to be known. Interactions with
these objects (or models) are processed within the MD-SAL.
Opendaylight communicates with the network through “south-
bound” interfaces anchored to the MD-SAL. These interfaces
implement the protocol used for communication with devices
in the network.

Inside the controller platform, multiple service functions are
defined.

We use some of them to oversee the network status. Specif-
ically, Topology Manager, Switch Manager and Host Tracker
functions will allow us to monitor the network and collect
data. Access to the data granted by these functions is provided
by the Opendaylight controller through its “northbound”
Representational State Transfer (REST) API. This API allows
not only obtaining data, but also make changes in the network
to update configuration and policies if required.

Figure 2: Example of the random network generated for
simulation purposes.

C. Data Ingestion from SDN Controller

The main component of this module is the indexing engine
provided by ElasticSearch which is used to store data from
both network simulator and controller, as explained below.
At simulation beginning, two essential data requests about

topology and nodes status reports are sent to the controller.
These requests are made periodically until simulation finishes.
The network log is also monitored, storing every modification
made in the network, both generated or fixed errors. This
information is used to train the causal models used in the Fault
Diagnosis Service. This monitoring is implemented using
Filebeat [28]. Filebeat monitors the log file, and sends a “beat”
(i.e. a message) to ElasticSearch whenever a new message is
written into it.

Then, data processing is implemented getting time-ordered
reports from Elasticsearch for specific fields that have been se-
lected according to their capability to show changes provoked
by failures introduced in the network. Some fields valueless
for the diagnosis are ignored. For this case study, the output
variables of this module are the followings for every switch:
presence of flows, dropping rules in LLDP flows, presence of
any kind of timeout, recent changing of in-ports, out-ports and
priorities in a given time window, and the presence of hosts in
the network. After data processing, these variables are sent to
the Reasoning Module to start the hypothesis discrimination
process for every switch.

D. Fault Diagnosis Service

The goal of the reasoning module of the Fault Diagnosis
Service is to infer the correct output (failure in the network)
given a set of inputs (network status datasets). For this case
study, we have focused on the development of a switch
diagnosis model. In further developments, this model can
be combined with other causal models for specific services,
platforms or network topologies.

We have applied supervised learning algorithms to generate
different models and evaluate them, as shown in Section V.
This consists in providing training datasets with status-fault
pairs. These labelled data have been generated by the Big Data
Analytics and Processing Module which receives information
from both network controller and network simulator. Then,
training is performed in order to obtain a Bayesian network
model that relates the status of the network with a specific
kind of fault.

The Bayesian model is described using a Directed Acyclic
Graph (DAG), which is a graph composed by nodes and edges.
Each node is a variable considered relevant for the decision
process. Each edge connects two nodes, is directed from one
to another, and represents dependency of the destination node
on the origin node. In a DAG, a cycle of dependency is not
allowed, since a node can not depend on itself.

Our model can diagnose a generic switch. Therefore, when
applying it to a network, we will be able to diagnose the
failure, but we need know what node is the source of those
status variables. This can be done by instantiating different
Bayesian inference processes for each node in the network,
and combining the outputs of each one.

The learning and reasoning library used in this prototype
was GeNIe [29], which is a modelling and learning software
for Bayesian networks and influence diagrams. Particularly,



we have applied the BayesianSearch supervised learning algo-
rithm for network learning on a training dataset obtained from
different simulations. This algorithm will attempt to search the
full space of graphs for the best graph. The suitability of each
graph is measured using the accuracy of the model as a scoring
function. This accuracy is measured using a 10-fold cross-
validation technique. It consists in partitioning the dataset in
10 fragments, using nine fragments for training of the model,
and one fragment for testing. This process is repeated 10 times,
each time using a different fragment as ‘test’ fragment.

V. EVALUATION

In this section, we evaluate the quality of two different mod-
els for switch faults. These faults generated in the simulated
network are the followings:

• S0 - No faults - OK status.
• S1 - Shutting down a node.
• S2 - Disconnecting a datacenter server from the network.
• S3 - Modifying the out-port rules in a node.
• S4 - Modifying the in-port rules in a node.
• S5 - Adding idle-timeouts in a node.
• S6 - Adding hard-timeouts in a node.
• S7 - Changing flow priorities in a node.
• S8 - Forcing a node to drop LLDP packets.
• S9 - Modifying both out-port and in-port rules in a node.

We feed the following information to the models: the pres-
ence of flows (represented by existence of flows), changes in
the number of hosts in the network (modified hosts), changes
in the output and in ports in any flow (changed output and
changed inport), the detection of rules involving dropping
packages with a 35020 Ethernet code (not dropping lldp),
changes in any timeout (modified timeout), changes in the
priority order of the flows (changed priority) and any change
in any flow (changed flow), as shown in Figs. 3 and 4.

Figure 3: DAG for Switch Diagnosis - Model 1.

Two models have been evaluated in this experiment. Model
1 makes use of all variables obtained in the Big Data Analytics
and Processing Module, as shown in Fig. 3. Since this model
could have a low generalisation capability, we have explored
the impact of reducing the number of collected and processed
variables. Thus, we have defined Model 2 shown in Fig. 4. In
this model, instead of including the details of flow changes,
binary variables are defined to state if a flow has been
modified.

Figure 4: DAG for Switch Diagnosis - Model 2.

These models have been validated using a balanced dataset
with 184 fault diagnosis cases from simulated networks. The
results obtained from both models can be seen in Table I and
Table II. These tables show different metrics for both causal
models. The overall metrics of both models can bee seen in
Table III.

Fault Type S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
F1-Score 0.69 0.75 1.00 0.96 0.95 1.00 0.95 0.94 0.93 0.87

Recall 0.59 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 0.87
Precision 0.83 0.6 1.00 0.92 0.90 1.00 1.00 0.89 0.88 0.87
Accuracy 0.90 0.97 1.00 0.99 0.98 1.00 0.99 0.99 0.98 0.98

Table I: Metrics for Model 1.

Fault Type S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
F1-Score 0.77 0.89 1.00 0.31 0.00 0.97 0.90 0.00 0.86 0.00

Recall 0.69 0.89 1.00 1.00 0.00 0.94 0.83 0.00 1.00 0.00
Precision 0.87 0.89 1.00 0.18 0.00 1.00 1.00 0.00 0.76 0.00
Accuracy 0.92 0.99 1.00 0.72 0.86 0.99 0.98 0.96 0.95 0.92

Table II: Metrics for Model 2.

Model M1 M2
F1-Score 0.904 0.570

Recall 0.936 0.635
Precision 0.889 0.573
Accuracy 0.978 0.929

Table III: Comparison of both models.

As shown in Table III, Model 1 significantly outstrips Model
2. Taking a closer look into Table I and Table II, Model 1
obtains perfect scores in the diagnosis of S2 and S5 statuses.
However, Model 2 obtains better results in all four metrics
for the S0 status diagnosis. Particularly, Model 2 shows a
better recall in S0 fault diagnosis than Model 1, due to more
S0 statuses being diagnosed as such. Model 2 is also more
effective for S1 faults. In S1 diagnosis in Model 1, a recall of
1.00 combined with a precision of 0.6 is a symptom of some
false positive predictions. However, in the rest of the cases,
Model 1 shows similar or better results than Model 2.

Model 2 shows similar satisfactory results in the diagnosis
of most status. In fact, as stated before, it shows better results
for S0 and S1 faults. However, it struggles in the diagnosis
of S3, S4, S7 and S9 statuses. This shows that, as expected,
there is a compromise between generalisation capability and
effectiveness. A more-specific model, as Model 1, shows better
results than Model 2.



VI. CONCLUSIONS AND FUTURE WORK

New technologies such as SDN provide a number of benefits
in the virtualisation and management of network services.
Nevertheless, it is needed to research on the application of
techniques for enabling its autonomic management. For this
purpose, Big Data technologies provide the foundation for
collecting and processing huge amounts of raw data from the
telecommunication network.

In this article we have proposed a Big Data based archi-
tecture that takes advantage of Big Data technologies and
explores the use of Big Data analytics based on Bayesian
networks. Main effort has been dedicated to the creation
of the testing environment, since there are not yet available
benchmarks for diagnosis purposes.

We have implemented a prototype which is presented in the
case study section. Finally, two diagnosis models have been
generated following different generalisation criteria. Their
evaluation showed the more specific model has better accu-
racy while non-variable reduction is performed in the data
processing phase.

Therefore, the proposed architecture shows potential for
failure diagnosis in SDN. However, this work is still in
progress. Next steps in our research line include combining
diagnosis models to cope complex cases, not only switch
faults. This can be done by further processing more data
sources, such as final user applications, including probes in the
network and/or servers or implementing testing agents which
could execute specific tests when symptoms or anomalies are
detected in the network. Moreover, the Self-Healing Service
is another important aspect that will be addressed as future
work.

ACKNOWLEDGMENTS

This research has been funded by Spanish Ministry of Indus-
try, Energy and Tourism under the R&D project BayesianSDN
(TSI-100102-2016-12), the Spanish Ministry of Economy
through the R&D project SEMOLA (TEC2015-68284-R) the
Autonomous Region of Madrid through programme MOSI-
AGIL-CM (grant P2013/ICE-3019, co-funded by EU Struc-
tural Funds FSE and FEDER). We also acknowledge the use
of an academic license of the GeNIe bayesian modeler.

REFERENCES

[1] S. Alexander, “When networks hit the wall,” NetworkWorld, Sept. 2017.
[2] Cisco VNI, “Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2016–2021,” Cisco White Papers, 2016.
[3] Cisco, “The zettabyte era: Trends and analysis,” Cisco White Papers,

2016.
[4] Cisco, “Cisco Global Cloud Index: Forecast and Methodology,

2015–2020,” Cisco White Papers, 2015.
[5] A. Vidal, “Flexible networking hot trends at SIGCOMM 2016,” Ericsson

Research Blog, 2016.
[6] S. Baines, “Enterprises want SDN to build flexible networks,” tech. rep.,

Orange, June 2015.
[7] F. Groene, C. Isaac, H. Nalinakshan, and J. Tagliaferro, “The software-

defined carrier: How extending network virtualisation architecture into
IT BSS/OSS architectures opens up transformational opportunities for
telecom and cable operators,” Communications Review, Dec. 2016.

[8] A. C. D. C. S. 2015, “Network transformation survey 2015, final results,”
tech. rep., Accenture, 2015.

[9] Markets and Markets, “Software-Defined Networking and Network
Function Virtualization Market by Component (Solution (Software (Con-
troller, and Application Software), Physical Appliances), and Service),
End-User, and Region - Global forecast to 2022,” 2017.

[10] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takács, and
P. Sköldström, “Scalable fault management for openflow,” in Communi-
cations (ICC), 2012 IEEE international conference on, pp. 6606–6610,
IEEE, 2012.

[11] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y. Turner, and
N. Feamster, “Coronet: Fault tolerance for software defined networks,”
in Network Protocols (ICNP), 2012 20th IEEE International Conference
on, pp. 1–2, IEEE, 2012.

[12] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sanso, “Spider:
Fault resilient sdn pipeline with recovery delay guarantees,” in NetSoft
Conference and Workshops (NetSoft), 2016 IEEE, pp. 296–302, IEEE,
2016.

[13] A. Capone, C. Cascone, A. Q. Nguyen, and B. Sanso, “Detour planning
for fast and reliable failure recovery in sdn with openstate,” in Design
of Reliable Communication Networks (DRCN), 2015 11th International
Conference on the, pp. 25–32, IEEE, 2015.

[14] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “Fast
failure recovery for in-band openflow networks,” in Design of reliable
communication networks (drcn), 2013 9th international conference on
the, pp. 52–59, IEEE, 2013.

[15] G. Gheorghe, T. Avanesov, M.-R. Palattella, T. Engel, and C. Popoviciu,
“Sdn-radar: Network troubleshooting combining user experience and
sdn capabilities,” in Network Softwarization (NetSoft), 2015 1st IEEE
Conference on, pp. 1–5, IEEE, 2015.

[16] Y. Tang, G. Cheng, Z. Xu, F. Chen, K. Elmansor, and Y. Wu, “Automatic
belief network modeling via policy inference for sdn fault localization,”
Journal of Internet Services and Applications, vol. 7, no. 1, p. 1, 2016.

[17] N. Beheshti and Y. Zhang, “Fast failover for control traffic in software-
defined networks,” in Global Communications Conference (GLOBE-
COM), 2012 IEEE, pp. 2665–2670, IEEE, 2012.

[18] B. Chandrasekaran and T. Benson, “Tolerating sdn application failures
with legosdn,” in Proceedings of the 13th ACM Workshop on Hot Topics
in Networks, p. 22, ACM, 2014.

[19] F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira, “On the design
of practical fault-tolerant sdn controllers,” in Software Defined Networks
(EWSDN), 2014 Third European Workshop on, pp. 73–78, IEEE, 2014.

[20] H. Li, P. Li, S. Guo, and A. Nayak, “Byzantine-resilient secure software-
defined networks with multiple controllers in cloud,” IEEE Transactions
on Cloud Computing, vol. 2, no. 4, pp. 436–447, 2014.

[21] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
fault-tolerance in software-defined networking,” in Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Re-
search, p. 4, ACM, 2015.

[22] N. Bouacida, A. Alghadhban, S. Alalmaei, H. Mohammed, and B. Shi-
hada, “Failure mitigation in software defined networking employing load
type prediction,” in Communications (ICC), 2017 IEEE International
Conference on, pp. 1–7, IEEE, 2017.

[23] J. M. Sánchez, I. G. B. Yahia, and N. Crespi, “Thesard: On the road
to resilience in software-defined networking through self-diagnosis,” in
NetSoft Conference and Workshops (NetSoft), 2016 IEEE, pp. 351–352,
IEEE, 2016.

[24] D. Singh and C. K. Reddy, “A survey on platforms for big data
analytics,” Journal of Big Data, vol. 2, no. 1, p. 8, 2015.

[25] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International Conference on Commu-
nication, Computing & Systems (ICCCS), pp. 139–42, 2014.

[26] L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network inspired
data center architecture,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 5, pp. 4–12, 2010.

[27] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards a
model-driven sdn controller architecture,” in World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2014 IEEE 15th International
Symposium on a, pp. 1–6, IEEE, 2014.

[28] V. Sharma, Beginning Elastic Stack. Springer, 2016.
[29] BayesFusion, “Genie modeler.” Available at

https://www.bayesfusion.com/, 2017.


