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Procesamiento Natural del Lenguaje para detectar noticias

falsas

T́ıtulo (inglés): Development of a Fake News Detection System using Ma-

chine Learning and Natural Language Processing Tech-

niques

Autor: Beatriz Hernández-Fonta Codesido
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Resumen

En los últimos años, con las crecientes innovaciones tecnológicas, el número de fuentes

de información ha aumentado considerablemente. En la sociedad actual, en la que todos

estamos ampliamente conectados, las noticias se difunden rápidamente y cualquiera puede

publicar un art́ıculo. Este hecho ha facilitado el crecimiento de las llamadas ”noticias

falsas”. Hemos llegado a un punto en el que, ante una noticia, dudamos de su autenticidad.

La publicación de noticias falsas conduce a la desinformación, a la mala toma de decisiones

y puede ser realmente perjudicial, especialmente cuando está relacionado con determinados

temas como la salud, la poĺıtica, la religión o incluso la mala prensa sobre una determinada

empresa o persona.

El principal objetivo de este proyecto es explorar el uso de modelos de aprendizaje

para detectar ”fake news”. El desarrollo de estos modelos permitirá identificar las ”fake

news” y frenar su propagación, mejorando el entorno digital convirtiendolo en una fuente

de información más fiable y un espacio más seguro para investigar y adquirir conocimientos.

Para lograr llevar a cabo estos desarrollos empezaremos recopilando distintas fuentes de

datos con noticias ya clasificadas como falsas o no. Los datos recopilados se preprocesaron

mediante técnicas de procesamiento del lenguaje natural, como la eliminación de palabras

vaćıas y signos de puntuación, la lematización y la tokenización. Para continuar, se vec-

torizan los datos y por último, utilizando diferentes técnicas de aprendizaje automático se

crearon y entrenaron varios modelos con el fin de obtener la mayor precisión posible.

Todo esto se llevará a cabo utilizando Python con varias de sus libreŕıas pero princi-

palmente Scikit-Learn, una libreŕıa que proporciona múltiples algoritmos de aprendizaje

automático, construida sobre SciPy y que particularmente utiliza NumPy para realizar los

arrays y Pandas para el análisis de datos. Además utilizaremos Hugging Face para poder

implementar el modelo de Transformers BERT.

Palabras clave: Fake news, Autenticidad, Desinformation, Aprendizaje Automático,

NLP, Python, Scikit-Learn, Scipy
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Abstract

Over the last few years with the increasing technological innovations the number of sources

of information have significantly increased. In today’s society, where we are all widely

connected, news spread quickly and anybody can publish a news article. Such an ease has

facilitated the growth of the so-called “fake news”. We are at a point where confronted with

a piece of news, we have doubts regarding its authenticity. Publishing fake news leads to

misinformation, bad decision making and it could be really harmful, especially when it is

related to certain topics such as health, politics, religion or even bad press about a certain

company or person. That is also known as disinformation and large-scale campaigns about

it have become a major challenge for Europe, as a result the commission has developed

numerous initiatives to tackle it.

The main objective of this project is to explore the use of learning models to detect “fake

news”. With the development of these models “fake news” will be identified and stopped

from spreading, leading to an improvement on the digital environment making it a more

reliable source of information and a safer place to research and acquire knowledge .

To make this possible, different sources of data with news already classified as fake or

not will be collected. The gathered data was firstly preprocessed using natural language

processing techniques such as removing stop words and punctuation, lemmatizing and to-

kenizing. To continue, different data representations were presented, and at last, using

different machine learning techniques various models were created and trained in order to

get the best possible accuracy.

In order to carry out the procedures mentioned above, Python has been used with

several of its libraries but mainly Scikit-Learn. Scikit-Learn is a library which provides

multiple Machine Learning algorithms, it’s built upon SciPy and particularly uses NumPy

for making the arrays and pandas for the data analysis. A part from that we will make use

of Hugging Face to enable implementing the Transformers model BERT.

Keywords:

Fake news, Authenticity, Misinformation, Machine Learning, NLP, Python, Scikit-Learn,

Scipy
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Durante estos años ha sido tremendamente importante el apoyo de mis amigos, siempre

dispuestos a ayudarnos, sacado lo mejor los unos de los otros y acompañandonos durante
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CHAPTER1
Introduction

1.1 Context

The concept of “fake news” is not something new, on the contrary, it has been around

since the times of the Roman Empire [1] when Octavian in order to have the public on his

side spread false rumors about Anthony, thanks to that he got the victory on the elections.

Nowadays the Information and Communication Technologies (ICTs) [2] have transformed

the way we interact in profound ways, particularly the communications field has been deeply

affected by digital media and technology. This new environment facilitates persuasive ways

for advertisers and media organisations to communicate with audiences. In this new digital

era social media sites are now the recurring sources of information and that has led to a

competition between professional journalists and amateur publishers for readers attention.

This new environment has played a very important role in the proliferation of “fake news”.

As for the definition of the so called “fake news”, it has not changed much since the

first time it was used. “Fake news” consist on false or misleading information presented as

news usually to influence people on such topics as politics or health or even as a joke.

When referring to “fake news” we must take into consideration the difference between

misinformation and disinformation [3] . Misinformation occurs when the content of the new
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CHAPTER 1. INTRODUCTION

is false but the author is not aware of it, therefore the harm that information may cause is

not intended. On the other hand, when we refer to disinformation the author has generated

a piece of information based on untruthful information in a deliberate manner, usually as a

motivation to influence on the public opinion about certain topics. Although in both cases

a “fake new” is created and the impact it has can be the same, the difference exists on the

intentions of the author to cause harm or not.

“Fake news” are key to influence the public decision in politics, health or the way we

perceive public figures. The impact a news article has depends heavily on the source from

which it comes from, the more recognized it is, the more credibility it will have. The effect

of a news item in a major newspaper is very different from perhaps an anonymous profile

on any social media platform. Nowadays, in the digital era we not only face the problem of

being exposed to fake news but we are also confronted with the speed at which they spread

due to the highly connected society we live in. Most times when a fake new is created it is

strategically design to go viral, the more it spreads, the bigger the repercussion it causes.

Clickbait and eye-catching headlines containing misinformation are key to attract the public

attention, that generates multiple clicks on advertisements and the more clicks it gets more

money they make.

The consequences [1] of fake news are far-reaching, an example of that could be the

2016 US presidential elections during which the term “fake news” gained a lot of popularity

because of the tremendous amount of them that were generated to influence the citizens.

Back in 2020 during the COVID-19 pandemic, “fake news” also increased significantly as

social media was full of theories about how the virus started, how it affected us or how

to avoid contagion. Both cases illustrate how quickly those news went viral and how they

affected the decision making of people, to the point of putting at risk their own health.

The dimensions of the problem are such that Europe has launched numerous campaigns

to give visibility to this problem, appealing to critical thinking. The problem is even bigger

when it comes to the younger generations, as they are those who make a more intensive

use of social media. Although raising awareness about the existing problem is fundamental,

due to the tremendous amount of information circulating on the internet, the sophisticated

designs of fake news to make them apparently real and the speed at which they go viral that

is not enough. Therefore the latest techniques are being used to try fighting this problem.

Currently a lot of work is being done in this field in order to make the internet a safer

place and provide users an environment in which to find quality content and reduce the

amount of false information circulating.

This project aims to help with this problem that has such a big impact in our society.

2



1.2. PROJECT GOALS

By using the latest technologies in Machine Learning and Natural Language Processing

different news will be analyzed in order to determine if they are fake or not. This work

starts by gathering enough datasets to get multiple results to work with looking for a more

accurate conclusion when analyzing the obtained values. Those datasets will firstly be

train by different models and then tested to obtain the results that will help to elaborate a

conclusion about this development.

1.2 Project goals

This project has the following goals:

1. To gather multiple datasets in order to properly model the challenge of fake news

detection.

2. Comparing different classification models by training and testing a few of them with

various level of complexity by using the sources of information previously found.

3. Evaluate the different results obtained from the developed models and analyze their

capabilities in order to collect information on the task at stake.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is as follows:

Chapter 1 Introduction: It presents the topic of the project, explaining its context and

giving and overview the goals willing to archive and how it is structured.

Chapter 2 Background: The technologies and the different environments used to carry

out the project are explained, also related work in the field is presented.

Chapter 3 Models: The different models used to train and test the datasets are ex-

plained in depth.

Chapter 4 Evaluation: This section gathers the results of the models previously de-

scribed explaining the materials, the metrics, and the design used.

Chapter 5 Conclusion: To conclude, in this chapter we evaluate the objectives we first

presented and how they have been archived. As well as that, the results will be analyzed

3



CHAPTER 1. INTRODUCTION

reaching a conclusion on which one is the most suitable for the problem we aim to tackle.

At last future work in this topic is displayed.

4



CHAPTER2
Background

2.1 Enabling Technologies

2.1.1 Introduction

In this chapter we will introduce the different technologies and tools used in the develop-

ment of this project. Firstly we will dedicate a section to describe in detail each of the

technologies used. Following that, we will specify the various tools that have contributed to

the development of the project explaining them all. At last there is a section in which infor-

mation has been compiled on different works in this same field, in this section we comment

on the techniques used and their relationship with our work.

2.1.2 Python

Python [4] is a high-level programming language distinguished by its interpreted nature,

object-oriented design and dynamic semantics. Its appeal lies in its combination of high-level

built-in data structures, dynamic typing and dynamic linking. It works well as a scripting or

glue language, facilitating the connection of existing components. The language’s focus on

simplicity and readability of its syntax reduces the cost of maintaining programs. Python

5



CHAPTER 2. BACKGROUND

supports modules and packages, which encourages program modularity and code reuse.

The Python interpreter and an extensive standard library are freely available in source and

binary formats for all major platforms, allowing unrestricted distribution.

In this first subsection we are going to explain the various Python libraries that were used

to create this project. Each library was used with a different purpose such as representing,

loading, organizing, pre-processing or applying different models to the data. Those libraries

were Pandas, NLTK, SciKit, MatplotLib and Pytorch.

Pandas [5] is a powerful Python library entirely designed for data manipulation and

analysis, it stands out for being flexible and easy to use. The development of the library

began on n 2008 at AQR Capital Management and since the end of 2009 it has been open

sourced.

In besides its role in data analysis, Pandas [6] is widely used for data manipulation, a

process that involves techniques for converting disorganized data into a more usable format.

It is capable of handling well-organized and structured data in the form of tables, arrays or

time series. In addition, it integrates seamlessly with several Python libraries, increasing

its versatility and potential for collaboration with the Python ecosystem.

The library is based on “DataFrames” which are two-dimensional arrays of data consist-

ing of columns with the value of the variable and rows containing a set of values for those

variables. When importing or exporting data it allows both CSV and JSON formats.

Natural Language Toolkit (NLTK) library [7] is one of the most widely used libraries

for natural language processing in Python. It provides an easy-to-use interface for text

preprocessing through a wide range of tasks, including tokenization, stemming and lemma-

tization. Text preprocessing is a crucial step, as it helps to clean and normalize the text

data, making it easier to analyze.

• Tokenization involves breaking down the text into individual words or tokens, essential

to separate individual words from the raw text.

• Stopwords involves removing common and irrelevant words which do not carry much

meaning. NLTK provides a built-in list of stop words for several languages.

• Stemming means removing the suffixes from words reducing them to their base form.

• Lemmatization involves reducing words to their base form based on their part of

speech.

Scikit-Learn [8] is a Python library that provides multiple Machine Learning algorithms

6



2.1. ENABLING TECHNOLOGIES

including regression, classification, dimensionality reduction, and clustering. The library is

built upon SciPy (Scientific Python) that should be installed before using Scikit-learn. It

particularly uses NumPy, a package for managing n-dimensional arrays, and Pandas which

has been explained above.

The algorithms mentioned above are described below:

• Regression [9]: Typically employed to recognize cause-effect connections, predict

trends, perform time series prediction analysis and evaluate the strength of predictors,

regression produces results in the form of continuous data. By focusing on features,

this method allows you to anticipate patterns within the training data, producing a nu-

merical result. Some of the available regression algorithms are linear regression,logistic

regression, Bayesian Linear Regression and Decision Tree Regression.

• Classification: It categorises data based on certain features. The output is discrete

data. Some the algorithms used for this purpose are decision trees, SVM, Random

forest and Perceptron.

• Dimensionality reduction: This works by reducing the amount of random variables to

consider. SVD and PCA are examples of this sort of algorithms.

• Clustering: Applied in situations where the target or outcome variable is not specified

in the datasets, this method gathers similar data points, which allows us to uncover

hidden patterns and associations in our data. As an example of that we have the

K-means algorithm [10]

Matplotlib [11] is a library designed for making 2D plots of arrays in Python. It was

created en 2008 by John D. Hunter because of his need for a packet of Python with cer-

tain requirements. In spite of being mainly written in Python, Matplotlib intensively uses

NumPy and other extension code in order provide good performance. Its characteristics

are based on the features established by its creator:

• Support users of the Scientific Python ecosystem.

• Facilitate interactive data exploration.

• Produce high-quality raster and vector format outputs suitable for publication.

• Provide a simple graphical user interface and support embedding in applications.

• Be understandable and extensible by people familiar with data processing in Python.

7
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• Make common plots easy, and novel or complex visualizations possible.

Some of the plot types Matlab provides are Pairwise data, Statistical distributions and

Gridded data.

PyTorch [12] is a comprehensive framework designed to build deep learning models, a

category of machine learning widely applied in tasks such as image recognition and lan-

guage processing. It is noted for its robust GPU support and use of inverse-mode self-

differentiation, which enables dynamic modifications to computational graphs. This con-

tributes to its broad acceptance for both rapid experimentation and prototyping.

The core components of Pytorch are tensors and graphs:

• Tensors are similar to a multidimensional array, used to store and manipulate the

inputs and outputs of a model, as well as the model’s parameters.

• Graphs are structures of information comprising interconnected nodes, known as ver-

tices, and edges. PyTorch relies on dynamic computation graphs, where the compu-

tation graph is constructed in real-time using the same code that executes computa-

tions during the forward pass, simultaneously creating the necessary data structure

for backpropagation.

2.1.3 Natural Language Processing

Natural Language Processing (NLP) [13], is a subfield of Artificial Intelligence and linguis-

tic, dedicated to make computers understand the statements or words written in human

languages. Natural languages are those languages that are spoken by people for communi-

cating, it came into existence because it was a way for everyone to be able to communicate

with the computer without learning machine specific language.

With the advancement of computing technologies and the increased availability of data,

the way natural language is being processed has changed. At first, a traditional rule-based

system was used for computations, currently they are being done using Machine Learning

and Deep Learning techniques. [14] It was during 1980s when the major work on machine

learning-based NLP started. NLP arises from the combination of various disciplines such

as artificial intelligence, linguistics, formal languages, and computations.

Contrary to what one might think NLP is not just restricted to text data but also to

voice recognition. It can broadly be categorized into two types:

8



2.1. ENABLING TECHNOLOGIES

• Natural Language Understanding (NLU), refers to a process by which an inanimate

object with computing power is able to comprehend spoken language.

• Natural Language Generation (NLG), refers to a process by which an inanimate object

with computing power is able to manifest its thoughts in a language that humans are

able to understand.

Because of the presence of various unknown symbols or links, most times text data can-

not be used as it is. The process called data cleaning is the one through which unnecessary

details are eliminated and only the meaningful portions from data are extracted, this is

made for focusing on the actual content and also to reduce computation to archive this

different methods are followed.

Figure 2.1: Natural Language Processing Techniques

The methods adopted for pre-processing are the ones described below:

• Tokenization refers to the procedure of splitting a sentence into its constituent words.

• PoS Tagging, PoS refers to parts of speech and PoS tagging refers to the process of

tagging words within sentences into their respective parts of speech and then finally

labeling them.

• Stopwords are common words that are removed from the analysis as they are just

used to support the construction of sentences.

• Spelling correction is one of the most important tasks in any NLP project. In spite of

being time consuming is key because without it there are high chances of losing out

on required information.

9
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• Stemming is a process that convert words into their base forms.

• Lemmatization is used to overcame possible problems with the stemming process. In

this process, an additional check is being made, by looking through the dictionary to

extract the base form of a word.

2.1.4 Machine Learning

Machine learning (ML) [15] is a field of computer science that studies algorithms and tech-

niques for automating solutions to complex problems that are difficult to program using

conventional methods. The goal of an ML algorithm is to learn a model or a set of rules

from a labeled data set in order to correctly predict the labels of data points that are not

in the data set. ML algorithms do not require an explicit detailed design, but learn the

detailed design from a labeled data set. The larger the data set, the more accurate they

are.

There are three different styles of learning [16]:

1. Supervised learning involves the use of labeled input data, known as training data,

where each data point is associated with a known label or outcome. The model

undergoes a training process in which it learns to make predictions and adjusts when

its predictions are incorrect. This training iteration continues until the model reaches

a certain level of accuracy on the training data.

Based on the dependent attribute, supervised learning can be categorised into Regres-

sion if the attribute is numerical or Classification if it is categorical.[17]

• A regression problem is when the output variable is a real or continuous value,

such as “salary” or “weight”. The simplest model among many that can be

used for this purpose is linear regression which tries to fit data with the best

hyper-plane which goes through the points.

• A classification problem is when the output variable is a category, such as “red”

or “blue” or “disease” and “no disease”, attempting to draw some conclusion

from observed values. Given one or more inputs a classification model will try

to predict the value of one or more outcomes.here are a number of classification

models. Some of the models used for Classification include decision tree, ran-

dom forest, gradient-boosted tree, multilayer perceptron, one-vs-rest, and Naive

Bayes.
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2. Unsupervised learning works with input data that lacks known labels or outcomes.

The model is built by identifying the structures that are inherent in the input data.

This process may involve extracting rules of thumb, employing mathematical tech-

niques to systematically reduce redundancy, or organizing the data based on similar-

ity.

Unsupervised learning can be dived in two [18]:

• Clustering: The aim is to find homogeneous subgroups within the data, the

grouping is based on distance between observations.

• Dimensionality reduction: The goal is identifying patterns in the features of the

data, is often used to facilitate visualisation of the data.

3. Semi-supervised learning works with input data comprising a combination of labeled

and unlabeled examples. Although there is a defined prediction problem, the model

must simultaneously learn the underlying structures to organize the data and make

predictions.

Figure 2.2: Machines Learning styles

2.1.5 Transformers

The Transformer [19] is today an important deep learning model using the TensorFlow and

PyTorch frameworks. It has gained wide acceptance in various domains, such as natural

language processing (NLP), computer vision (CV) and speech processing. Initially designed

as a sequence-to-sequence model for machine translation, later, subsequent studies revealed

that Transformer-based pre-trained models (PTMs) offer state-of-the-art performance on a

wide range of tasks. Consequently, the Transformer architecture has become the preferred

choice in NLP, especially for pretrained models.
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Distinguished by its distinctive architectural features [20], the Transformers model is

most notable for its departure from conventional reliance on recurrent units. In doing

so, it presents a notable advantage in terms of training efficiency, as it requires less time

compared to previous recurrent neural architectures, such as short-term memory (LSTM).

In the preprocessing phase, the input text is divided into n-grams, which are subsequently

encoded as tokens. Each of these tokens undergoes a transformation, becoming a vector

through a meticulous process facilitated by a word embedding table. This step is essential

to represent the linguistic elements in a continuous vector space. In each layer, each token

is contextualized in the range of the context window with other tokens by means of a

parallel multihead attention mechanism that allows amplifying the signal of key tokens and

decreasing that of less relevant tokens.

There exists two key ideas that have contributed towards the development of conven-

tional Transformer models [21].

• Self-Attention: It enables the capture of ”long-term” dependencies among sequence

elements, a task that traditional recurrent models struggle with in terms of encoding

such connections. When presented with a sequence of items, self-attention assesses

the significance of each item in relation to others. This approach explicitly represents

interactions between all entities in a sequence, particularly beneficial for structured

prediction tasks. To summarize, a self-attention layer enhances each element of a

sequence by incorporating comprehensive global information from the entire input

sequence.

• (Self-)Supervised Pre-training: Initially, pre-training is performed on a large data set

using supervised or self-supervised methods. Subsequently, the weights acquired dur-

ing pre-training are adjusted for subsequent tasks using smaller or medium-sized data

sets. The pre-training phase, especially when based on self-supervision, has proven to

be key to improving the scalability and generalization of Transformer models, facili-

tating the training of models with parameters exceeding one trillion.

Regarding its architecture [22], it follows an encoder-decoder structure but does not

rely on recurrence and convolutions for generating an output. Summarizing it very briefly,

we could say in a general way that the encoder maps an input sequence to a sequence

of continuous representations, which is then fed into a decoder. The decoder, receives the

output of the encoder together with the decoder output at the previous time step generating

an output sequence.

The encoder consists of a stack of six identical layers, where each of them is composed

12



2.1. ENABLING TECHNOLOGIES

of two sublayers:

• The first sublayer implements a multi-head self-attention mechanism. The multi-head

mechanism implements heads that receive a linearly projected version of the queries,

keys, and values, each to produce outputs in parallel that are then used to generate a

final result.

• The second sublayer is a fully connected feed-forward network consisting of two linear

transformations with Rectified Linear Unit (ReLU) activation in between: FFN(x) =

ReLU(W1x+b1)W2+b2 The same linear transformations to all the words in the input

sequence is applied on each of the layers of the encoder, even though each layer employs

different weight (W1,W2) and bias (b1, b2) parameters to do so. On top of that each

sublayer is also followed by a normalization layer.

It is crucial to note that the Transformer architecture lacks an inherent ability to capture

information about the relative positions of words in a sequence due to its non-recurring

nature. To address this limitation, it is necessary to introduce positional encodings in the

input embeddings.

These positional encoding vectors share the same dimensionality as the input embed-

dings and are elaborated using sine and cosine functions with varying frequencies. These

vectors are then added directly to the input embeddings, thus incorporating the essential

positional information into the model.

The decoder also consists on a stack of six identical layers that are each composed of

three sublayers:

• The initial sublayer of the decoder stack takes the previous output of the decoder, en-

hances it with positional information, and employs multihead self-attenuation. While

the encoder is structured to pay attention to all words in the input stream, regardless

of their position in the stream, the decoder is specifically designed to focus only on the

preceding words. Consequently, the anticipation of a word at a given position depends

exclusively on the established outputs of the words preceding it in the sequence. This

selective attention mechanism in the decoder is facilitated by the introduction of a

mask applied to the values resulting from the scaled multiplication of two matrices in

the multihead attention process.

• The second layer implements a multi-head self-attention mechanism similar to the one

implemented in the first sublayer of the encoder. Now, this multi-head mechanism
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receives the queries from the previous decoder sublayer and the keys and values from

the output of the encoder, allowing the decoder to attend to all the words in the input

sequence.

• The last layer implements a fully connected feed-forward network, similar to the one

implemented in the second sublayer of the encoder.

Figure 2.3: Transformers Architecture

As Transformers models have a high complexity, multiple libraries have been created

in order to facilitated its implementation. In this subsection we will specially describe the

Happy Transformers which is the library that we have attempted to for this project. Happy

Transformer is built on top of Hugging Face’s transformers library and allows programmers

to implement and train Transformer models with just a few lines of code. There are various

models we can use such as BERT, DistilBERT, ALBERT and RoBERTa.

Happy Transformer [23] is an open source project with this public repository on GitHub,
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it also uses a number of open source projects many of wich have been described before:

Transformers, Pytorch, Scikit-learn, Numpy, Pandas, tqdm

The library features seven public methods [24] :

1. Text Generation: Generates a coherent and relevant text from an input or context

provided by automated means.

2. Text Classification: Performs text classification by assigning a label to a given text

string.

3. Question Answering: The model answers a question given a body, being the outputted

answer always a ext-span with the provided information.

4. Word Prediction: Predicting the next word or words of a given sentence.

5. Token Classification: Returns a list with the classified word, the probability of the

entity, the predicted entity, the index of the token within the tokenized text, the index

of the string where the first letter of the predicted word occurs and the index of the

string where the last letter of the predicted word occurs.

6. Next Sentence Prediction: Given two sentences it return the probability of one of the

sentences fallowing the other.

7. Text-to-Text: Transforms one type of text into another.

To carry out this project we specially focus on the Text Classification library as we aim

to classify different text which contain news and assign each of them a label.

2.1.6 Environments

To carry out this project different environments and platforms have been used and in this

section we re going to describe all of them.

The first step this project was finding a suitable dataset for what we used Kaggle [25]

which is an online platform, subsidiary of Google. It allows users to find or publish datasets,

it also enables working collaboratively on different projects. Apart from that, the platform

organizes competitions co-hosted by world-class research organizations and companies to

solve data science challenges and offers signed certificate courses toe learn new techniques

with no cost. Kaggle’s community is a diverse group of 15 million data scientists from

students to distinguished researchers present in over 190 countries.
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The project was developed using an instance of JupyterLab provided by the Intelligent

Group System (GSI), which enables the use of notebooks for coding. JupyterLab repre-

sents the latest web-based interactive development environment designed for working with

notebooks, code, and data. Its versatile interface enables users to configure and organize

workflows in fields like data science, scientific computing, computational journalism, and

machine learning. With a modular design, JupyterLab encourages the integration of exten-

sions, providing the flexibility to expand and enrich its functionality.

When we started developing the model using the Transformers, working on a CPU as we

had been doing up until this point do was not enough as to implement this sort of models a

higher computational capacity was required. In order to solve the problem, the Intelligent

Systems Group (GSI) provided us with a GPU where we could run our project successfully

as it gave us more computational power .

Another platform that has been very helpful during the development of the project is

Hugging Face . This is a site focused towards Artificial Intelligence, users collaborate on

Machine Learning models, datasets and applications. It also provides the infrastructure

to demo, run and deploy Artificial Intelligence (AI) in live applications. This is the site

we have used for finding the Happy Transformer model applied in our data. They have a

section dedicated to guides on different tasks “Task Guides” this has been a really powerful

resource as we ended up using the “Text Classification Guide” to implement the model with

our data.

2.2 Related Work

The field of “fake news” detection has grown tremendously recently and it will continue to

do so over the next few years. A lot of this research has been done looking to solve the

need of being able to detect the veracity of the news that we are constantly receiving from

multiple sources of information.

The various studies use different sources of data, models and NLP techniques in order to

find the best combination for creating a system that reports the truthfulness of the pieces

of news we come across accurately.

In this subsection we aim to find different approaches of the same problematic by com-

paring other work previously done on this certain topic.

Ensemble methods [26] use multiple learning algorithms to obtain better predictive per-

formance that any of the constituent learning algorithms alone. In this work by Vinnytsia
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National Technical University, the database contained a significant number of metaparam-

eters, therefore that data had to be split in three, training, testing and validation. Af-

ter prepocesing the data, multiple machine learning techniques were implemented for the

classification of short statements, the techniques used were some of the following, logistic

regression, naive Bayes classifier, Random Forest classifier, Support Vector Machines and

Deep Neural Networks. The results of each of this methods were evaluated separately. Once

the algorithms had been implemented separately, a stacking ensemble was used for com-

bining the results. Several combining algorithms were used to make the final classification

decision:

a) Simple voting. Each model contributes a single vote to the class to which a statement

belongs based on its own classification. These individual votes from each model are

then aggregated, the class with the highest total votes is declared as the classification

result. In the event of a tie, the classification outcome is randomly chosen from the

classes with the highest number of votes.

b) Weighted voting. As in Simple Voting, each model assigns a single vote to the class to

which a statement belongs based on its own classification. The model vote is weighted

according to its classification accuracy on the validation dataset. The aggregated

weighted votes from each model are added, and the class with the highest sum of

weighted votes is declared as the classification result. If there is a tie, the classification

outcome is randomly chosen from the classes with the highest number of votes, just

as in Simple Voting.

For all of the ensembles two different metrics were measured:

a) Classification accuracy based on six available categories

b) Binary classification accuracy. This metric counts the accuracy as if there were only

two possible categories for the statement, true or false, when in this work there are

actually six that go from “Pants on Fire!” (completely false) to “True”

Analyzing the result the conclusion is that the best results were shown by the stacked

ensemble of random forest classifier, support vector machines, deep neural network, naive

Bayes classifier.

Another study by K.J. Somaiya College of Engineering of Mumbai, India [26] used

another dataset with only true or false labels and three different models to find out which

one was the best fit for this problematic. The algorithms used were:
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• Näıve Bayes: It makes quick predictions for the machine learning models and works

best with text classification. It is used for multi-class and binary classifications, the

disadvantage of using it is that it fails to learn the relationship between features as it

treats all features independent of each other.

• Support Vector Machine (SVM): The model is constructed after it has already been

trained. The main motive of SVM is to categorize new data that comes under.

• Passive Aggressive algorithms: Online learning algorithms used for both regression as

well as classification. It is easy to use and work fast but is not as accurate.

After the analysis, the conclusion is that SVM gives the highest accuracy. The approach of

this work is more similar to the one we will take, using three different models and evaluating

the accuracy of each of them for the same dataset.

The approach used in our work for solving the problematic can be similar in some

aspects to those used on the work presented above. Logistic Regression is used both in our

work and in the first study presented, although we use it as an individual model and the

mentioned work uses it as apart of an ensemble method. Support Vector Machine is also

used in our work and booth studies presented, in this case both studies use the method in

its own. In the conclusions of both studies, Support Vector Machine is the best performing

model.

On one hand our work differs from the first one presented on the type of data selected,

our news can only be categorized into two categories where as the first work presented has

up to six different ones. On the other hand, and as we have mentioned above, the second

work presented does use the same data structure as we do.
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3.1 Introduction

In this chapter all the models used during development are collected. We will dedicate a

subsection to explain in depth each of them, describing both the theoretical basis on which

they are based and how they are implemented.

3.1.1 TF-IDF

Term Frequency - Inverse Document Frequency [27], TF-IDF, is mainly used to get a nu-

meric representation of how important a word is across a set of documents, or news in our

case. TF-IDF determines the importance of a term by evaluating its relevance within a

particular document and then adjusting it according to its relevance across all news.

The TF-IDF stands out as a widely adopted method for term weighting in NLP appli-

cations. It assigns a numerical value to a term based on its importance within a document,

adjusted proportionally for its relevance in the entire document corpus. This mathematical

process effectively filters common English words, highlighting the terms that bring the most

meaning to the text. Tasks such as text summarization, information retrieval and sentiment

19



CHAPTER 3. MODELS

classification take advantage of TF-IDF thanks to its powerful weighting mechanism.

In mathematical terms it is described by the following formula: On the equation above

TFIDF (T, d,D) = TF (t, d) ∗ IDF (t,D)

Figure 3.1: TFIDF function

t=term, d=document, D=set of documents. We can see how the value of TF-IDF is obtained

by multiplying the terms TF and IDF calculated separately beforehand. We will now go

into a little more detail on each of these two terms.

TF (t, d), measures the term frequency, giving a value describing how many times a cer-

tain word appears in a document among the number of times all words appear in that same

document. Essentially it quantifies how important is that word to this specific document.

This is shaped by the following equation:

TFij = ni, j
∑

k ni, j

Figure 3.2: TF ij function

IDF (t,D), measures Inverse document frequency, answering the question of, how com-

mon is this word among all the documents.

The equation to calculate it is the following:

idf(t,D) = log |D||d ∈ D : t ∈ d|

Figure 3.3: IDF(t, D) function

The ratio (total documents)/(documents that contain the word) is inverted to give a

higher value to words that are less common among all the documents. Otherwise, high

IDFs would have an astronomical effect on the TF-IDF value.

3.1.2 N-gram model

Count Vectorizer [28] is a scikit-learn package that uses count vectorization to convert

a collection of text documents to a matrix of token counts. Because machines cannot

understand either characters or words, when dealing with text data we need to represent

it in numbers to be understood. This technique enables using text data easily and directly

in Machine Learning and Deep Learning models like text classification. It works tokenizing

the text while performing basic preprocessing techniques.
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It works by tokenizing the data and dividing it into units known as n-grams, with the

option of specifying the length using a tuple in the ngram range parameter. For example,

setting it to 1.1 provides unigrams or 1-grams such as ”whey” and ”protein”, while setting it

to 2.2 provides bigrams or 2-grams, such as ”whey protein”. To implement CountVectorizer,

we initialize the class, providing the necessary arguments, and then we call fit transform().

This process involves executing the fit() function on the data, followed by the transform()

function. These steps establish a vocabulary of n-grams derived from the documents and

encode them into a vector. Afterwards, we use toarray() to convert the vector into an array

and transfer the data to Pandas for further analysis.

Another parameter included is max features, which enables the regulation of the vocab-

ulary size. This parameter facilitates the inclusion of only the most frequently encountered

terms, determined by their term frequency across documents within the corpus.

3.2 Traditional Classifiers

Traditional Classifiers [29] are based on Supervised Learning and the and the connotation

of classifier is due to the fact that the attribute that labels it is categorical in type. Classifi-

cation involves identifying, understanding and grouping concepts and items into categories.

Machine learning applications leverage pre-established training datasets and employ multi-

ple algorithms to categorize the next datasets based on learned patterns. Algorithms use

input training data to predict the probability that subsequent data will fall into one of the

predetermined categories.

The most popular algorithms used for classification are: Logistic Regression, Naive

Bayes, K-Nearest Neighbors, Decision Tree and Support Vector Machines.

Using these models we can help solve problems such as Image classification, Fraud

detection, Document classification, Spam filtering, Facial recognition, Voice recognition,

Medical diagnostic test, Customer behavior prediction, Product categorization or Malware

classification.

Particularly in our case, where we want to a assign a label true/false to each statement

with the highest possible accuracy we have selected some of these models among the many

that exist because these are the ones that we think will archive higher performance, after

applying all of the them will be able to reach a conclusion about which one is more suitable

for our data and our purpose.
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3.2.1 Logistic Regression

Logistic Regression [30] is a classification algorithm in Machine Learning that predicts the

probability of specific classes by analyzing dependent variables. In simpler terms, the al-

gorithm calculates a sum of the input features and evaluates the logistic function of the

outcome. In contrast to linear regression it accepts both continuous and discrete variables

as input and its output is qualitative, additionally it predicts a discrete class. The algo-

rithm analyses relationships between variables helping predict the probability of an event

happening or not being either 0 or 1.

Using the Sigmoid function the algorithm assigns probabilities between 0 and 1 to a

discrete outcome which results on 0 or 1. When working with binary predictions you can

section the population in two by a cut-off on 0.5, whatever is above it belongs to group A

and the remaining part is group B. A hyperplane is used as a decision line to separate both

groups once data points have been assigned to a class using the function.

The Sigmoid function is the one shown underneath:

σ(x) =
1

1 + e−x

Figure 3.4: Sigmoid Function

As we can appreciate in the formula X is the parameter we want to learn, train or

optimize. The Sigmoid function forms an S shaped graph, which means as x approaches

infinity, the probability becomes 1, and as x approaches negative infinity, the probability

becomes 0. The model sets a threshold that decides what range of probability is mapped

to which binary variable.

Figure 3.5: Linear Regression vs Logistic Regression
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In the image above we can visually note the difference between both liner and logistic

regression [31]. The equation by which the variables are related to each other used for linear

regression would be y = a0+a1x2+a2x2+ ...+aixi whereas for logical regression is y(x) =
e(a0+a1x1+a2x2+. . .+aixi)

(1+e(a0+a1x1+a2x2+. . .+aixi) . The probability equation also differs from one type of regression

to the other being the one associated to the linear type p = a0 + a1x1 + a2x2 + . . . + aixi

and the one associated to regression ln( p
1−p) = b0 + b1x1 + b2x2 + . . . + bkxk , where p

refers to the probability.

For training and testing our data using this model, the first step is to import the

model, Logistic Regression, from the Sklearn, Linear Model library. The model has multiple

parameters we can adjust in order to find the best fit for our data, the only parameter that

has been adjusted is the Maximum number of iterations taken for the solvers to converge

which by default is 100 and we have set a value of 5000.

3.2.2 Linear Support Vector Machine

Support Vector Machine (SVM) [32] is a supervised learning algorithm in Machine Learning

designed to address challenging classification, regression and outlier detection challenges.

To achieve this goal, SVM executes optimal data transformations that establish boundaries

between data points according to predefined classes, labels, or outputs. These algorithms

are highly beneficial in a variety of fields, such as healthcare, natural language processing,

signal processing applications, and speech and image recognition.

Now that we have introduced the model and have a better overview of what it is and

how it works, we are at a good point to start digging into the technical details.

In technical terms, SVMs are mainly intended for binary classification problems, with

the objective of identifying a hyperplane that effectively separates data points of different

classes. The location of the hyperplane is optimized for maximum margin, ensuring a clear

boundary between the classes.

On the image shown above we can see the hyperplane previously described. The margin

denotes the largest width of the range parallel to the hyperplane without holding any

internal support vectors. Although it is simpler to define these hyperplanes for linearly

separable problems, in real life, the SVM algorithm attempts to maximize the margin

between support vectors. This search can lead to misclassifications on smaller segments of

data points.

In the particular case of our dataset there are two labels, true/false, that categorise the

news. We aim to have a classifier for these tags that classifies data into either one or the
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Figure 3.6: SVM Hyperplane

other. Normally, SVM splits the data points according to the true or false labels using, in

this case, a two -dimensional line hyperplane. The decision boundary line is denoted by the

hyperplane, in which the data points belong to the true or false category. The hyperplane,

represented as a line, tends to widen the margins between the closest labels. The distance

between the most inmediate label is the largest, making it easier to classify the data.

In the case of non-linear data, a simple straight line is not suitable for separating the

distinct data points. In order to classify the data on this scenario another dimension is

needed to feature space, unlike in linear data were two dimensions are enough.

When applying the model to our data we used the SVM model imported from the

Sklearn.svm library. The model allows us to modify multiple parameters and attributes

adjusting them to our needs according to the data used. In our case we used the parame-

ter ‘C’ which corresponds to regularization, influencing the balance between having a soft

decision boundary and correctly classifying the training points. The simpler the value of

the parameters, the simpler the decision surface, with higher values the decision boundary

is more complex. As well as that, we also modified the parameter ‘kernel’ assigning it the

value ‘linear’, specifying the hyperplane used for classification. If the parameter ‘kernel’ is

not specified by default, a non-linear type will be used.

3.3 Transformers

After a deeper dive into Machine Learning models, we will now focus on transformers which

rely on deep learning, a subset of machine learning.
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In the previous chapter we explained Transformers in depth, in this section we will focus

in particular on the model we have used, Bert and specifically on the one used from the

Hugging’s Face library, bert-base-uncased.

3.3.1 BERT

BERT [33]is a recent Transformers model of language representation that has obtained

surprisingly good results in several comparative tests of language comprehension. This

result indicates the possibility that BERT networks capture structural information about

language. This model BERT (Bidirectional Encoder Representations from Transformers) is

a bidirectional adaptation of Transformer networks. It is trained to simultaneously predict

a masked word within its context and classify whether two sentences are consecutive. The

resulting model can be fine-tuned for various downstream Natural Language Processing

(NLP) tasks, such as question answering and linguistic inference, with minimal adjustments.

It has demonstrated superior performance to state-of-the-art models on all eleven NLP tasks

evaluated in the GLUE benchmark, outperforming them by a notable margin.

The Transformer architecture has two distinct mechanisms [34], an encoder to process

text input and a decoder to generate task predictions. Since the goal of BERT is to create

a linguistic model, only the encoder mechanism is needed. Contrary to sequential models

that process text input in a linear manner (left-to-right or right-to-left), the Transformer

encoder understands the entire sequence of words simultaneously. It is therefore called

bidirectional, although a more accurate term would be non-directional. This feature allows

the model to capture the context of a word by taking into account its entire context, both

to the left and to the right of the word.

When training language models, there is a challenge of defining a prediction goal. To

overcome this challenge, BERT uses two training strategies:

• Masked LM (MLM): Before introducing word sequences into the BERT, 15% of the

words in each sequence are replaced by a [MASKED] token. The model then attempts

to predict the original values of the masked words, taking advantage of contextual

clues provided by the other unmasked words in the sequence. In technical terms, the

prediction process involves:

– Feeding a classification layer on top of the encoder output.

– Transforming the output vectors into the vocabulary dimension by multiplying

them by the embedding matrix.
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– Employing softmax to compute the probability of each vocabulary word.

The BERT loss function focuses specifically on the prediction of the masked values,

disregarding the predictions of the unmasked words. Consequently, the model exhibits

a slower rate of approach compared to directional models. However, this feature is

outweighed by its greater knowledge of the context.

• Next Sentence Prediction (NSP): During the BERT training process, the model re-

ceives pairs of sentences and learns to predict whether the second sentence in the pair

follows the first sentence in the original document. Throughout the training, 50% of

the inputs consist of pairs in which the second sentence is the next sentence in the

original document. The other 50% include a randomly selected sentence from the

corpus, which is assumed to have no direct relationship to the first sentence, as the

second sentence.

To help the model distinguish between the two sentences during training, the input is

undergone the following preprocessing steps before being introduced into the model:

– A [CLS] token is inserted at the beginning of the first sentence and a [SEP] token

is inserted at the end of each sentence.

– Each token is assigned a phrase embedding that indicates whether it belongs to

phrase A or to phrase B. Phrase embeddings work similarly to token embeddings,

but have a vocabulary of 2. A positional embedding is added to phrase B.

– A positional embedding is added to each token to indicate its position in the se-

quence, a concept introduced and detailed in the Transformer article. To predict

the connection between the first and second sentences, the following steps are

executed:

∗ The entire input sequence is processed through the Transformer model.

∗ The output of the [CLS] token undergoes transformation into a 2×1 shaped

vector using a straightforward classification layer, involving learned matrices

of weights and biases. probability of IsNextSequence is calculated using

softmax.

During BERT model training, Masked LM and Next Sentence Prediction are

concurrently trained with the objective of minimizing the combined loss function

derived from both strategies.

There are two main approaches [35] for using BERT: feature extraction and finetuning.
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• In feature extraction, the architecture of the BERT model is preserved, as if the

model’s parameters were ‘frozen’. Features are extracted from the pretrained BERT

model and then fed into a classifier model to solve a given task.

• In finetuning, the model’s parameters are finetuned by adding extra layers to the

original BERT architecture. The new layers are used to train the model on the

downstream tasks.

3.3.2 bert-base-uncased

The Hugging Face Hub offers many models for a variety of specific Machine Learning tasks,

those models, which have been trained and adapted for an specific matter are stored in

repositories. They benefit from all the features of every repository on the platform, in

addition model repos have attributes that make exploring and using models as easy as

possible.

After searching among the different models that perform the task which we aim to

archive in this project we came a cross bert-base-uncased, this model has been our model

of choice to train and test the data with a Transformers model as our last approach of this

development.

The model [36] has been pretrained on English language using a masked language mod-

eling (MLM) objective, as it is uncased it does not make a difference between english and

English. The model is primarily aimed at being fine-tuned on tasks that use the whole

sentence to make decisions, such as sequence classification, token classification or question

answering.

The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000.

The details of the masking procedure for each sentence are the following:

• 15% of the tokens are masked.

• In 80% of the cases, the masked tokens are replaced by [MASK].

• In 10% of the cases, the masked tokens are replaced by a random token (different)

from the one they replace.

• In the 10% remaining cases, the masked tokens are left as is.

The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for

one million steps with a batch size of 256. The sequence length was limited to 128 tokens
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for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a

learning rate of 1e-4, 1 = 0.9 and 2 = 0.999, a weight decay of 0.01, learning rate warmup

for 10,000 steps and linear decay of the learning rate after.

When fine-tuned on downstream tasks, this model achieves the following results:

MNLI-(m/mm) 84.6/83.4

QQP 71.2

QNLI 90.5

SST-2 93.5

CoLA 52.1

STS-B 85.8

MRPC 88.9

RTE 66.4

Average 79.6

Table 3.1: bert-base-uncased results
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CHAPTER4
Evaluation

4.1 Introduction

In this chapter we are going to evaluate the results obtained when applying the different

models, which were already explained on the previous chapter. These models were evaluated

on the two different datasets gathered for this project. On the sections below the two

mentioned datasets will be explained and analysed in depth, then the metrics applied in

the models will be collected and after the design decisions will be detailed. To close the

chapter, the results will be presented.

4.2 Materials

To carry out this project two different datasets have been used to evaluate the various

models.

The first dataset used, called “Fake News Detection Datasets”, was obtained from the

platform Kaggle [37]. The folder contained two files “False.csv” and “True.csv” which we

merged into just one dataframe called “news”, it has six columns: index, title, text, subject,
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date, label. The dataframe contains over 40,000 news which are labeled either true (1) or

false (0), this column was added when both files were merged. The column “text” contains

the news statement that have been previously labeled, in this case the text is not pre-

processed so in order to work with this data the first step will be pre-processing to remove

all the none essential information in the text.

In this dataframe, the total for the news labeled as true is 21417 where as for the ones

named as false is 23481. Therefore 47.60 % would be true and the remaining 52.40 % false,

which shows the amount of each labels is highly balanced.

Figure 4.1: “Fake News Detection” dataset

The second dataset [38], called “Fake News”, was obtained from the site Kaggle as well.

In this case the folder contained also two files, but instead of being separated by the label

they were already separated into train and test, not being necessary to merge both files.

This dataframe just contained one column at the beginning with the format (text;label),

to process the data that unique column was separated into two different ones, text and label

with the particularity that in this case the text had already been pre-processed. As in the

previous dataset “label” had two possible values true (1) or false (0) and “text” contained

news statements.

The file “test.cvs” contains a total of 4035 news statements, out of all of those 2056 are

true (1) and 1979 false (0), therefore 50.94 % are true, and 49.06 % are false, once again the

amount of each is highly balanced. Analyzing the “train.csv” file, it has a total of 16646

news statements although in this case the amount of true/false statements is exactly the

same 8323 each.

Taking both files and analysing them as a whole, there are a total of 20681 statements,

being 80.41 % destined for training and 19.59 % for testing.
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Figure 4.2: True and False statements in Test
Figure 4.3: True and False statements in

Train

4.3 Design

Once the datasets with which we will be working have been explained, we now have enough

context to deepen into the details of the design.

When the data is loaded and organized, meaning, all the transformations needed like

creating columns or joining different files and any others already described on the section

above have been done, we are ready to pre-process our data. This is fundamental to

maximize performance of the models, the process was only done on the first dataset used,

“Fake News Detection Datasets” because the other dataset had already pre-processed data.

The first step when pre-processing is to split the text into sentences, after this our text

has been broken down in multiple units, facilitating the analysis. Following that, we then

break those sentences into words making it even simpler for machines to understand, this

whole process of breaking down the text is called tokenization which aims to transform

text into tokens. With the text divided into words the next step is to lemmatize those

words, reducing them to their root or base, called the lemma, in order to extract that part

of the word which contains the meaning. As this process is about taking steps to obtain

the meaningful information on the text, the next phase is removing “stopwords”, those

words are typically used in language but they do not provide any meaning. In relation

with removing with those “stopwords” our data also goes through a process of removing

punctuation which is also frequent in text but do not provide any meaning. After this

process our initial text has been reduced to the key information.

In order to make the data suitable for Machine Learning algorithms it is crucial that

we vectorize it, this involves converting textual information into numerical vectors. Once it

is vectorized, in the case of the first dataset we need to split the dataframe into train and
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test, this can be done by using the “train test split”1 function from the scikit-learn library,

the default values are 25 % of the data is used for testing, and 75 % is used for training.

Afterwards, with the training and testing sets and the vectorized data we first train

the model and then evaluate it, this is done individually for each of the models previously

explained.

4.4 Metrics

Prior to discussing the results obtained from the model it is necessary to detail the metrics

used to evaluate the models. Defining these metrics will help us to compare the results

obtained with each model and to see which one best suits our needs.

To evaluate our models we have used the ´´classification report´´from the skelearn

library. This reports includes various metrics, below we present the definition to each of

them as well as their equations .

On the presented equations [39] the acronyms have the following meaning: TP = True

Positive, PP = Predicted Positive, FDR = False discovery rate, P = Positive, FNR = False

negative rate, PPV = Positive predictive value, TPR = True Positive Rate, FP = False

Positive, FN = False Negative.

• Precision: It is calculated as the ratio of true positives to the sum of true positives

and false positives. It measures the accuracy of the positive predictions made by the

model.

=
TP

PP
= 1− FDR

• Recall: Measures the ability of the model to capture the key information of the positive

class, it is figured as the ratio of true positives to the sum of true positives and false

negatives.

=
TP

P
= 1− FNR

• F1-Score: Provides a balance between precision and recall, expressed the harmonic

mean of precision and recall, being especially useful in the presence of an uneven class

distribution.

1Scikit-Learn Documentation, https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_

test_split
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=
2PPV xTPR

PPV + TPR
=

2TP

2TP + FP + FN

• Support: Helps to understand the distribution classes in the dataset by counting the

occurrences of the class in the dataset.

• Accuracy: The ratio of correctly predicted instances to the total instances. While

accuracy is a common metric, it may not be suitable for imbalanced datasets.

=
TP + TN

P +N
= 1− FNR

• Macro Avg and Weighted Avg: Macro average calculates the average of the un-

weighted per-class metrics, while weighted average calculates the average of the met-

rics with weights proportional to the support of each class.

4.5 Results

In this section we will present the obtained results with the metrics explained above.

First of all, for the “Fake News Detection Datasets”, we started by evaluating the data

with the Logistic Regression model, obtaining the results presented on the chart below.

Precision Recall F1-Score Support

fake 0.99 1.00 1.00 5873

not fake 1.00 0.99 0.99 5352

accuracy 1.00 11225

macro avg 1.00 0.99 0.99 11225

weighted avg 1.00 1.00 1.00 11225

Figure 4.4: Results when applying Logistic Regression to “Fake News Detection Datasets”

After obtaining such good results we decided to also evaluate Logistic Regression with

the “Fake News” dataset and as we can contrast with the results presented above, the

results were more realistic due to using a more complex dataframe.
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Precision Recall F1-Score Support

fake 0.95 0.94 0.95 1995

not fake 0.94 0.95 0.95 2040

accuracy 0.95 4035

macro avg 0.94 0.95 0.95 4035

weighted avg 0.94 0.95 0.95 4035

Figure 4.5: Results when applying Logistic Regression to “Fake News”

The next model implemented on our “Fake News” dataset was Support Vector Machine,

it was evaluated with two different NLP techniques, first Count Vectorizer was applied and

then TF-IDF obtaining different results as we can see in the charts below.

The results obtained when using both Count Vectorizer and SVM are the ones presented

on the following table:

Precision Recall F1-Score Support

fake 0.94 0.93 0.93 2007

not fake 0.93 0.94 0.93 2028

accuracy 0.93 4035

macro avg 0.93 0.93 0.93 4035

weighted avg 0.93 0.93 0.93 4035

Figure 4.6: Results when applying SVM with Count Vectorizer

After combining SVM with Count Vectorizer, we then switched to the other mentioned

technique, TF IDF, and the results obtained were the following:
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Precision Recall F1-Score Support

fake 0.97 0.97 0.97 1984

not fake 0.97 0.97 0.97 2051

accuracy 0.97 4035

macro avg 0.97 0.97 0.97 4035

weighted avg 0.97 0.97 0.97 4035

Figure 4.7: Results when applying SVM with TF-IDF

The last model evaluated on the “Fake News” dataset was the Transformers model

BERT.

Precision Recall F1-Score Support

fake 0.99 0.99 0.99 1995

not fake 0.99 0.99 0.99 2040

accuracy 0.99 4035

macro avg 0.99 0.99 0.99 4035

weighted avg 0.99 0.99 0.99 4035

Figure 4.8: Results when applying BERT

Once we have analyzed the results of each model separately is useful to get an overview

of all the models comparing the accuracy of their F1-Score as it is the most useful metric

to compare the models and evaluate their performance.

The “Fake News Detection Datasets” data set was only used to train one model. Mean-

while “Fake News ” data set was evaluated with three different models one of each was

assesed with two NLP techniques.
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“Fake News Detection Datasets”

Logistic Regression 1.oo

“Fake News ”

Logistic Regression 0.95

SVM + TF-IDF 0.97

SVM + Count Vectorizer 0.93

Transformers (BERT) 0.99

Figure 4.9: Global F1 score accuracy comparison
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Conclusions

5.1 Introduction

Once we have gather all the results and know how to interpret the metrics given, we can

discuss those results in order to come to a conclusion on which one is most appropriate. In

this chapter we will describe the final conclusion as well as reviewing the objectives set at

the beginning and discussing future work.

5.2 Conclusions

In this project we aim to develop a system to detect “fake news” using Machine Learning

algorithms and Natural Language Processing helping us predict if a given news statement

is true or false.

“Fake news” have a great impact in our society in all aspects, including crucial areas

such as politics or health, and both their popularity and frequency have increased over the

last few years as result of an increased use of social media.

The system developed in this project is a progress towards achieving the detection of
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“fake news” on the different sources of information with a higher degree of accuracy. By

using two datasets, Natural Language Processing Techniques and three Machine Learning

models we have developed a system which has the previously presented results.

When we first started developing we used the “Fake News Detection Datasets” but

because of its simplicity and after using it to apply the Logistic Regression model, we soon

realized we had to switch to a more complex dataset in order to continue developing our

system with a more realistic scenario.

Once we had switch to the “Fake News” dataset we started by applying the Logistic

Regression model which is the least time-consuming out of all of the models applied. If we

compare the results obtained with this same model applied on the first dataset we can see

how this results are more realistic, due to a more complex data.

The next model used was Support Vector Machine (SVM), it was implemented with two

different Natural Language Processing techniques, Count Vectorizer and TF-IDF. Contrast-

ing the results obtained for each technique, it states that the model performs better when

using TF-IDF. This model is however more computationally demanding when comparing it

to the first one applied.

The last model used was the Transformers model BERT, this is by far the most de-

manding in terms of both time and computational resources. Because of it computational

complexity a GPU was required in order to process the data given to the model. If we

analyze the results obtained we can appreciate that they are almost perfect. Although, as

this is the most powerful model we have used during this development, it should perform

best compared to the rest, such outstanding results mean that the second dataset is also

not complex enough. This dataset has been good to compare the different models but for

future research it would be convenient to test with even more complex data.

In conclusion, the Transformers model BERT does in deed perform best but with really

high costs of time and computational resources while in this case other models such as

Support Vector Machine combined with the appropriate NLP techniques can perform almost

as well with much lower costs of both time and computational resources.

Evaluating the objectives set at the beginning, we can check how we have been meeting

each one of them:

1. Multiple datasets were gathered, as it had been previously stated on the evaluation

chapter, we managed to find two different dataset with varying complexities and each

of them was used to train different models looking for the most appropriate one in

order to accomplish the desired objective.
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2. By training and testing different classification models we have been able to compare

how well they perform. A part from using various models with different complexity,

we have also combined the models with some of the multiple NLP techniques aiming

to find the most accurate combination.

3. After gathering the results obtained when evaluating the models we have been able

to come to a conclusion on which is the most suitable one for our needs. Because of

always using the same metrics to evaluate each of the models this has allowed us to

compare how well each model performed in comparison to the rest.

5.3 Future Work

In the future, this work could be continued in different aspects in order to obtain better

and more accurate results. Different tasks could be done to archive this goal.

A good starting point to continue developing this systems would be to use other Machine

Learning models and see if there are any of them which will provide better results. During

the development of this system we have implemented three different algorithms but there

are many more that could be suitable for this same purpose.

One of those mentioned task that could be carried out would be using ensemble learning,

which is based on training different models separately to then combine them in one, creating

a more optimal model. This was previously seen on the chapter were related work was

discussed and can be a powerful resource to use once we have evaluated various models

separately.

All of the data used had already been pre-labeled, in the future it would be interesting

trying to train models with unlabeled data. This could be a great improvement towards

helping users detect the veracity of the news they come across. Besides a new data that it

not pre-label it would be important to use more complex data, this will help obtain more

accurate and realistic results, training the models with high complexity data gives a better

understanding of how well each model performs for the desired purpose.

In addition to all of the possible changes and improvements mentioned above, it would

be really interesting to create a platform to facilitate users detect if a piece of information

is true or not.
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APPENDIXA
Impact of this project

This appendix reflects, quantitatively or qualitatively, on the possible impact.

A.1 Social impact

The development of “Fake News” detection system has a tremendous impact on our actual

society. “Fake News” influence the public opinion when it comes to decision making, this

can have severe consequences when it regards topics such as health or politics.

By analysing the language and patterns on the pieces of news this project aims to offer

the public truthful information avoiding both disinformation and misinformation, helping

society to be well informed and to be able to make decisions based on reliable information.

On the other hand, if the models do not accurately predict the veracity of the news, the

results can be fatal. As we have exposed above, the news we consume daily have a great

impact on the decisions we make, these affect all areas of our lives, from political, medical or

education issues to which is the safest place to spend our vacation. An erroneous prediction

of the news would cause what is known as misinformation, incorrect or misleading informa-

tion. Although it is unintentional since the misinformation is due to the malfunctioning of
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the model, we are still giving incorrect information to the public.

A.2 Environmental impact

Training such large datasets with these complex algorithms require high computational

power provided by a Graphic Processing Unit (GPU). Unfortunately GPUs lead to energy

consumption causing a significant environmental impact. A part from the energy they

consume, the carbon emissions associated with GPU operations contribute to climate change

and if the data centers rely on coal or other non-renewable energy sources it may have an

even higher environmental impact.

On the bright side by providing an environment with verified information there is no

need for user to contrast information on multiple sites, reducing the demand of energy use

in data transmission, processing and storage resulting in the reduce of energy consumption.

A.3 Economic impact

Spreading “fake news” about business or economic indicators can have real a financial

impacting economies by influencing stock markets, consumer behavior, and investor confi-

dence.

The development of models to combat “fake news” may stimulate the growth of a mar-

ket for anti-disinformation technologies. With the increasing demand of this services, the

number of professionals and the jobs positions offered grow as well. In order to provide this

service companies need different engineers to perform the involved tasks such as developing

and maintenance. A growth on the demand is associated to higher profits for companies

providing this services.
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Economic budget

This appendix details an adequate budget to bring about the project.

B.1 Physical resources

This project was develop on a 2017 MacBook Air with a 1,8 GHz Intel Core i5 dual core

processor, 8 GB x 1600MHz DDR3 RAM, 512GB of local storage and Intel HD Graphics

6000 1536 MB. The mentioned computer has a value of 711 euros.

As we have previously mentioned a GPU was needed, the one provided by the Group

of Intelligent System (GSI) was an NVIDIA GeForce RTX 2080 Ti which costs around 600

euros. The use of a GPU is associated with a high consumption of energy of approximately

250W, taking into consideration we have spend about 250 hours using this GPU and being

0.17 euros the average price for the kW/h the total cost of using the GPU is 611 euros

There were no software license needed to buy, making the cost 0 euros for software.
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B.2 Human resources

As this was an individual project, only one salary was needed.

The total of hours dedicated to the development and implementation of the project adds

up to a total of 400 hours of work. An average salary for a trainee is around 600 euros when

working part-time, as a consequence for each hour the trainee charges 6 euros meaning this

project had a total cost of 2400 euros regarding human resources.

B.3 Conclusions

If we add up all the cost previously mentioned, we obtain as a result that the total cost for

this project has been 3722 euros.
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[33] Ganesh Jawahar, Benôıt Sagot, and Djamé Seddah. What does bert learn about the structure of

language?, 2019.

vi



BIBLIOGRAPHY

[34] Rani Horev. BERT explained: State of the art language model for NLP.

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-

f8b21a9b6270, November 2018.

[35] Ali Saleh Alammary. Bert models for arabic text classification: a systematic review. Applied Sciences,

12(11):5720, 2022.

[36] Bert-base-uncased · Hugging face. https://huggingface.co/bert-base-uncased, June 2023.
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