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Resumen

El envejecimiento de la población y el consiguiente aumento de la esperanza de vida suponen

un impacto significativo en los sistemas sanitarios, especialmente en relación con la fragilidad

mental en personas mayores. Este incremento en la longevidad conlleva mayores costos para

el sector sanitario, aśı como una creciente demanda de atención en salud mental relacionada

con el envejecimiento, lo que ejerce una presión sobre los recursos sanitarios disponibles.

El objetivo principal de este trabajo es desarrollar un sistema de aprendizaje automático

que asista a los cĺınicos en la detección y predicción de la fragilidad mental en sus etapas

más tempranas. Inicialmente, para lograrlo, se llevó a cabo una extracción de las carac-

teŕısticas con más relevancia, permitiendo reducir la cantidad de evaluaciones a las que un

paciente debe someterse. Esto no solo alivia la carga de trabajo de los cĺınicos al eliminar

la recopilación de datos no influyentes, sino que también ofrece la posibilidad de detectar

la fragilidad sin necesidad de tantas pruebas.

Por otro lado, los modelos desarrollados muestran buenas capacidades en la predicción de

fragilidad mental, ya que permiten la extracción de relaciones entre caracteŕısticas relevantes

y la exploración y desarrollo de modelos mediante diversas alternativas de aprendizaje

automático, como el perceptrón multicapa y las redes convolucionales (CNN).

Tras la exploración, se evaluaron los modelos desarrollados para mejorar el rendimiento

del sistema, centrándose en el F1-score y apoyando las estrategias de prevención junto con las

pruebas de diagnóstico, como el FFP. Además, se prestó especial atención a las dependencias

temporales entre los datos recopilados en diferentes momentos para comprender la evolución

de la fragilidad mental y ofrecer una atención más personalizada y efectiva.

En cuanto a los resultados obtenidos, se compararon los diferentes algoritmos con los

recogidos por el estudio de Leghissa [1], destacando aquellos que han demostrado un mejor

rendimiento en la detección y predicción de la fragilidad mental en etapas tempranas. Es-

tas conclusiones proporcionan una base sólida para futuras investigaciones y para la imple-

mentación de sistemas de apoyo a la toma de decisiones cĺınicas en este ámbito.

Palabras clave: Aprendizaje Automático, fragilidad, Redes Neuronales, Redes Con-

volucionales, envejecimiento, Recursive Feature Extraction, perceptron multicapa
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Abstract

The ageing of the population and the resulting increase in life expectancy have a significant

impact on countries’ healthcare systems, especially with regard to mental frailty of older

people. This increase in longevity leads to higher costs of medical care, as well as an increase

demand for mental health care problems related to ageing, putting additional pressure on

available health resources.

The main objective of this study is to develop a machine learning system that can

assist clinicians in the early detection and prediction of mental frailty. Initially, in order

to achieve this objective, an extraction of the most relevant features was performed, which

allowed for a reduction in the number of assessments a patient has to undergo. This not

only alleviates the burden on clinicians by eliminating irrelevant data collection, but also

enables the detection of frailty without the necessity of so many tests.

Conversely, the models developed demonstrate satisfactory capabilities in the prediction

of mental frailty, as they permit the extraction of relationships between relevant features and

the development of models using various machine learning alternatives, such as Multilayer

Perceptron (MLP) and convolutional networks (CNN).

After the exploration, the models developed were evaluated according to their F1-score,

with the aim of identifying and improving system performance and supporting prevention

strategies, in conjuction with other diagnostic tests, such as FFP. Furthermore, particular

emphasis was placed on the incorporation of temporal dependencies between data collected

at different times. This approach allows a better understanding of the evolution of mental

frailty over time, contributing to a more personalised and effective treatment.

In light of the outcomes observed, a number of algorithms were evaluated in comparison

to those derived from the study conducted by Leghissa [1]. This analysis has identified those

algorithms and models that have demonstrated superior performance in the detection and

prediction of mental frailty in its early stages. These findings provide a robust foundation

for future research and the implementation of clinical decision support systems in this area.

Keywords: Machine Learning, frailty, ageing, Neural Netork, Convolutional Network,

Recursive Feature Extraction, Multilayer Perceptron
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CHAPTER1
Introduction

1.1 Context

Global population ages and every country in the world is experiencing an striking growth in

the proportion of older people and its pace is becoming faster. This demographic shift poses

a major challenge for their health and social systems since, 9,82% of the world population

is over 65 years old and, specifically, about 20,20% of Spanish populace belongs to this age

group [3]. According to WHO [4], 1 in 6 people in the world will be aged 60 years or over

by 2030.

Despite the fact that people live longer, their extended life expectancy leads to a dete-

rioration of both, physical and mental capacities, frequently related to frailty. The iden-

tification and management of frailty among other adults have become increasingly crucial

in geriatric medicine, since early detection and early prediction techniques would assist in

the management of age-related conditions, thereby reducing the necessity for costly and

invasive treatment.

Frailty progression significantly increases the utilization of health resources. In Cat-

alonia, Spain, the prevalence of frailty leads to a 125% rise in healthcare costs, primarily

attributed to hospitalizations. This corresponds to an additional annual healthcare expendi-
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CHAPTER 1. INTRODUCTION

ture of approximately 1170€ per frail individual compared to their non-frail counterparts [5].

Frailty, characterized by age-associated declines in physiologic reserve and function

across multiple organ systems, poses significant risks for adverse health outcomes, includ-

ing falls, disability, hospitalization, and mortality [6, 7]. Despite its clinical significance,

defining frailty has been a challenge until recent years.

Various conceptualizations of frailty exist in the literature. One widely recognized model,

proposed by Fried et al. [8], delineates frailty as a clinical phenotype (FFP) characterized

by a cycle of negative energy balance, sarcopenia, and diminished strength and tolerance for

exertion [9]. This phenotype identifies frailty as a state of increased vulnerability resulting

from aging-associated declines in reserve and function, impairing the ability to cope with

every day or acute stressors.

Alternatively, frailty has been quantified through a risk index known as the “frailty

index (FI)” [10], which tallies the accumulation of deficits over time, encompassing disabil-

ity, illnesses, physical and cognitive impairments, psychosocial risk factors, and geriatric

syndromes. It has been contended that, in contrast to Fried’s frailty phenotype, the FI

serves as a more sensitive predictor of adverse health outcomes due to its finely graded risk

scale [6].

Operational definitions of frailty, such as Fried’s phenotypic criteria or frailty index

model, aim to identify individuals at risk of adverse health outcomes by assesing factors

like grip strength, slow walking speed, energy, low physical activity, and unintentional weight

loss. Considering a pre-frail person when one or two criteria are present, and in the frail

stage when three out of five phenotypic criteria are met[11].

Moreover, frailty is also considered to have a multidimensional nature. It is a com-

bination of different dimensions on the level of physical, psychological or social condition

of the elder [12]. All of them are in interaction with each other while exerting a mutual

influence upon each other. Likewise, elders’ frail status depends on external factor such

as the environment. Physical frailty primarly encompasses the physiological decline and,

conversely, psychological frailty pertains to emotional, cognitive, and psychosocial aspects.

While physical frailty underscores the somatic manifestations of decline, psychological frailty

illuminates the intricate interplay between mental and emotional well-being, emphasizing

the importance of addressing holistic aspects of health and resilience in geriatric care and

intervention strategies [13, 14].

Additionally, efforts have been made to develop consensus on frailty, acknowledging it as

a clinical syndrome indicative of increased vulnerability, reversible with interventions, and

2



1.1. CONTEXT

useful in primary care settings. Despite these advancements, challenges persist in frailty

research and practice. Population aging exacerbates the prevalence of frailty, necessitating

effective strategies for early detection and intervention.

Research on frailty, particularly of its earliest stages, which are known as pre-frailty,

is of crucial importance for improving health outcomes among older adults. Among the

various tools and technologies utilised in healthcare, numerous studies have highlighted

the potential of Artificial Intelligence (AI) in the identification of early signs of frailty. It

is noteworthy that Machine Learning (ML), a branch of AI, has emerged as a powerful

instrument in medical research, assisting clinical staff in making informed decisions [15].

Machine Learning is adept at predicting and understanding complex patterns derived

from extensive datasets. The utilisation of data collected through advanced technologies,

such as sensors [16], enables the application of ML algorithms to provide significant insights

aimed at identifying frailty [17]. This superiority is due to the superior performance of ML

compared to traditional analytical methods. It excels in uncovering intricate relationships

within data and managing large, diverse datasets, which are typical in healthcare. This

encompasses the capacity to handle the inherent intra- and inter-patient variability, to

learn from new data over time, and to adapt to changes.

Furthermore, Machine Learning is capable of effectively managing incomplete or invalid

data, thereby mitigating the impact of such data on the results. This is achieved through

the utilisation of sophisticated algorithms that employ feature selection and dimensional-

ity reduction techniques, thereby revealing patterns within the data that would otherwise

remain hidden. These capabilities render Machine Learning an invaluable tool in the early

detection of frailty, thereby contributing to improved health management and quality of life

for older adults.

In light of the aforementioned challenges, there are projects such as MIRATAR [18],

which focuses on the development of intelligent systems for the early detection and preven-

tion of mental health problems in older people. This work is embedded in the context of

this project, which seeks to address the challenges of population ageing and its impact on

health systems, using advanced technologies to improve the quality of life of older adults

and reduce the burden on health resources.

Nevertheless, the lack of a universal quantitative definition of frailty complicates com-

parisons across studies and integration of these advancements in Machine Learning and the

developments of standardised assessment tools.

3



CHAPTER 1. INTRODUCTION

1.2 Project goals

The primary objective of this project is to develop an automated system using Machine

Learning (ML) algorithms for the early detection of mental frailty, as this geriatric syndrome

is currently emerging as one of the most important scientific issues in gerontology. This is

to be done based on the Fried Frailty Phenotype (FFP). The objectives can be listed as

follows:

1. Use feature extraction methods with the aim of reducing the number of tests to be

performed on patients and incorporate them as features in the algorithms.

2. Explore and develop model alternatives with different strategies to improve system

performance.

3. Evaluation the system performance to aid in the prevention strategies alongside other

diagnostic tests, such as FFP.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is as follows:

Chapter 1 presents a general context and summary of the project, as well as the

objectives to be achieved. The aim is to elucidate the rationale driving this research, the

challenges it aims to tackle, and the methodologies employed to effectively address them.

Chapter 2 provides information about the tools and technologies used throughput the

project, as well as similar studies intended to face the same problem.

Chapter 3 specifies the different models, the motivation for their use and, how they

will be developed.

Chapter 4 explains where data was obtained and introduces all results obtained from

the models.

Chapter 5 concludes by presenting findings drawn directly form the research, sum-

marizing achieved objectives, and engaging in a discussion regarding potential avenues for

future development and improvement of this work.

Chapter A and Chapter B discusses the impact and economic budget of the project.
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CHAPTER2
Background

This chapter will outline the different enabling technologies and relevant research related to

the project. It will introduce the programming language employed, Python, along with the

primary libraries utilised and the development environment. Lastly, the chapter will delve

into Machine Learning technologies. The related work section will examine prior research

concerning the prediction and detection of frailty and the use of ML in medicine.

2.1 Enabling technologies

2.1.1 Python

This project has been implemented using Pyhton as the main programming language.

Python is a high-level, object-oriented and readable programming language known for its

simplicity [19]. It’s widely used due to its extensive collection of libraries, specifically de-

signed for data science and machine learning applications. Following, the primary libraries

employed will be described.

Initially, Pandas [20], an open-source library, a go-to tool for data analysis and manip-

ulation utilised extensively. With its intuitive interface, it offers efficient handling of large
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CHAPTER 2. BACKGROUND

datasets through features like lazy evaluation and memory optimization. Its key functional-

ities include managing data structures like Series and DataFrame, facilitating data cleaning

and preprocessing, and seamless integration with other data analysis libraries.

Additionally, for the graphical representations in this work, Matplotlib [21], another

open-source Python library, is a powerful tool for creating static, interactive, and publication-

quality visualizations. It provides a wide range of plotting functions and customization op-

tions, making it ideal for various data visualization tasks. On the other hand, Seaborn [22],

built on top of Matplotlib, offers a higher-level interface for creating attractive and infor-

mative statistical graphics. It simplifies the process of producing complex visualizations by

providing easy-to-use functions for common statistical plots.

Together, Matplotlib and Seaborn form a formidable duo for data visualization in

Python. While Matplotlib provides a foundation for creating plots with extensive cus-

tomization, Seaborn enhances this capability with its streamlined interface and specialised

functions for statistical visualization.

Furthermore, NumPy [23] is the cornerstone of numerical computing in Python, pro-

viding efficient tools for working with arrays, matrices, and mathematical functions. It

enables developers to perform a wide range of operations, from basic array manipulation

to advanced mathematical computations. With its comprehensive functionality, NumPy is

essential for tasks such as scientific computing, data analysis, and machine learning.

With NumPy’s rich functionality, developers can handle large datasets with ease, exe-

cute complex algorithms, and solve intricate mathematical problems. In essence, NumPy

empowers users with the computational muscle needed to tackle diverse challenges, driving

advancements in research, engineering, and data-driven decision-making.

In addition, Pickle [24] is a Python module used for the serialisation and de-serialisation

of Python objects. It enables developers to convert complex objects into byte streams

for storage or transmission and reconstruct them later. The utilisation of this module

throughout the work has facilitated the efficient storage of various elements, simplifying

data management and enabling seamless integration across different parts of the project.

Lastly, the development environment adopted was Jupyter Notebook [25], an inter-

active web-based platform. In addition to facilitating code execution, Jupyter Notebook

offers an user-friendly interface that facilitates rapid prototyping and experimentation, en-

abling iteratively develop and document their code and analysis with comprehensive media

representation of results and supports markup language. The notebooks are made of cells

that can be executed independently. The notebooks contain cells that can be executed sep-
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2.1. ENABLING TECHNOLOGIES

arately, allowing the code to be run incrementally and providing immediate visualization of

results.

2.1.2 Machine Learning

During the project’s development, machine learning algorithms were applied using the

Python libraries Scikit-learn and Tensorflow.

Firstly, Scikit-learn [26] is a Python library for machine learning, providing a wide

range of tools for data mining and analysis. It offers efficient implementations of vari-

ous supervised and unsupervised learning algorithms, as well as tools for model selection,

evaluation, and preprocessing. Scikit-learn is built on other popular Python libraries like

NumPy, SciPy [27], and Matplotlib, making it a powerful and versatile tool for predictive

data analysis.

In addition to its core functionalities, Scikit-learn has been instrumental in evaluating

the performance of the prepared models by providing a suite of metrics. These metrics

encompass diverse aspects of model performance, including accuracy, precision, recall, F1-

score, and area under the receiver operating characteristic curve (AUC-ROC). Leveraging

these metrics, comprehensive assessments of model effectiveness have been conducted, guid-

ing refinement efforts and aiding in the selection of optimal models.

Moreover, Scikit-learn’s utilities have facilitated the division of datasets into training,

testing, and validation sets, crucial for model development and evaluation. Additionally,

Scikit-learn’s Recursive Feature Elimination with Cross-Validation (RFECV) [28] has been

employed in conjunction with models such as Logistic Regression for feature selection. This

technique iteratively prunes less informative features based on their contribution to model

performance, enhancing model interpretability and efficiency. Overall, Scikit-learn’s com-

prehensive functionalities have played a pivotal role in various stages of the project, ranging

from model evaluation to feature selection, facilitating robust and insightful analysis.

Additionally, TensorFlow [29], a powerful open-source machine learning framework de-

veloped by Google, serves as a keystone in modern deep learning research and applications.

It provides a flexible and scalable platform for building, training, and deploying machine

learning models across a variety of domains. TensorFlow offers extensive support for neural

networks, including traditional feedforward networks, recurrent neural networks (RNNs),

convolutional neural networks (CNNs), and more advanced architectures like transformers.

Within the scope of this thesis project, TensorFlow has been predominantly utilised in

conjunction with the high-level API Keras [30] to construct various Neural Network mod-

7



CHAPTER 2. BACKGROUND

els. Keras simplifies the process of building neural networks by providing a user-friendly

interface while leveraging the computational power and efficiency of TensorFlow as its back-

end. This facilitated the creation of diverse models tailored to the specific requirements of

the project, including both traditional fully connected networks, often referred to as Multi-

Layer Perceptron (MLP) and specialised architectures such as convolutional neural networks

(CNNs).

By harnessing the capabilities of TensorFlow and Keras, the project was able to ex-

plore and experiment with a wide range of neural network architectures. This integration

of TensorFlow and Keras not only streamlined the development process but also ensured

performance, making it an invaluable asset in advancing the objectives of the project.

2.1.2.1 Feature Extraction and Dimensiontality Reduction

Feature selection and extraction is of paramount importance in machine learning (ML),

since it facilitates the simplification of models, reduces the computational complexity of

the algorithms employed, and improves generalisation of the models. There are many

techniques that are dedicated to it, such as filter methods that, as it name suggests, involve

the application of a filter to a set of features; wrapper methods which assess the performance

of feature subsets in order to inform the selection process (forward selection, backward

elimination, and Recursive Feature Elimination (RFE)) and; embedded methods which

integrate within the model training process such as LASSO (Least Absolute Shrinkage and

Selection Operator). The choice of feature selection technique depends on the size of the

dataset, the dimensionality of the features and, the computational resources available.

In this project, Recursive Feature Elimination with Cross Validation (RFECV)

is employed as a systematic method for selecting the most informative features for a model.

As previously mentioned, it is a wrapped method that reduces overfitting by removing less

relevant features, thereby improving generalisation and model efficiency.

Combining RFECV with LR, optimises feature selection, ensuring the model focuses on

the most discriminative features for accurate predictions.

8



2.1. ENABLING TECHNOLOGIES

On the other hand, PolynomialCountSketch [31] is also employed as a technique

of dimension reduction and characteristic extraction, enabling the approximation of poly-

nomial expansions of input functions. This technique transforms the characteristics to a

higher characteristic space, thereby enabling the capture of non-linear relationships in a

simpler manner.

One limitation of PolynomialCountSketch is that the polynomial expansion may result

in an increase in the combination of number of features, which can complicate computation

and increase the probability of overfitting. Nevertheless, an attempt is made to address

this issue by employing the “Count Sketch” technique, which reduces the dimensionality

of the expansion by projecting the characteristics into a space of reduced dimension while

maintaining the original polynomial relations [32].

Finally, the Non-negative Matrix Factorization (NMF) [33] was employed as the

additional part of the line of work. This is a matrix decomposition technique that is em-

ployed to reduce the dimensionality of data. The operation of this unsupervised learning

algorithm is based on factoring a non-negative matrix into two lower-range matrices whose

product approaches an optimal solution of the starting matrix [34].

It is frequently employed in the context of ambiguous data sets and low predictive

power, yet it preserves the original structure of the data. Moreover, it is employed as a

preliminary step in the process of data preparation and classification. Nonetheless, the

primary limitation of this technique is its computational cost, which is due to the necessity

of iterative algorithms for its execution.

2.1.2.2 Classifiers

The field of machine learning is divided into three principal types of model approach, su-

pervised learning, unsupervised learning and reinforcement learning. The models differ in

the manner in which they are trained and the quality of the training data required.

Supervised learning represents a cornerstone in machine learning, characterised by its

reliance on labelled datasets for training, usually done bay a data scientist before being used.

These algorithms aim at learning the mapping between input data and corresponding output

labels. By iteratively adjusting internal parameters to minimise the disparity between

predicted and true labels, supervised learning models strive to generalise patterns inherent

in the data. Once the model has learned the patterns between input and output data, it is

able to classify new and unseen information to predict insights [35].
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In contrast, unsupervised learning eschews the luxury of labelled data, instead tasked

with uncovering structures within unlabeled datasets, in other words, these models are

trained on raw and unlabelled training data. This autonomous exploration of data char-

acteristics is facilitated through clustering algorithms into a specific number of groups and

dimensionality reduction techniques. Furthermore, this approach is frequently employed

during the initial exploratory phase with the objective of more fully comprehending the

datasets.

In opposition to aforementioned, the algorithms learn to react to an environment au-

tonomously. Reinforcement learning is characterised by the interaction of an agent with

an environment to achieve a specific goal. Unlike supervised and unsupervised learning,

reinforcement learning operates in an environment where explicit feedback in the form of

rewards or penalties guides the learning process. Through a series of sequential decisions,

the agent learns to maximise cumulative rewards by exploring the environment and exploit-

ing learned policies. [36]

In summary, the distinction between supervised, unsupervised, and reinforcement learn-

ing methodologies extends beyond their training data requirements to encompass their util-

ity and suitability within diverse applications. Supervised learning is particularly suited

to scenarios where explicit predictions or classifications are paramount. In contrast, unsu-

pervised learning is a valuable tool for exploratory data analysis and preprocessing tasks.

Reinforcement learning, with its focus on sequential decision-making, offers unique advan-

tages in dynamic environments where optimal strategies evolve over time.

In this project, to develop a method for detecting metal frailty, which is to say, for

classifying individuals as frail or not frail. In order to achieve this objective, an algorithm

based on supervised machine learning will be employed, utilising classifiers that play a

pivotal role.

In the field of machine learning, a classifier is an algorithm that is capable of automat-

ically sorting or categorising data into one or more predefined classes. The terms “tar-

gets”,“labels”, and ”categories” are all used to describe classes, in this study, the class is

being frail (1) or not (0).

The classifiers used during the work, implemented with the aforementioned Scikit-learn

and TensorFlow libraries, are defined below.

First, Logistic Regression (LR) [37] is a binary classification method predicting the

probability of an instance belonging to a class.

On the other hand, Neural Networks are comprised of interconnected layers of numerous
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components. The network components include neurons, connections, weights, biases, prop-

agation functions and a learning rule [38]. The combination of these elements is particularly

adept at learning complex patterns and relations from data, and is able to adapt to changing

circumstances. Neurons receive inputs and, due to the involvement of connections, which

include weights and biases, regulate the transfer of information.

The functioning of the network is based on a series of layers. The initial layer, designated

the input layer, is responsible for extracting features from the input dataset. In general, each

feature in the input layer is represented by a node on the network. Subsequently, the data is

passed through the hidden layers, multiplied by the corresponding weights, added together,

and then passed through an activation function. During the training phase, neural networks

adjust their hyperparameters based on input data in order to make predictions or decisions.

They are frequently employed in the processing of large-scale and high-dimensional data.

In the case of a binary classification problem, as is the case with the project in ques-

tion, the output layer employs a binary activation function, which predicts whether the

input data belongs to the true class (frail) or not. As the network iteratively refines its

hyperparameters, it adapts to classify the different subjects. The objective is to emulate

the functionality of the human brain.

In the context of supervised learning, the network generates outputs based on inputs

without consideration of the surrounding context. This results in discrepancies between the

generated outputs and the desired outputs, which are referred to as errors. The objective is

therefore to reduce these errors by changing the parameters iteratively until an acceptable

level of performance is reached.

A total of seven types of neural network (NN) were identified [39], with the Perceptron

being the most basic and straightforward architecture, it consits of one neuron that applies

the activation funtion obtaininga binary output without hidden layers. In the next network,

Feedforward Network (FFN) data flows in a unidirectional manner from the input to the

output through connected hidden layers, although they might not be necessarily present in

the newtork. The Multilayer Perceptron (MLP) is a type of FFN that incorporates multiple

hidden layers and activation functions, however, this network is bi-directional (forward

and backward propagation). The next stage of development was the introduction of the

Convolutional Neural Network (CNN) specifically tailored for processing grid-like data such

as images. CNNs preserve the spatial structure of the input data, enabling them to capture

intricate patterns and features. It was followed by the Recurrent Neural Network (RNN).

The latter was designed for the processing of sequential data, utilising feedback loops. Then,

a different strategy that predict is applied in Radial Basis Networks (RBN), which consists
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of a layer with neurons employing the Radial Function as an activation function. Finally,

the Long Short-Term Memory (LSTM) was developed to overcome the vanishing gradient

problem of the previous architecture.

Neural networks exhibit a number of significant advantages, including their capacity to

learn complex patterns and make accurate predictions across a wide variety of domains,

from image recognition to natural language processing. Their adaptable architecture and

capacity to automatically adjust their hyperparameters render them highly versatile and

capable of addressing a multitude of problems [40, 41] .

Nevertheless, neural networks also present significant disadvantages. Training neural

networks necessitates the availability of a substantial quantity of data and computational

resources, which can be costly in terms of both time and resources, but in health is not

often a problem. Furthermore, the opacity inherent in their internal functioning can make it

challenging to interpret their decisions, which may limit their applicability in contexts where

transparency and explicability are fundamental, such as in medical or legal applications.

Additionally, neural networks may be susceptible to overadjustment, whereby they may

learn irrelevant or noisy patterns of training data, which may affect their performance on

unseen data.

Furthermore, within the supervised learning classifiers employed, the Random Forest

Classifier [42] was utilised. The operation of the Random Forest Classifier is based on

the concept of decision trees, whereby each node represents a feature and each branch

represents a test result performed on that feature. This classifier consists of independent

decision trees based on the combined predictions of each tree serving as the basis for the

final result. Its widespread popularity can be attributed to its adaptability, which enables

it to handle complex datasets and avoid overfitting. [43]

As the final classifier, the XGBoost (Extreme Gradient Boosting) [44] algorithm was

employed. It represents an advanced implementation of the gradient boosting machine

learning algorithm. This classifier is typically employed in the context of classification

problems, as is the case of this project. The operation of the classifier is based on the

principle of building a model in a stage-wise manner, whereby predictors are sequentially

added to correct the errors made by the existing ensemble. The fundamental principle

of gradient boosting is to optimise a loss function by combining weak learners, typically

decision trees, to create a robust predictive model. Furthermore, the use of regularisation

methods, such as L1 or L2, is recommended in order to avoid overfitting and to improve

the generalisability of the model.
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2.1.3 Hyperparameters Search

In relation to hyperparameters tuning, in other words, the process of selecting the optimal

values for a machine learning model’s hyperparameters. Since neural networks have many

hyperparameters to adjust, such as the number of layers, the learning rate, epochs..., dif-

ferent strategies are used to find which of them are the most optimal. These approaches

aid to improve model performance, reduce overfitting and underfitting, optimize resource

utilization and enhance model generalizability and interpretability.

Optuna [45] is a cutting-edge hyperparameter optimization framework, it automates the

process of tuning hyperparameters for machine learning models using different techniques.

Optuna will be use to optimize hyperparameters for previous developed NN and CNN built

with TensorFlow and Keras, enhancing their performance and efficiency.

TheGridSearch [46] algorithm was also used as a technique to adjust hyperparameters.

This technique is based on searching for each combination of parameters specified in a grid,

those most optimal parameters that achieve the best performance for a specific metric. In

this way, it automates and facilitates the search process for hyperparameters

2.2 Related work

In this section, existing literature is examined by analyzing a range of studies. It is aimed

to identify trends, assess methodologies, and pinpoint gaps in knowledge.

2.2.1 Frailty definitions

In the corpus of analysed research, the first striking element is the lack of a common clini-

cal definition when conducting a study. Among the various interpretations, the prevailing

definition of frailty is the one introduced by Fried et al. [47], typically referred to as Fried

Frailty Phenotype (FFP). Based on this phenotype, frailty has been delineated as a clinical

syndrome characterised by the presence of three or more of the following criteria: inadver-

tent weight loss, self-reported exhaustion, diminished grip strenght, reduced walking speed,

and decreased physical activity. Furthermore, it identifies an intermediate stage, pre-frailty,

indicative of individuals at elevated risk of developing frailty.

The second most prevalent definition of frailty entails the utilization of a Frailty In-

dex (FI) [48], proposed by Rockwood et al.[49], this method quantifies the proportion of

deficits evident in a patient, with each deficit being assigned a score based on its severity
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or frequency.

As it is dependent upon clinical judgment of the interpretation of results from history-

taking and clinical examination, it appears to be time-consuming, therefore, the Clinical

Frailty Scale (CFS) emerge as a more accessible alternative assessing an individual’s level

of frailty by considering aspects such as comorbidity, cognitive impairment, and disabil-

ity. Nevertheless, FI is more effective in correlating frailty with mortality, but despite its

predictive validity, it is not widely used clinically due to its practical concerns.

In addition, other studies have developed definitions of frailty based on specific vari-

ables characteristic resulted from functional decline and cognitive impairment, such as hos-

pitalisation, mortality [50], gait speed or grip strength. The aforementioned elements col-

lectively contribute to the enhancement of heightened sensitivity towards minor stressor

events.[51, 52]

Finally, some researchers have integrated the detection of cognitive frailty into their

investigations, applying different metrics mentioned before such as FFP or CSF. In some

cases, the procedure was conducted in a manner that was contrary to the standard proce-

dure, the detection of mental frailty has been used to obtain the physical frailty of patients.

Furthermore, in Taiwan another dimension, social frailty [53], has been identified using

demographic and physical data.

2.2.2 Data sources

The majority of studies analysed make use of Machine Learning to obtain results. In order

to develop the models that are subsequently trained, they require a series of input data.

For the purpose of application in mental fragility, either Electronic Health Record (EHR)

or data obtained from gait and physical activity are typically employed.

In the context of EHR, the data in question originate from a variety of sources, including

hospitals, nursing homes, and age surveys conducted in numerous countries. The article by

Gómez-Caberro et al. [54] provides an excellent example of how data sets can be collected

from different cohorts such as four different European populations that were previously

analysed in their respective studies of adults over 65 years. Furthermore, it is important to

highlight that the study employs machine learning as a technological proposal for identifying

frailty with FFP serving as the criteria to be followed in order to achieve its objective. On the

other hand, in this instance, the data originate from administrative records compiled for a

number of individuals residing in nursing homes in Queensland, Australia [55]. Nevertheless,

in this instance, the IF is employed for the purpose of identifying frailty.
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In contrast, physical activity data are typically gathered through sensors on the wrist,

pendant, legs, and other parts of the body, depending on the intended use [56].

It is notable that the majority of studies utilise databases derived from previous longi-

tudinal age-studies, with a limited number of studies conducting their own data collection.

This is a consequence of the extensive variability of databases that are currently available,

which serves to avoid repetitions and to enhance the generalisability of the results proposed

by each study.

2.2.3 Machine Learning applied to frailty modeling

The types of Machine Learning models applied to frailty can be classified into three main

categories.

• Prediction. The objective of prediction models is to forecast the likelihood of an

event occurring in the future. This category encompasses models developed using

temporal data with the objective of predicting the future onset of frailty.

• Detection. The second category is that of detection. In this context, the binary

classification problem is addressed, with the target classes being “frail” and “non-

frail”. This type of model is designed to identify the presence or absence of frailty in

an individual at a given point in time.

• Classification. This entails a multi-class classification problem, with the target

classes being “frail”, “pre-frail” and “non-frail”. However, additional categories may

also be included. This category is less common because patients are often grouped

into “robust” and “non-robust” categories in order to compensate for data imbalances.

The algorithms employed in the studies analysed are typically those that are most

frequently and commonly used, including LR, SVM and RF [57, 58, 59, 60]. Consequently,

several of these algorithms have been used in the design of the subsequent models, which

are specified in Chapter 3. Furthermore, in combination with the aforementioned models,

other techniques are employed. For instance, Hassler et al. [57] performed a feature selection

process using the Boruta algorithm with an RF wrapper method prior to training.

Conversely, convolutional neural networks (CNNs) have also been employed, but were

applied directly to images [61]. Nevertheless, in this project the data has been configured

in such a way that they could be applied to a CNN , as will be discussed in more detail

in Section 3. Finally, it should be noted that some studies have applied Deep Learning to

enhance the performance of simpler models [62] .
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CHAPTER3
Architecture

3.1 Introduction

In this chapter, we cover the design phase of this project, as well as implementation details

involving its architecture. Firstly, we present an overview of the project, divided into several

modules. This is intended to offer the reader a general view of this project architecture.

After that, we cover in depth each module separately.

3.2 General View

The project has been structured into two distinct phases. The initial phase involved the

analysis of input data from 5303 participants, with 6583 features identified. Given the

substantial number of features, the primary objective of this stage was to identify the

most optimal set for subsequent analysis by driving a a feature reduction process. For this

purpose, the Recursive Feature Elimination with Cross-Validation (RFECV) algorithm was

used as a selection method.
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Following this, the project will employ Neural Networks to explore various architectures

derived from the data obtained in the initial phase. This stage will leverage the previously

reduced feature set to identify the optimal design. Both traditional Neural Networks and

Convolutional Networks will be utilised, aided by a hyperparameter search engine to opti-

mize model performance. The aforementioned structural configuration has been depicted

in the Illustration 3.1.

Figure 3.1: Project architecture

3.3 First stage: Recursive Feature Elimination

The selection of features is a critical step in the modeling process, as it holds substantial sway

over the model’s performance. A number of techniques can be employed in order to identify

the most suitable features, one common method is the Recursive Feature Elimination (RFE).

RFE is a feature selection technique widely employed in machine learning to identify the

most relevant features within a dataset. RFE operates iteratively by recursively removing

features and assessing their impact on model performance, ultimately selecting the subset

of features that maximizes predictive accuracy. In this project, RFE serves as a pivotal

component in streamlining the feature space, essential for enhancing model performance.

The principal motivation for integrating RFE into this project stems from the need to

mitigate the curse of dimensionality inherent in datasets with a large number of features.

By systematically pruning irrelevant or redundant features, RFE not only reduces compu-

tational complexity but also improves model efficiency and robustness. In essence, RFE

facilitates a more focused analysis by pinpointing the subset of features crucial for accurate
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predictions, thereby enhancing model performance.

In the implementation of this algorithm, two main parameters must be selected: firstly,

the number of features to be chosen, and secondly, the estimator to be used to assist in the

selection of those features.

Additionally, Logistic Regression (LR) is chosen as the estimator used in conjunction

with RFE for several reasons. Logistic Regression is well-suited for binary classification

tasks, in alignment with the project’s objective of detecting frailty. Furthermore, LR op-

erates efficiently even with limited data, making it suitable for scenarios with a moderate

sample size like the one in this project. By coupling RFE with Logistic Regression, the aim

is to harness the interpretative power of both techniques in a combined manner, enabling

the identification of key predictors while maintaining model simplicity and performance.

The decision to employ Logistic Regression in tandem with RFE over other models

is mainly due to Logistic Regression’s simplicity which allows for easier implementation,

interpretation, and analysis of results.

The RFE was implemented using the Scikit-learn Python library from its Feature Selec-

tion module [63], usually employed for the purpose of feature selection and dimensionality

reduction on sample sets in order to enhance the accuracy scores of estimators or to enhance

their performance on very high-dimensional datasets.

In order to define the algorithm, the aforementioned hyperparameters were specified.

Logistic Regression was the estimator employed. It utilised a type of regularisation, namely

Ridge regularisation (L2), which penalises high coefficients by adding their squared mag-

nitude to the cost function. This helps to prevent overfitting and improves the ability

to generalise. Additionally, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) optimisation algorithm was defined, which approximates the inverse of the Hessian

matrix required for optimisation without storing the entire matrix in memory.

Conversely, once the estimator has been defined, the RFE combined with cross-validation

(RFECV) is implemented. It performs RFE in a cross-validation loop. In this context,

five-fold cross-validation is specified, and the hyperparameter that specifies the minimum

number of features to be selected.This is the point at which the feature selection process

will cease, in this case, when the specified threshold is reached, set at 100 features.

Finally, in order to visualise the results, the number of characteristics chosen is plotted

against the CV Score using the Matplotlib and Seaborn libraries.
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3.4 Second stage

3.4.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) stands as a foundational architecture within the realm

of artificial neural networks, characterised by its layered structure of interconnected neu-

rons. This model has garnered considerable attention across diverse domains, owing to its

capacity to discern complex patterns from data. Within the healthcare domain, MLPs have

emerged as instrumental tools for predictive modeling and pattern recognition, particularly

in endeavors aimed at early detection and preventative intervention.

The adoption of MLPs in healthcare settings, particularly in projects targeting early

detection and prevention of health-related conditions, is underpinned by several key advan-

tages. Firstly, MLPs excel in handling high-dimensional and heterogeneous data, making

them well-suited for tasks that involve integrating diverse data sources. Given the multi-

faceted nature of health-related conditions, the ability of MLPs to discern complex patterns

and relationships within these data streams is extremely useful.

In this context, the dataset comprises information from a substantial number of patients

and a reduced set of features obtained through prior feature selection, aligns well with

the strengths of MLPs. Therefore, Multilayer Perceptron can effectively leverage this rich

dataset to uncover subtle associations between various risk factors and indicators of mental

frailty, thereby facilitating accurate treatment.

Furthermore, the flexibility of MLP architectures allows for the exploration of intricate

data dynamics and the extraction of meaningful insights from the data. Given the high

variability exhibited by the dataset used, it is necessary to employ a more streamlined and

consistent representation. By applying MLPs, the project aims to capture the nuanced

interplay between demographic factors, medical histories, cognitive assessments, and social

interactions, which collectively contribute to the manifestation of mental frailty in elderly

individuals.

To maximize the performance of the MLPmodel, a hyperparameter optimization method

has been employed, implemented through the Optuna framework. This approach enables

the automated search for optimal hyperparameters, such as the number of hidden layers,

the number of units in each layer, learning rate, dropout rates, and regularization strengths,

thereby, streamlining the model tuning process and enhancing predictive accuracy.
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A function was developed to implement the Multilayer Perceptron (MLP) using the

Keras library in Python. This function defines a model in a sequential manner, which is

used to design a stack of layers for a neural network. Additionally, an hyperparameter

search was conducted to determine the optimal number of layers, ranging from one to five

layers. Figure 3.2 shows the architectural scheme using MLPs.
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Figure 3.2: Schematic representation of Multilayer Perceptron

A fixed input layer was created to accommodate the input data. It comprised a Dense

layer, a component that is widely employed in this type of neural network. In order to

prevent overfitting, the previous layer was employed in conjunction with a Dropout layer.

The parameter of the latter was determined by the search method.

The combination of layers was created for each layer defined by the hyperparameter

search for the optimal number of layers obtained. With regard to Dense parameters, a linear

transformation is performed on the input data. In particular, for each neuron specified by

the search parameter, a weighted combination of all outputs from the previous layer is

computed, and a bias is added. This component is defined by the number of neurons and

uses a rectified linear unit (ReLU) activation function, which introduces non-linearity into

the model, allowing it to learn more complex and non-linear patterns. The weights of this

layer are initialised using the “random normal” kernel initialiser which draws from from a

normal or Gaussian distribution. Finally, an L2-type kernel regulariser is employed, with

the learning function also optimised through the search method.

Once the previous function had been defined, the model was constructed using Optuna

and subsequently trained on the training subset, with validation performed on the validation
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subset. The aforementioned process was executed over 50 epochs with a batch size of 128,

although these values were subject to adjustment as necessary. The search parameters

in Optuna were configured with the objective of maximizing one of the model’s metrics,

specifically accuracy. In general, 50 to 100 optimisation trials were conducted, with a final

comprehensive test involving 1000 trials.

Upon completion of the parameter search using Optuna, the optimal parameters for

maximizing the model’s accuracy were identified. Subsequently, the model was constructed

based on the aforestated optimised parameters, after which an evaluation was conducted to

determine the final metrics.

3.4.2 Convolutional Neural Network

In the realm of Artificial Intelligence and Machine Learning, Convolutional Neural Networks

(CNNs) have emerged as a powerful tool for various tasks, particularly those involving image

and signal processing. Despite the fact this project focuses on the detection and prediction

of mental frailty, leveraging the capabilities of CNNs it processes temporal health data effec-

tively [64]. Unlike traditional Multilayer Perceptrons (MLPs), CNNs offer advantages that

make them particularly suited for this application, especially when considering temporal

evolution in health data [65].

CNNs are a class of Deep Neural Networks that are particularly adept at processing

grid-like data structures, such as images, nevertheless, the input data from the dataset is

structured in one dimension. The fundamental building block of a CNN is the convolutional

layer, which applies a set of filters with convolutional operations to the input data to

produce feature maps. These filters are learned during the training process and are capable

of detecting local patterns. The ability of CNNs to capture spatial hierarchies in data makes

them extremely powerful not only for image classification tasks, but also, to any kind of

structured data, including temporal health records.

In this work, Convolutional Neural Networks (CNNs) are employed in two distinct ways.

Initially, they are utilised in a manner analogous to MLPs, whereby a model is defined and

applied to perform detection and prediction tasks. Secondly, CNNs are integrated with

the temporal aspect of the data, allowing for the merging of different time points and the

prediction of outcomes based on this combined data.

The primary motivation for using CNNs in this context stems from their ability to

capture complex patterns and temporal dependencies in data, which are crucial for accurate

prediction and detection of mental health conditions. CNNs excel at automatic feature
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extraction from raw data. This capability is particularly beneficial in health data analysis,

where important features may not be immediately apparent and can be spread across various

dimensions. By designing the CNN to process data from multiple time points, the network

can learn temporal dependencies and transitions over time. This temporal consideration is

essential for accurately predicting the evolution of mental frailty, something that traditional

MLPs might struggle with due to their lack of inherent temporal modeling capabilities.

Moreover, CNNs are known for their robustness in handling large and complex datasets.

In the context of mental health prediction as frailty prediction, this robustness translates

to more reliable and generalizable models that can handle the variability and noise inherent

in health data. The hierarchical nature of CNNs allows for learning at multiple levels of

abstraction capturing both low-level patterns and high-level trends simultaneously [66].

In a manner analogous to the MLP elucidated in the preceding section, a function is

formulated to generate a model comprising convolutional layers. Prior to its definition, an

adjustment must be made to reshape the data, as convolutional layers 1D require input

data with three dimensions in the form of [batch size, time steps, input dimension] [67].

Nevertheless, the data in question do not present this form. In order to achieve this, the

characteristics are converted to timesteps. This process is applied to both the training set

and the validation and test set.

Subsequently, the function that creates the model is defined in the same manner as pre-

viously supported. In a sequential manner, a model is defined to include an input layer that

processes the input data. In this instance, an optimal parameters search algorithm will also

be employed. The fixed input layer consists of a one-dimensional convolutional layer, with

parameters such as the number of filters and kernel size determined by the optimization pro-

cess. Additionally, the ReLU function is employed as an activation function. In conjunction

with this layer, to reduce dimensionality, a MaxPooling layer is incorporated, which helps in

the extraction of characteristics in one-dimensional data, in reducing computational load.

Furthermore, a Dropout layer is added to further mitigate overfitting.

The final input set is processed by Optuna, which incorporates a BatchNormalization

layer. The objective of this approach is to stabilise the training process and reduce the

variability of activations. This process facilitates the convergence of the model and its

stability. The structure of this network can be observed in Figure 3.3.

Subsequently, each layer introduced by Optuna includes the same components as the

fixed first input layer. Once this process is completed for each of the hidden layers, a

Flattening layer is added to transform the multidimensional data into a one-dimensional

vector. This is followed by a fully connected layer (Dense), another Dropout and finally a
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Figure 3.3: Schematic representation of the second stage architecture utilising convolutional

neural networks (CNNs)

closing fully conected layer with a sigmoid activation function, which is typically used in

binary classification problems. Finally, the model is then compiled using a loss function

appropriate for binary classification problems, such as binary cross-entropy. This setup is

subsequently employed in the search for optimal hyperparameters, which yield enhanced

model performance.

In this project, CNNs were employed not only to fulfill the same roles as MLPs but

also to explore their potential in integrating and analyzing data over time. The primary

goal was to enhance the predictive accuracy of mental frailty by incorporating the temporal

transitions. The CNN architecture was designed to take into account the temporal gaps

and transitions, allowing the network to learn from both time points simultaneously. Con-

volutional filters were designed to capture temporal patterns and dependencies, providing a

more nuanced understanding of the evolution of mental frailty. The CNN model was trained

and validated on the training subset, and subsequently tested on the validation subset to

ensure its effectiveness in handling temporal data.

Temporal Neural Network (TNN) design followed the same procedure for the prediction

and detection of frailty, with the exception of the temporal mixed input data and the results

of the metrics obtained.
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3.5 Additional Stage

In addition to the primary task, a subsequent step was devised with the objective of enhanc-

ing the performance of the model. In this stage, the dimensionality of the characteristics

was once again reduced, and subsequent training was conducted in two classifiers, namely

the Random Forest and the XGBoost.

In order to achieve this objective, a number of tools were employed, including the

construction of a pipeline and the implementation of a hyperparameter search technique,

such as the GridSearch algorithm. This involved defining a grid with the hyperparameters

to be adjusted. The pipeline comprises a series of steps, culminating in the training of the

classifier as illustrated in the Figure 3.4.

POLINOMIAL
COUNTSKETCH
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CLASSIFIER
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2

Figure 3.4: Pipeline Schematic Representation

The initial stage of the pipeline involves the application of a Polynomial CountSketch

transformation to the input data. The objective of this stage is to facilitate additional

interaction between the features of the input data. Furthermore, the number of components

that will be produced by this transform is defined as ten times the number of features of the

dataset. Polynomial CountSketch was selected for this purpose, as it avoids the iterative

process of multiple training of the RFE and facilitates the discovery of complex nonlinear

relationships between features that had not previously been identified.

Subsequently, a dimensional reduction is conducted utilising the Non-negative Ma-

trix Factorization (NMF) technique with the objective of extracting intricate relationships

between features. Furthermore, the number of components is automatically configured,

whereby the algorithm determines the number of components according to the number of
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input features. Nevertheless, this component of the pipeline presented difficulties due to

the computational cost required to perform it. Consequently, the results presented in the

next section will not include such a reduction.

Finally, the pipeline includes a classifier that is to be trained. Both the Random Forest

classifier and the XGBClassifier were employed. Both were configured to utilise parallel

processing in order to enhance computational efficiency. Nevertheless, despite the XGB

utilising the GPU for enhanced speed, the RF demonstrated superior efficiency and out-

comes.

Once the pipeline has been defined, hyperparameter optimization commences utilising

GridSearch from the Scikit-learn library. The objective of this technique is to identify the

most optimal combination of hyperparameters that maximises model performance. The

hyperparameters to be optimised are specified by a separate grid, which defines the range

within which the algorithm will search for each parameter. The parameters defined were

exclusively for the definition of classifiers.

A cross-validation strategy is employed for the search, with the model being trained and

evaluated a total of ten times. In each iteration, a different validation set is used, which

helps to generalise and improve the model’s performance. The metrics employed for the

performance evaluation were the F1-score, precision and recall, all computed in a macro-

averaged manner. The F1-score was used to select the optimal model among the results.

This approach ensured that the data from the different classes was balanced to some extent.

The hyperparameter GridSearch process is executed in parallel across multiple CPU

cores, thereby leveraging the available computational resources for improved efficiency. Fi-

nally, a model was defined with the best hyperparameters found by the search technique,

which was subsequently evaluated.

In conclusion, the objective of this additional step was to enhance the robustness of the

model and improve its predictability and generalisability.

Through the judicious application of the aforementioned algorithms within these method-

ological paradigms, this project endeavors to forge novel pathways toward the early detection

and proactive management of mental frailty among elderly populations, thereby enhancing

their overall quality of life and well-being.
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CHAPTER4
Evaluation

This chapter describes the materials and methodology used, indicating the source of the

data and the preprocessing that was carried out prior to their use. In addition, the outcomes

of the various algorithms developed in Chapter 3 will also be presented.

4.1 Materials and methodology

Given the objective of studying individuals over the age of 65, one of the methodologies

employed to obtain data on mental frailty was to draw upon longitudinal studies concerning

age. The database was obtained from the English Longitudinal Study of Ageing (ELSA) [68].

The English Longitudinal Study of Ageing (ELSA) is a large-scale longitudinal study that

involves individuals aged 50 and above residing in their private residences in England.

The initial approval was granted in 2000, but it was not until 2002 when the first data

for the inaugural wave were collected. The mean age of this cohort was 65 years, with a

range from 50 to 100 years old.

The study subjects its participants to a personal computer-assisted interview, known

as CAPI, and requires them to complete a self-questionnaire every two years. Each review
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is called a wave, and a total of seven waves have been obtained, with a difference of two

years between each. For the purposes of this project, Waves 5 (June 2010-July 2011) and

6 (May 2012-June 2013) were utilised. However, it is important to note that in Wave 6,

new patients were added to the study. The incorporation of new patients aims to preserve

the representation of younger age groups as time progresses. Each new wave includes all

eligible participants from the previous wave, ensuring that younger cohorts are consistently

represented over the years.

In addition to common tests, in Wave 6 nurse visit was also incorporated and has yielded

a plethora of physical examination and performance data, as well as biological samples for

analysis. During the visit, patients are measured for parameters such as physical func-

tion, anthropometric measurements and the collection of blood samples to analyse certain

biomarkers and their DNA. In general, data on household and individual demographics are

obtained, including: health,physical and psychosocial, social care (just in wave 6), work

and pensions, income and assets, housing, congnite function, social participation, effort and

reward, expectations, walking speed and weight.

It is important to note that among the latter are the indicator parameters to detect

mental frailty, as proposed by Fried. As previously stated, this definition is employed in

this work as it is widely used in the medical field and is also commonly used in other studies

that apply ML techniques.

4.1.1 Data preprocessing

Prior to the commencement of the initial stage of the project, a preliminary processing of

the data was conducted in order to align them with the project’s objectives.

This work builds upon the research conducted by Leghissa et al.[1], which is also embed-

ded in the MIRATAR project. The data preprocessing steps have been followed in order to

ensure consistency and comparability. Nevertheless, this study introduces several improve-

ments and alternatives with the objective of enhancing the performance of their models and

incorporating novel approaches to better predict mental frailty.

From this point forward, a continual comparison of the results obtained in this project

with those gathered in Leghissa’s article is conducted.

Initially, the data from both Waves 5 and 6 were loaded and a function with arguments

for the Fried indicator parameters was defined. These included sex, height, weight, grip

strength of the dominant hand, walking time, exhaustion and activity level. Based on the

FFP criteria, the participants were classified as either frail, pre-frail, or non-frail. The
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results will be used as labels during the project; therefore, those characteristics that have

been used for the computation of the FFP will be eliminated from the raw dataset (e.g. all

grip strenght tests, activity scales, exhaustion-related questions...).

In the calculation of Fried’s Frailty Phenotype for each of the waves, a treatment of each

of the arguments of the function was carried out. The characteristics derived from the tests

conducted at ELSA were utilised, including the sex, height, the weight. In the case of grip

strength, the maximum value of the three measurements taken for the dominant hand of

the subject was used. In contrast, the time taken to walk was calculated using the smallest

value of the two measurements taken for each gear. Conversely, to ascertain the level of

exhaustion, variables which collected whether the individual perceived everything did during

past week was an effort and a challenge or whether they experienced difficulty initiating

movement on a regular basis. Finally, the level of activity was assessed by determining

whether the subject engaged in vigorous, moderate, or mild sports or activities on a regular

basis.

To ascertain whether weight loss had been observed, the patient’s weight and height were

used to calculate their body mass index (BMI). The number of criteria met was increased

if the BMI was greater than 18.5, as illustrated in Figure 4.1. The walking time and speed

were determined depending on the patient’s sex. The walking speed was calculated based

on the patient’s height and fulfilled the FFP criterion if it was within the specified range.

Additionally, the grip strength of the dominant hand is compared according to the Figure

4.1, with the BMI obtained serving as a reference point.

Finally, if the subject’s activity level is greater than or equal to 10 and their exhaustion

is less than or equal to 3, this will also be added to the number of criteria met. Should the

total number exceed two, it will be included in the dataset as a frail label.

Wave 6 comprised a total of 10601 participants. However, only 8054 of them underwent

a nurse visit, with 2751 individuals unable to have their FFP calculated because of missing

data. Consequently, the dataset to be used will be the remaining 5303 patients, of whom

52.3% are non-frail, 40.1% are pre-frail and 7.6% are frail.
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Figure 4.1: Fried Phenotype Criteria [2]

The Wave 6 data exhibits an imbalance, necessitating the merging of those already

identified as frail and those who, despite meeting fewer indicators, may potentially develop

frailty (pre-frail). This approach was adopted with the ultimate objective of helping clin-

icians in the early prediction of the initial stages of frailty. By merging both labels, the

dataset was effectively balanced, contributing to a distribution of 52.3% non-frail and 47.7%

frail individuals. This balanced distribution facilitated the transformation of the problem

into a binary classification task, simplifying the analysis and interpretation of results. Fur-

thermore, during the preparation of the data, missing and constant values were substituted

in certain characteristics, as well as a scaling of all of them.

The entire procedure was applied to both waves of data. It is worth mentioning that

a significant portion of participants from Wave 5 were also recruited in Wave 6. There-

fore, only individuals whose FFP could be computed in Wave 6 were retained for analysis.

Following the completion of all preprocessing procedures, the total number of patients in

Wave 5 is 5135, which will be utilised for prediction models. Due to the absence of a nurse

visit in the earliest wave, the number of features differs between waves, with 6852 features

in Wave 6 and 5749 in Wave 5. However, when considering only variables common to both

waves, 3821 features remain.
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Furthermore, the data had to be prepared for Convolutional Neural Networks taking

into account the temporal gap between waves. To this end, the patients who were present in

both waves were identified with the intention of examining their evolution from one to the

other. Furthermore, the patients who were present in both waves were concatenated in the

same data set, which will be used at a later stage in the study of the temporal behaviour

(see Figure 4.2).

Figure 4.2: Schematic representation of Mixed Wave data

4.1.2 Validation and Evaluation Parameters

Once the pre-processing phase is complete, the data must be prepared in accordance with

the specified training, validation and test subsets. To achieve this, Scikit-learn Selection

Model library is employed to divide the prepared data into the requisite subsets. In the

implementation of this process, a test size of 10% and a validation of 9% of the total data

set was used and, ensuring that the division of data into the different sets maintained the

same proportion of classes as in the original set.

Additionally, in the evaluation of the models described in Chapter 3, it is of the utmost

importance to employ appropriate metrics that can provide a comprehensive understand-

ing of the model’s performance. Here it is outlined the key metrics employed: accuracy,

precision, recall, and F1-score, explaining the rationale behind the adoption of their macro-

averaged versions over the standard forms.

• Accuracy is a straightforward metric that measures the proportion of correctly clas-

sified instances out of the total instances. It is defined as the number of correctly

identified positive (TP) and negative (TN) instances, respectively, divided by the to-

tal number of instances [69]. The simplicity of accuracy makes it a popular metric, but

it may not be reliable in cases of imbalanced datasets where the number of instances

in different classes varies significantly. In such circumstances, a model may achieve a

high level of accuracy by simply predicting the majority class.
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• Precision is the ratio of true positive (TP) predictions to the total number of positive

predictions (TP+FP). It is defined as the proportion of instances predicted as positive

that are, in fact, positive. This metric is of particular importance in applications where

the cost of false positives is high. It is also known as Positive Predictive Value.

• Recall is the ratio of true positive (TP) predictions to the total number of actual

positives (TP+FN) [70]. It is a metric that gauges the model’s capacity to identify

all relevant instances. It is also referred to as sensitivity or true positive rate.

• F1-score balances precision and recall. It is particularly useful when the dataset is

imbalanced and when there is a need to find an equilibrium between precision and

recall. A high F1-score indicates that a model has both high precision and high recall,

making it a robust measure for evaluating model performance in complex scenarios.

Although there is not a significant imbalance in the dataset used throughout the project,

it is important to prevent misinterpretations. These metrics, which are used in the case of

total balancing, were macro-averaged during the evaluation. In this manner, the reformed

metrics are employed to evaluate models in a more balanced way with respect to the predic-

tion of all classes. These metrics are obtained individually for each class and subsequently,

an average of of them is calculated, without giving it greater weight according to size. This

ensures that the minority classes are considered in the same way as the majority classes,

thus avoiding that the latter predominate in the evaluation of the performance of the model.

Furthermore, it is important to highlight that two distinct methodologies were employed

to compute the metrics described above. Initially, a function was devised to calculate and

return the aforementioned metrics, utilising the true labels and the labels predicted by the

model. The metrics calculated by this function encompassed accuracy, precision, recall,

F1-score, and the area under the ROC curve (AUC), which served to assess the model’s

capacity to discern between classes. Nevertheless, this function did not take into account

the possible imbalances between classes and the number of digits provided was insufficient.

To address this limitation, the previous metrics were also obtained using the function

“classification report”, a detailed summary of the evaluation metrics for each classification

model in the dataset. Unlike the previous function, this one also uses the actual tags and

those predicted by the model, but it includes the macro and weighted average in the results.

Furthermore, it was stipulated that these results were presented in four digits to facilitate

comparison between the results of the various models, given that the function only yielded

two digits, which limited the contrast. Finally, the F1-score is the metric that will be used

to assess the performance of a model.
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4.2 Results

This section will present the results obtained in the two phases of the project in accordance

with the corresponding models.

4.2.1 First Stage: Recursive Feature Elimination

For each data wave, the feature selection algorithm was applied in accordance with the

specifications outlined in Section 3 to select the most relevant features for the prediction

model. To this end, the RFECV described above was applied, resulting in the generation of

an array functioning as a mask to denote the selection status of features under consideration.

This array comprises boolean elements, each corresponding to an original dataset feature.

Conversely, this technique also arranges the features in an array of integers according to

their relevance. The initial ranking value is presented for those features that the algorithm

deems to be the most important.

In addition to the aforementioned information, a dictionary of the results of the cross-

validation performed during the feature selection process can be obtained, containing per-

formance metrics, such as the average score, for each feature configuration evaluated during

the selection process. These results are useful for analysing and plotting model performance

with different feature sets and, therefore, identifying the optimal combination of features

that maximises model performance.

In order to facilitate the interpretation of the results, they were represented by plotting

the cross-validation results obtained for each configuration of characteristics against the

number of characteristics selected for each iteration of the algorithm. The following graphs

illustrate the data obtained for Wave 5, Wave 6, and the combined patient data set of both

waves (Mixed).

Figure 4.3 illustrates that at the outset of the graph, when the number of characteristics

selected is relatively low, around the imposed limit of 100, the cross-validation result is

relatively high. Nonetheless, the value declines rapidly as the number of additional features

increases, reaching a minimum around 1000 features. Following the initial decline, the

metric stabilises at approximately 1500 characteristics, where the variability of the results

is reduced and oscillates around a more constant value.
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Figure 4.3: Results of Recursive Feature Elimination in Wave 5

This can be interpreted as indicating that for the initial peak, a very low number of

characteristics were selected, which could be associated with an overadjustment (overfitting)

to the most relevant characteristics. This could explain the initial score being so high.

Nevertheless, the findings may not be generalisable.

As the number of features included in the model increases, the model may include

features that are less relevant or even contribute to noise. This is why cross-validation is

important. It is also possible that these new features may be reductive in certain instances.

Finally, in the final stage, which is characterised by a tendency towards stabilisation,

approximately 1500 characteristics are added. At this point, cross-validation stabilises.

This implies that, even if further additions are made, the performance of the model will not

improve. This would be taken to indicate the optimal number of characteristics that would

balance the complexity of the model with its predictive ability.

In the case of Figure 4.4, similar to the graph above, the initial behaviour begins with

a high value for cross-validation when selecting a small number of characteristics, reaching

a value close to 0.73, which is greater than for Wave 5. This may be indicative of the fact

that the initial characteristics selected have a significant impact on the performance of the

model.
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Figure 4.4: Results of Recursive Feature Elimination in Wave 6

Subsequently, there is a discernible decline in performance as the number of features in-

creases, specifically prior to reaching 1000 features. This decline suggests that the inclusion

of additional features does not contribute positively and may introduce noise. Subsequently,

there is a further pronounced decline in the figure approaching 2000 characteristics, reach-

ing a plateau where the metric score is approximately 0.70, which is comparable to the

maximum score observed in the previous dataset. This would indicate that the addition of

features does not significantly enhance performance.

In this instance, although there is no clear point of inflection as there was in the previous

graph, a reasonable choice of characteristics could be between 2000 and 2500, where the

score stabilises. Selecting fewer characteristics may result in an overfitting model or the

inability to accurately capture the relationships between the data. Selecting characteristics

beyond this range has been found to not significantly improve performance.

A comparison of Figure 4.3 and Figure 4.4 reveals that the differing data sets lead to

different outcomes. The results obtained in Wave 6 are of a higher quality.

This discrepancy may be attributed to several factors. As the preprocessing methodology

is identical for both data sets, the discrepancy cannot be due to this factor. It is possible

that the difference in performance is due to the reliance on different data sets. In the case

of Wave 6, the predictive capabilities or structural clarity of the data set may justify the
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higher CV score.

Furthermore, the learning algorithm should not be considered a contributing factor, as

the estimator employed is identical for both waves and is defined by the same hyperparam-

eters. However, the data on which they are trained differs, with each wave representing a

distinct set of data.

Another factor that may contribute to this discrepancy is the selection of distinct charac-

teristics during the execution of the algorithm. The choice of a different set of characteristics

can significantly impact the algorithm’s performance. This implies that if, in the case of

Wave 6, more pertinent features were selected or the selection process was conducted more

optimally, this could result in superior outcomes. Finally, the most evident rationale is

that the labels employed for training originate from the Wave 6 data set, which serves as a

detection process. Conversely, for Wave 5, those labels were obtained from Wave 6, which

serves as a prediction.
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Figure 4.5: Results of Recursive Feature Elimination in Mixed Waves for Temporal Neural

Network

Lastly, a comparison of the behaviour of the Figure 4.5 with previous situations reveals

that, as with the preceding cases, when a very small number of characteristics is selected,

the cross-validation score is high, reaching a value close to 0.75. This indicates that the

initial features selected have a significant impact on the performance of the model. This

preliminary observation suggests that these features are highly relevant.
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Following the initial peak, a precipitous decline in the cross-validation score is observed

as the number of characteristics is increased. This decline occurs before reaching approx-

imately 500 features, indicating that the addition of further features does not contribute

positively. From this initial decline, fluctuations emerge, suggesting that some features may

be temporarily beneficial, but in general, they do not consistently enhance performance.

The discrepancy in performance occurs when the number of characteristics reaches 2000,

resulting in a significant decline in the score, which reaches 0.60. At this juncture, beyond

the 2000 features, the score stabilizes, indicating that the addition of features does not

enhance performance.

Finally, following the representation of each data set and the analysis of each graph, a

total of 1500 characteristics were selected for use in the subsequent stage of the project. This

was because, on average, this number of characteristics represents the point at which the

performance of the model begins to increase. Furthermore, if the number of features were

to be reduced even further, the representativeness and the ability of the model to capture

all the variability and complexity of the problem would be compromised. The selection of

fewer features may result in the loss of crucial information, which could lead to suboptimal

performance and reduced model generalisation.

4.2.2 Second Stage

The results of the second stage of our project, which were previously outlined in detail in

Chapter 3, are presented below.

In the pursuit to improve model performance and efficiency, optimisation strategies play

a crucial role in fine-tuning hyperparameters. This includes carefully selecting ranges for

parameters such as the number of units in hidden layers, which have a significant impact

on the capacity and complexity of the model. Through the use of the Optuna search

technique, the exploration of hyperparameters is followed with a focus on improving model

performance.

4.2.2.1 MultiLayer Perceptron

In Table 4.1 are presented the results employed in Wave 5 prediction. The characteristics

and differences between the various tests are detailed below.

• Trial 1: a total of 1000 characteristics were extracted. No L2 regularisation layer

was employed, and the range of the number of units utilised in the dense layers of the
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model for the hyperparameter search technique was notably broad.

• Trial 2: a total of 1000 characteristics were selected. The regularisation layer L2 was

not employed, and the range of the number of units utilised in the Dense layers of

the model for the hyperparameter search technique was expressed in powers of two,

as part of an optimization strategy aimed at exploring this range thoroughly. This

approach was adopted to streamline the search process and ensure a more exhaustive

examination of potential configurations.

• Trial 3: a total of 1000 characteristics were selected. The regularisation layer L2 was

employed, and the range of the number of units was expressed in powers of two for

the determination of the range.

• Trial 4: same methodology as above, with the exception that 1500 features are

utilised in this instance.

• Trial 5: a total of 1500 characteristics were selected. The regularisation layer L2 was

employed, and the range of the number of units was expressed in powers of two for

the determination of the range. In this instance, a seed was used to initialised this

model.

• Trial 6: the same strategy as aforementioned but in a larger test of 1000 trials.

It should be noted that with the exception of the Trial 6, all trials were conducted for

a duration of 50 evaluations.

NN Wave 5

Precision Accuracy Recall F1-score

Trial 1 0.74 0.70 0.57 0.64

Trial 2 0.72 0.72 0.66 0.69

Trial 3 0.67 0.70 0.72 0.69

Trial 4 0.70 0.67 0.51 0.59

Trial 5 0.53 0.57 0.76 0.62

Trial 6 0.72 0.72 0.72 0.71

Table 4.1: Results obtained in NN Wave 5

Firstly, it can be observed that the accuracy of the tests varies considerably, with values

ranging from 0.53 to 0.74. In contrast, the variability of precision remains high, with values

ranging from 0.57 to 0.72. Nevertheless, there is a tendency for the precision to be around

0.70. In the case of recall, there is considerable variability (0.51-0.76), which will depend on

the characteristics of the model and, therefore, make it more difficult to identify all the true
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positives. Finally, the F1-score ranges from 0.59 to 0.71. These values indicate a certain

balance between precision and recall.

Trial 6 may be the best value presented due to the greater number of tests conducted

compared to the rest. This approach enables Optuna to test a greater number of potential

combinations of hyperparameters through a more comprehensive search process, thereby

increasing the probability of identifying more optimal hyperparameters that enhance the

performance of the model and facilitate the accurate identification of both positive and neg-

ative instances, resulting in an elevated F1-score. Furthermore, it can be observed that Trial

6 presents more than one maximum metric result compared to other tests, corresponding

to the precision and F1-score, which as previously stated are related.

Moreover, Table 4.2 presents the results employed in the Wave 6 detection. The char-

acteristics and differences between the trails are presented in detail below.

• Trial 1: a total of 1500 characteristics were selected. The range of the number of

units was expressed in powers of two for the determination of the range. Two hidden

layers were employed.

• Trial 2: same strategy as before but just one hidden layer.

• Trial 3: a total of 1500 characteristics were selected, in this case, same layers but a

regularizer was added (2 hidden layers).

• Trial 4: in comparison to the previous trial, a third hidden layer was incorporated.

• Trial 5: the same strategy as aforementioned but in a larger test of 1000 trials.

It is important to note that with the exception of Trial 6, all trials were conducted for

a duration of 50 trials.

NN Wave 6

Precision Accuracy Recall F1-score

Trial 1 0.7178 0.7137 0.7139 0.7125

Trial 2 0.7131 0.7100 0.7101 0.7090

Trial 3 0.7103 0.7006 0.7008 0.6972

Trial 4 0.7281 0.7232 0.7233 0.7217

Trial 5 0.7159 0.7100 0.7101 0.7081

Table 4.2: Results obtained in NN Wave 6
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The outcomes of Figure 4.2 indicate that the results are contingent upon the specific

combination of diverse hyperparameters. In the case of Trial 1, the metric values are

moderately high, indicating that the hyperparameter combination is reasonably good but

not fully optimal. Conversely, in the case of Trial 2, the results are slightly lower with a

slight decrease in all metrics. This leads to the conclusion that decreasing the number of

hidden layers does not improve the performance of the model. Similarly, Trial 3 presents

the lowest values of all executions, indicating that this configuration is the least effective.

Consequently, it can be concluded that the addition of regularising dense layers causes

sub-optimal performance.

Nevertheless, in contrast, Trial 4 demonstrates a notable enhancement in all metrics,

distinguishing itself from the other executions. It can be observed that recall (0.7233) and

accuracy (0.7281) are significantly higher, indicating that the configuration is more effective.

This leads to an F1-score (0.7217) that is satisfactory. Finally, the Trial 5, despite being

performed in more executions (1000 trials), has not achieved better results than would be

expected.

It is important to note that in Trial 5, only two hidden layers were suggested by the

hyperparameter search technique. This may be the reason why the metrics are lower than

in the previous trial, despite having executed it in more iterations. Therefore, it can be

concluded that in order to improve the detection of Wave 6, it is highly recommended to

add three hidden layers, although further investigation is required to confirm this.

4.2.2.2 Convolutional Neural Networks

This section presents the results obtained using a convolutional neural etwork model with

hyperparameter optimization performed using the Optuna search technique.

Table 4.3 presents a description of the tests conducted for the purpose of Wave 5 pre-

diction using a convolutional neural network (CNN).

• Trial 1: a total of 1500 features were analysed. In this instance, a hidden layer and

a MaxPooling1D layer were employed. A total of 50 executions were conducted.

• Trial 2: Dropout was incorporated into each hidden layer for a total of 1500 features.

Furthermore, a Learning Rate Schedules technique was implemented as an optimizer

of the learning rate, in this case, Exponential Decay.

It was determined that this technique should be incorporated into the model training

process due to the critical nature of the learning rate as a hyperparameter in the
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learning model training process. Additionally, during the manual testing conducted,

it was observed that the variation in the learning rate exhibited a notable influence.

Consequently, it was determined that the incorporation of a learning rate schedule

would enhance the efficacy and efficacy of the project, thereby facilitating a more

rapid and stable convergence. In the case of Exponential Decay, the learning rate is

reduced exponentially as the training progresses. In this instance, the subject was

trained with 100 trials.

• Trial 3: involved training with 1500 features and 100 trials. Nevertheless, the key

distinction is that the learning rate schedule varies, employing the Inverse Time De-

cay technique. This technique reduces the learning rate in inverse proportion to the

number of iterations, maintaining a high pace in the early stages to gradually reduce

it as the training progresses.

• Trial 4: the strategy is identical, and in this instance, Polynomial Decay is employed.

This entails following a polynomial function instead of the previous approaches, which

employed exponential or inverse functions.

• Trial 5: employs the Consine Decay learning rate schedule, which varies according

to a cosine technique.

CNN Wave 5

Precision Accuracy Recall F1-score

Trial 1 0.71 0.71 0.71 0.71

Trial 2 0.7456 0.7360 0.7291 0.7289

Trial 3 0.7307 0.7259 0.7030 0.7205

Trial 4 0.7348 0.7212 0.7130 0.7114

Trial 5 0.7408 0.7243 0.7155 0.7136

Table 4.3: Results obtained in CNN Wave 5

The results presented in Table 4.3 indicate that in the initial run, the metric values are

uniformly 0.71, reflecting a combination of hyperparameters that provides an stable level

of performance. Nevertheless, these values are presented with fewer decimals than those in

the subsequent rows. This is because the function described in Section 3 was used, but was

later discarded due to its limited comparative capacity. The function provided by machine

learning library from Scikit-learn was subsequently employed, providing a detailed summary

of various evaluation metrics.

Conversely, the outcomes of Trial 2 demonstrate a notable enhancement in all metrics in

comparison to the preceding execution. This may be attributed to the incorporation of the
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MaxPooling1D layer and ExponentialDecay, in addition to the increase in the number of

trials. Trial 3, however, demonstrates a slight decline in performance compared to previous

trial, as evidenced by the lower precision and F1-score values. This suggests that the

combination is less optimal. The observed decrease in performance is associated with the

change in the function used for optimisation of the learning rate.

Nevertheless, in Trial 4, there is an improvement in precision and recall compared to

previous run, yet the results remain below those of Trial 2. Furthermore, the F1-score

is lower than before, indicating that the current combination is not yet optimal. In this

instance, it is necessary to rule out the optimisation function that was previously employed.

Finally, Trial 5 exhibited a slight improvement compared to the previous run.

In consideration of the outcomes observed for each trial, the second trial is identified as

the most effective, exhibiting the most optimal results across all evaluated metrics. This

suggests that the configuration of this execution is the most effective. It can be concluded

that the utilisation of the ExponentialDecay optimisation function is responsible for the

generation of the most favourable outcomes. This may be attributed to the fact that this

particular technique enables a gradual and continuous reduction of the learning rate.

The methodology employed to generate the data related to detection in Wave 6 presented

in Table 4.4 is outlined below.

• Trial 1: In the initial trial, 50 trials were conducted with two hidden layers, as

obtained with Optuna. The first layer consisted of 32 filters with a core size of 5,

while the second layer comprised 16 filters with a core size of 5. Furthermore, the

Exponential Decay technique was employed as the optimizer schedule.

• Trial 2: employs the same strategy as Trial 1, but with an increased learning rate in

order to enhance the optimization process.

• Trial 3: this execution employs three hidden layers as recommended by Optuna and

does not utilise any optimiser for the learning rate.

• Trial 4: The two-hidden-layer configuration is reintroduced, with the exclusion of a

schedule optimiser and the utilisation of the rate proposed by Optuna.

• Trial 5: The strategy employed in the initial attempt was replicated, with the pa-

rameters of the Exponential Decay varying.

In all previous trials, the search technique was executed during 50 trials and its number

was not varied. This will be taken into account in the comparison below.
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CNN Wave 6

precision accuracy recall F1-score

Trial 1 0.7155 0.7137 0.7138 0.7132

Trial 2 0.7332 0.7232 0.7234 0.7203

Trial 3 0.7008 0.7006 0.7006 0.7005

Trial 4 0.7246 0.7213 0.7214 0.7203

Trial 5 0.7173 0.7137 0.7139 0.7126

Table 4.4: Results obtained in CNN Wave 6

The results presented in Table 4.4 indicate that the values obtained for Trial 1 were

moderately high, although not entirely optimal. The second run demonstrated a notable

enhancement in all metrics in comparison to the previous iteration, culminating in the most

favorable performance observed across all executions, since is superior to the rest in terms

of all the scores that have been considered. The explanation for this improvement may

be due to the use of a considerable number of layers and the use of the ExponentialDecay

technique, which has already been found to improve the performance of the model, as well as

improving it with respect to the previous execution. This is due to the human manipulation

of the learning rate that was carried out after the observation of a slow drop of it during

the evaluation.

Trial 3 exhibited the lowest values in all metrics in comparison to the other trials. In

contrast to the previous cases, the introduction of a hidden layer did not result in enhanced

performance. Consequently, the model was reconstructed with two hidden layers, as this

configuration has been demonstrated to enhance the model’s performance. In opposition to

the previous trial, there was an improvement in precision and recall in Trial 4. It is possible

that this is due to the removal of the learning rate optimisation resource. Nevertheless, these

values remain below those observed in the second run. Nonetheless, the results demonstrate

a notable distinction between recall and precision, resulting in a competitive performance.

Finally, Trial 5 yielded values comparable to those observed in the initial run.

A review of the data reveals that the optimal performance was achieved in Trial 2,

suggesting that the combination of two hidden layers with the ExponentialDecay technique,

in conjunction with the hyperparameters identified through the search technique, has been

demonstrated to yield the most optimal results for the detection of Wave 6 in Convolutional

Networks.

The results of the study indicate that the convolutional neural networks (CNNs) em-

ployed in these experiments exhibited superior performance compared to the multilayer per-

ceptrons (MLPs) previously evaluated. The CNNis particularly effective in data processing
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due to its ability to capture spatial characteristics through convolutions. This capacity to

extract and learn intricate spatial patterns enables CNN to surpass MLP in tasks such as

this project.

The following table presents the results of the combined data from both waves (Mixed),

as shown in Figure 4.2. These results are intended to show potential improvements by

introducing temporal information. As discussed at the end of Section 3.4.2, incorporating

data from multiple waves of time allows for a more comprehensive analysis by exploiting

the temporal dimension, which can improve the predictive power of the model. The metric

results presented in Table 4.2 highlight the impact of adding temporal information on the

overall effectiveness of the model.

• Trial 1: The experiment was conducted in 50 iterations, utilising the hyperparameters

proposed by Optune for a hidden layer comprising 16 filters and a kernel size of 4,

with a relatively low learning rate (0.00001).

• Trial 2: This trial follows the same strategy as the previous one, but the learning

rate is increased to 0.01.

• Trial 3: In this case, two hidden layers are used. The first layer has 16 filters with a

kernel size of 2, and the second layer has 64 filters and a core size of 4. The learning

rate remains the same as in the previous trial.

• Trial 4: employed the same strategy as in the initial trial, with the addition of the

Exponential Decay learning rate optimizer.

• Trial 5: The same strategy as before was employed, with the addition of a second

layer comprising 64 filters and a core size of 3.

In summary, all results were developed for 50 iterations. However, it should be noted

that additional tests were also performed, where the number of executions was increased, but

no superior results were achieved. It can be concluded that, despite the limited number of

iterations, the Optuna search method is capable of identifying the most optimal parameters

in a smaller number of combinations, given the data in question.

Table 4.5 presents five distinct executions, each exhibiting varying outcomes. In the

initial attempt, it is possible that the low learning rate contributed to a slow convergence,

resulting in a moderate performance. Additionally, the highest F1-score value was achieved

in this attempt. Conversely, a slight increase in the learning rate in Trial 2 led to enhanced

precision and accuracy metrics, while maintaining comparable recall and F1-score. This

suggests a balance between rapid convergence and stability.
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Mixed

precision accuracy recall F1-score

Trial 1 0.7681 0.7665 0.7640 0.7665

Trial 2 0.7761 0.7685 0.7641 0.7645

Trial 3 0.7753 0.7529 0.7457 0.7438

Trial 4 0.7812 0.7549 0.7472 0.7448

Trial 5 0.7872 0.7588 0.7509 0.7485

Table 4.5: Results obtained in CNN mixed

In the case of Trial 3, the inclusion of a second hidden layer with more filters did not

enhance the model’s capacity to capture more complex features, as evidenced in a slight

decline in the metrics, which could indicate an excessive adjustment in specific character-

istics. The utilisation of ExponentialDecay in Trial 4 enhanced the stability of the model,

resulting in high precision, and a slight increase in recall and F1-score in comparison to

the previous run. Finally, the Trial 5, which incorporated a second hidden layer with ad-

ditional filters, yielded the most optimal performance of its precision, achieving a value of

0.7872, the highest of all executions. Furthermore, the recall and F1-score demonstrate a

satisfactory balance.

Following the comprehensive examination of the outcomes yielded by each wave and type

of network, the CNN has been demonstrated to exhibit superior performance in comparison

to the MLP, due to its inherent capacity to capture both spatial and temporal characteristics

within the data. In the context of the combined data from the two different time waves,

the CNN is able to leverage time dependencies and local characteristics more effectively.

Furthermore, this aspect is of particular relevance in the context of health applications, as

is the case of this project temporal patterns and spatial relationships within the data can

be crucial both for diagnosis and for possible prevention or follow-up of conditions such as

mental frailty.

Finally, after obtaining the previous results for each of the model alternatives, these

outcomes were compared with those from the Leghissa’s study, which serves as the founda-

tion for this research as introduced in Section 4.1.1. Table 4.6 showcases the metrics for the

best models from each wave, comparing their F1-scores with those reported in the original

article.
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Models Precision Accuracy Recall F1-score

Wave 5

MLP 0.72 0.72 0.72 0.71

CNN 0.7456 0.7360 0.7291 0.7289

Leghissa 0.741 0.736 0.732 0.731

Wave 6

MLP 0.7281 0.7232 0.7233 0.7217

CNN 0.7332 0.7232 0.7234 0.7203

Leghissa 0.741 0.738 0.734 0.734

Mixed CNN 0.7681 0.7665 0.7640 0.7665

Table 4.6: Comparison of the results of the project with the results described in Leghissa’s

article [1]

The presented findings in Table 4.6 indicate that MLP1 networks do not emerge as a

preferable alternative for improving the outcome metrics across all waves, as demostrasted

in both, Leghissa’s2 study and the convolutional network analysis. However, while the F1-

score value achieved in Wave 6 surpasses that of convolutional networks, the disparity in

results lacks significance to definitively assert the superiority of MLP in detection tasks.

Furthermore, other performance metrics fail to exhibit enhancements compared to CNNs,

therefore, further exploration would be required to definitively confirm the previous convic-

tion. Thus, it can be inferred that the design of MLPs remain questionable and might not

be optimal for the proposed system, as they appear not capable in discerning relationships

effectively.

Conversely, a similarity exists between the outcomes of convolutional networks and those

referenced in the article concerning accuracy and recall metrics. Nevertheless, this study’s

model demostrates superior precision compared to the referenced article, indicating a more

accurate prediction of positively identified instances. Specifically, in Wave 5, CNNs achieve

a precision of 0.7456, suggesting their efficacy in predicting mental frailty. In contrast, this

is not the case of Wave 6, whose precision values are lower. However, across both prediction

tasks in Wave 5 and detection tasks in Wave 6, the F1-scores fail to surpass those reported

in the referenced article.

Nevertheless, the most striking findings in Table 4.6 are significantly superior results

obtained by incorporating data with temporal dependencies into convolutional network

1Wave 5 MLP results show fewer digits because they use a less powerful strategy for obtaining metric

results
2The original results presented in Leghissa’s article were obtained with a precision of three decimal places.
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models. In contrast to other approaches, incorporating temporal information yields higher

values across all evaluated metrics, attaining an F1-score value of 0.7665. It is evident

that the performance of the model significantly surpasses all other results depicted in the

comparative table.

In summary, while both MLP an CNN present certain merits in predicting mental frailty,

the inclusion of temporal dependencies in convolutional network models yields markedly

superior results. This underscores the importance of considering temporal dynamics in the

analysis of mental frailty, ultimately enhancing predictive accuracy and informing more

effective interventions.

For instance, in the context of temporal health analysis, the disparate data collected

from patient records are presented as features. Nevertheless, those that are relevant may

not manifest in isolation, but rather as potential patterns distributed over time. CNN is

presented as a powerful tool due to its convolution and pooling capabilities, which allow for

the capture of characteristics, thereby improving the capacity of the model and achieving

accurate predictions.

4.2.3 Additional Stage

In order to enhance system performance, new alternatives were proposed as detailed in

Section 3.5. The objective was to introduce a new stage of feature selection after the neural

network, focusing on selecting the most contributive features again.

In this stage, an alternative hyperparameter search technique, GridSearch, was em-

ployed. However, the computational cost of the pipeline in conjunction with the extensive

hyperparameter search, made test execution challenging.

Among all the runs performed, the maximum F1-score achieved was 0.7135. Although

this score matches the MLP result in predicting Wave 5, as shown in Table 4.6, the score

did not yield superior results to those of the CNNs. Nevertheless, this line of research is

not precluded and remains promising. The objective of reducing the number of features,

as demonstrated by RFE, enhances system performance and helps the identify the most

optimal contributing features. Exploring other robust models, such as SVM, would be a

valuable continuation.

Consequently, access to additional resources would be beneficial for pursuing this re-

search further. This would enable a definitive test to determine whether these ideas should

be discarded or if they could introduce potentially innovations in predicting and detecting

mental frailty.
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CHAPTER5
Conclusions and future work

This section presents the principal conclusions that have emerged from the design and

development of this project and an outline on future work.

5.1 Conclusions

This work follows the line of research of the article developed by Leghissa [1], whose main

objective aligns with that of this project: predicting early mental frailty. Compared to other

studies, the development of this machine learning system has been conducted by designing

various models using neural networks as the primary element. This approach contrast with

other research [57, 58, 59, 60] that employs conventional and commonly used models of

machine learning algorithms.

Neural networks were chosen for this study not specifically for the task at hand, but

rather because of the nature of the data available. The dataset is highly variable, requiring

a simplified and unified representation. Therefore, the combination of feature reduction

techniques with neural networks was used to address this challenge. These algorithms are

capable of capturing complex relationships and patterns in the collected data, as well as,

incorporating the time dependencies of data collected at different points in time, which is
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typically in patient follow-up and prevention in the health sector. Additionally, the research

line developed in this project differs from Leghissa’s article in the initial stage of feature

extraction used in other developments, with the technology employed here standing out for

its simplicity and effective results.

One of the main limitations encountered at the beginning of the development process was

the difficulty in finding the most optimal hyperparameters for the models. Consequently, a

search technique was incorporated to facilitate the design of the models. The performance

metrics were compared using the macro-averaged F1-score to select the models with the

best performance.

Additionally, in relation to the architecture developed in Section 3, it presents two main

structures. First, the use of MLPs in Section 3.4 whose metrics are not high enough or do

not improve upon existing metrics. In contrast, Section 3.4.2 discusses the incorporation

of convolutional layers, which improves the F1-score but still do not introduce significant

improvements in the study. Nevertheless, when these convolutional layers were employed

to detect hidden time dependencies in the data, the resulting model achieved superior and

better results than all previous ones.

In conclusion, by using CNNs, the obtained scores are superior and enhance the pre-

diction of mental frailty in older adults. This project successfully developed a model that

performs correctly, improving the predictions of previous research by capturing the temporal

dependencies present in the data.

5.2 Achieved goals

This section highlights the key achievements of the project and the strengths of the system

developed. During the development of the project, all the objectives were achieved and

have served as a guideline for the line of research.

The first objective (1) refers to the ideal of reducing the number of tests to be carried out

on patients by means of feature extraction techniques. Section 3 introduces the Recursive

Feature Extraction technique, which identifies the combination of most relevant features for

prediction in each wave of data. The results can be used to establish a minimal set of tests

necessary for patient evaluation, thereby reducing the number of assessments a patient

must undergo and alleviating the workload of clinicians by eliminating the collection of

non-influential data.
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To address the second objective (2), as described in the Section 3, numerous models were

explored and developed to enhance the system performance. Various configurations of MLPs

and CNNs were tested, with their performance optimised through hyperparameter tuning

using the Optuna search technique. This approach involved the addition of hidden layers

and the adjustment of hyperparameters. Additionally, a brief experiment was conducted

using XGBoost and SVM as an alternative line of research.

Finally, the models described were evaluated a system whose performance could be effec-

tively used in conjunction with diagnostic tests to predict frailty. For the dataset combining

different time points, the best results were achieved by the model utilizing convolutional

networks. Thus, the third objective (3) of the project was successfully met by identifying a

robust model that can enhance the prediction of frailty through the integration of temporal

data.

5.3 Future work and challenges

This section provides a brief overview of the principal challenges and prospective avenues

for future research that may emerge from this development. The proposals for improvement

and future developments are presented below:

• With regard to classifiers, one potential avenue for investigation would be to utilise

more robust and powerful classifiers, such as XGBClassifier, Random Forest or Sup-

port Vector Machine. This approach would not only be capable of identifying complex

patterns but would also be able to uncover hidden relationships, thereby yielding supe-

rior outcomes. Nevertheless, it is important to consider the increased computational

cost of implementing such enhancements.

• In terms of future applications, it would be stimulating to utilise this technology not

only for prediction, as demonstrated in this project, but also for detection. Such an

approach would be advantageous, as early detection would enable the prediction of

subsequent long-term signs of mental frailty, thereby reducing the risk of developing

this condition to a greater extent in the future.

• With regard to the condition under consideration in this study, although in Section 1

Introduction we introduced the concept of frailty as a multidimensional syndrome,

the approach of this project is based on the prediction of mental frailty. Nevertheless,

the approach could be extended to other dimensions, such as the physical or social

dimensions. The method could allow for the detection of a single condition, multiple
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conditions simultaneously, or the probability of developing one or more conditions

based on one of them.

• Concerning the multimodality, it would be beneficial to include medical tests as

images in addition to clinical or administrative data that are already incorporated, in

order to gather as much information as possible to make a more accurate diagnosis of

frailty and to enhance the performance of the models.

• In relation to the implementation and treatment of the patient, it would be beneficial

to develop systems that operate in real time and collect data from a certain age. These

data could then be incorporated into a portable device, such as a mobile phone, and

used as applicable data in models.

• In the context of the MIRATAR project, the system’s data can be used to develop

treatments to prevent or treat mental frailty. By identifying early signs and sug-

gesting personalised interventions, the system helps to reduce the onset of frailty and

increase the effectiveness of treatment.

Additionally, while the systems show promise, the potential computational costs and

time required for further improvements are non-negligible considerations that must be ad-

dressed in future work.

While there are promising opportunities for further research and notable advantages,

a significant drawback remain. As discussed in the introduction, the lack of a consensual

definition of frailty within the medical community presents an ambiguity and a fundamental

challenge. Without a standarised definition, the designs and models developed by any

similar work, including this project, will be susceptible to variations based on new criteria.

Consequently, their reliability and validity may fluctuate, posing a challenge for consistent

application and interpretation.
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APPENDIXA
Impact of this project

This appendix provides a quantitative and qualitative assessment of the project’s potential

social, economic, environmental and, ethical impacts.

A.1 Social impact

As previously discussed, mental frailty is a widespread problem among older people, result-

ing in an increase concern as the population ages. By developing a machine learning system

for early detection of mental frailty in elderly people, this project aims to facilitate timely

diagnostic and treatment. Early detection and prediction ensure older people better aging,

alleviate personal distress and reduce the wider social and economic burden associated with

demographic aging.

A.2 Economic impact

Early detection of mental frailty can not only prevent worse prognoses but also reduce the

associated costs. While hospitalization [71] represents a significant portion of healthcare

i



APPENDIX A. IMPACT OF THIS PROJECT

expenses, early prediction of mental frailty can also diminish the need for other resources,

such as physiotherapy, medications, specialist consultations, general practitioner visits, and

diagnostic tests.

If prediction systems similar to the one proposed in this work were implemented, it

would be possible to reduce costs by providing early indications for treating this condition.

Additionally, it would allow for better management and optimization of medical specialties,

facilitating more effective follow-up and treatment plans, as well as improving the allocation

of diagnostic tests and prevent them form invasive and expensive treatments.

A.3 Environmental impact

One of the main environmental impacts is the power consumption resulting from the com-

plexity of the machine learning algorithm. Although efforts have been made during the

development of the project to consider and minimise the power consumption of the GPU,

it can still consume up to 250W.

A.4 Ethical impact

The deployment of the machine learning system for the early detection of mental frailty

arise several ethical considerations that must be thoroughly addressed.

First, it is essential that the system adheres to ethical and legal requirements to protect

patient data, maintaining the confidentiality of medical information.

On the other hand, the system must be designed to ensure that no community or

individual is exluded. This is particularly important for elderly populations, the system

should be culturally sensitive, considering different cultural perspectives on mental health.

By addressing these factors, the system developed should ensure that all elderly individuals

have an equal opportunity to benefit from early detection.
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APPENDIXB
Economic budget

This appendix details an adequate budget to bring about the project, including hardware

resources, software resources and human resources.

B.1 Hardware resources

During the development of this project, the only hardware component required was the use

of a computer with the following characteristics:

• RAM: 8 GB

• CPU: Intel (R) Core (TM) i5-2400 @2.10 GHz

• GPU: NVIDIA Titan X

• Operating Sysmtem: Ubuntu 22.04.3 LTS

• Storage: 1 TB

The estimated cost of acquiring these component would be around of 1000€ the com-

puter and the GPU for about 3500€.
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B.2 Software resources

The software tools used in this project incur no costs, as they are open-source and free from

any licensing fees.

B.3 Human resources

In order to calculate the approximate cost of the human resources used to develop this

project, the number of credits associated with the completion of a final thesis must be

considered equivalent to 12 ECTS. Each of these credits corresponds to approximately 25-

30 hours per week, so that a total of 360 hours would be required to carry out the project.

In Spain, the average salary of a recently graduated biomedical engineer is 25000€ per

year, which would be approximately 11€ per hour. With this information, the approximate

total cost for the hours worked by the student is 3960€.

B.4 Resources Total Cost

In summary, if all the associated costs described above are added together, the total cost

of developing the project is 8460€.
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[5] Àngel Lavado, Júlia Serra-Colomer, Mateu Serra-Prat, Emili Burdoy, and Mateu Cabré. Rela-
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