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Autor: Óscar Parro Sainz
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Resumen

Desde la aparición del COVID en 2019, este virus no solo se ha propagado rápidamente, sino

que también se ha transmitido mucha desinformación en todo el mundo a través de noticias o

usuarios de Internet. Estas noticias falsas no solo han causado falta de información, sino también

trastornos en la sociedad e incluso consecuencias mortales en problemas de salud. Por lo tanto,

ser capaz de entender y mitigar dicha desinformación sobre el COVID-19 no sólo tiene interés

académico, sino también un enorme impacto social.

En los primeros años de propagación del COVID-19, la mayor parte de la sociedad no entend́ıa

realmente el virus ni cómo actuar contra él. Sin embargo, con el paso de los años, la información

y los datos han aumentado, ampliando el conocimiento de los expertos sobre el virus. Aun

aśı, muchos medios de comunicación o internautas siguen difundiendo información falsa. Detrás

de estas acciones se articulan en numerosas ocasiones estrategias para manipular a la opinión

pública y erosionar la estabilidad de los Estados y sus instituciones.

El objetivo principal de este proyecto, dentro del campo de la Inteligencia Artificial, es utilizar

técnicas de Procesamiento del Lenguaje Natural (PLN) y Aprendizaje Automático (AA) para

generar un sistema de detección automática de noticias falsas en relación con COVID. El sistema

desarrollado se utilizará para escanear toda la información encontrada en las diferentes fuentes

de los medios de comunicación, como noticias, art́ıculos o posts en redes sociales relacionados

con el COVID-19. Siendo capaz de analizar las tendencias de desinformación encontradas en las

mismas y determinar qué información es más probable que sea falsa.

La implementación de un sistema de detección de noticias falsas podŕıa desempeñar un papel

crucial en la lucha contra la desinformación en el contexto del COVID-19. Al proporcionar una

forma eficiente y precisa de identificar y alertar sobre noticias falsas, se puede ayudar a minimizar

su impacto negativo en la sociedad. Además de su utilidad en la detección de noticias falsas, el

sistema desarrollado podŕıa tener un impacto significativo en la promoción de la alfabetización

mediática y la educación en el uso responsable de la información. Al analizar y categorizar la

veracidad de las noticias o publicaciones en redes sociales, los usuarios podŕıan tener una mayor

conciencia de las tácticas y estrategias utilizadas para difundir información falsa. Esto permitiŕıa

a las personas tomar decisiones más informadas y cŕıticas al consumir contenido relacionado con

el COVID-19.

Palabras clave: COVID-19, desinformacion, Inteligencia Artificial, Aprendizaje Automático,

Procesamiento Natural del Lenguaje, noticas falsas.
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Abstract

Since the appearance of COVID in 2019, not only this virus has spread rapidly, but also a lot of

misinformation has been transmitted worldwide by news or internet users. This fake news has

caused not only a lack of information, but also disruption in society and even deadly consequences

in health problems. Therefore, being able to understand and mitigate such misinformation about

COVID-19 is not only of academic interest, but also of enormous social impact.

In the early years of the COVID-19 spread, most of the society did not really understand the

virus and how to act against it. However, over the years, information and data has increased,

broadening experts’ knowledge about the virus. Even so, many media or Internet users continue

to disseminate false information. Behind these actions, strategies are articulated on numerous

occasions to manipulate public opinion and erode the stability of States and their institutions.

The main objective of this project, within the field of Artificial Intelligence, is to use Natural

Language Processing (NLP) and Machine Learning (ML) techniques to generate a system for

the automatic detection of fake news in relation to COVID. The system developed will be used

to scan all the information found on the different media sources, such as news, articles or social

media posts related to COVID-19. Being able to analyse misinformation trends found in these

and determine what information is most likely to be false.

The implementation of a fake news detection system could play a crucial role in the fight

against misinformation in the context of COVID-19. By providing an efficient and accurate way

of identifying and alerting about fake news, it can help minimise its negative impact on society.

In addition to its usefulness in detecting fake news, the developed system could have a significant

impact on promoting media literacy and education in the responsible use of information. By

analysing and categorising the veracity of news or social media posts, users could be made more

aware of the tactics and strategies used to spread false information. This would enable people

to make more informed and critical decisions when consuming COVID-19 related content.

Keywords: COVID19, misinformation, Artificial Intelligence, Machine Learning, NLP, fake

news.
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CHAPTER1
Introduction

1.1 Context

The coronavirus (COVID-19) first appeared was in the city of Wuhan, China, in late 2019. This

virus has had a serious impact on the world, as in a short time it has become a global pandemic

affecting millions of people on all continents. As the number of cases increased, information

about the virus began to spread through the internet and social media, both true and false. As

the number of cases increased, information about the virus began to spread through the internet

and social media, both true and false.

COVID-19 has had a significant influence on people’s mental and physical health negatively.

In terms of mental health, social isolation, uncertainty about the future and fear of illness

have led to an increase in anxiety, depression and post-traumatic stress disorder. In addition,

the pandemic has exacerbated inequalities in access to health care and mental health services,

particularly affecting the most vulnerable communities. In terms of physical health, COVID-19

can have serious consequences, including hospitalisation and death.

Moreover, the pandemic has led to the disruption of health care services and a reduction in

physical activity, which has increased the risk of chronic diseases such as diabetes, obesity and

cardiovascular disease.

In the age of digital information and social media, the way news are consumed has changed

dramatically. The proliferation of social platforms has given rise to a plethora of user-generated
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CHAPTER 1. INTRODUCTION

content, making news distribute faster and more globalised than ever before. News spreads

through social networks, messaging apps and search engines, and can reach millions of people

in a matter of seconds. Today, any user with access to the internet can publish and diffuse

information using any of these platforms. This has provided society with an almost immediate

speed to keep abreast of all events and information concerning the coronavirus.

However, along with truthful and useful information, there has also been a lot of misleading

information , conspiracy theories and fake news related to COVID-19. Many of these stories

have been spread by people with political or economic interests, while others have arisen simply

out of ignorance or misunderstanding. News verification has become increasingly important to

prevent the spread of this and protect the integrity of information.

The lack of information about COVID-19 can have serious consequences, as it can lead

people to make wrong or dangerous decisions regarding their health and the health of others.

For example, some people have taken extreme measures, such as drinking bleach or taking

dangerous medications, based on false information about how to prevent or cure the virus.

In contrast to fake news, the spread of real news about COVID-19 has also been widespread

and rapid thanks to digital technology. News channels, government websites and official social

media accounts have been a key source of accurate and up-to-date information. Additionally,

media and news verification organisations, scientists as well as public health officials collaborat-

ing together have played an important role in turning the tables around and sharing accurate

and real news.

While challenges remain in the fight against it, the effective use of digital technologies can

be a valuable tool in disseminating accurate and reliable information about the pandemic.

The most common ways of communicating news about the coronavirus have been news

websites and the use of social networks such as Twitter, Facebook or Instagram. In many of

these sites, mainly social networks, the information that is transmitted is not verified, therefore,

during this project we will analyse both the news and the publications on social networks to be

able to check their veracity, all thanks to the use of Machine Learning and Natural Language

Processing techniques.

1.2 Project goals

The objectives of this project will be the following:

1. Search and obtain different sources of information in order to implement text pre-processing

techniques.

2. Research and study of different classification models for their development in the searched

texts.

2



1.3. STRUCTURE OF THIS DOCUMENT

3. Upgrade the previously used models to more current and complex techniques, such as the

Transformers.

4. Evaluation and analysis of the results obtained during the course of the project.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is as follows:

Chapter 1 explains the context of the work to be carried out together with the objectives

to be achieved. It will give an overview of how the project is structured and its information.

Chapter 2 describe the technologies, environments and libraries that have been used to

carry out this project.

Chapter 3 explains in depth the technologies, methodologies, classifiers and transformers

applied to achieve the objectives of the work.

Chapter 4 shows the process that has been following during the project, such as the analysis

of the datasets, the preprocessing, the optimisation of hyperparameters and the results obtained.

Chapter 5 shows the final conclusions of the project, the objectives achieved and the future

work.

3
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CHAPTER2
Enabling Technologies

2.1 Introduction

This chapter will describe the technologies, environments and libraries that have been used to

carry out this project. The project focuses on the use of Machine Learning techniques, for which

the libraries that will be used to carry out the analysis, pre-processing and evaluation will be

described in the following sections. The tools and platforms that have been used during the

work will also be included.

2.2 Machine Learning

Machine Learning [5] is an area in the field of artificial intelligence that allows computers and

systems to apply statistical learning techniques in order to automatically identify patterns in

data, developing learning about processes and techniques in a similar way to how humans do

it. Learning in this context means identifying complex patterns in millions of data, it is an

algorithm that reviews the data and is able to predict future behaviour. Automatically, also

in this context, means that these systems improve autonomously over time, without human

intervention.

Machine Learning [6] appeared in the mid-1980s with the application of neural networks and

decision trees. It began to be used in complex prediction problems where classical statistical

5



CHAPTER 2. ENABLING TECHNOLOGIES

models were not efficient, such as, for example, voice and image recognition, non-linear time

series prediction, financial market prediction, written text recognition, etc.

Nowadays, machine learning models have become a technological resource implemented in

everyday tools such as anti-spam filters for emails, automatic car driving or voice recognition

software. The main characteristic of this type of algorithms is that they are able to automatically

readjust themselves to improve their performance depending on the number of hits and misses

produced in a training process prior to its application and during its execution in real time.

Following, different categories of machine learning approaches are presented [7]:

1. Supervised Learning: the model uses a training dataset that is made up of examples

labelled with the responses corresponding to those data. Its objective is to learn this data,

so that when new data is introduced to it that the model has not yet seen, it can make

accurate predictions thanks to the previous training it has undergone. In order to carry

out this work, we will implement supervised learning.

There are two types of supervised learning, depending on the label of the data:

• Classification models: these are problems that need to predict a discrete label,

within a set of possible labels, as a function of a set of input variables. There are two

types of classification problems: binary and multiclass.

• Regression models: these are problems that try to predict a continuous numerical

response as a function of a set of input variables.

This type of learning is incorporated [8] in technological applications such as spam de-

tectors in e-mails, image detectors in captchas or in voice or handwriting recognition

applications.

The best known supervised learning algorithms are [1] : Linear Regression, Logistical

Regression, Random Forest, Gradient Boosted Trees, Suppor Vector Machines (SVM),

Decision Trees, Naive Bayes and K-Nearest Neighbor. We will talk about the first three

later, as they have been chosen to develop the work.

2. Unsupervised learning: in this case, the machine will act on its own and will not need

labels, but it will need a set of data to give results. The aim is to obtain key or important

information without prior knowledge of the reference of the output variables by exploring

the structure of the unlabelled data.

So, the machine must try to integrate or group all the results in labels by relation. In the

meantime, the algorithm must find a way to perform measurements and the relationships

between all the results found.

Unsupervised learning algorithms can be divided into two main groups according to their

inner workings:

6



2.2. MACHINE LEARNING

• Clustering: are iterative algorithms that use exploratory techniques to analyse the

data in which the information is organised into groups without knowing the structure

of the data beforehand. They start with an initial allocation of the data into groups

and are modified according to an optimisation strategy.

This is done in order to obtain groups of data with similar characteristics.

• Dimensional reduction: are used with highly complex data that require more pro-

cessing capacity and allows finding relationships between variables in a large dataset.

It works by determining correlations between the characteristics that are present in

the data sets, reducing redundancies of information and reducing analysis time in

order to obtain more efficiently the information considered to be of greater value.

This type of learning is used [8] for anomaly detection, recommender systems in different

web applications or eCommerce sites or to identify plagiarism and copyright.

The most common unsupervised learning algorithms are [1]: K-means Clustering, t-SNE,

Principal Component Analysis (PCA) and SVD.

3. Semi-supervised learning: is a practice that lies somewhere between supervised and

unsupervised learning, combining elements of both. It is used for large datasets so that

only a small group of the data is labelled and the majority are unlabelled datasets, as it

increases costs, but is useful for meeting objectives.

Although there is monitoring of how the machine performs, it is not a job that is done

throughout the work with the machine. While some results have to be labelled manually,

others will be proposed automatically by the machine.

4. Reinforcement learning: aims to build models that increase performance based on the

outcome or reward that is generated by each interaction performed. This reward is the

product of a correct action or set of returned data that falls within a specified measure.

The model through an agent uses the reward as a parameter to adjust its behaviour for

future actions, so that the new action also fulfils the objective or correct action and thus

obtains a maximum reward.

This type of learning is used for [8] video games, robotics, resource management or text

mining. A clear example is Aplha Zero [1], an AI trained with this type of learning to play

chess.
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Figure 2.1 shows a schematic of the three main types of machine learning:

Figure 2.1: Types of Machine Learning [1]

After explaining the different types of machine learning that exist, we are going to explain two

aspects that are relevant to take into account when considering the generalization capabilities

of the generated prediction models. The problems we consider are under-fitting and over-fitting

[9], which can affect the quality of trained models.

• Underfitting: occurs when a model is too simple and does not properly fit the training data,

which affects the accuracy of the data that is presented. This phenomenon occurs when our

model is not able to identify patterns, so it will always have poor results. Some solutions

to avoid underfitting are [10]: treat data correctly eliminating outliers and unnecessary

variables, use more complex models, adjust the parameters of our models or increase

iterations in iterative algorithms.

• Overfitting: occurs when a model fits the training data too closely, in turn, tries to mem-

orise all the data patterns. It is in this way that a predictive algorithm will result in a low

accuracy on the result test, when producing forecasts with high variance. Some approaches

to reduce the over-fitting challenge are [10]: split our data into training, validation and

testing, obtain a greater number of data, adjust the parameters of our models, use simpler

models or lower the number of iterations in iterative algorithms.
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In order to show the difference in a more visual way, the following figure 2.2 compares the

problems explained previously, as well as how the model performance should actually be.

Figure 2.2: Graphical differences between overfitting, underfitting and a robust model

2.3 NLP

Natural Language Processing (NLP) [11] is the area of study focused on how computers under-

stand human language, which focuses mainly on the understanding, handling and generation of

natural language by machines. It is a complex field in which different disciplines come into play,

such as Artificial Intelligence (AI), big data and linguistics.

NLP [12] is the field of designing methods and algorithms that take as input or produce

as output unstructured data in natural language. Human language is highly ambiguous and

variable, and at the same time constantly changing and evolving. People are very good at pro-

ducing and understanding language, and are capable of expressing, perceiving and interpreting

elaborate and nuanced meanings.

At the same time, although humans are great users of language, we are also very poor

at understanding and formally describing the rules that govern language. Understanding and

producing language with computers is therefore a challenge. In fact, the best known methods

for dealing with linguistic data are supervised machine learning algorithms, which attempt to

deduce patterns of usage and regularities from a set of previously annotated input-output pairs.

previously annotated.

Machine learning methods excel in problem domains where it is very difficult to define a

good set of rules, but the annotation of the expected outcome for a given input is relatively

straightforward. In addition to the difficulties of dealing with ambiguous and variable inputs

in a system with an ill-defined and unspecified rule set, natural language has an additional set

of properties that make it even more difficult for computational methods, including machine

learning: it is discrete, compositional and sparse. The basic elements of written language are

characters, which form words that can denote objects, concepts, events, actions and ideas.

Language is also compositional: letters form words, and words form phrases and sentences.
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The meaning of a sentence can be greater than the meaning of the individual words that make it

up, and follows a series of intricate rules. To interpret a text, one has to go beyond the level of

letters and words. of letters and words, and examine long sequences of words, such as sentences,

or even entire documents. The combination of these properties leads to data sparsity. The way

in which words (discrete symbols) can be combined to form meanings is virtually infinite.

To gain further insights into Natural Language Processing, let’s begin with its origin and

how it has evolved over the decades up to the present day [13]. NLP started around the 1960s

with the first computer analyses of text. A milestone for NLP and linguistics was the publication

of Computational Analysis of Present-Day American English in 1967 by authors Henry Kucera

and W. Nelson Francis. In the publication they explain how they computationally realised the

first NLP corpus, the Brown Corpus of Standard American English. This corpus contained

approximately one million words.

The 2000s exploit to the full what has been achieved in the lasts decades. This emerges

in the google search system, the robustness of Google Translate or Microsoft applications such

as Word, implementing with great precision not only spelling errors but also grammar. They

also create CNTK and MSRLM, two toolkits for NLP. The latter already incorporates 40 billion

words. Recall the leap from 1967 of 1 million to 2007 of 40 billion.

The last decade was a true technological revolution led by Artificial Intelligence and data

analysis. Finally, in 2018 came one of the great innovations of the decade: BERT (Bidirectional

Encoder Representation of Transformers).

Nowadays there are many applications for NLP, but in this image we are going to mention

some of them in a schematic way:

We are now going to mention and talk about some of the most relevant NLP techniques

[11]. One of the best known is tokenisation, which consists of dividing the text into small

texts called ”tokens”, taking into account criteria such as capitalisation, similar words, punc-

tuation, etc. In addition we also have part-of-speech (PoS) tagging, which classifies the words

of a sentence according to their grammatical category, surface parsing/chunks which is simi-

lar to parsing in terms of classification and representation, the bag-of-words technique which

represents documents without taking into account word order or structure, based on frequency,

and finally, pragmatic analysis which involves the detection of sarcasm, sentence intentionality,

double readings, etc.

Another two very interesting techniques that will be applied throughout this work are nor-

malisation and stopwords. The first one standardises words by converting them into upper or

lower case and the second technique consists of omitting or eliminating redundant words, such

as articles, which do not contribute much to the comprehension of the text. In later chapters, we

will explain how we have implemented these two techniques and how they help us to pre-process

our text before implementing the algorithms.
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Figure 2.3: NLP Applications [2]

2.4 Python

In this subsection we are going to talk about some of the most popular python libraries that

will help us to implement different techniques for organising data, preprocessing our text and

applying different classification models. These libraries are Pandas, GSItk and Scikit-learn.

Pandas [14] is a fast, powerful, flexible and easy-to-use open source data manipulation and

analysis tool, built on the Python programming language. Development of Pandas began at AQR

Capital Management in 2008 by Wes McKinney. In late 2009, Pandas became an open source

library, used by many data analysts around the world, who have contributed to its development

and evolution to the open source.

Pandas provides efficient data structures for working with tabular data, such as worksheets

and relational databases, and can handle data in different formats, including CSV, Excel, SQL

and JSON. The library is based on two main data structures:

• Series: is a one-dimensional data structure that can contain any type of data such as

numbers, strings, Boolean values, etc.

• Dataframe: is a labelled and mutable two-dimensional data structure commonly used for

data analysis, it can be likened to a table with labelled rows and columns. Each column

of the DataFrame is a Series and the rows are identified by an index.

Apart from these two structures that will be useful for structuring datasets, pandas has
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numerous functionalities for manipulating and transforming data, like aggregation, merging,

selecting and filtering data, and cleaning and transforming missing or incomplete data.

GSITK [15] is a library or framework that is capable of performing a wide variety of sentiment

analysis tasks. The framework is aimed at both researchers and professionals, facilitating the

replication of previous sentiment models, as well as offering implementations of common tasks.

This is accomplished by constructing multiple abstractions on popular libraries like scikit-learn

and NLTK. In this way, GSITK allows users to implement complex sentiment pipelines using

understandable Python code. Numpy and Pandas and related libraries to make it easy to

develop. Some of its features are:

• Dataset Manager interface

• Pre-processing (simple, normalize and pre-process Twitter), Stop word removal and Em-

beddings trick

• Feature extraction (Word2VecFeatures, Doc2VecFeatures, SIMON and SSWE)

• Classifiers (Lexicon and Vader)

• Evaluation (Basic or Advanced)

Scikit-learn [16] is an open source Python library that offers several simple and efficient tools

for users to perform data analysis or data prediction. It is accessible to everyone and is built

on top of other Python libraries such as Numpy, SciPy and matplotlib. This library offers the

following tools for machine learning tasks:

• Classification: Identifying which category an object belongs to

• Regression: Predicting a continuous-valued attribute associated with an object

• Clustering: Automatic grouping of similar objects into sets

• Dimensionality reduction: Reducing the number of random variables to consider

• Model selection: Comparing, validating and choosing parameters and models

• Preprocessing: Feature extraction and normalization

This is one of the most commonly used libraries in machine learning projects because of the

many options and tools it offers. For this project some of the tools that are going to be used to

carry out the objectives are the following: Pipeline, Model selection such as GridSearchCV and

Metrics, Classification models such as Random Forest, LinearSVC and LogisticRegression.

The functioning of all these tools and how they have been implemented throughout the

project will be described in detail in the following chapters.
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2.5 HappyTransformer

Happy Transformer [17] is a package built on top of Hugging Face’s transformer library, which

is a pre-trained deep learning neural network that has been trained in large amounts of natural

language data. The library makes use of this architecture to provide a variety of pre-trained

NLP models, such as BERT, GPT-2, RoBERTa, DistilBERT, among others. Transformers were

developed to solve the problem of sequence transduction, or neural machine translation. That

means any task that transforms an input sequence to an output sequence. This includes speech

recognition, text-to-speech transformation, etc..These are some of the features that we can use

with Happy Transformer:

a) Text Generation: automatically generating coherent and relevant text from a given

input or context

b) Text Classification: assigning one or more tags to a text to categorise it into different

predefined classes

c) Question Answering: respond to questions formulated in natural language from a set

of text or information

d) Word Prediction: predicting the next word or words in a sequence of text

e) Text-to-Text: transforming one type of text into another type of text, such as machine

translation or sentence rephrasing

f) Token Classification: assigning a label or category to each token or individual element

in a sequence of text

g) Next Sentence Prediction: predicting whether a given sentence is next in a sequential

order of sentences

For this proyect we will use the Text Classification feature that Happy Transfomers provides,

this will be followed by the use of a pre-trained model such as Distilbert. This pre-trained model

and the Text Classification feature will be explain in the nexts chapters.
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2.6 Environments and platforms

In this section we are going to mention the environments and platforms that have been used to

carry out the project, these are: Kaggle, Visual Studio Code, Google Colaboratory and Jupyter

GSI.

Kaggle [18] is an online platform where users can collaborate on projects, share and dis-

cover datasets for their scientific work with over 50,000 public datasets and over 400,000 public

notebooks. This platform also includes a Jupyter Notebooks interface that can be adjusted and

customised depending on the needs and requirements of each user. In the same way, Kaggle

allows free access to GPUs and to a large number of data and codes published by its extensive

user community.

Visual Studio Code (VS Code) [19] is a tool developed by Microsoft that is used as a source

code editor. It is open source and has become very popular among software developers because

of the wide range of features and extensions it offers to users. At the beginning of the project

it was the environment used together with Jupyter GSI for the development of the project.

Google Colaboratory, or ”Google Colab” [20] for short, is a product of Google Research. It

allows any user to write and execute arbitrary Python code in the browser. It is particularly

suitable for machine learning, data analysis and education tasks. From a more technical point

of view, Colab is a hosted notebook service from Jupyter that requires no configuration and

provides access to computing resources, such as GPUs, at no additional cost.

In this project, when the classification models evolved to use transformers from the Happy-

Transfomer library, the execution environment also had to be changed. This is why we switched

from using VS Code to Google Colab, as this tool offers the use of GPUs that allowed us to train

the transformers more quickly. The problem that arose later is that Google Colab resources are

limited, i.e. it has a maximum number of hours of daily use and also for certain models such as

BERT or ROBERTA the GPU memory was not able to accommodate them.

The last environment we have used in this work has been Jupyter Notebook [21] to be able

to deal with the GPU memory problems and the daily limits that Google Colab had. For this,

the Intelligent Systems Group (GSI) department provided us with an instance where we could

run the project’s notebooks. This has an NVIDIA Titan X graphics card with 12GB of memory.

Thanks to this we have been able to solve both problems that had previously appeared and

successfully carry out the work.
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CHAPTER3
Architecture

3.1 Introduction

In this chapter we address the technologies and methodologies implemented for the achievement

of the objectives of the work. To do so, we describe the classification models, the transformers,

the extraction of samples and the metrics that will be used to evaluate the results.

3.2 Feature Extraction with n-grams

Feature extraction [22] is a representation computation process by which an initial set of raw data

is reduced to more manageable groups for processing. A characteristic of these large datasets

is a large number of variables that require a lot of computing resources for processing. Feature

extraction is the name given to methods that select and/or combine variables into features, thus

effectively reducing the amount of data to be processed, while still accurately and completely

describing the original data set.

The process of feature extraction is useful when you need to reduce the number of resources

needed for processing without losing important or relevant information. Feature extraction can

also reduce the amount of redundant data for a given analysis. Also, the reduction of the data

and the machine’s efforts in building variable combinations (features) facilitate the speed of

learning and generalization steps in the machine learning process.
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Representing texts as n-grams is a commonly used approach in natural language processing

to represent and analyse text. N-grams are sequences of n elements, where the elements can be

words, characters or any other text unit. Sample extraction with n-grams involves splitting the

text into contiguous sequences of n elements and using these sequences as features or attributes

in the model.

For this feature extraction we will use the Count Vectorizer [23] tool, provided by the scikit-

learn library in Python. It serves to transform a given text into a vector based on the frequency

(count) of each word that appears in the whole text. This is useful when we have several texts

and want to convert each word in each text into vectors (for use in further text analysis).

CountVectorizer takes a set of text documents and performs several stages of preprocessing,

then builds a vocabulary of all the unique words in the documents. From this vocabulary, it

generates vector representations for each document, where each position in the vector represents

the frequency of occurrence of a specific vocabulary word in the document. These vector rep-

resentations are created in a matrix where each unique word is represented by a column of the

matrix, and each text sample in the document is a row of the matrix. Image 3.1 shows a simple

example of how it works:

Figure 3.1: Representation of the Count Vectorizer

By configuring CountVectorizer to use n-grams, sequences of consecutive words can be cap-

tured as features. For example, if the parameter ngram range=(1, 2) is set, CountVectorizer

will generate a feature set that includes both unigrams (single words) and bigrams (pairs of con-

secutive words). For the purpose of this work, apart from the range (1,2) which allows us to

have unigrams and bigrams, we will also use the range (1,3) which will allow us to have trigrams

as well.
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Figure 3.2: Performance of different n-grams [3]

3.3 Classification Models

We now turn to classification models, which we mentioned briefly in the previous chapter.

Classification is a supervised learning approach, which is used to predict a set of discrete labels

that is, one label within a finite set of possible labels, based on the input data that the model

receives. The model attempts to learn the relationship between these inputs or characteristic

variables and the labels or target variables. The set of labels or target variables can be of two

types: binary or multiclass. This project is based on the classification of binary labels, real or

fake.

Classification models in machine learning have both advantages and disadvantages compared

to other types of models [24].

One of the advantages of classification models is their ability to achieve high accuracy in

data classification. This makes them particularly useful in applications where a high level of

reliability is required. Additionally, classification models exhibit flexibility in handling different

types of data and labels, allowing them to be adaptable to various applications and problem

domains. Moreover, once trained, classification models can quickly and efficiently classify input

data, enabling fast decision-making processes.

However, there are also some disadvantages associated with classification models. One such

disadvantage is the need for labelled data during the training phase. As a supervised learning

model, classification models require data that is already labelled with corresponding categories.

Acquiring and preparing such labelled datasets can be a laborious and costly process.

Another drawback is the sensitivity of classification models to changes in the distribution

of data. If the underlying data distribution significantly changes, it can affect the classification

accuracy of the model. This sensitivity highlights the importance of regularly monitoring and

updating the model to maintain its performance.

Furthermore, classification models have limitations in terms of interpretation. Unlike some

other types of models in the field of AI, classification models do not provide detailed explanations

of how they arrived at their decisions. This lack of interpretability can hinder their usefulness
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in applications that require transparent decision-making processes or regulatory compliance.

The most common classification algorithms used for supervised learning are: Decision trees,

Logistic Regression, Support Vector Machines (SVM), Näıve Bayes classification, Least squares

regression and Ensemble methods. For the development of this project we are going to use the

first three mentioned above and in the following subsections we discuss them in detail.

3.3.1 Random Forest Classifier

Random Forest [25] is a widely-used algorithm in supervised machine learning, capable of han-

dling both classification and regression problems. It leverages the power of ensemble learning,

which involves combining multiple classifiers to tackle complex problems and enhance the model’s

performance. Random Forest comprise several decision trees, each trained on different subsets of

the provided dataset. By taking the average of these trees, the algorithm improves the predictive

accuracy of the dataset, offering robust and reliable predictions.

Before we continue talking about the Random Forest Classifier, let’s briefly explain what

decision trees are. Decision trees are a machine learning model consisting of hierarchical struc-

tures composed of nodes representing features and branches representing possible decisions or

outcomes. At each node, a question is asked about a specific feature and, depending on the

answer, the tree branches into different paths until it reaches the leaves, where a prediction or

final decision is obtained.

Random Forest [26] has almost the same hyperparameters as a decision tree or a bagging

classifier. Fortunately, it is not necessary to combine a decision tree with a bagging classifier

because the Random Forest Classifier can easily be used. It adds additional randomness to the

model as the trees grow. Instead of looking for the most important feature when splitting a

node, it looks for the best feature among a random subset of features. This results in a wide

diversity that usually translates into better model performance.

Therefore, in a Random Forest Classifier, the algorithm only considers a random subset of

features to split a node. It can even make the trees more random by additionally using random

thresholds for each feature instead of looking for the best possible thresholds (as a normal

decision tree does). We could define it as a collection of decision trees, the difference being

that the Random Forest algorithm randomly selects observations and features to build several

decision trees and then averages the results.

Another difference is that “deep” decision trees can suffer from overfitting. Most of the time,

the Random Forest avoids this by creating random subsets of the features and building smaller

trees with these subsets, then combining the subtrees. It is important to note that this does not

always work and also makes the calculation slower, depending on how many trees the Random

Forest builds. Picture 3.3 bellow shows how the model works:

18



3.3. CLASSIFICATION MODELS

Figure 3.3: How the Random Forest Classifier works

Some of the most important parameters of a Random Forest model are the following:

• n estimators: the number of decision trees in the forest. Increasing this hyperparameter

generally improves the performance of the model but also increases the computational cost

of training and predicting.

• max depth: the maximum depth of each decision tree in the forest. Setting a higher value

for max depth can lead to overfitting while setting it too low can lead to underfitting.

• max features: the maximum number of features to be taken into account when splitting

each tree. Controlling this parameter can help to reduce the correlation between trees and

promote model diversity.

• min samples leaf: the minimum number of samples required in a leaf of the tree.

• min samples split: the minimum number of samples required for a node to split into

additional branches.

The first three parameters are the most important when designing our Random Forest clas-

sification models, the reason for the use of these three parameters will be explained when we get

to the results section.
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3.3.2 Linear SVC

The Linear SVC (Support Vector Classifier) is a machine learning algorithm used for data

classification. It is based on the concept of support vector machines (SVM) and is specifically

applied to linearly separable classification problems.

Before going into more details about Linear SVC, we are going to explain the basic concept

of support vector machines (SVM) [27]. The goal of the SVM algorithm is to create the best

decision line or boundary that can segregate the n-dimensional space into classes, so that we

can easily place the new data point into the correct category in the future. This best decision

boundary is called a hyperplane, asseen in Figure 3.4. SVM chooses the extreme points/vectors

that help to create the hyperplane, these extreme cases are called support vectors.

Figure 3.4: Representation of the hyperplane in the SVM

The main idea behind Linear SVC is to find a hyperplane in a high dimensional space that

separates the data into different classes in an optimal way. The training process of Linear SVC

involves finding the coefficients and bias of the optimal hyperplane that separates the classes,

this is achieved by solving a convex optimization problem. Once the optimal hyperplane is

found, it is used to classify new data points by assigning them a class label based on which side

of the hyperplane they lie.

Linear SVC is used exclusively for linearly separable classification problems, whereas tra-

ditional SVMs can address both linear and nonlinear classification problems. Linear SVC is

computationally more efficient by working directly in the original feature space, while tradi-

tional SVMs can be more computationally expensive due to feature transformations. Traditional

SVMs offer more flexibility by allowing the use of different kernel functions, while Linear SVC

is limited to linear separation of classes. Another important aspect is the difference between

SVC and Linear SVC, both are similar, but the second one has the parameter kernel=‘linear’,

implemented in terms of liblinear instead of libsvm, so it has more flexibility in the choice of
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penalties and loss functions and should scale better to a large number of samples.

Figure 3.5: Plot different SVM classifiers in the iris dataset

Some of parameters [28] that Linear SVC has are: the regularization parameter (C), which

controls the trade-off between maximizing the margin and minimizing the classification error;

the error tolerance parameter (tol), which specifies the error tolerance allowed for algorithm

completion; the loss function type (loss), which defines the loss function used in the optimization

of the model; and the penalty parameter (penalty), which determines the type of regularization

applied.

The most important of these parameters is the regularization parameter (C). A low value

of C penalizes classification errors more, which may result in a model with a wider margin but

with more training errors. This favors generalization ability but may lead to underfitting. On

the other hand, a high value of C relaxes the error penalty, which results in a model with a

narrower margin and fewer training errors, this may increase the risk of overfitting.

3.3.3 Logistic Regression

Logistic Regression [29] is a machine learning classification algorithm used to predict the proba-

bility of certain classes as a function of some dependent variables, and is mainly used for binary

classification problems. Logistic Regression is used to predict the probability that an instance

belongs to one of two possible classes, the model computes a sum of the input features (in most

cases, there is a bias term), and computes the logistic of the result. Unlike linear regression,

which is used to predict continuous numerical values, Logistic Regression focuses on predicting

probabilities and performing a classification based on those probabilities.
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Figure 3.6: Diagram of a visual comparison between Logistic and Linear Regression

In practice, the Logistic Regression algorithm analyses relationships between variables. It

assigns probabilities to discrete outcomes using the Sigmoid function 3.1, which converts nu-

merical outcomes into a probability expression between 0 and 1. The probability is either 0 or

1, depending on whether the event occurs or not. For binary predictions, you can divide the

population into two groups with a cutoff of 0.5. Everything above 0.5 is considered to belong to

group A, and everything below is considered to belong to group B. The function called Sigmoid

3.1 is the following:

f(x) =
1

1 + e−x
(3.1)

In Logistic Regression, formulas are used to calculate the conditional probabilities of belong-

ing to a specific class. For a binary classification problem with a positive class and a negative

class, the probabilities of both classes can be calculated.

The formula for calculating the probability of belonging to the positive class is based on

the Sigmoid function. This formula takes the form P (y = 1|x) = 1
1+e−z where z is a linear

combination of the model coefficients (β0, β1, β2, ..., βn) and the predictor variables (x1, x2, ..., xn)

for a specific instance. The Sigmoid function transforms this linear combination into a value

between 0 and 1, representing the probability of belonging to the positive class.

The probability of belonging to the negative class can be obtained by subtracting the prob-

ability of belonging to the positive class from 1, P (y = 0|x) = 1− P (y = 1|x). These formulae

allow the conditional probabilities of both classes to be calculated for a given instance and are

used to perform classifications. It is important to note that Logistic Regression assumes that

the classes are mutually exclusive, meaning that an instance can only belong to one of the two

classes.

Logistic Regression has several key parameters [30] that influence its performance and ability

to fit the model. The regularisation parameter (C) controls the strength of the regularisation

to avoid overfitting and the parameter class weight, which can be balanced/None depending
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on whether you want to balance your dataset or not. The tolerance (tolerance) specifies the

accuracy required for the completion of the optimisation algorithm, with a lower value indicat-

ing higher accuracy but longer training time. In addition, the regularisation type parameter

(penalty) defines the type of regularisation applied to the model, with options such as “l1” for

L1 regularisation (makes some β’s 0) and “l2” for L2 regularisation (estimates small β’s).

As in Linear SVC, the regularisation parameter (C) is the most important parameter and

the one that allow us to control the balance between the fit to the training data and the gener-

alisability of the model. A lower value of C penalises classification errors and tends to generate

a model with a wider margin, which may increase generalisability but may also lead to under-

fitting. On the other hand, a higher value of C decreases the error penalty and may result in a

model with a narrower margin, which may increase the risk of overfitting. Finding the balance

in this parameter will allow us to obtain a higher performance in our model.

3.4 Transformers

Transformers [4] appeared as a novel Deep Learning architecture for NLP in a 2017 paper “At-

tention is all you need” that presented ingenious methods for performing language-to-language

translation that outperformed the seq-2-seq LSTM networks of the time [31]. Transformers and

their attention mechanism enabled the emergence of the large text-generating models GPT2,

GPT3 and BERT, which could now be trained by taking advantage of the parallelism achieved

through the use of GPUs. The impact that Transformers have had has made them one of the

most important tools in Machine Learning.

This architecture emerged as a solution to supervised learning problems in Natural Language

Processing, obtaining great advantages over the models used at the time. The transformer

allowed translation from one language to another with the great advantage of being able to

train the model in parallel, which made it possible to scale the speed and capacity of sequential

deep learning models at unprecedented rates. This also dramatically increased speed and reduced

cost, and by using the attention mechanism as an enhancer, which made it possible to track

word relationships across very long sequences of text, both forward and backward.

Before Transformers, Recurrent Neural Networks (RNNs) were commonly used for natural

language processing. However, RNNs still have limitations, as they processed data sequentially

and were slow to train and could not take full advantage of parallel computing power. In addi-

tion, RNNs had difficulty capturing long-term relationships between words. Unlike conventional

neural networks, Transformers are designed to understand sequences of data, such as text, taking

into account the relationship between words. This is important because the meaning of words

can change depending on their context in a sentence.

Over time, this architecture proved to be flexible and could be used for tasks beyond NLP
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in addition to text generation, content classification and summarisation, it could also be applied

to computer vision, audio generation, time series prediction and reinforcement learning. For all

these new implementations, it is important that we explain how Transformers work[32] in order

to understand them better. Figure 3.7 shows a representation of its architecture.

Figure 3.7: Representation of the Transformers architecture [4]

As we can see, Transformers consists of an encoding module and a decoding module. The

encoding module transforms a continuous input sequence into a vector representing words and

their relations. The decoding module transforms the encoded vector into a text sequence. In

the original document, 6 encoders and 6 decoders are used.

The first phase is the text processing. Transformers use a pre-processing phase in which the

text is tokenised into smaller units. The tokenisation algorithm may depend on the application;

in most cases, each word and punctuation mark counts as approximately one token, while

some suffixes and prefixes count as separate tokens. The tokens are then converted into “word

embeddings”. A word embedding is a vector that attempts to capture the value of words in

a multidimensional space. Word embeddings are created using embedding models, which are

trained separately from the transformer, and typically have hundreds of dimensions. There are

several pre-trained embedding models that are used for linguistic tasks.

Once the text has been transformed into a list of embedded words, it is fed into the encoder

module of the transformer. Unlike the RNN and LSTM models, the transformer does not receive
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one input at a time, but as explained above, it can receive embedding values of an entire sentence

and process them in parallel. To preserve the sequential nature of the words in the sentence,

the transformer applies “positional encoding”, which basically means that it modifies the values

of each embedding vector to represent its location in the text.

The input is then passed to the first encoder block, which processes it through an “attention

layer”, this attention layer attempts to capture the relationships between the words in the

sentence. In other words, the attention layer receives a list of word embeddings representing the

values of the individual words and produces a list of vectors representing both the individual

words and their relationships to each other. The attention layer contains several “attention

heads”, each of which can capture different types of relationships between words, so it is called

multi-head attention.

The output of the attention layer is fed to a feed-forward neural network that transforms it

into a vector representation and sends it to the next attention layer. Transformers contain several

blocks of attention and feed-forward layers to capture gradually more complicated relationships.

The task of the decoder module is to translate the encoder’s attention vector into the output

data. During the training phase, the decoder has access to both the attention vector produced by

the encoder and the expected output. The decoder uses the same tokenisation, word embedding

and attention mechanism to process the expected output and create attention vectors. The

decoder’s attention vector passes through a feed-forward layer and its result is mapped into a

very large vector, the size of the target data.

Finally as we can see in the figure 3.7 we have the Add & Form block. This is the “post-

layer normalization”, which is a technique used in Transformers to normalise the output values

after each layer. Normalisation refers to the process of fitting and standardising the values of a

distribution so that they have a mean close to zero and a standard deviation close to one.

This normalisation is performed by an operation called “Layer Normalization”, which calcu-

lates the mean and standard deviation of the output values of a layer and uses them to normalise

the values. Post-layer normalisation helps stabilise and speed up the Transformer training pro-

cess by keeping the output values within an appropriate range, facilitates gradient propagation

during backpropagation and prevents values from becoming too large or too small.

3.4.1 DistilBERT

The Transformer we have used for the development and evolution of the classification models

is DistilBERT [33], but before talking about it in depth we have to talk about its predecessor.

BERT (Bidirectional Encoder Representations from Transformers) is a language model based on

the Transformers architecture that has revolutionised natural language processing. Developed

by GoogleAI in 2018, BERT is known for its ability to understand the context and relationships

of words in a text.
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Unlike previous language models that processed words sequentially, BERT uses the power of

attention and bidirectional learning to capture the context of both the words that precede and

follow it. This allows BERT to have a deep understanding of the meaning of words based on

their context, which significantly improves its ability for tasks such as text classification, machine

translation and sentiment analysis. However, the BERT model had some drawbacks, such as

being bulky and therefore a bit slow. To solve these problems, the Hugging Face researchers

proposed DistilBERT, which used knowledge distillation for model compression.

DistilBERT is built upon the principles of knowledge distillation, also known as teacher-

student learning, which involves compressing knowledge from a larger model into a smaller one.

In this approach, the smaller model, referred to as the learner model, is trained to replicate

the output distribution of a larger model or a group of models known as the teacher model.

Rather than using hard targets where the model assigns high probability to one class and near-

zero probabilities to others, knowledge distillation employs soft targets derived from the teacher

model’s estimated probabilities.

By training the learner model to imitate the teacher’s output distribution, the learner can

leverage the teacher’s knowledge and enhance its own performance. A temperature parameter is

utilized to control the smoothness of the output distribution. The training objective combines

supervised training loss with distillation loss.

In the case of DistilBERT, the student model, it shares a similar architecture with BERT,

the teacher model, but with specific modifications such as the removal of token embeddings

and pooler, as well as a reduction in the number of layers. The DistilBERT training process

incorporates the best practices employed in training BERT models.

Having understood all this, we need to look at the advantages of using DistilBERT, that

makes it the ideal model to carry out this project, over BERT, these advantages are as follows:

1. Reduced size model: DistilBERT is a smaller model compared to BERT because it

undergoes knowledge distillation, shrinking by 40%, while retaining 97% of its linguistic

understanding capabilities and being 60% faster.

2. Faster inference: The reduction in the number of layers and the elimination of token

embedding and pooling contribute to faster processing of input data.

3. Lower memory requirements: DistilBERT’s smaller size allows it to be deployed on

devices with limited memory capacity, such as mobile devices or edge devices.

4. Cost-effectiveness: Training and utilisation of DistilBERT requires fewer computational

resources and less training time. This advantage is especially significant when working with

large datasets or in scenarios where fast model iterations are necessary.
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Evaluation

4.1 Introduction

In this chapter we are going to analyse the results obtained, for two different datasets, due to

the use of the different classifiers and transformers mentioned in the previous chapter. The idea

is to show the process followed for text cleaning, processing, the development of pipelines for the

optimisation of hyperparameters of the classification models, the metrics obtained with these

and finally the evolution of the project thanks to more complex models such as the Transformers.

4.2 Datasets

In order to realise the objectives of this project, two different datasets have been selected from

the Kaggle platform. These datasets include both news articles with a title and a content, and

resources from different social platforms, in order to be able to analyse not only simple sentences,

but also more complex text structures.

The first one, the COVID-19 Fake News Dataset [34], contains news, claims and tweets, but

for the development of this project only the news were used, because the tweets and claims did

not offer enough information to be analysed and were in a format that was not appropriate for

the objective of the project. The second dataset used, COVID19 Fake News Dataset NLP [35],

contains more than 10,000 sources of various social-media platforms such as Twitter, Facebook,
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Instagram, etc. Becouse of these two datasets found in Kaggle, it is possible to perform an

analysis of news and social media posts.

4.2.1 News Dataset

This dataset is made up of six different files that contain fake and real news. Therefore, we

have unified it into one, adding a new column called label that indicates whether the text is real

or fake. Within this news dataset, we have to analyse and see the fields it has, these are the

following: type, fact check url, archieve, news url, news url2, news url3, news url4, news url5,

title, newstitle, content, abstract, publish date, meta keywords and label. Of all these fields, we

are going to focus on those that can provide us with information for the development of the

work in title, news url, content and label.

Once we have analysed the columns, next step is to look at the number of rows we have. In

total there are 4,504, of which we have to clean up as there are many that contain information

that is not useful or that has not been loaded properly in the Kaggle dataset. On the other

hand, it’s important to view if our dataset is balanced. In the following graph you can see how

many instances each type of label has:

Figure 4.1: News Dataset Labels Count

As we can see, the number of instances for each class is highly unbalanced. Ideally, our

dataset should be balanced, having similar distribution for each class, but in this dataset the

percentage of rows for real labels is 80,15% and for the fake 19,85%. Therefore, we are going to

work with this dataset in two different ways, on the one hand, we will use the title and content

column together, and on the other hand, only the title column, so we can analyse the news

taking into account all the information we have in this dataset.
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4.2.2 Social Media Dataset

At the same time, we have the social media dataset. This dataset looks better than the previous

one as it is sorted by different sets: training, validation and test. This dataset only has two

columns: tweet and label (although we have also added a third column to refer to the set to

which it belongs). The tweet column represents text strings from different social platforms such

as Instagram, Twitter or Facebook.

This dataset also has 10,700 rows of which 60% are training, 20% validation and 20% test

rows. This distribution will be maintained throughout the project in order not to alter the data.

As seen in Image 4.2 the number of instances that belong to each set.

Figure 4.2: Social Media Dataset Groups

As in the news dataset, we must analyse if it is balanced or not. In this case, as shown in

the graph below, this dataset is balanced for the two classes we have. It has 52.33% of rows

belonging to the real class, and the rest, 47.67%, belonging to the fake class.

Figure 4.3: Social Media Dataset Labels Count
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Although we will not have the same problems of unbalance as with the news, this dataset

presents other problems that we will cover in the following sections.

4.3 Pre-processing

Once we have our datasets loaded and organised, then starts the pre-processing. Although

news and social media datasets have different formats, the way to apply preprocessing is very

similar. To do this we start from a general level, eliminating instances that do not have certain

characteristics and then we will apply a cleaning to the text using the Normalize and Stopwords

methods provided by GSItk, as exaplained in Section 2.4.

With the dataset of news, as we have mentioned previously we are going to analyse it in

two different ways, that means that we would have two datasets at the same time, so the

preprocessing will be done in different ways. The first thing is to search, for both datasets,

through the column news url all possible rows that contain the same url, this will help us to find

those rows that are duplicated and eliminate them. At the same time, for the dataset that will

be formed by the title and the content, we have to eliminate those rows whose content is null.

The next step regarding the news dataset, composed by titles and content, is to clean those

rows whose content has not been loaded or does not provide relevant information. To do this

we will search and delete these rows in the content and newstitle columns. Then it is time to

filter by the character size of the content field. To do this it is important to count the number

of characters in each line and visualise it in graphs. Images 4.5 below shows the full range of

characters length and a graph whose range has been narrowed down to see at which point we

should filter the content. The x-axis represents the total number of characters and the y-axis

the number of rows that have that amount of characters.

Figure 4.4: Graph with all character lengths
Figure 4.5: Dimensioned graph for lengths

between [0,100]

Analysing these graphs and some of the rows that can be visualised, the option chosen has

been to eliminate all those rows whose content is less than 70 characters.
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Social Media Dataset 4.6.3, which as we have mentioned previously, has different character-

istics than the news dataset, so its preprocessing will be different. Unlike the other one, this

dataset does not contain empty or irrelevant instances, but it is important to modify one thing

in it. In this dataset, the urls where the data come from are embedded in the same column as

the text they contain, we can extract those urls and take them to another column. Once this is

done, we will have our data ready for the last stage of preprocessing and cleaning.

The last step is going to be the same for the three datasets (two for the news and one for

the social media), in this one we are going to apply a function that will allow us to eliminate

some characters within each instance. It help us to remove whitespace, tabs, punctuation marks,

emojis and some elements that mess up our data.

Once we apply this function, the last two steps we have to apply are the Normalize to split

our text into words separated by spaces and the Stopwords to remove those words that have no

value to perform the feature extraction. Both methods are provided by the GSItk library 2.4.

Table 4.1 shows the number of values we have left for the dataset.

Label

Real Fake Total

News titles and content 2,277 180 2,457

News with only titles 3,371 819 4,190

Social media 5,600 5,100 10,700

Table 4.1: Table of values belonging to each class for each dataset

4.4 Metrics

Before start to seen and analyze the results of the models, we have to discuss the most important

metrics for evaluating machine learning algorithms. These metrics will help us to compare the

results obtained with each model and to see which one best suits our needs.

The most basic metric that help us to define the others is the confusion matrix. The confusion

matrix is a matrix representation of the predicted results of any binary test that is often used

to describe the performance of the classification model on a set of test data whose true values

are known.

For our project we are going to analyse and dig deeper into a binary classification matrix.

Each prediction can be one of four results, based on how well it matches the true value:

• True Positive (TP): it is predicted as True and is True in reality.
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• True Negative (TN): It is predicted to be False and is False in reality.

• False Positive (FP): predicted True and is False in reality.

• False Negative (FN): predicted False and is True in reality.

Figure 4.6: Confusion Matrix

Once we have defined these four possible predictive results, we can define various metrics

that will help us to assess the quality and performance of our models. First we have the accuracy,

this is a basic metric that measures the proportion of correct predictions made by the model

relative to the total number of predictions.

Accuracy =
TP+ TN

TP + FP + TN + FN
(4.1)

Then we have precision and recall. The first one refers to the proportion of correct positive

predictions relative to the total number of positive predictions, it is useful when the cost of false

positives is high. The second measures the proportion of positive instances that are correctly

identified by the model, it is useful when the cost of false negatives is high.

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

On the other hand, the F1 Score is a metric commonly used in classification problems,

particularly when the data is unbalanced. This metric combines precision and recall in a single

value, which provides an overall measure of the model’s performance. F1 Score can be calculated

as follows:

F1 Score = 2× Precision× Recall

Precision + Recall
(4.4)
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Having defined the F1 Score, we must understand that there are several variants that allow

us to analyse our models in different ways. These will be very useful, mainly the F1 Macro, to

evaluate the results of our models.

Firstly, F1 Macro calculates the F1 Score for each class and then averages these values with-

out considering class unbalance, implying that each class has the same weight in the calculation

of the average. This variant is useful when all classes are of equal importance and you want to

evaluate performance equally.

F1 Macro =
1

N

N∑
i=1

2× Precisioni × Recalli
Precisioni +Recalli

(4.5)

On the other hand, the F1 Micro calculates the overall precision and recall metrics by

aggregating the true positives, false positives and false negatives across all classes, and then

calculates the F1 Score using these aggregated metrics. F1 Micro gives more weight to dominant

classes.

F1 Micro =
TP

TP + 1
2(FP + FN)

=
2× TP

2× TP + FP + FN
(4.6)

Finally, F1 Average calculates the F1 Score for each class and then performs a weighted

average of these scores, using the weight determined by the proportion of examples in each

class. This balanced measure takes into account class imbalance and is useful when you want

to assess the overall performance of the model by considering the distribution of classes in the

data.

F1 Average =
1

N

N∑
i=1

F1 Scorei (4.7)

The last two metrics we have are the Receiver Operating Characteristic (ROC) curve and

the Area Under the Curve (AUC). The ROC curve shows the relationship between the true

positive rate and the false positive rate as the classification threshold of the model is varied.

Each point on the ROC curve represents a different threshold and provides information on how

the model balances the correct classification of positive samples and the misclassification of

negative samples. An ideal ROC curve would be close to the upper left corner of the graph,

indicating a high rate of true positives and a low rate of false positives.

The AUC, which is the area under the ROC curve, provides a quantitative measure of

overall model performance. It varies between 0 and 1, where 1 indicates a perfect model and 0.5

indicates a model that classifies randomly. Ideally, a higher AUC value would indicate a better

ability of the model to distinguish between positive and negative samples.
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Figure 4.7: ROC and AUC Representation

All these metrics will be used in the following sections to check the performance and efficiency

of our models.

4.5 Optimisation of Hyperparameters and Pipelines

Once we have our text pre-processed and cleaned, next step is extract the samples and train our

models, but this is not as simple as it sounds. The problem arises when it comes to defining which

parameters we are going to use for the classification models we have previously discussed such

as extracting the n-grams. If we were to do this by simple trial and error, using all the possible

combinations we could think of, it would be a very long and tedious process, and obviously

not as effective. That is why we have to implement the optimisation of hyperparameters and

pipelines.

Hyperparameter optimisation is a mechanism that allows us to automatically explore a search

space for possible hyperparameters, generate a set of models and compare our models using

metrics of interest. It is a fundamental process in the development of machine learning models,

as these are values that are not learned directly from the dataset, but have a significant impact

on the performance and generalisability of the model. These parameters control aspects such as

model complexity, regularisation and the configuration of specific algorithms.

The goal of hyperparameter optimisation is to find the optimal combination of values to

maximise model performance on a given data set. This process can be complex and compu-

tationally expensive, as it involves exploring a multidimensional search space and evaluating

model performance for each combination of hyperparameters. To address this challenge, tech-

niques such as grid search, random search and Bayesian optimisation are used to search more

efficiently for the best combinations of hyperparameters.

On the other hand, pipelines are a structured way to organise and automate the workflow.

A pipeline consists of a sequence of steps that are applied in order to the data, such as pre-
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processing, feature extraction and model training. Pipelines are especially useful when working

with complex datasets and a series of transformations are required before building and evaluating

a model.

A key benefit of pipelines is that they facilitate reproducibility and portability of experiments.

By defining and organising the workflow in a pipeline, it ensures that each step is applied

consistently and that the results are comparable between different runs. In addition, pipelines

allow you to make adjustments and improvements more efficiently, as you can modify and add

steps without having to rewrite the entire code.

Prior to the implementation of the pipelines, we have to take into account that our data

have to be divided into the train set and the test set. For the news datasets we divide the data

into 80% for training, and 20% for test. It is important to set a random state with a fixed value

to control the randomness and guarantee the reproducibility of the results.

On the other hand, for the social media dataset, as our data was previously split, it is not

necessary to split it again. We will merge the training and validation sets into one set, which

will account for 80% of the total data, and on the other hand we have the test set, which will

account for 20% of the total data. At the same time, for all datasets, the annotation ”X” and

”y” will be used. The variable ”X” represents the characteristics or attributes of the input data

(text), while the variable ”y” represents the labels or output values associated with the input

data.

After briefly explaining how hyperparameter optimisation works, the pipelines and the di-

vision of the data into training and test sets, we follow with the pipelines implemented. As

we have three models and three datasets we will need nine pipelines. Each pipeline will have

specific parameters for each classifier, as the number of maximum samples for the headline news

will not be the same as the social media dataset. All pipelines will use CountVectorizer with

unigrams, bigrams and tigrams. In both Linear SVC and Logistic Regression, we use a loga-

rithmic scale for the parameter C instead of a linear scale. This logarithmic scaling facilitates

a more comprehensive exploration of the C parameter space, allowing us to assess the model’s

performance across a wide range of C values.

After defining our parameters for the CountVetorizer and the classifiers, we use Grid-

SearchCV to find the best hyperparameters of a model. This technique divides the dataset

into multiple subsets or ”folds” to evaluate model performance more robustly and avoid overfit-

ting. GridSearchCV combines grid search with cross-validation, which means that it performs an

exhaustive search for hyperparameters in a predefined grid and evaluates the model performance

for each combination of hyperparameters using cross-validation.

Subsequently, we fit and evaluate different hyperparameter combinations of the classifier us-

ing cross-validation. Finally, the pipeline when finished will return the best selected parameters

and the score obtained. Also in this pipelines we have implemented the use of dictionaries to be
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able to store the obtained parameters and not have to add them manually later. Below are the

tables for each classifier with the results and the parameters obtained for each dataset.

Count Vectorizer Random Forest

max features ngram range n estimators max depth Score

News titles and content 20000 (1, 2) 200 30 0.96

News with only titles 8000 (1, 3) 300 55 0.87

Social media 2000 (1, 3) 250 65 0.91

Table 4.2: Best parameters and scores for Random Forest with each dataset

CountVectorizer Linear SVC

max features ngram range C Score

News titles and content 20000 (1, 3) 6.8273 0.96

News with only titles 6000 (1, 2) 1.0023 0.90

Social media 27500 (1, 2) 1.0023 0.93

Table 4.3: Best parameters and scores for Linear SVC with each dataset

CountVectorizer Logistic Regression

max features ngram range C Score

News titles and content 27500 (1, 3) 1.0023 0.96

News with only titles 6000 (1, 2) 17.8186 0.91

Social media 25000 (1, 2) 2.6159 0.94

Table 4.4: Best parameters and scores for Logistic Regression with each dataset

4.6 Classification Models

Once we have obtained the best parameters for our classifiers, we start training the models,

obtaining the predictions and evaluating the metrics they return. The first point for each of the

models we are going to train is to create its own CountVectorizer, which contains the previously

obtained parameters. After this we have to to obtain the vectors, both for the training set and
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for the test set.

After this, we have to create our X’s and y’s for each model and for each dataset, and associate

to the X’s the vectors obtained after the CountVectorizer and to the y’s the corresponding labels.

Next, we have to create our models and give them the corresponding train set, this will train the

model. Now we simply have to take out the predictions and the predictions of the probabilities

and we can start evaluating the results of our models, comparing them with the true values of

our datasets.

4.6.1 News title and content results

First we will start with the news dataset consisting of titles and contents. The following table

4.5 shows the results obtained for this dataset with the different classifiers. All results shown

bellow in the tables are in percentage.

Model Accuracy Recall Precision F1-Score AUC

Random Forest 7,31 7,31 93,92 2,41 67,39

Linear SVC 67,27 67,27 86,84 75,38 46,48

Logistic Regression 36,99 36,99 89,46 48,06 54,43

Table 4.5: Results for News title and content dataset

As we can see, for these data with Random Forest the model is having problems when

classifying the true samples, the model is mostly biased towards the majority class (false) due

to the unequal distribution of the classes, hence having an accuracy of 93% and a recall of 7%.

On the other hand, the data with Logistic Regresssion and Linear SVC behave much better, the

latter being the one with the highest F1-Score with 75.38%.

As we can see in the figure 4.10 below, the ROC of the Random Forest reflects that the

model may have a tendency towards the dominant class at the beginning, which affects the

initial position of the ROC curve. On the other hand, the models trained with Linear SVC and

Logistic Regression show ROC curves and AUC very similar to those of a random model.
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Figure 4.8: ROC for Random Forest Figure 4.9: ROC for Linear SVC

Figure 4.10: ROC for Logistic Regression

4.6.2 News with only titles results

Next we will continue with the news dataset consisting of titles only. The following table 4.6

shows the results obtained for this dataset with the different classifiers.

Modelo Accuracy Recall Precision F1-Score AUC

Random Forest 82,93 82,93 80,81 77,37 65,49

Linear SVC 75,77 75,77 72,56 73,96 47,20

Logistic Regression 75,89 75,89 72,93 74,22 48,52

Table 4.6: Results for News only with titles dataset

For this datset we obtain much better results compared to the results obtained for the other

dataset pertaining to news. In this case the Random Forest is the classifier that gives us the

best results with an accuracy of 80.81% and a recall of 82.93%. The other two classifiers also

provide fairly decent results, with all their metrics being above 70%.
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We will now visualise the different ROC curves for each of the models. The ROC curve for

Random Forest has improved quite a lot, since in this case there is no learning trend on the

dominant class and its AUC is higher than 0.5, so it is far from being a random model. On the

other hand, as in the previous dataset, the ROCs for Linear SVC and Logistic Regression are

still quite similar and look like a random model.

Figure 4.11: ROC for Random Forest Figure 4.12: ROC for Linear SVC

Figure 4.13: ROC for Logistic Regression

4.6.3 Social media results

Finally, we have the social media dataset. Table 4.7 shows the results obtained for this dataset

with the different classifiers.

Modelo Accuracy Recall Precision F1-Score AUC

Random Forest 65,42 65,42 74,90 62,59 81,92

LinearSVC 52,61 52,61 58,85 46,04 54,29

Logistic Regression 52,52 52,52 61,68 44,17 59,61

Table 4.7: Results for Social Media dataset
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As mentioned at the beginning of this chapter, this dataset did not have the same problems

as the news as it was not unbalanced. We observe that the model trained with the Random

Forest is the one that obtains the best results, with an accuracy of 74.90% and a recall of 65.42%.

The metrics obtained with the Linear SVC and Logistic Regression classifiers are only 50% more

accurate, which means that these models are highly random when classifying the test data.

Finally, the following figures show the different ROC curves of each model. Similar to the

other datasets, the curves for Linear SVC and Logistic Regression are very similar to those of

a random model, being scarcely higher than the 50% that represents a random model. On the

other hand, for the Random Forest classifier, its ROC curve and its AUC give us a good result

for this model, as they are closer to a perfect model, which indicates that this model has been

able to produce a good result for the Random Forest classifier, as they are closer to a perfect

model.

Figure 4.14: ROC for Random Forest Figure 4.15: ROC for Linear SVC

Figure 4.16: ROC for Logistic Regression

4.6.4 F1 Macro Average Results

As a last point in the evaluation of the classification models, we have to analyse and compare the

different F1 Macro Average we obtain. As we mentioned before, this metric is very important

because it calculates the F1 score for each class and then averages these values without taking
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into account the imbalance between classes. Table 4.8 shows all the F1 Macro Averages for each

of the datasets and the classification models.

Random Forest LinearSVC Logistic Regression

News titles and content 7,01 43,54 31,94

News with only titles 54,37 53,35 54,02

Social media 63,03 46,86 45,12

Table 4.8: F1 Macro Score for all the datasets

In the News titles and content dataset, it is observed that the Random Forest model obtains

the lowest F1 Macro Average value (7.01%). This suggests that the model has difficulties when

dealing with the class unbalance present in this dataset, which may lead to a biased classification

towards the dominant class. On the other hand, the LinearSVC and Logistic Regression models

achieve higher F1 Macro Average values, although still relatively low.

In the News with only titles dataset, all three models show more similar F1 Macro Average

values compared to the previous dataset. This suggests that these models perform more con-

sistently when classifying news based on titles alone. The Random Forest model stands out by

obtaining the highest F1 Macro Average value (54.37%), indicating that it is the most effective

model for this particular dataset.

On the other hand, in the Social media dataset, the Random Forest model again obtains the

highest F1 Macro Average value (63.03%). This suggests that this model is the most suitable

for classifying data from social networks. However, both LinearSVC and Logistic Regression

show lower F1 Macro Average values compared to the Random Forest model. This may indicate

that these models may have difficulties in capturing the peculiarities and unique characteristics

of social network data.

We can see that for all datasets, regardless of whether they are balanced or not, the clas-

sification models still have problems in obtaining good results. Therefore, we have to evolve

our project to obtain better results, which we will achieve thanks to the Transformers and the

DistilBERT model.

4.7 DistilBERT

As we have seen in the previous section, the results obtained with the classification models have

not been entirely satisfactory. The classification models are basic, and do not offer any new

features at present, therefore we have to use the Transformers, which are more innovative and
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offer better results. Therefore we are going to implement DistilBERT, described in Section 3.4.1,

in each of the datasets we had.

The first step for the three datasets, after doing the preprocessing and dividing the data into

training and test sets, is to create our model, for this we are going to use the HappyTransformers

library, described in Section 2.5. We start by creating an instance of the model, we have to specify

the model to use, DistilBERT in this case, and the number of labels we have, which is two, real

or false. Once this is done, we have to define the arguments of our model, which are: the number

of epochs or training cycles to be carried out and the batch size or number of training examples

to be used in each iteration during training.

During the development of the project, choosing the arguments for the DistilBERT models

has been a trial and error process. Just as in the Pipeline Section 4.5, we commented that it

was not entirely efficient to do this, in this case it is the other way around, since implementing

a pipeline for this is not efficient. The difference in the score obtained with some arguments or

others is not going to be excessively significant, since with most of the parameters the results

were quite good. After defining these arguments, the next step is train the model. It is important

to take into account that this library has to receive the data in csv form, so when we do the

split to have the train and test sets, we must create the corresponding csv for each one.

Once the model is trained it is time to get the predictions. HappyTransformers returns

predictions as ”LABEL 0” and ”LABEL 1”, for those results that are fake and real respectively.

Therefore, we must apply a few lines of code so that they correspond to 0 and 1 to be able to

make the predictions. It should also be noted that for these models, the format of the labels

in the datasets has been changed from real and fake to 1 and 0, although they still have the

same meaning. This has been done to facilitate the work, as this is the format that this library

interprets.

In addition, for social media text, we need to encode the text as a tensor, which involves

converting the text into a numerical representation suitable for the model. In this case, the max-

imum tensor length is adjusted to address specific problems that arose during the development

of the model.

The maximum tensor length refers to the maximum number of tokens or words allowed in the

input text. If a text exceeds this length, it will be truncated or trimmed to meet the limit, this

is important because natural language processing models, such as DistilBERT, have a limitation

on the number of tokens they can efficiently process. By adjusting the maximum tensor length,

one seeks to balance the performance of the model and the quality of the text representation.

Once all this is done the next step is to evaluate the performance of our new models.
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4.7.1 Results of DistilBERT

Finally we have to evaluate the performance of DistilBERT. Table 4.9 shows the results obtained

for each one of the datasets, these are out of 100, i.e. in percentage.

Accuracy Recall Precision F1-Score

News titles and content 96,95 96,95 96,83 96,88

News with only titles 94,39 94,39 94,31 94,33

Social media 90,56 90,56 90,60 90,54

Table 4.9: DistilBERT results for each dataset

As can be seen in the table, these results are much better than those obtained using the

previous classifiers. First, the set of news items consisting of headlines and content shows

surprisingly good metrics, as all of them are above 96%. The F1-Score value, which combines

sensitivity and accuracy, was 96.88%, indicating a good balance between both metrics. We

should also keep in mind that these metrics are very good knowing that our dataset is quite

unbalanced, which is usually a problem as we saw in the previous section.

In the News with only titles dataset, the model also performed well with metrics above 94%,

although slightly lower compared to the previous dataset. These results indicate that the model

is able to perform accurate classification on this dataset, although slightly less effective compared

to the News titles and content dataset, contrary to what was previously the case. This suggests

that the more information we provide, the better the performance of the model.

Finally, the social media dataset shows a performance and results above 90% in all metrics.

The improvement is very high compared to the classification models, where Random Forest

offered the best results. This dataset is the most balanced and has the highest number of

samples and we can see that DistilBERT also offers us very good results.

As the HappyTransformers library does not yet have the option to generate the predicted

probabilities, which allows us to illustrate the ROC curve and the AUC, nor can we obtain graphs

of the learning curve, one option to visually see the performance of this model is by means of the

confusion matrix. In it we can see, for the three datasets, that the number of correctly classified

samples is much higher than those that are not, and that gives us good results.
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Figure 4.17: Confusion Ma-

trix for News titles and con-

tent

PREDICT

Real Fake

Real 627 18

T
R
U
E

Fake 29 164
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Figure 4.19: Confusion Ma-

trix for Social Media

Lastly, Table 4.10 shows all the F1 Macro Average scores obtained. The scores obtained

with the DistilBERT model are better and show the true performance of the Transformers

compared to the previous classifiers. In the set of news, although in the previous table we saw

that the metrics were much better for the dataset of titles and content, when we do not take into

account the class imbalance, the performance is 5% better for the news with only the titles using

DistilBERT. Also if we compare the F1 Macro Average for the social media set, it is superior to

those previously shown, as it increases by 27.51% compared to the best model, Random Forest.

Comparing these metrics with those in the table above, it can be seen that the F1 Macro

scores are lower than the F1-Score previously reported. This is because the F1 Macro metric

averages the F1 scores of all classes, without considering the imbalance between classes. On

the other hand, the F1-Scores above were calculated for each individual class, providing a more

specific and detailed assessment of performance for each class. In summary, the results in the

table indicate a reasonable average performance of the DistilBERT model in class ranking across

different datasets.

Random Forest Linear SVC Logistic Regression DistilBERT

News titles and content 7,01 43,54 31,94 86,89

News with only titles 54,37 53,35 54,02 91,92

Social media 63,03 46,86 45,12 90,52

Table 4.10: F1 Macro Score for all the datasets

44



CHAPTER5
Conclusions and future work

In this chapter we describe the final conclusions related to the work that has been carried out,

an analysis of whether the initial objectives have been achieved and the future work that could

be developed with this project.

5.1 Conclusions

The main objective of this project is to classify all types of internet publications or news about

COVID-19, in order to detect which are false and which have true information, all by using

Machine Learning and Natural Language Processing techniques.

Since the appearance of COVID-19, information about the virus has been limited, and both

internet users and the media have been spreading news that is not entirely true. Despite the

fact that research was carried out over time, and experts discovered how the virus worked, fake

news and messages continued to be distributed online.

All this spread of false news during the years of pandemic that we have had, not only caused

the population not to be well informed and not to know exactly how this virus affected humans,

but it has also caused many people psychological problems and other types of disorders. The

problem that arises is that any kind of news, whether true or false, is distributed over the

internet very quickly, and both those who publish it and those who read it often do not check

its authenticity.
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With the development of this project, we advance in developing a system that classifies news

and publications to determine their veracity with a high degree of accuracy. To achieve this

work, two different types of datasets have been used: the first one formed by news extracted

from different media and composed by a title and a content; and the second one formed by users’

publications in different platforms. Moreover, for a better study and analysis of the news, this

dataset has been divided in two, one formed by the combination of titles and contents, and the

other one only with the titles. Using these two datasets, we can cover the main sources through

which information is distributed today.

The first steps of this project, apart from obtaining the data, have been the pre-processing

of each of the datasets. As each one has different formats, we have had to treat them in dif-

ferent ways. Subsequently, the hyperparameter optimisation stage was carried out for the basic

classification models such as Random Forest, Linear SVC and Logistic Regression. This hyper-

parameter optimisation has been carried out using different pipelines for each of the datasets,

allowing us to obtain the best parameters that fit each of our models.

After this last step, the selected models were trained, evaluated and analysed. Very different

results have been obtained, from models with very low metrics, models that classified the samples

randomly, to models that obtained a quite decent performance for the selected data. For this

reason, it was decided to implement the use of more advanced classifiers such as the Transformers,

specifically with DistilBERT.

Transformers allow us to obtain better results with the use of attention, a mechanism that

allows models to relate the words in a sentence to all the other words in the sentence, as well as to

model context and coherence in the text. The results obtained with DistilBERT have exceeded

all my expectations, being in multiple of the metrics above 90% in each of the selected datasets.

These new models trained with DistilBERT have allowed me to observe the real potential that

Transformers have nowadays for Machine Learning tasks.

To conclude, on a personal level, this project has helped me to enter a world that I was totally

unaware of, which has infinite possibilities today, being able to be involved in important issues

such as health, finance, information and many more applications. Although at the beginning of

the project it was difficult for me to understand and get into this world, today I feel that the

work I have done has helped me a lot to know more about the world of artificial intelligence,

generating curiosity and desire to continue investigating more.

5.2 Achieved goals

In Section 1.2 the main objectives of this project were presented, therefore the following list

shows how they have been successfully completed:
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• Objetive 1 has been completed as we have been able to obtain different datasets with

different structures, both news and social media, and to apply preprocessing techniques.

• Objetive 2 has been achieved as we have found and studied three basic classification models,

Random Forest, Linear SVC and Logistic Regression, in order to implement them on the

obtained texts and evaluate their performance.

• Objective 3 has been achieved as the use of Transformers and specifically the DistilBERT

model has reduced time to results and improved performance.

• Objective 4 has been accomplished as an evaluation and analysis of the results obtained

has been carried out, comparing metrics between classification models and concluding with

results above 90% for each of the datasets used.

5.3 Future work

This section focuses on possible improvements and extensions that can be made to the current

work. In the following, some relevant tasks that could be addressed in the future are presented.

One important task would be to improve existing models. Although the results obtained

have been good and are in many metrics above 90%, in the future it would be good to increase

the performance and obtain better results from the models to a near perfect state, as it is about

the classification of false or true news in such an important topic as COVID-19.

A possible task of this work to be done in the future could be to train models with a dataset

that unifies news and social media data. This would allow us to develop a classification model

capable of achieving high performance when classifying texts regardless of where they have been

obtained.

In addition, it will also be helpful create different applications as a way to educate the users

about COVID-19 fake news, as well as show them how to spot it. This could be, through a public

online platform where users can submit information about the virus and receive a response as to

whether the facts are true or false. Another implementation could be an application that sends

alerts when false information has been leaked on social networks or news sites.
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APPENDIXA
Impact of this project

This appendix reflects, quantitatively or qualitatively, on the possible impact on society, eco-

nomics, environment and ethics.

A.1 Social impact

The development of a fake news detection system in relation to COVID-19 has a significant

societal impact. The whole of society is affected, as the spread of fake news can cause confu-

sion and disruption of informed decision-making about the virus. In addition, this system aims

to improve accessibility to reliable and accurate information on COVID-19, which contributes

to people’s education and their ability to detect and avoid misinformation. By analysing and

classifying news stories, common patterns and characteristics of misinformation can be identi-

fied, enabling users to develop critical skills to assess the veracity of information and recognise

indicators of possible fake news.

In terms of security, the identification and early warning of fake news can help prevent the

spread of information that is harmful or dangerous to public health and also reduce panic,

uncertainty and mistrust in institutions and scientific information. Promoting well-being is also

achieved by providing users with tools that allow them to filter and evaluate information more

efficiently, avoiding psychological problems, such as anxiety and stress, caused by exposure to

fake news.
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A.2 Economic impact

From an economic perspective, the development of this fake news detection system can have a

positive impact in several respects. Firstly, this system can contribute to improved productivity

in various industries and organisations by providing users with a reliable tool to identify and filter

out fake news, reducing the time and resources spent on verifying the veracity of information.

This allows companies and organisations to focus on more relevant tasks and make more informed

decisions based on reliable data, and by preventing the spread of false information, it reduces

the risks and costs associated with making decisions based on misleading information.

In addition, the development of this system can generate business and employment oppor-

tunities in the field of artificial intelligence and natural language processing. The creation,

implementation and maintenance of this technology requires the involvement of algorithm de-

velopment experts, data scientists, software engineers and related professionals.

A.3 Environmental impact

There are positive aspects of the development of this system in terms of environmental impact

related to sustainability and the consumption of natural resources. This project can contribute

to the reduction of energy consumption, as by detecting fake news, the need to access multiple

sources of information is reduced, which in turn reduces the demand for energy used in data

transmission, processing and storage. By optimising the efficiency of information classification

and analysis processes, the load on servers and IT systems is minimised, which can result in

reduced energy consumption in the long term.

In addition, by promoting awareness of misinformation and encouraging fact-checking, it

contributes to reducing the spread of misleading content that can generate confusion and lead

to inefficient use of resources. By preventing people from relying on false information, it reduces

unnecessary or inappropriate actions that could have a negative impact on the environment. For

example, the spread of false news about possible cures or treatments for COVID-19 can lead to

unnecessary consumption of products or medicines that are neither effective nor safe.

A.4 Ethical impact

Regarding ethical and professional responsibility, it is essential that the development and imple-

mentation of this project complies with applicable professional and legal rules and regulations.

This involves the proper management and control of risks associated with the detection of fake

news and the processing of sensitive health-related data. It is also necessary to respect intellec-

tual property rights and comply with data protection legislation when handling users’ personal
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information. In addition, the development of this system is expected to be guided by engineer-

ing codes of ethics, ensuring transparency, impartiality and fairness in its operation. Ethics

also involves considering the impact of these technologies on people’s well-being. It is essen-

tial to ensure the security and privacy of users when collecting, storing and processing data

related to fake news detection, involving the implementation of appropriate security measures

and guaranteeing the anonymity and confidentiality of personal information.
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APPENDIXB
Economic budget

This appendix details an adequate budget to bring about the project.

B.1 Physical resources

The physical equipment used for the development and implementation of this project was a

computer equipped with an Intel Core i7-10510U 1.80GHz x 4 CPU processor, 16GB of RAM,

512GB of SSD storage and an NVIDIA GeForce GTX 1050 graphics card. The approximate

price of this computer is 1130 euros.

B.2 Human resources

This project has been carried out on an individual basis, so only the salary needed for one person

is considered.

The time spent was the equivalent of 12 FTEs, which means 360 hours of work during the

project.

Considering the number of hours, which has been carried out by one person, taking into

account that the average salary for a part-time trainee is 500 euros and that the monthly

dedication is 4 hours per day for 22 working days, the total cost is approximately 2045 euros.
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B.3 Software licenses

All software licenses for the programs that have been used for this project are open source, which

means that there is no additional cost to the budget.

B.4 Total budget

Taking into account physical and human costs, the total budget of this project is approximately

3175 euros.
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[4] ¿Cómo funcionan los Transformers? en Español. Aprende Machine Learning.
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