
TRABAJO DE FIN DE GRADO

T́ıtulo: Diseño e implementación de un editor web para reglas au-

tomatizadas disparadas por eventos

T́ıtulo (inglés): Design and implementation of an event driven automation

rules web editor

Autor: Óscar Araque Iborra

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Gregorio Fernández Fernández

Vocal: Mercedes Garijo Ayestarán

Secretario: Carlos Ángel Iglesias Fernández

Suplente: Tomás Robles Valladares

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE GRADO

DESIGN AND IMPLEMENTATION OF AN

EVENT DRIVEN AUTOMATION

RULES WEB EDITOR

Óscar Araque Iborra

Julio de 2014

Resumen

Esta memoria es el resultado de un proyecto cuyo objetivo es diseñar y desarrollar un editor

web de reglas automatizadas disparadas por eventos.

El editor nos permite crear y editar estas reglas automatizadas no usando sintaxis com-

pleja, sino mediante de una interfaz gráfica simple. Esta herramienta es capaz de crear

un gran número de reglas diferentes a partir de varios canales predefinidos que proveen de

recursos para estas reglas.

Este editor esta respaldado por varios módulos que le proveen con funcionalidades más

complejas. En este contexto presentamos una herramienta que nos permite gestionar todas

estas reglas y canales, además de persistirlos usando dos bases de datos diferentes.

Para continuar, se presentará otra herramienta. Esta permitirá al usuario final activar las

reglas creadas desplegándolas en un motor semántico que las tratará y provocará diferentes

acciones dependiendo de los eventos generados. Además, presentaremos un simulador que

nos permita probar todas estas funcionalidades.

Por último, recogemos las conclusiones extráıdas del proyecto, las tecnoloǵıas que hemos

aprendido durante el desarrollo del mismo y las posibles ĺıneas de trabajo futuro en relación

con la continuación de este proyecto.

Palabras clave: Tecnoloǵıas semánticas, RDF, SPARQL, SPIN, PHP, JavaScript,

Java, Knowckout JS, EWE, MySQL, MongoDB

V

Abstract

This thesis collects the result of a project whose objective is to design and develop a event

driven automation rule web editor.

The editor allows us to create and edit these automation rules not using complex syntax,

but a simple graphical interface. This tool is able to create a great number of different rules

as of several pre-defined channels that provide resources for these rules.

This editor is supported by several modules that provide the editor with more complex

functionalities. In this context, we present a tool that allows us to manage all these rules

and channels, and to persist them using two different databases.

To continue, another tool will be presented. It will allow the final user to activate

the created rules deploying them into a semantic motor that will handle them and trigger

different actions depending on the generated events. Besides, we will present a simulator

that allows us to test these functionalities.

Finally, we gather the extracted conclusions from this project, the technologies we have

learned during the development and the possible lines of future work.

Keywords: Semantic technologies, RDF, SPARQL, SPIN, PHP, JavaScript, Java,

Knowckout JS, EWE, MySQL, MongoDB

VII

Agradecimientos

A mis padres

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 3

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Rule Automation . 5

2.1.1 Internet task automation . 6

2.1.2 Device based task automation . 7

2.2 EWE Ontology . 7

2.2.1 EWE Ontology main classes . 8

2.3 DrEWE . 9

2.3.1 DrEWE modules . 10

2.4 Knockout . 12

XI

2.5 FuelPHP . 12

2.6 MongoDB . 13

3 Requirement Analysis 15

3.1 Introduction . 15

3.2 Use cases . 16

3.2.1 System actors . 16

3.2.2 Use cases . 17

3.2.2.1 Edit rule . 18

3.2.2.2 Deploy rule . 19

4 Architecture 21

4.1 Introduction . 21

4.2 General overview . 22

4.3 Rule Editor . 24

4.3.1 Graphic interface . 24

4.3.2 Data structure . 25

4.3.3 Endpoint communication . 27

4.4 Rule Manager . 27

4.4.1 Rule Manager architecture . 28

4.4.2 SQL database . 29

4.4.3 Mongo database . 29

4.5 SPIN Generator . 30

4.6 SPIN Motor . 31

5 Case study 33

5.1 Introduction . 33

5.2 Rule edition . 33

5.3 Rule deployment . 36

5.4 Rule execution . 37

6 Conclusions and future work 41

6.1 Conclusions . 41

6.2 Achieved goals . 42

6.3 Future work . 43

A Extraction of templates from EWE Rules using SPARQL 45

A.1 Introduction . 45

A.2 Templates for SPARQL rules generation . 46

A.3 Template generation strategy . 46

A.4 Parameter abstraction for the templates . 47

A.4.1 Event selection . 47

A.4.2 Action selection . 47

A.4.3 Parameter mapping . 47

A.4.4 Action namespace . 48

A.4.5 Conclusion . 48

Bibliography 49

List of Figures

2.1 Internet based and device based Task Automation Service (TAS) general

architecture . 6

2.2 Class Diagram for the EWE Ontology . 8

2.3 DrEWE general architecture . 11

3.1 Use case diagram . 17

3.2 Edit Rule case use . 18

3.3 Deploy Rule case use . 19

4.1 General Architecture . 22

4.2 Modules Flow Diagram . 23

4.3 Rule Editor graphical interface . 25

4.4 Rule Manager architecture . 28

4.5 SPIN Generator flow diagram . 31

4.6 SPIN Motor process diagram . 32

5.1 Wool authentication page . 34

5.2 Rule list . 34

5.3 Channel boxes, spaces tags, event and action containers 35

5.4 Event selection . 35

5.5 Event and action parameters mapping selection 36

5.6 Rule list: activated and not activated rules 37

5.7 Virtual GSI interface . 38

XV

5.8 Virtual GSI triggered actions . 38

CHAPTER1
Introduction

1.1 Context

The term Live Web [14] describes a new stage in the evolution of the Web that extends

Web2.0 [11] interactive Web. Instead of simply browsing static web pages or even inter-

acting with a web site or social network, the Live Web is characterized by a brand new

style of interaction through dynamic streams of information to present contextual, relevant

experiences to users [14]. There are several sources of these dynamic streams, such as so-

cial networks, sensor networks, and mobile phones which together provide the necessary

location-aware, relationship-aware, preference-aware and sensory context to achieve a new

generation of context-aware applications [1].

However, what makes these tools really useful for consumers is that they combine incom-

ing data with many other services available on the Web, especially when the interconnection

involves some kind of data transformation. Thus they create new personalized streams and

services that behave in a particular way for each different user [5].

Therefore, the Live Web endorses a new way of composing services. The Live Web uses

the cloud [10] as platform (i.e. every sensor, data source and service is available in the

Cloud). Thus, cloud computing allows us interconnection, hastening the rise of applications

1

CHAPTER 1. INTRODUCTION

which allows users to configure their services based on the data and events from their

personal streams [7].

On top, for the last years the number of web services [12] have increased markedly. Many

of these services, especially those of them already mature, offer a public API (Application

Programming Interface) in order to interconnect them with other independent services,

making them easily accessible. Thanks to these third party application and services are

appearing, making use of these APIs. This new outlook offers plenty of possibilities. How-

ever, performing this connection can be complex, requires advanced skills sometimes and

the learning curve is not lineal -but usually exponential- to the number of services involved.

These reasons are what are not allowing the user to benefit from these features.

Into this scenario, plenty of new companies are emerging as task automation platforms.

Some examples of these are IFTTT1 or Zapier2. These tool are in charge of allowing the

user to automatically perform tasks such as ”When I am mentioned in Twitter, send me an

email”. In other words, these platforms are able to trigger rules that produces some sort of

actions when certain events [13] are computed connecting multiple services [9]. These rules

are triggered by user’s events, which means that they work only with personal accounts

from each one of the used services [8].

However, the current format for these rules are event-condition-action so they do not

benefit from all the potential that these platform could offer. In this project, we make use of

DrEWE3. That will allow us to provide an enhanced platform allowing the user to generate

more complex rules.

In this context, DrEWE exists as a Task Automation Platform, which has some big

features such as: EWE ontology support, which means that DrEWE implements the EWE

ontology; and complex event processing. This last feature allows us to have a temporal

reasoning in the described rules ([4] and [2]). One example of that could be: ”When a

meeting is scheduled, if the corresponding attendees enter their Id cards at the entrance

during ten minutes before the start time: generate an event”.

These type of rules -such as the above described- are difficult to generate in a systematic

and flexible manner. Considering this background, we present Wool: a web editor of event

driven automation rules that possibilities the creation, edition, acquisition and deletion

of these rules. The main characteristic of Wool is the graphic interface which is totally

oriented to ease the edition of automation rules. Besides, Wool is oriented to complement

1http://www.ifttt.com
2http://www.zapier.com
3https://github.com/gsi-upm/DrEWE

2

1.2. PROJECT GOALS

the platform DrEWE, which means that the resulting rules from Wool can be used with

DrEWE. That allows us to easily create a rule, and then deploy it into the DrEWE motor.

1.2 Project goals

In the long term, this project aims to provide a scalable platform for edition of automation

rules driven by events. This includes, but is not limited to: an accessible platform for

task automation; accessible event driven rules; a web handler for rule edition as well as to

administrative tasks; an interface for DrEWE tasks.

Among the main goals inside this project, we can find:

• Design and build a web editor that allows users to create, edit, obtain and remove

event driven rules for task automation.

• Build a software module which is able to communicate with the platform for task

automation. That is, DrEWE.

• Extend the DrEWE functionalities, easing the rules management.

• Design and build a web platform for user authentication, allowing users the edition

of their own rules.

• Deepen the knowledge and usage of technologies covered in this project such as: rule

engines, event networks and ontology management.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is as follows:

Chapter 1 provides an introduction to the context in which this project is developed.

Besides, it describes the main objectives to achieve once concluded. Chapter 2 offers a

description of the main standards and technologies on which this project rely. Chapter 3

describes a brief requirement analysis of the system of this project. Chapter 4 describes

the complete architecture of the Wool system, decomposing it into several modules that will

interact between them. Chapter 5 offers an overview of a selected use case. It is explained

the running of the modules to offer the detailed functionalities. Chapter 6 sums up the

conclusions extracted from this project, and we offer a brief view about the lines of future

3

CHAPTER 1. INTRODUCTION

work. Finally, the appendix provides with concrete information covering the more detailed

aspects of the implementation of this system.

4

CHAPTER2
Enabling Technologies

2.1 Rule Automation

A number of now prominent web sites, mobile applications, and desktop applications feature

rule-based task automation. Typically, these services provide users the ability to define

which action should be executed when some event is triggered. One example of this simple

task automation is When I am mentioned in Twitter, send me an email ; When I receive

an important email, send me a SMS or Turn Bluetooth on when I leave work. They are

called Task Automation Service (TAS). Some TASs allow users to share the rules they have

defined, so that other users can reuse these tools and adapt them to their own preferences [5].

Following the EWE Ontology model [5], it is possible to classify task automation ser-

vices into internet task automation (Sect. 2.1.1) and device task automation (Sect. 2.1.2),

although there is some overlap between these two categories since some task automation

services can cover both task automation types.

Figure 2.1 presents the general architecture for both types. As shown, different TASs

that exist on the Web in the present day are disconnected from each other. While Internet

TASs filter notifications coming from Internet services, device-based TASs filter notifications

from device sensors such as those in a smartphone, as explained below.

5

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.1: Internet based and device based TAS general architecture

2.1.1 Internet task automation

Internet based task automation services allow users to connect events and actions from two

or more services. The most popular services are [5]:

1. Ifttt1. Nowadays IFTTT is the most popular task automation service on the Internet,

with more than 65000 rules published. The so called recipes -rules- allow users con-

necting services -channels-. IFTTT includes more than 50 channels, and it is focused

on social features.

2. Zapier2. Zapier is a paid service with more than 1.5 million API requests per month.

Zapier’s channels are thought of as for business users and are focused on integrating

business services.

3. CloudWork3. CloudWork focuses on task automation for business apps. It is more

specialized than Zapier: their approach to task automation and service integration

is made from the point of view of Customer Relationship Management (CRM). This

platform was designed for interoperability with most of the CRM software. Users can

1http://ifttt.com
2http://zapier.com
3https://cloudwork.com

6

2.2. EWE ONTOLOGY

connect data and processes that occurs within these applications to the web services

available.

4. Kinetic4. Kinetic Rule Engine is an open source project designed for developing ser-

vices in the Live Web. It has been developed by Kynetx5. The rules are programmed

in a programming language denominated Kinetic Rule Language. This system clas-

sifies events into several domains: web, email, physical devices, voice and SMS and

social services.

2.1.2 Device based task automation

Device based task automation remains in the configuration of a desktop or a mobile phone,

as they do not combine web services at the event level yet. The two main applications

available are [5]

1. on{x}6. This is a Microsoft project for automating Android devices and is aimed to

developers -as it requires JavaScript skills-. The rules are JavaScript code deployed

into an Android device from a web site where the rules are shared between users.

These rule can notify each other using custom signals. Besides, the actions can be

scheduled to be triggered at a specific time.

2. Tasker7. Tasker is and Android application for configuring the functioning of and

Android device. It offers many built-in actions, which are grouped in sequential

execution queries called Tasks. These Tasks are triggered by profiles, that group a

set of conditions that must be met to trigger the task. These conditions are events of

different kinds, date timer events, third party events, changes in internal variables, or

manually triggered events.

2.2 EWE Ontology

Evented WEb Ontology(EWE)8 is a standardized data schema (also referred as ”ontology”

or ”vocabulary”) designed to describe elements within Task Automation Services (detailed

in Section 2.1) enabling rule interoperability. Referring to the EWE definition [3], the goals

of the EWE ontology to achieve are:

4Available at https://github.com/kre/Kinetic-Rules-Engine
5http://www.kynetx.com/
6https://www.onx.ms
7http://tasker.dinglisch.net/
8http://www.gsi.dit.upm.es/ontologies/ewe/

7

CHAPTER 2. ENABLING TECHNOLOGIES

• Provide a common model to represent TAS’s rules so that it enables rule interoper-

ability

• Enable to publish raw data from Task Automation Services (Rules and Channels)

online and in compliance with current and future Internet trends.

• Provide a base vocabulary for building domain specific vocabularies e.g. Twitter Task

Ontology or Evernote Task Ontology.

Figure 2.2: Class Diagram for the EWE Ontology

2.2.1 EWE Ontology main classes

As it can be seen form the figure 2.2 the core of the ontology comprises four major classes:

Channel, Event, Action and Rule. They are briefly explained next [5]:

1. Channel. It defines individuals which either generates Events, provide Actions, or

both. In this context, Channel can define a Web service or a device -or actuator- thus

these last ones provides Events and Actions. Moreover, the definition of Channel also

includes website wrappers -web apps that generate events based on occurrences or

changes in third party websites-.

2. Event. This class defines a particular occurrence of a process. Events are instanta-

neous: they have no duration over time. Event individuals are generated by a certain

8

2.3. DREWE

Channel, and they are triggered by the occurrence of the process which defines them.

Events usually provide further details that can be used within Rules to customize Ac-

tions: they are modelled as output-parameters. Events also let users describe under

which conditions should they be triggered. These are the configuration parameters,

modelled as input-parameters. Event definitions are not bound to certain Channels

since different services may generate the same events.

3. Action. This class defines an operation or process provided by a Channel. Actions

provides effects whose nature depend on itself. These include producing logs, modi-

fying states on a server or even switching on a light in a physical location. By means

of input-parameters actions can be configured to react according to the data collected

from an Event. These data are the output-parameters.

4. Rule. The class Rule defines an “Event-Condition-Action” (ECA) rule. This rule

is triggered, and means the execution of an Action. Rules defines particular inter-

connections between instances of the Event and Action classes; those include the

configuration parameters set for both of them: output from Events to input of Ac-

tions. EWE makes use of the SPIN framework9 to represent the implementation of

the ECA rules, since these rules can be described as SPARQL construct queries: SPIN

rules [6].

A channel example of how the Channel class is expressed in RDF is shown next [5]:

Listing 2.1: EWE Channel definition

<owl:Class rdf:about="&ewe-mail;gmail">

<dcterms:title>Gmail</dcterms:title>

<dcterms:description>Webmail by Google.</dcterms:description>

<ewe:generatesEvent rdf:resource="&ewe-mail;newEmail"/>

<ewe:generatesEvent rdf:resource="&ewe-mail;newEmailLabeled"/>

<ewe:hasAction rdf:resource="&ewe-mail;sendNewEmail"/>

<rdfs:subClassOf rdf:resource="&ewe;Channel"/>

</owl:Class>

2.3 DrEWE

DrEWE is an intelligent platform for task automation. It works in a similar way to IFTTT,

Zapier or CloudWork; but it provides with a important difference: the semantic approach.

9http://spinrdf.org/

9

CHAPTER 2. ENABLING TECHNOLOGIES

It uses the new ontology -or standardized schema- EWE. The Drools Expert10 rule engine

to process low level events created by devices and sensors, and create high level events -at

the level of the web services-. SPIN SPARQL syntax to process the high level events and

order actions at high level. GSN11 middleware as an Event Network. Besides, DrEWE

incorporates a huge variety of scripts and application that generates event and process

actions, such as Raspberry Pi12 scripts or node.js13 applications.

DrEWE sets an example of viability of EWE ontology, and has interoperability between

all the EWE’s platforms. This offers the possibility of processing rules not matter the

source, or even a huge semantic database that would provide all the advantages from Big

Data.

Besides, DrEWE is able to process complex events. This feature allows the ‘event’ part

of the rule to have temporal reasoning. One example of that would be: “When a meeting

is scheduled, if the correspondingattendees enter their Id cards at the entrance during ten

minutes before the start time: generate an event”.

2.3.1 DrEWE modules

DrEWE consists of five main modules, each one carrying out one function:

1. GCalendar. A Node.js module that simplifies the use of RESTful Google Calendar

API without any interaction with the user: it retrieves all events on a given calendar

and sends them to a GSN server. Before sending the events, it checks if it has already

been added to the server.

2. Berries. This module is a group of Raspberry scripts which communicate with GSN

and/or SPIN to produce events, make actions and handle requests. Among the Berries

functions, it can be found: generate events when somebody inserts the Id card at the

entrance of the laboratory; take photos with a Raspberry camera board periodically

or under request and serve these images via HTTP; Generate periodically events with

the current light value -such as a lamp-.

3. GSN. GSN is a middleware for rapid deployment and integration of heterogeneous

wireless sensor networks. In DrEWE, it has been implemented as a Event Network.

One remarkable feature is the timed database: GSN provides a timestamp column

10https://www.jboss.org/drools/
11http://sourceforge.net/projects/gsn/
12http://www.raspberrypi.org/
13http://nodejs.org/

10

2.3. DREWE

Figure 2.3: DrEWE general architecture

for each type of data that it receives. This timestamp is used by the following mod-

ules (the rule engines) for complex event reasoning in order to provide time-based

reasoning.

4. Drools. This is the module in charge of processing events and ordering actions. It

consists of two different rule engines that work together: the Drools-based engine and

the SPIN-based engine. The Drools engine is a well known rule engine that provides

Complex Event Processing. The SPIN engine comes with a SPARQL inference mod-

ule. The SPARQL inferences are run over a semantic model, and the inferenced triples

are put into a new model. All these processes are implemented using the RDF Apache

Jena Software14. This is the most important module for the Wool project.

5. NodeEvented. This Node.js module is in charge of generating events and processing

actions. It is connected with the Drools module and the GSN module.

14http://jena.apache.org/

11

CHAPTER 2. ENABLING TECHNOLOGIES

2.4 Knockout

Knockout15 is a JavaScript library that helps the process of creating responsive display and

editor user interfaces with a underlying data model. Knockout is recommended for cases in

which the User Interface (UI) updates dynamically, helping to implementing it more simply

and maintainably.

The dependency tracking is one of the most important and attractive features of Knock-

out. It automatically updates the right parts of the UI whenever the data model changes,

making the correspondence between graphic interface and data model -the logic- easy. The

binding of the UI to the data model is simple, and it allows developers to construct complex

and dynamic UIs using nested binding contexts.

Besides, using Knockout is possible to extends its functionalities by implementing cus-

tom behaviours as new declarative bindings for reuse. Knockout works with any server

or client-side technology; as such as it can be added on top of a web application without

requiring major architectural changes.

2.5 FuelPHP

FuelPHP16 is a MVC (Model-View-Controller) framework that has support to the Hierar-

chical MVC pattern (HMVC). Besides, this framework adds the concept of ViewModel17,

which offers the option to add a layer between the Controller and the View. Fuel also

supports a router based approach where it is possible to route directly to a closure which

process an input URI, making the closure the controller and giving it control of further

execution.

Almost every class in FuelPHP’s core package can be extended without modifying the

code where it is used. It is possible to package more functionality into packages that extend

or replace the FuelPHP core, and allows us to keep the application modular by dividing it

into application modules.

Security is a great feature inside FuelPHP. Among the security functions there are:

input filtering, URI filtering, output encoding, token protection, SQL injection prevention,

a secure authentication framework. This authentication framework sets a default interface

drivers to make use of. Inside FuelPHP two sets of drivers are included. The most useful is

15http://knockoutjs.com/
16http://fuelphp.com/
17http://fuelphp.com/docs/general/viewmodels.html

12

2.6. MONGODB

the so-called Ormauth framework, which is ORM based. This driver provides a full-featured

Access Control List system with permissions at user, group and role level. Moreover, that

Auth framework has integrated Opauth library, allowing us to integrate authentication for

social media interaction.

One important FuelPHP feature is the integration with the command line utility oil.

This utility is designed to help speed up development, increase efficiency and assist testing

and debugging. It allows developers code generation, scaffolding and admin generation. It

also allows us to run database migrations, and facilitates the interactive debugging. Besides,

it offers the use of tasks: activities such as importing data or other background operations.

For rapid coding, FuelPHP provides with some base classes which implements several

services: Controller Template, allows us page templating to the controller; Controller Rest,

provides a RESTful API; Controller Hybrid, combine two features into a single controller;

Model Crud, provides with all methods for CRUD operations.

Lastly, FuelPHP offers a ORM for worl with different databases, make CRUD oper-

ations and manage relations between rows. The main characteristics of this module are:

relationship types -belongs to, has one, has many, many many-; nested relations; entity

attribute-value model implementation; the use of observers to process the objects instances

-i.e. to validate before saving or to auto-update a property .

2.6 MongoDB

MongoDB18 is an open-source document database written in C++. MongoDB provides high

performance, high availability, and easy scalability. MongoDB is a JSON-style19 document

based database: it allows us to map the stored documents to programming language data

types. The documents can be embedded and exported into arrays. The schema of the

database is dynamic, which facilitates the polymorphism of the data.

The data model is as follows: a MongoDB deployment hosts a number of databases. A

database holds a set of collections. A collection holds a set of documents. A document is

a set of key-value pairs. As the documents have a dynamic schema, the documents in the

same collection do not require to have the same set of fields or structure; besides, common

fields in a document of a collection may hold different types of data.

Queries in MongoDB provide a set of operators to define how the find()-basic request-

18http://www.mongodb.org/
19http://bsonspec.org/

13

CHAPTER 2. ENABLING TECHNOLOGIES

ing method in MongoDB- method selects documents from a collection based on a query

specification document.

Although MongoDB supports single-instance operation, production MongoDB deploy-

ments are distributed by default. Replica sets provide high performance replication with

automated fail-over, while shared clusters make it possible to partition large data sets over

many machines transparently to the users. MongoDB users combine replica sets and shared

clusters to provide high levels redundancy for large data sets transparently for applications.

14

CHAPTER3
Requirement Analysis

3.1 Introduction

The result of this chapter is a requirement analysis which will enable a more complete vision

of the system to be developed. Besides, this chapter also helps the reader in the process of

understanding the purpose of the Wool project.

The analysis will use the Unified Modeling Language (UML)1. This language allows us

to specify, build and document a software system using graphical language.

This analysis is important when understanding a system, but also when designing a

software system. Because of this, we present this analysis chapter.

That being said, the aim of this chapter is not to cover all the system requirements, or

all the Wool functionalities. In this chapter the analysis will be made briefly; it is not a

thorough analysis of the Wool system.

1http://www.uml.org/

15

CHAPTER 3. REQUIREMENT ANALYSIS

3.2 Use cases

This section identifies the main use cases of the Wool system. This helps to obtain the

specifications of the uses of the system, and therefore defines a list of requisites to match.

In 3.2.1, a list of the main actors will be presented and a UML diagram representing

all the actors participating in the different use cases in 3.2.2. This representation allows us

to identify the actors that interact with the system, as well as the interconnection between

them. Then, several subsections -3.2.2.1 and 3.2.2.2- will show the sequence diagrams of

some of the use cases. The sequence diagrams are developed following the UML language.

3.2.1 System actors

Identifying the actors of the system is the first step to take into consideration when an

analysis of a system is being made. The actors of the Wool system are:

User. Final user of the system, and the main actor. It accesses the Wool system aiming

to edit rules using the available offered channels. This actor also manages the rules, creating

and deleting them. It deploys the rules into the SPIN Motor.

Admin. Administrator of Wool, in charge of managing the system users. It is able to

create and delete Wool users, and manages the rules deployed into the SPIN Motor.

DrEWE. This is a secondary actor. It collects the rules that are created and deploys

them into the SPIN Motor. It is in charge of contacting with the outer services.

16

3.2. USE CASES

3.2.2 Use cases

Next a use case diagram is presented. In this graphic it is shown the main Wool use case,

and the interconnection with the actors of the system.

Figure 3.1: Use case diagram

17

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.1 Edit rule

In this use case the only actor is the User. This actor accesses the Rule Editor tool via

web, and then follows the edition process. In this process Rule Editor connects several

times with Rule Manager, as can be seen in figure 3.2. These communications are used

for obtaining data about channels, spaces and rules. The method getChannels() makes a

request to the available channels for this particular user. The other methods work in the

same way: getSpaces() is for obtaining the information about the available spaces; and

getRule() is used to obtain the rule to be edited. Every data is obtained form the Rule

Manager persistence layer, which is also reflected in the figure.

Figure 3.2: Edit Rule case use

18

3.2. USE CASES

3.2.2.2 Deploy rule

The actor of this use case is the User. In this case, the user accesses Rule Manager with

the intention of deploying into the SPIN Motor a previously edited rule. This rule is stored

into the Rule Manager persistence module. When a rule is deployed Rule Manager accesses

to its persistence module several times, obtaining data regaining the rule to be deployed

and the template to be used in the deployment process, as can be seen in figure 3.3. Once

the rule is composed using the template, it is saved into the Rule Manager persistence, and

then sent to the SPIN Motor in DrEWE. Once the rule is successfully deployed, this process

terminates.

Figure 3.3: Deploy Rule case use

19

CHAPTER 3. REQUIREMENT ANALYSIS

and the us

20

CHAPTER4
Architecture

4.1 Introduction

In this chapter, we cover the design phase of this project, as well as implementation details

involving its architecture. Firstly, we present an overview of the project, divided into several

modules. This is intended to offer the reader a general view of this project architecture.

After that, we present each module separately and in much more depth.

The main purpose of this project is to obtain an automation rule editor in which users

can configure and adapt their preferences about Internet services as well as sensor-space

devices. First we need a tool for editing the automation rules: we call this tool Rule

Editor, which is the main core of this project. Rule Editor is a web application, and is

implemented using client side technology. For this reason, a server side technology was

needed. In addition, Rule Editor needs to rely on rules persistence, user authentication and

differentiation, etc. These reasons make an management module necessary. This module is

called Rule Manager. Rule Manager is implemented as server side technology.

With all the modules above, we have a platform that allows us editing and managing

automation rules by itself. Nevertheless, it is not able to extends its possibilities to the

outer: such as Internet services or sensor devices. This is the reason why this project

21

CHAPTER 4. ARCHITECTURE

extends the functionalities of DrEWE: to make all these rule editions fruitful for a network

of services and sensors outside Rule Editor. For these reasons SPIN Generator is created.

This module allows the user to export his rules to SPIN-SPARQL format, that will be able

to be interpreted by automation tasks platforms such as DrEWE. With this, the user can

create editable rules that will be fully compatible with DrEWE, and also EWE ontology.

A diagram of the general architecture is shown in Figure 4.1. Each module will be

detailed in the following sections.

Figure 4.1: General Architecture

4.2 General overview

The core of this project is the Rule Editor Server. As it can be seen in 4.1, Wool is

composed by three different modules: Rule Editor, Rule Manager, and SPIN Generator.

All these modules are differentiated following a functional criteria. The interconnection of

these modules into a major functionality is represented by the following flow diagram:

22

4.2. GENERAL OVERVIEW

Rule Editor Rule Manager SPIN Generator

Flow of actions

DrEWE

Figure 4.2: Modules Flow Diagram

In the figure 4.2 can be seen that the user interacts with the Rule Editor module. That

is, the user creates or edits an automation rule using the web editor. The flow represented

above is described as follows.

1. Rule Editor. The user interacts with the Rule Editor web interface for automation

rule editing. This interface is primarily graphic, icon based. The main function of this

module is to connect two channels of events or actions, and create a rule that describes

this connection. By using the interface, the user will have created an automation rule

of this type. Once created, the user may finish the edition process. Then, Rule Editor

sends the correspondent automation rule to the server.

2. Rule Manager. Once the rule has been created and sent to the server, Rule Manager

receives it. The main function of this module is to persist the rules. Each rule will

be stored into a database, with all the information related to that rule, including the

user who has created it. With this, each user has available all the rules he or she has

created for edition or deletion.

3. SPIN Generator. Once an automation rule has been created and saved, this mod-

ule is in charge of exporting the data from to rules to a EWE compatible format:

JSON-LD. This module creates rule descriptions saved into JSON-LD format using

SPARQL requests templates. These documents are sent to DrEWE, where they will

be processed.

4. SPIN Motor. The rules which have been formatted into SPARQL sentences are sent

to this engine, that will test the rule to check its correctness. Once this is completed

this module will deploy the rule, allowing its use.

23

CHAPTER 4. ARCHITECTURE

4.3 Rule Editor

Rule Editor is the core of this project, one of the most important modules. This module

provides an interface for automation rules edition. During the whole project, an effort has

been made to elaborate a graphical interface, based on icons and ‘drag and drop’ actions.

These are intended to make easy and fast the process of creating or editing an event driven

automation rule.

A channel, represented by an icon, is a source of the so called events or actions. For

example, ‘Twitter ’1 is a channel from the Internet services field. This channel provides

events such as ‘I get a new follower ’2 that can trigger actions. An example of an action in

this ‘Twitter ’ channel is ‘Post a tweet ’3. Being this way it is possible to connect an event to

an action through the structure “If this then that”, creating a automation rule. In that

structure, this would be the event, and that would be the action. Referring to the example

above, the rule resulting from the action and event is “If I get a new follower then post a

tweet”. These type of rules are the automation rules that Rule Editor is intended to create

and edit.

4.3.1 Graphic interface

As it is said, Rule Editor interface is icon-based. An icon represents a channel of events

or actions. In addition, there are two containers into the interface of Rule Editor, which

the user can utilize for selecting the channel that will provides events (left channel), and

the channel which will provide actions (right channels). This configuration matches the

structure If this then that previously presented: ‘If this’ (left channel); ‘then that’ (right

channel).

With the Rule Editor interface, a user can drag a channel-icon, and drop it onto one

container. Then, navigating through several menus that will be presented, the user can

select the events or actions which will shape the automation rule.

An example of this interface is presented in figure 4.3.

1https://ifttt.com/twitter
2https://ifttt.com/channels/twitter/triggers/96-new-follower
3https://ifttt.com/channels/twitter/actions/1-post-a-tweet

24

4.3. RULE EDITOR

Figure 4.3: Rule Editor graphical interface

All this logic is implemented using client-side technologies: JavaScript, CSS, HTML5,

jQuery4 and Knockout. Knockout is specially useful in this project considering that the

user can make actions like ‘drag and drop’ a channel, and the interface must respond in real

time. Search functions and language changes are implemented using Knockout too.

4.3.2 Data structure

Just as the user is creating a rule, Rule Editor has to store all the information relating this

process. For example, Rule Editor has to maintain a record of which channel will provide

the event, and which event is selected between the several that a channel has.

For fulfilling this goal, a structure of objects is used for storing all this data. These

objects are observables (Knockout provides this type of objects). It is important to add

that this structure will be sent to the server, in order of communicate the created rule to

Rule Manager.

A schema of this structure is detailed next. First, the data involving the event channel;

and then the data of the action channel.

4http://jquery.com/

25

CHAPTER 4. ARCHITECTURE

Listing 4.1: Rule template

1 {
2 "created_at": "",

3 "deployed": false,

4 "edited_ruleId": "",

5 "ewe_spin": "",

6 "when": {
7 "@id": "",

8 "dcterms:title": "",

9 "dcterms:description": "",

10 "@type": "",

11 "from_channel": "",

12 "ewe:hasInputParameter": {
13 "@type": "",

14 "dcterms:title": "",

15 "xsd:type": "",

16 "dcterms:description": ""

17 },
18 "ewe:hasOutputParameter": [

19 {
20 "@type": "",

21 "ewe:Property": "",

22 "dcterms:title": ""

23 }
24],

25 "inputform": []

26 },
27 "whenOutputs": [],

28 "do": {
29 "@id": "",

30 "dcterms:title": "",

31 "dcterms:description": "",

32 "@type": "",

33 "from_channel": "",

34 "ewe:hasOutputParameter": [],

35 "inputform": "",

36 "ewe:hasInputParameter": [

37 {
38 "@type": "",

39 "dcterms:title": "",

40 "ewe:Property": ""

41 }
42]

43 },
44 "user": ""

45 }

26

4.4. RULE MANAGER

4.3.3 Endpoint communication

Rule Editor is a client-side application, so all the operations made in it must be supported

by the endpoint: persisting and managing the data Rule Editor generates. For this reason,

Rule Editor communicates with the endpoint -the Wool Server- for sending the edited rules;

as also receiving the available channels or the already created rules.

This communication is implemented using JSON format and AJAX protocol5. JSON

format is specially useful when communicating the data structure of Rule Editor, since it

is using Knockout observables, which are basically JavaScript objects. AJAX allows us to

execute different functions depending on the state of the link with the endpoint. These two

tools provide Rule Editor with a useful interface for communicating with the Wool Server.

4.4 Rule Manager

The Wool platform works with automation rules: creating, editing, removing them. These

actions are, in the end, the same: management of the rules. In addition, these rules need

the channels; and the users that use them. For fulfilling all these functionalities we have

developed Rule Manager. This module, enclosed into the Wool Server, serves for these

purposes. Rule Manager acts as a controller into the Wool platform, coordinating the

actions and data from Rule Editor, SPIN Generator and the DrEWE SPIN Module.

Rule Manager allows the user to manage the rules which have been created or edited

through a graphic web interface. Besides, with Rule Manager, a user can view the channels

that Wool has available, and check the characteristics that each channel has. This module

provides an access to all the rest of the functionalities of Wool.

Rule Manager has been implemented with PHP using the FuelPHP framework, following

the MVC pattern. This has been very important during the design and development since

the data that is managed comes from different sources: users, channels and rules are dealt

differently, and the necessity of isolate the data from the rest of the process arises. More

specifically, Rule Manager makes use of two different databases: SQL and NoSQL ones.

These are two radically different type of databases, so the MVC pattern fits perfectly in

this design.

This module offers two different interfaces: a graphical HTML-based interface for users

using a web browser, and a REST interface which serves content depending on the request.

5http://api.jquery.com/category/ajax/

27

CHAPTER 4. ARCHITECTURE

4.4.1 Rule Manager architecture

As it has been explained previously, Rule Manager follows the MVC pattern. This pattern

has a specific architecture, that in this project is understood as a three layered architecture:

Model, View, Controller. Next, a schema describing this architecture and the Rule Manager

components is shown.

Figure 4.4: Rule Manager architecture

Usually, the user accesses the pages belonging to the View. These pages have all the

content the user needs to access all the functionalities. All the pages have dynamic content

which is processed by the Controller. The Controller manages all the data coming from the

View and the Model. Besides, the Controller processes the requests sent from the user: as

much from requests made to the REST interface as from the View pages requests.

The Model offers an abstract information layer to the Controller. The Model accesses

the information under the Controller request, creating a connection to the corresponding

database and extracting the information and returning it to the Controller. In this way Rule

Manager offers the possibility of changing the Database implementation, and conserving the

28

4.4. RULE MANAGER

Model untouched.

4.4.2 SQL database

A SQL database is used for maintaining users persistence. This database is controlled by the

default SQL driver, provided by FuelPHP; and follows the ORM technique. This technique

allows us to map the database tables to objects; besides, it is possible to stablish relations

between these objects. ORM makes easier the users management, dealing with the users

as objects. A schema representing the structure of the most important table inside this

database is shown next.

Listing 4.2: Users table structure

mysql> describe users;

+----------------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------------+------------------+------+-----+---------+----------------+

| id | int(11) unsigned | NO | PRI | NULL | auto_increment |

| username | varchar(50) | NO | | NULL | |

| password | varchar(255) | NO | | NULL | |

| group | int(11) | NO | | NULL | |

| email | varchar(255) | NO | | NULL | |

| last_login | int(11) | NO | | NULL | |

| login_hash | varchar(255) | NO | | NULL | |

| profile_fields | text | NO | | NULL | |

| created_at | int(11) | YES | | NULL | |

| updated_at | int(11) | YES | | NULL | |

+----------------+------------------+------+-----+---------+----------------+

4.4.3 Mongo database

The NoSQL database is a MongoDB database. This database, which is object-oriented,

is used for the channels and rules persistence; besides, it is used by the SPIN Generator

module. MongoDB persists the data using JSON format documents, which allows us to

store all the data involving rules and channls using JSON and JSON-LD formats. In Rule

Editor, the structure of data uses JSON. This has the advantage that Rule Manager makes

the management of this data in a fast and natural way.

This last database could have been made using SQL, but because of the difficulty of

the management between JSON-data and SQL static tables, NoSQL-type database was

chosen. In addition, during the design phase the use of an SQL database was considered

29

CHAPTER 4. ARCHITECTURE

seriously; nevertheless, the process of transforming a JSON document into data stored in

static interconnected tables is difficult compared to the easiness of the process -during the

development state as well as the database exploiting phase- using Mongo, which is document

oriented.

In spite of this last subject, the benefit of utilizing SQL or NoSQL database for this

project only could be measured testing and comparing between the two ones.

The Mongo database is organized into collections, each one serving for one purpose.

The specific collections are:

• Rules. This collection stores the rules which have been created. Each document inside

the collection includes a rule. Each rule has an identification that connects with the

rule author. Besides, the rules have references to the channels they come from.

• Channels. Collection where all the channels are stored. Each document of this collec-

tion represents a channel.

• SPIN templates. In this collection the SPIN templates are stored. This collection is

used by the SPIN Generator module, which will be explained in the section 4.5.

• Spaces. In this collection, the channel spaces are stored. Each channel belongs to one

space (maybe two).

4.5 SPIN Generator

The created and edited rules do not remain into the Rule Manager persistence module only

and exclusively, but are also exported into the SPIN Motor module, where they will be

inserted. This is what is called rule deployment. For this process to be successful, the

rule to be deployed needs to be expressed into the SPARQL format. Basically, this is the

function of SPIN Generator: transform the rules expressed in a JSON format to rules in

SPARQL format. This transformation is called rule composition.

This module is implemented in PHP. SPIN Generator bases the rule composition in a

query substitution technique as of template using. The process of obtaining these templates

is detailed in the Appendix A of this document.

SPIN Generator is implemented as a REST service. When a certain request is received

-this request must include a rule identifier-, this module extracts the specific rule from

the Rule Manager persistence module. Once obtained, SPIN Generator finds the number

30

4.6. SPIN MOTOR

of parameters the rule needs to reflect into the SPARQL query. Using this information,

SPIN Generator extracts the corresponding template -once again from the Rule Manager

persistence module-. Applying the method specified in the appendix A, this module creates

the SPARQL query that contains the EWE rule.

The last objective of the SPIN Generator module is to communicate the SPARQL rule

to the SPIN Motor. For this, this module creates a request containing the rule as a request

parameter. It is worth mentioning that this a POST request -thus the request parameters

are specified in the request body, and not in the request URL- since it is not advisable to

include something as large as a SPARQL rule into the URL of a GET request. How the

SPIN Motor module handles this request is explained in the section 4.6.

In the figure 4.5 a diagram of all the process is presented.

Flow of actions

.../export/rule/_rule_id_

SPIN Generator

Rule
extraction

Number of
parameters

finding

Template
extraction

SPARQL
creation

.../wool/spin/motor

Figure 4.5: SPIN Generator flow diagram

4.6 SPIN Motor

Once composed, the SPIN Generator module communicates the SPARQL rule to this mod-

ule: the SPIN Motor. The SPIN Motor module belongs to DrEWE, but not completely.

SPIN Motor has been implemented starting from zero for the Wool project, and the in-

serted into DrEWE. In this way, SPIN Motor improves some of the DrEWE functionalities,

adapting them to the Wool paradigm.

SPIN Motor is implemented using Java and JavaEE. It bases its functionalities in the

Apache Jena implementation6. This module is based in a ontology model, which uses the

EWE ontology.

SPIN Motor loads the rules that receives from the SPIN Generator module to the ontol-

ogy model. Once loaded, this module is capable of receiving events -identified by an URI-,

6https://jena.apache.org/

31

CHAPTER 4. ARCHITECTURE

process them, and act accordingly to the rules triggering the corresponding actions. These

actions, as was mentioned in A.4.4, are identified by a unique URI. This process is showed

in the figure 4.6.

SPIN Motor

Ontology model

Rules
Event

captureNew Event
Inferred Action

New triples
evaluation

Figure 4.6: SPIN Motor process diagram

When a new event is received, SPIN Motor captures it and creates a new event object.

This object is an ontology model resource. This resource is inserted into the ontology

model. Then, SPIN Motor runs the ontology model inferences. This process combines the

loaded rules and the inserted events, and draws conclusions from them. These conclusions

are represented by triples. The resulting triples are actions representations: they have the

actions URIs, and their properties. In this way, the actions are inferred -triggered-: the

conclusions from the inserted events and loaded rules of the ontology model represent these

actions.

A important aspect is the management of the resources inside the ontology model. In

SPIN Motor, the rules are always loaded: once a rule is loaded into the model, it is kept

there. Nevertheless, the events are treated in a different way: once a event has been inserted

into the ontology model and the inferences have been made, this event in removed from the

model. This is because the EWE events have no temporal reasoning: a event occurs, and

then disappears.

In the same way, the action triples are resources of the ontology model. An Action has

no temporal reasoning neither: it is inferred and the removed from the ontology model.

32

CHAPTER5
Case study

5.1 Introduction

In this chapter we are going to describe a selected use case. This description will cover the

main Wool features, and its main purpose is to completely understand the functionalities

of Wool, and how to use it.

The actor of this case is the user. The goal of the user is to create a automation rule,

which is generated from two channels, and to deploy it into the SPIN context. In this way,

the user creates a rule that will automate the events and actions of the selected services

once activated.

5.2 Rule edition

The first step to take is the authentication. The user must fill the form showed in figure

5.1 to be authenticated in the system.

Once authenticated, the user may navigate to the Rules page. This page shows a list of

the rules created by the user. In this page the user can edit a created rule or create a new

33

CHAPTER 5. CASE STUDY

Figure 5.1: Wool authentication page

one. In this case, the user creates a new rule. For this, the user may press the button “Add

new rule”. The rule list is showed in figure 5.2.

Figure 5.2: Rule list

When the user presses the button, it is redirected to the Rule Editor graphical interface.

The interface is designed to be easy to use and friendly to the user. The process of creating

a rule is indicated step by step in the same page. This can be seen in the figure 5.3.

First, the user has to select between the different available spaces. These spaces classify

the channels, and each channel is in one space. This allows the user to differentiate the

events and actions that each channel has: a channel that is classified into Web Service

will trigger actions regarding the web -send emails, send text messages-; while a channel

that is classified into the GSI Laboratory will trigger actions regarding the context of this

laboratory -turn on lights, take a shot with a camera, send a message through the GSIBot-.

Second, the user selects the channel that will represent the event. This selection is

made by dragging the box representing the corresponding channel and dropping it into

the available container. After this, a modal view appears. This view presents a so-called

“trigger selection”. Basically, it is a menu which allows the user to select the event that will

trigger the rule. Rule Editor offers the user the events regarding the selected event channel.

This is showed in the figure 5.4.

34

5.2. RULE EDITION

Figure 5.3: Channel boxes, spaces tags, event and action containers

Figure 5.4: Event selection

Once the event-part of the rule is selected and configured, the user proceeds with the

action-part, that will be enabled now. The action selection is similar to the event selection.

The user has to drag and drop a action box into the action container -right container-. In the

same way that the event, a modal view appears. In this case, it offers the actions available

for the selected channel. Once the user has selected the desired action to be triggered,

another modal view appears. This second view allows the user to select the output of the

35

CHAPTER 5. CASE STUDY

event to connect with the input of the action. This selection allows the rule to map these

two parameters. This view is the showed in the figure 5.5.

Figure 5.5: Event and action parameters mapping selection

After these configurations have been made, the user can save the rule pressing the “Save

Rule” button. Once pressed, Rule Editor collects the information about the created rule

and sends it to the Rule Manager module, where it is persisted. Then, the user can go back

to the rule list, or create another rule. With this, the process of creating a rule is finished.

5.3 Rule deployment

Once the user has created the rule, it is stored into the Rule Manager persistence module.

Nevertheless, this rule is not functional: it is not into the SPIN Motor module. For this

reason, the user has to activate the rule. In this section it is considered that the user

is authenticated into the Wool system, and that a rule is created and stored in the Rule

Manager persistence module.

For deploying the rule, first the user navigates to the Wool rule list. In this list, the

created and deployed rules are represented, but also the created and not deployed rules are

in it. The deployed rules are marked by a tag, as in the not deployed rules. These different

tags allows the user to know if a rule is deployed, and in case of not, deploy it into the SPIN

Motor module. This is shown in the figure 5.6.

For an user, deploying a rule is very easy. Once created the rule, the user presses the

36

5.4. RULE EXECUTION

Figure 5.6: Rule list: activated and not activated rules

“Activate” button. This button deploys the rule into the SPIN Motor. In case of success,

the rule is marked as Activated.

5.4 Rule execution

When the created rule has been deployed, it is into the SPIN Motor. Thus, when an

event of a certain characteristics launches into the motor, the rule can trigger the defined

action. This behaviour can be observed by the user in the Wool Test Field, where we have

simulated the so called Virtual GSI -vGSI-. In the Virtual GSI the user can launch the

events which the deployed rules define, and observe the actions that these events cause.

The vGSI interface is shown in the figure 5.7.

For executing these rules, the user presses the boxes that represents the events to launch.

These boxes will appear when a rule has been created and deployed into the SPIN Motor.

Once pressed the event box, the vGSI logic will communicate the launched to the Wool

system and will wait for a response. This event is inserted into the SPIN Motor, and then

the actions are inferred. These actions are communicated to the vGSI, that will present

them to the user. This behaviour can be observed in the figure 5.8.

In the EWE ontology the events and actions have not temporal reasoning. A event

launches, and then disappears. In this same way occurs with the actions. In vGSI we have

represented this behaviour by making disappear the actions when they have been presented

37

CHAPTER 5. CASE STUDY

Figure 5.7: Virtual GSI interface

to the user once a lapse of time have passed -a few seconds-.

Figure 5.8: Virtual GSI triggered actions

In the figure 5.7 and figure 5.8 is shown a map of the GSI laboratory. This map represents

the location of some devices that could be located in the GSI laboratory. These devices can

launch events: the lamp can launch an event when it is turned on, and the eDNI1 reader can

launch an event when a DNI is inserted. Besides, there are devices located in the laboratory

that can execute actions: the TV can show messages coming from an event, and the GSI

bot2 can greet us by showing messages.

1http://www.dnielectronico.es/
2https://github.com/gsi-upm/calista-bot

38

5.4. RULE EXECUTION

Nevertheless, this simulator can also launch events coming from Internet services. For

example, it can be simulated that when a new follower in twitter event is launched, the TV

shows a message indicating this fact.

39

CHAPTER 5. CASE STUDY

40

CHAPTER6
Conclusions and future work

In this chapter we will describe the conclusions extracted from this project, and the thoughts

about future work.

6.1 Conclusions

In this project we have created a tool that allows us to edit event driven automation rules

using a graphical interface, making easier the creation of these rules. In addition, this

project allows the user to manage these rules: create, edit, remove them, as well as deploy

them into a semantic engine that will work according with these rules. With this, users can

coordinate different resources -in the web or located in spaces- to work for them in the way

they desire.

This project follows the EWE Ontology. During the development of the Wool project,

several requirements have arisen that have required modifications in EWE. This has allowed

us to improve EWE, and to use it in the best way possible.

Wool is supported by DrEWE, but in some cases it has been necessary to create or

improve some aspects of it. This has extended the functionalities of DrEWE.

41

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Wool uses several different technologies, thus we have learnt these varied technologies,

and how to coordinate all of them. We have used web technologies: FuelPHP, Knock-

out; database technologies: MySQL, MongoDB; and also semantic technologies: SPARQL,

SPIN, RDF.

The division of Wool into several modules facilitates the low dependency between the

different offered functionalities. Each module can be deployed independently, and it can

be used with or without the another ones. This offers several possibilities when it comes

time to improve Wool, or one of its modules. Besides, this has forced us to rely on software

standards: the interconnection of these module is made following some of these standards.

During the whole project, we have tried to develop Wool such that it will be relatively

easy to extend its functionalities: dividing the project into several modules, and using data

structures and code patterns which can be extended.

6.2 Achieved goals

Create a graphical interface that allows us to edit rules One of the main require-

ments of this project is to develop a graphical interface that allows the user to create

or edit automation rules in an easy way. This process is based in a user-friendly “drag

and drop” technique. The data regarding these rules is dynamic, and is communicated

to another Wool modules. The implementation if this is detailed in 4.3.

Persist and manage rules This is a necessary requirement considering that users need

to store and manage their edited rules. Users can manage their rules using the Rule

Manager graphical interface. In addition, through this interface users can reach all

the Wool features. The details of this goal can be found in 4.4.

Create SPIN rules Once the rules have been created using Rule Editor, this rule can be

transformed into a EWE rule that will be inserted into the SPIN Motor. This a big

step to make Wool useful for the semantic web. This transformation is made using

the templates we have defined -the extraction of these templates is detailed in A-.

The EWE rules creation is detailed in 4.5.

Run a semantic motor This is what we call the SPIN Motor. The created EWE rules

are loaded into this motor, allowing us to run actions that are triggered by events

according to these rules. This motor is based on the EWE ontology, and is supported

by DrEWE. The events are generated in the corresponding DrEWE modules, and the

actions are also run in several DrEWE modules. This behaviour is detailed in 4.6.

42

6.3. FUTURE WORK

6.3 Future work

There are several lines that can be followed to extend some of the Wool features but were

not included into this project due to the time limitation. In the next points some lines of

work or improvement to continue the development are presented.

• During the creation of a new rule, this process maps the event and action parameters

one to one. This could be improved by mapping the parameters dynamically, and

adding dynamic information to these parameters.

• Modify dynamically the resources included in the SPIN Motor. In this module, the

loaded rules stay in the engine. It is possible to change this resources depending on

the user necessities.

• Test the possibilities of the different databases options. As detailed in 4.4.3, the

performance of a SQL or noSQL database within the Rule Manager context could be

measured in order to determine the optimal configuration.

• Use the location of each channel to locate a channel in a geographic map, allowing

the user to use a channel depending on the position in the map.

• Add resources to Rule Manager using a graphical interface. In Rule Manager, channels

and users are added through the direct manipulation of the corresponding database.

• Automatic discovery of located channels. It could determine the channels available

depending on the current position of the user.

• Enable or disable channels depending on the user permissions. Now, every user is

allowed to use all the channels available.

43

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

44

APPENDIXA
Extraction of templates from EWE Rules

using SPARQL

In this appendix the process of SPARQL templates extraction from EWE rules is detailed.

This mechanism has been an important step during the development of this project, and it

is of great importance when fully understanding the Wool project.

A.1 Introduction

First, we can consider as a starting point the following rule expressed in SPARQL:

CONSTRUCT {

?action a <http://gsi.dit.upm.es/ontologies/ewe/channels/ns/SendMeAnSms> .

?action <http://gsi.dit.upm.es/ontologies/ewe/channels/ns/Message> ?message .

}

WHERE {

?event a <http://gsi.dit.upm.es/ontologies/ewe/channels/ns/NewFollower> .

?event <http://gsi.dit.upm.es/ontologies/ewe/channels/ns/Fullname> ?name .

BIND (URI("http://example.org/action") as ?action)

BIND(fn:concat(?name, " is now following you!") AS ?message)

}

45

APPENDIX A. EXTRACTION OF TEMPLATES FROM EWE RULES USING SPARQL

This rule is executed when a new follower in twitter event is launched, and it sends a

new SMS with the message “-New follower name- is following you!”.

This query, in the WHERE statement selects an instance of the type identified by the

URI ‘http://gsi.dit.upm.es/ontologies/ewe/channels/ns/NewFollower’ (?event) that has the

property identified by ‘http://gsi.dit.upm.es/ontologies/ewe/channels/ns/Fullname’ and stores

it into the ?name variable. In the CONSTRUCT statement this query creates a new in-

stance of the type ‘http://gsi.dit.upm.es/ontologies/ewe/channels/ns/SendMeAnSms’ with

the property ‘http://gsi.dit.upm.es/ontologies/ewe/channels/ns/Message’ that is stored into

the ?message variable.

The first BIND instruction is necessary for creating new instances. A instance must

be identified by an URI, and that is what this BIND achieves. These instances generation

must be made into the WHERE statement. The second BIND instruction makes a string

concatenation: gets the ?name variable and concatenates it with the string ‘is now following

you!’, and stores it into the message variable.

We can see that this rule is executed when a event with a certain properties is received,

and a certain action is created. Besides, a parameter mapping is made: event parameters

are mapped to action parameters.

A.2 Templates for SPARQL rules generation

We call template to a generic SPARQL query with parameters that will be replaced during

pre-processing. This query is not functional considering that it has parameters that must

be replaced by specific values. When these parameters are replaced by the specific values,

then a completely functional SPARQL query is achieved. In this case, a EWE rule.

A.3 Template generation strategy

The strategy to follow is simple, but results very functional. We will define different tem-

plates based on the number of parameters that will be connected. In this way, there will be

templates for connecting ‘n’ event parameters with ‘n’ action parameters.

We must define what concepts are to be abstracted. As it has been showed in the

section A.1, the rule musts (i)select an event, (ii)generate a certain action, (iii)make a

parameter mapping. These three processes will be abstracted and reflected as parameters

in the templates.

46

A.4. PARAMETER ABSTRACTION FOR THE TEMPLATES

A.4 Parameter abstraction for the templates

A.4.1 Event selection

The event selection is made from the restriction:

?event a <http://gsi.dit.upm.es/ontologies/ewe/channels/ns/NewFollower> .

These restrictions attach the event URI, but this must be a parameter. The result would

be:

?event a <?eventURI> .

A.4.2 Action selection

The action selection is similar to the process in A.4.1:

?action a <http://gsi.dit.upm.es/ontologies/ewe/channels/ns/SendMeAnSms> .

This selection is composed into:

?action a <?actionURI> .

A.4.3 Parameter mapping

It consists in taking the value of one of the event output parameters and assign it to one of

the action input parameters.

CONSTRUCT {

...

?action <http://gsi.dit.upm.es/ontologies/ewe/channels/ns/Message> ?message .

...

}

WHERE {

...

?event <http://gsi.dit.upm.es/ontologies/ewe/channels/ns/Fullname> ?name .

...

BIND(fn:concat(?name, " is now following you!") AS ?message)

}

In this example the URIs are specified in the rule. They will be abstracted into parameters.

Besides, the name of the variables are relative to the rule context, so they will be changed

into more generic names. This is not a functional matter, just a concept one.

47

APPENDIX A. EXTRACTION OF TEMPLATES FROM EWE RULES USING SPARQL

CONSTRUCT {

...

?action <?actionParam1URI> ?actionParam1 .

...

}

WHERE {

...

?event <?eventParam1URI> ?eventParam1 .

...

BIND(fn:concat(?eventParam1, "") AS ?actionParam1)

}

A.4.4 Action namespace

In the example rule the action URI is not generic.

BIND (URI("http://example.org/action") as ?action)

We need the actions to have a unique identifier, so controlling the action namespace is

necessary. We achieve this introducing a new generic parameter.

BIND (URI("?actionID") as ?action)

A.4.5 Conclusion

The template that maps one parameter is:

CONSTRUCT {

?action a <?actionURI> .

?action <?actionParam1URI> ?actionParam1 .

}

WHERE {

?event a <?eventURI> .

?event <?eventParam1URI> ?eventParam1 .

BIND (URI("?actionID") as ?action)

BIND(fn:concat(?eventParam1, "") AS ?actionParam1)

}

In this template it is needed seven parameters. We can observe that with the defined

templates, in case of mapping n parameters we will need 2n+3 parameters. We have

designed templates until ‘n=3’ parameters.

The rest of the templates are specified in the Wiki1 of the Wool project.

1https://github.com/gsi-upm/Wool/wiki

48

Bibliography

[1] Mike Gartrell Aaron Beach. Proceedings of the eleventh workshop on mobile computing systems

and applications. 2010.

[2] Fabio Barbon Paolo Traverso Marco Pistore adn Michele Trainotti. Run-time monitoring of

in- stances and classes of web service compositions. 2006, journal=International Conference on

Web Services.

[3] Miguel Coronado. Ewe ontology specification, 2013.

[4] Diego López de Ipina. An eca rule-matching service for simpler development of reactive appli-

cations. IEEE DSOnline, 2001.

[5] Carlos Angel Iglesias and Miguel Coronado. Ewe: Modeling rules for automating the evented

web. 2013.

[6] Dennis Spohr Philipp Cimiano nad John M Crae. Using spin to formalise accounting regula-

tions on the semantic web. International Workshop on Finance and Economics on the Semantic

Web, 2012.

[7] Adrian Paschke and Alexander Kozlenkov. Rule-based event processing and reaction rules.

Internationa Symposium on Rule Interchange and Applications, 2009.

[8] Adrian Paschke and Paul Vincent. A reference architecture for event processing. ACM Press,

New York, 2009.

[9] Adrian Paschke Vincent Paul and Springer Florian. Standards for complex event pro- cessing

and reaction rules. pages 128–139, 2011.

[10] Daryl C Plummer. Cloudstreams: The next cloud integration challenge. http://

blogs.gartner.com/daryl/plummer/2010/11/08/cloudstreams-the-next-cloud-integration-

challenge/, 2010.

[11] Vivek K Singh and Ramesh Jain. Structural analysis of the emerging event-web. ACM Press,

New York, 2010.

[12] Stamatis Guinard Dominique Savio Domnic Baecker Oliver Spiess, Patrik Karnouskos. Soa-

based integration of the internet of things in enterprise services. IEEE Internation Conference

on Web Services, pages 968–975, 2009.

[13] Ryan Shaw Raphaël Troncy and Lynda Hardman. Lode: Linking open descriptions of events.

School if Information, 2009.

[14] Philip J. Windley. The live web: Building event-based connections in the cloud. 2011.

49

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Rule Automation
	Internet task automation
	Device based task automation

	EWE Ontology
	EWE Ontology main classes

	DrEWE
	DrEWE modules

	Knockout
	FuelPHP
	MongoDB

	Requirement Analysis
	Introduction
	Use cases
	System actors
	Use cases
	Edit rule
	Deploy rule

	Architecture
	Introduction
	General overview
	Rule Editor
	Graphic interface
	Data structure
	Endpoint communication

	Rule Manager
	Rule Manager architecture
	SQL database
	Mongo database

	SPIN Generator
	SPIN Motor

	Case study
	Introduction
	Rule edition
	Rule deployment
	Rule execution

	Conclusions and future work
	Conclusions
	Achieved goals
	Future work

	Extraction of templates from EWE Rules using SPARQL
	Introduction
	Templates for SPARQL rules generation
	Template generation strategy
	Parameter abstraction for the templates
	Event selection
	Action selection
	Parameter mapping
	Action namespace
	Conclusion

	Bibliography

