
MÁSTER UNIVERSITARIO EN

INGENIERÍA DE REDES Y SERVICIOS TELEMÁTICOS

TRABAJO FIN DE MÁSTER

DESIGN OF AN ARCHITECTURE FOR
CYBER-ATTACK DETECTION ON AN SDN

ENVIRONMENT

FERNANDO BENAYAS DE LOS SANTOS

2019

TRABAJO DE FIN DE MÁSTER

T́ıtulo: Diseño de una arquitectura para detección de ciberataques

en un entorno SDN.

T́ıtulo (inglés): Design of an architecture for cyber-attack detection on an

SDN environment.

Autor: Fernando Benayas de los Santos

Tutor: Álvaro Carrera Barroso

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE MÁSTER

Design of an architecture for cyber-attack detection on an
SDN environment.

Julio 2019

Resumen

Esta memoria es el resultado de un proyecto cuyo objetivo ha consistido en el diseño de una

arquitectura para un sistema de detección de ataques Denial of Service sobre redes definidas

por software (SDN) y su implementación haciendo uso de herramientas de tratamiento

Big Data, tecnoloǵıas de web semántica y técnicas de clasificación de Machine Learning

en el marco del trabajo realizado por el Grupo de Sistemas Inteligentes. Para llevar a

cabo este proyecto, se ha desarrollado un módulo de almacenamiento de datos a partir

del cual se desarrolla un módulo de recolección e inyección de datos en dicho sistema de

almacenamiento, un sistema de análisis de datos almacenados en busca de ataques y un

sistema de semantización de dichos datos almacenados.

Se ha elegido un caso de uso espećıfico que se ha implementado mediante el uso de tec-

noloǵıas de virtualización de redes SDN, de tal manera que no fuera necesario un despliegue

completo de red para comprobar el funcionamiento del sistema antes descrito. Dicha red es

gestionada por un controlador OpenDaylight, a través del cual realizaremos cualquier inter-

acción relacionada con la gestión de ataques. Para la detección de estos ataques utilizaremos

modelos de Machine Learning previamente aprendidos mediante datasets de ciberataques

anotados. Estos modelos serán capaces de detectar patrones de ataque en datos acerca del

tráfico de red, e informarán de dichos ataques al tiempo que toman acciones para bloquear-

los. Los datos tanto recolectados como generados serán semantizados según una ontoloǵıa

desarrollada en este proyecto, con el objetivo de que los datos sean fácilmente accesibles.

Por último, se desarrollará un sistema de visualización que permitirá consultar infor-

mación tanto sobre la red, como sobre los posibles ataques que se detecten, aśı como variables

acerca de dichos ataques. También permitirá la ejecución directa de queries semánticas para

extraer datos espećıficos. Como resultado, obtendremos un sistema adaptador para redes

SDN que permite la detección de ataques Denial of Service, la recuperación autónoma ante

dichos ataques sin afectar al servicio o a otros clientes y la estructuración de los datos

mediante una ontoloǵıa y la visualización del proceso.

Palabras clave: SDN, Big Data Analytics, Linked Data, SPARQL, Elastic,

Opendaylight, Machine Learning, Cybersecurity

VII

Abstract

This thesis is the result of a project whose objective consists the design of an architecture

for a Denial of Service attack detection system on Doftware Defined Networks (SDN) and its

implementation using Big Data processing tools, semantic web technologies and Machine

Learning classification techniques within the framework of the work carried out by the

Intelligent Systems Group.

To carry out this project, a data storage module has been developed from which a data

collection and injection module is developed in said storage system, a system for analyzing

stored data in search of attacks and a system of semantization of said stored data.

A specific use case has been chosen and implemented through the use of SDN virtual-

ization technologies, in such a way that a complete network deployment is not necessary to

verify the operation of the system described above. This virtualized network is managed

by an OpenDaylight controller, through which we will perform any interaction related to

attack management. For the detection of these attacks we will use Machine Learning mod-

els previously learned using annotated cyberattack datasets. These models will be able to

detect attack patterns in data related to network traffic, and it will report such attacks

while also taking actions to block them.

The data both collected and generated will be semantized according to an ontology

developed in this project, with the aim of making the data easily accessible.

Finally, a visualization system will allow the user to easily extract and visualize informa-

tion about the network, as well as about attacks detected and multiple parameters related

to such attacks. It will also allow the direct execution of semantic queries to extract specific

data.

As a result, we will obtain a system for SDN networks that allows the detection of Denial

of Service attacks, autonomous recovery from such attacks without affecting the service or

other clients, and the structuring of the data through an ontology and process visualization.

Keywords: SDN, Big Data Analytics, Linked Data, SPARQL, Elastic, Open-

daylight, Machine Learning, Cybersecurity

IX

Agradecimientos

Gracias a todas las personas que me dieron la oportunidad de llegar hasta aqúı. Gracias a

aquellos que disponen del valor de depositar la confianza en el desconocido. Gracias.

113.02 kilómetros diaros. Pero el resultado mereció el esfuerzo.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

Glossary XIX

1 Introduction 1

1.1 Context . 2

1.2 Motivation . 4

1.3 Project goals . 5

1.4 Structure of this document . 5

2 Enabling Technologies 7

2.1 Introduction . 8

2.2 Software Defined Networks . 8

2.2.1 The SDN paradigm . 9

2.2.2 Mininet . 10

2.2.3 OpenFlow . 11

2.2.4 Open vSwitch . 11

2.2.5 OpenDaylight . 12

XIII

2.3 Big Data Technologies . 13

2.3.1 Elastic Stack . 14

2.3.2 ElasticSearch . 15

2.3.2.1 Lucene . 15

2.3.2.2 Adding and searching data 16

2.3.3 Beats . 17

2.3.4 Logstash . 17

2.4 Semantic Technologies . 18

2.4.1 Linked Data . 18

2.4.2 SPARQL . 20

2.5 Data Visualization Technologies . 21

2.5.1 Visualization libraries . 21

2.5.2 Sefarad . 21

2.6 Machine Learning . 22

2.7 Cyber-attack datasets and tools . 23

2.7.1 CSE-CIC-IDS2018 . 23

2.7.2 Low-Orbit Ion Cannon . 24

2.7.3 CICFlowMeter . 25

3 Cyber-attack Detection Models 27

3.1 Introduction . 28

3.2 Semantic modeling . 29

3.2.1 SDN-NDL . 29

3.2.2 Unified Cybersecurity Ontology . 32

3.2.3 SDN-AR: Software-Defined Network Attack Reporting Language . . 33

3.3 Machine Learning modeling for cyber-attack scenarios 35

3.3.1 Intrusion Detection Evaluation Dataset (CICIDS2017) 36

3.3.2 Classification algorithms and results 38

4 Architecture 45

4.1 Introduction . 46

4.2 Architecture overview . 46

4.3 Data Ingestion layer . 47

4.4 Data Processing Module . 49

4.5 Data Enrichment System . 50

4.6 Cyber-attack Detection Module . 52

4.7 Visualization Module . 54

5 Case study 59

5.1 Introduction . 60

5.2 Network Environment . 62

5.2.1 Software Defined Network . 62

5.2.2 Opendaylight . 66

5.3 Data Ingestion . 68

5.3.1 Data Collection . 68

5.3.2 Data Processing . 72

5.4 Cyber-attack Diagnosis . 74

5.5 Semantic Data Enrichment . 76

5.6 Visualizing Data . 78

6 Conclusions and Future Work 83

6.1 Conclusions . 84

6.2 Future Work . 85

Bibliography i

A Impact of the project v

A.1 Social Impact . vi

A.2 Economic Impact . vi

A.3 Environmental Impact . vii

A.4 Ethical and Professional Implications . vii

B Cost of the System ix

B.1 Physical Resources . x

B.2 Human Resources . x

B.3 Taxes . xi

List of Figures

2.1 Mininet architecture . 10

2.2 Opendaylight architecture . 13

2.3 Elastic Stack Pipeline . 14

2.4 Beats in the Elastic Stack scheme. 17

2.5 Integration of Linked Data schemes . 19

2.6 Categories of Machine Learning algorithms 23

2.7 Topology of the CIC network . 24

3.1 Class Hierarchy for the openflowNode entity 30

3.2 Class Hierarchy for the Flow entity . 31

3.3 Class Hierarchy for the NetworkStats entity 31

3.4 Class Hierarchy for the Attack entity . 33

3.5 Class Hierarchy for the Attack entity within the SDN-AR ontology 34

3.6 Class Hierarchy of the main classes of the SDN-AR ontology 35

3.7 Correlation values for each feature in the dataset 38

3.8 Histogram portraying the mean length of packets in backward direction . . 39

3.9 Histogram portraying the maximum length of packets in backward direction 39

3.10 Histogram portraying the standard deviation of the packet length in flows in

backward direction . 40

3.11 F1-Score obtained for each combination of parameters tested 42

3.12 Decision Tree used in the Random Forest Classifier 43

4.1 Architecture Overview . 47

4.2 Activity diagram of the data ingestion layer 49

XVII

4.3 Diagram representing the semantization process 51

4.4 Diagram of the attack detection procedure 53

4.5 Visualization Module Architecture . 55

4.6 Diagram showing the collection and visualization of data 57

5.1 Prototype architecture . 61

5.2 Low Orbit Ion Cannon GUI . 64

5.3 Opendaylight Topology UI . 67

5.4 View of the attacks being detected . 80

5.5 Overall view of attacks information . 80

5.6 View of the data flow through an specific interface 81

5.7 View of flows and packets handled by each node 81

5.8 View of the Query Editor . 82

Glossary

API Application Programming Interface

BGP Border Gateway Protocol

CIC Canadian Institute of Cybersecurity

CLI Command Line Interface

CSV Comma Separated Value

DARPA Defense Advanced Research Projects Agency

DOM Document Object Model

DoS Denial of Service

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

ICT Information and Communication Technologies

ISCX Information Security Centre of Excellence

INDL Infrastructure and Network Description Language

LOIC Low Orbit Ion Cannon

L2-switch Layer 2 switching

MD-SAL Model-Driven Service Abstraction Layer

NAT Network Address Translation

NETCONF Network Configuration Protocol

NDL Network Description Language

NML Network Markup Language

OGF Open Grid Forum

ODL OpenDaylight

XIX

ONF Open Networking Foundation

OVSDB Open vSwitch Database Management Protocol

OWL Ontology Web Language

QoS Quality of Service

RDF Resource Description Framework

REST Representational State Transfer

SAL Service Abstraction Layer

SDN-NDL Software-Defined Networks Networking Description Language

SDN Software-defined Networking

SNMP Simple Network Management Protocol

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

STP Spanning Tree Protocol

STP Tuple Database

TCP Transmission Control Protocol

UCO Unified Cybersecurity Ontology

UDP User Datagram Protocol

UI User Interface

UML Unified Modelling Language

YANG Yet Another Next Generation

CHAPTER1
Introduction

In this chapter, we will describe the context of the project. For this purpose, we will

enumerate each part that composes the project, underlining its role in the final goal of this

project. Moreover, we will describe the motivation for the development of this project and

the selection of each one of the technologies used in its development. We will also detail the

goals of this project and the structure of this thesis.

1

CHAPTER 1. INTRODUCTION

1.1 Context

The development of the Software Defined Network (SDN) architecture constitutes one of

the most important advances in the networking field in recent years. Until now, network op-

erators were forced to micro-manage the network, applying changes and taking monitoring

actions at node level. This happened due to the fact that in non-SDN networks networking

rules are not created and enforced by a single entity, but by each node separately. They may

communicate with each other in order to coordinate such aspects as Quality of Service (QoS)

or tunneling, but the “intelligence” of the network is held in each node separately. Fur-

thermore, in non-SDN environments network operators are forced to use networking nodes,

components and tools provided by a single company, therefore dramatically decreasing the

flexibility of such networks.

The SDN paradigm allows us to avoid these difficulties. The SDN technology is based

on the concept of a central network “controller”, where all the decisions regarding traffic

routing, network services and topology are taken. Hence, network nodes just follow rules

designed and implemented by the controller. In order to manage the network, we only need

to interact with the network controller instead of interacting with each node (as it was the

case with legacy topologies).

Furthermore, the communication between the SDN controller and each node is based on

the standardised OpenFlow protocol. This protocol organises communications between the

controller and each node. Since it is standardised, it allows the simultaneous use of nodes

form different suppliers, therefore dramatically increasing the flexibility of the network being

managed.

One of the fields where the centralisation of the network management can have a con-

siderable impact is the management of network cybersecurity. By having a centralised

access to the entire network, we can monitor the network and act instantly in any element,

mitigating or blocking attacks against our infrastructure. This dramatically increases the

difficulty in attacking the network being managed. Furthermore, we can monitor specific

elements of our network and “defend” other elements in an agile and flexible manner.

Another key concept in the development of this project is the Linked Data technology.

The Linked Data paradigm proposes a semantic structure where definitions and relation-

ships between data entities are represented. These relationships and definitions are pre-

defined: hence, as new data is collected, it is “shaped” by the semantic structure that we

have defined. The shaping of the data not only eases it use in future applications, but also

facilitates the indexing and searching of data. Moreover, Linked Data is the basis for the

2

1.1. CONTEXT

Semantic Web [1], which is considered the future of the Web.

We have also used Machine Learning techniques in order to infer predictions according

to data collected through the SDN controller. Nowadays, Machine Learning techniques are

being widely used in order to automatize multiple tasks, dramatically increasing the speed

at which these tasks are being completed while avoiding human intervention. This can be

applied to the detection of attacks in SDN environments.

Finally, we have also used Big Data tools and techniques in order to store, process

and index complex data regarding the current status of networks being managed by each

controller.

Combining these technologies we will be able to develop an SDN-based attack detection

system which also indexes the information in Big Data tools, stores the data in Linked Data

tuples and allows for the visualisation of such data in a Web interface.

3

CHAPTER 1. INTRODUCTION

1.2 Motivation

The main motivation of this project comes from the wide range of possibilities that the adop-

tion of the SDN paradigm brings to the current management of legacy computer networks.

The architecture of the SDN paradigm allows for the designing and implementation of new

services that take advantage of the centralised access to any element or data regarding the

current status of the network. This promotes the development of new modules that apply

trending technologies to the management of computer networks. Having instant access to

any part of the network also promotes the aggregated use of considerable amounts of data

collected from the entire network instead of isolated units of data collected separately from

each entity. As a result, we can obtain a global view regarding the current status of our

network. This global view allows us to monitor not only the entire life cycle of each attack

launched against services being provided in our network.

However, the flexibility brought by the SDN paradigm can be severely constrained by

the limitations of human-based management. In order to take full advantage of the SDN

paradigm, we will implement a machine-learning based attack detection system. This sys-

tem will monitor and detect any Denial of Service (DoS) attacks against a service being

provided in the SDN being monitored. Based on data representing the traffic involved in

an attack to a service being provided in a sample network, a Machine Learning model will

be learned. Specifically, we have selected a dataset representing a wide variety of attacks

recorded and annotated in a controlled environment. Then, this model will be applied to a

SDN environment built for this purpose. In this network, our model will be able of predict-

ing the presence of a DoS attack. DoS attacks can have a considerable impact in the service

industry. Some studies [2] value the direct economic impact of such attacks in an average

of 1,5 million US dollars, which is a considerable amount by itself. However, this amount

does not consider the highest cost sustained as a result of a DoS attack: the reputation

damage. Furthermore, the impact and frequency of DoS attacks is expected to increase due

to the sharp increase of attack vectors provoked by the adoption of the Internet of Things

paradigm.

We can further increase the flexibility of this system by creating a Linked Data Ontology

fitted for the modeling of attack-related data in a SDN scenario. This ontology will allow us

to standardise data representing the scenario being monitored, hence easing its representa-

tion. The proposed ontology has been developed by using concepts and relationships from

previous relationships, and this ontology itself can also be extended in order to implement

new ontologies that include new scenarios, such as new attacks or hybrid networks.

4

1.3. PROJECT GOALS

The use of Big Data technologies further eases the development of this project. Thanks

to the use of tools that automatise the pipelining of data from each source to a centralised

indexing unit, we can easily create and execute queries in order to select very specific entries

in datasets with a high amount of documents. For this purpose, we have followed a Data

Lake approach, where all the data (both structured and unstructured) is stored in a single

location. This results in a much simpler data managing and storing system.

Finally, we also wanted to develop a system that allows an easy exploration of the results

of such monitoring. Therefore, we have developed a Web application that allows for the

exploration of the current status of the network, while also allowing the writing of semantic

queries in order to select specific units of information.

1.3 Project goals

The main foals of this project are:

• Create and deploy an OpenDaylight-controlled SDN network where a service is being

provided,

• Monitor the network while an attack is performed against such service,

• Process the collected data and detect the presence of an attack and its main variables,

as well as take blocking actions against such attack,

• Semantize such data, creating Linked Data tuples that represent the network, the

attack and multiple relationships between both

• Create a Web GUI that presents the collected information

1.4 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is the following:

Chapter 1 describes the context in which this thesis has been developed. Specifically,

we describe the current status and role that each of the technologies have played in the

planning and developing of this project.

Chapter 2 depicts the technologies used in the development and deployment of this

software. We put the emphasis in those technologies and concepts which are key for the

development of this system.

5

CHAPTER 1. INTRODUCTION

Chapter 3 describes the semantic model developed for the modeling of the data col-

lected from the network. It also describes the learning dataset used to obtain the machine

learning used in this project, which is also presented in this chapter.

Chapter 4 describes the overall architecture of the system. In this section we depict

the flow of data among the different sub-modules that compose the architecture. We also

describe each of the sub-modules and its purpose in detail.

Chapter 5 describes the system implemented and executed for the purpose of testing

the concepts and architectures proposed in this project. This chapter details the implemen-

tation of each of the modules detailed in Chapter 4.

Chapter 6 presents the conclusions reached with the development and testing of this

project. We also propose different paths for future work.

6

CHAPTER2
Enabling Technologies

A wide array of technologies have allowed for the implementation of this project. Most of

these technologies are based on recent innovations in the fields of Software Defined Network-

ing and Data Pipelining; therefore, we will focus on the application of such systems in the

detection and protection against cyber attacks in order to describe the context of this thesis.

Some of the key concepts in current innovation trends in the IT sector, such as Big

Data analytics and Machine learning techniques, are yet to be fully implemented in Software

Defined Network environments. In this section, we will also outline work done by researchers

and companies alike towards the incorporation of such techniques and technologies in SDN

environments.

7

CHAPTER 2. ENABLING TECHNOLOGIES

2.1 Introduction

This project is based on the use of SDN technologies; however, Big Data analysis technolo-

gies and tools are also a key aspect of the proposed system. Therefore, we will describe

the application of such techniques in Software Defined Network environments. We will also

address the implementation of security systems that protect Software Defined Networks

from cyber attacks.

In Section 2.2, Here we detail the use of Software Defined Network enabling technologies

and systems; specifically, we will describe the use of Opendaylight in the role of controller

of a Software Defined Network. We will also depict the workings of OpenFlow in its role of

enabler of the SDN paradigm. Section 2.3 provides an overview of the main technologies

and tools used in the processing of data in a scalable and flexible manner. Specifically,

we describe the tools provided by the Elastic Stack and its potential use in Big Data

related systems. We put the emphasis on the abilities of the Elastic Stack for the tasks of

pipelining, storing and indexing of data. These abilities will come useful in the managing of

the data collected from the Software Defined Network. Section 2.4.1 details the use of linked

data technologies and platforms in order to represent data collected by the data collecting

tools in this project. Then, in Section 2.6 we describe the use of Python libraries for the

development of machine learning models based on annotated data. Finally, in Section 2.7,

we will describe tools and techniques to perform attacks over services being provided in

computer networks.

2.2 Software Defined Networks

In this section we will describe extensively the Software Defined Network paradigm and

the technologies involved in its implementation. Specifically, we will focus on technologies

that enable the use of SDN-adapted switches and the communication between each switch

and the SDN controller, which is the central system in any Software Defined Network

architecture.

Technologies such as Mininet [3] allow us to create and run accurate simulations of real

SDN networks. Mininet uses Open vSwitch as a virtualization tool for implementing SDN-

adapted switches. Each of these switches communicates with the controller using OpenFlow,

an essential protocol in the implementation of SDN networks. This protocol organises the

communication between the SDN Controller and each element of the network.

The Software Defined Network paradigm is described in Section 2.2.1. Next, the Mininet

8

2.2. SOFTWARE DEFINED NETWORKS

simulation platform is discussed in Section 2.2.2 OpenFlow protocol is briefly viewed in

Section 2.2.3. Then, the inner workings of the Open vSwitch tool are explained in Section

2.2.4. Finally, in Section 2.2.5 we present the Opendaylight project.

2.2.1 The SDN paradigm

The Software Defined Network paradigm has been one of the most important innovations

in the computer networking field in recent years. The adoption of SDN-based architectures

has dramatically increased the control that network managers have over their networks.

Furthermore, the presence of a centralized point of control in the form of an SDN Controller

eases the deployment and execution of networking-related services by network operators.

Hence, the SDN paradigm has enjoyed widespread support from network operators such as

Telefonica [4], Orange [5] and Vodafone [6].

The SDN paradigm is based on the concept of displacing the “decision-making center”

in a network from each node individually to a collective module known as “SDN Controller”.

This controller has a global view of the network and can communicate itself with any of its

elements. Since it has a global view of the status of the network, the controller can access

much more information when taking decisions regarding the functioning of the network and

the services provided within it. This stands out when compared to legacy networks, where

decisions were taken by each node separately. In that case, each node can access data

regarding its own status and the statuses of its neighbours, but it can not access data that

portrays the status of the network as a whole or the status of the services that are being

provided within that network.

Another advantage of the SDN paradigm consists in the fact that, in order to collect

data or apply changes regarding multiple elements of the network, we only need to access

the controller. In legacy networking we would have to access each network device separately,

and then aggregate the information collected. This could cause issues such as the difficulty

of accessing some of these elements, or scalability issues when the number of devices to be

queried is too large. We would also have to develop a system tasked with the aggregation

of data from multiple sources. However, in the case of SDN networks, all the information

is already aggregated and stored in a single, accessible module.

In conclusion, the SDN paradigm provides multiple advantages when managing com-

puter networks. These advantages are particularly notable when collecting and managing

network data.

9

CHAPTER 2. ENABLING TECHNOLOGIES

2.2.2 Mininet

Mininet is a virtualization system that allows us to develop and deploy virtual networks

over a single machine. It is one of the main network virtualization tools used for SDN-

related researching, since its switches support OpenFlow (2.2.3), the standardised protocol

for communications between the controller and each node. An overview of its architecture

can be seen in Figure 2.1

Among its multiple features, it provides the user with a Python-based Application

Programming Interface (API) that allows the creation of tailored topologies and services.

Through the use of this API we can define scenarios that mimic real-life networks and

services. It also provides a Command-Line Interface (CLI) for debugging and running

network-wide tests. Furthermore, since Mininet hosts run standard Linux network soft-

ware, we can develop and deploy network services using them as servers. This allows us to

virtualize scenarios that accurately represent the providing of a service.

Finally, due to its simplicity, it can be easily deployed in a Docker container. Hence,

the scenario developed can be exported and run in any system with a Docker distribution

installed.

Figure 2.1: Mininet architecture

10

2.2. SOFTWARE DEFINED NETWORKS

2.2.3 OpenFlow

OpenFlow [7] is a standardised communications protocol that regulates the communications

between each node and the SDN controller in a SDN network. Specifically, this protocol

enables the SDN controller to manage the forwarding plane of a SDN switch directly. There-

fore, it is an essential element in the implementation of the SDN paradigm, since it allows

the application of forwarding rules in each network node, therefore implementing the most

basic service in a computer network: packet routing.

OpenFlow is considered the first fully defined protocol that tackled the lack of standard-

isation in the communications between each node and the controller. Since its first stable

version (1.0, released on December 2009) it has been extended multiple times, adding new

capabilities. Such capabilities include software-based traffic analysis, centralised control,

dynamic updating of forwarding rules and flow abstraction [8]. These capabilities have

contributed in turning OpenFlow into the foundation for the development of SDN-based

solutions.

A typical OpenFlow solution is based on the concept of “flow”. A flow defines a set

of matching rules and actions; therefore, each incoming package is evaluated in order to

match it to a flow entry. When a flow and a packet are matched, the actions indicated in

the flow entry are taken. In each node, flow entries are stored in a flow table. This table

is being monitored and managed by the SDN controller. The OpenFlow communication

protocol defines and regulates the way in which the controller manages each flow table. This

managing involves creating and deleting flow entries, and analysing multiple “matching”

degrees when a new package enters the node.

This protocol is being currently managed by the Open Networking Foundation (ONF),

which is a non-profit organisation tasked with the promotion of SDN technologies and

applications.

2.2.4 Open vSwitch

Open vSwitch [9] is an open-source, virtual switch commonly used in SDN environments. It

provides many features useful for the virtualisation of SDN environments, such as OpenFlow

protocol support, multi-table forwarding pipelines and forwarding layer abstraction. And,

as opposed to commercial solutions (such as Cisco 1000V or vCenter), Open vSwitch is

designed to be controlled and managed by third party controllers; hence, it fits perfectly

our needs. In order to manage Open vSwitch instances, Open vSwitch also defines the

Open vSwitch Database Management Protocol (OVSDB).

11

CHAPTER 2. ENABLING TECHNOLOGIES

It is also one of the switch virtualizers provided by default with Mininet. The combi-

nation of virtual switches provided by Open vSwitch and virtualised hosts and networking

provided by Mininet allows us to deploy a fis anully operational SDN setting. By adding a

SDN controller to such setting, we can reliably replicate an SDN network.

In conclusion, Open vSwitch defines and deploys the nodes that will act as switches in

our virtualised network.

2.2.5 OpenDaylight

OpenDaylight [10] is an open-source, model-driven modular platform hosted by the Linux

Foundation that functions as an SDN controller. Along ONOS [11], OpenDaylight is the

most popular open-source SDN controller available. This can be seen in the support that

such companies as Cisco, Ericsson, RedHat or ZTE provide to OpenDaylight. OpenDaylight

is also promoted by network operators, such as AT&T or Comcast. The aim of OpenDay-

light consists in facilitating and providing a community-led, industry-supported open source

framework in order to promote and accelerate a robust SDN platform.

The core of the OpenDaylight architecture is the Model-Driven Service Abstraction

Layer (MD-SAL). This layer processes each network device or application placed under and

represents it as an object (or model) to upper layers. Every interaction of between these

upper layers and any model is also processed within the MD-SAL. In order to represent

each device or application as an object, we use models defined using Yet Another Next

Generation (YANG), a data modeling language used to model configuration and state data

manipulated by the Network Configuration Protocol (NETCONF) protocol. This models

are configured in advance and provide generalised descriptions of the devices or applications

and its capabilities located under the abstraction layer. This layer avoids the necessity of

being aware of the specific implementation details of each device or application. Within a

SAL, each model can have a different task. A “producer” model implements an API and

provides data, while a “consumer” model consumes such data.

One of the main features of the OpenDaylight platform is its modular nature. Due to

the ability of using multiple modules, OpenDaylight includes support for a broad set of

SDN-related protocols (such as OpenFlow, OVSDB, NETCONF or BGP). OpenDaylight

also allows the selection of multiple southbound protocol modules. These modules can be

packaged together depending on the requirements of the scenario to be built.

Each component is also isolated as a Karaf feature. This packaging not only allows

the user to select and install only the features needed for each specific environment; it also

ensures that code added by the developer does not interfere with mature and tested code.

12

2.3. BIG DATA TECHNOLOGIES

Figure 2.2: Opendaylight architecture

Figure 2.2 depicts the architecture, where the modular nature of OpenDaylight can be

truly noticed. As we can see, the SAL hides a variety of modules that represent interfaces

implementing multiple network protocols. Within the controller platform we can distinguish

multiple services. Each one of these services is deployed as a Karaf feature that can be in-

stalled or uninstalled on demand. Some of these services are installed beforehand since they

are necessary for the controller to perform its most basic tasks. The upper Representational

State Transfer (REST) Interface controls the access to each of the service modules.

In conclusion, OpenDaylight provides a highly flexible and scalable SDN controlling

platform able of providing multiple networking services.

2.3 Big Data Technologies

Big Data technologies are enjoying wide success in their application in many different con-

texts. However, the use of data in an extensive manner requires specific software. This

software must be highly scalable and modular, so as to easily build data analysis systems.

13

CHAPTER 2. ENABLING TECHNOLOGIES

One of these software systems is Elastic Stack. Elastic Stack is a set of systems devel-

oped for the processing, pipelining, indexing and visualisation of data in high quantities.

ElasticSearch, which is the main indexing element of the stack, is described in Section 2.3.2,

The pipelining tools Logstash and Beats are detailed in Section 2.3.3.

2.3.1 Elastic Stack

Elastic Stack is an open-source set of tools developed for the creation of data pipelines,

indexing of data, and visualisation in a scalable and modular manner. It is also commonly

known as the ELK Stack, since ELK is the acronym formed by the initial letters of its

three main products: ElasticSearch, Logstash and Kibana. However, the Elastic Stack also

contains many other tools, such as Beats or Elastic Cloud Enterprise. A small description

of each module can be found next:

• ElasticSearch is the central piece in any Elastic Stack architecture. It serves as the

main storing unit where the data is indexed.

• Logstash is tasked with the collection of data from different sources. It allows for

the specification of multiple processing steps between the collection and storing tasks.

Therefore, it is an essential tool in the deployment of data pipelines.

• Beats is a tool used for monitoring certain folders or files and sending any changes in

the monitored elements to Logstash or ElasticSearch directly. It is used mainly as a

data collecting tool.

• Kibana is a visualisation module adapted to ElasticSearch. It allows the exploration

of high quantities of data indexed in ElasticSearch and its visualisation and querying.

Figure 2.3: Elastic Stack Pipeline

14

2.3. BIG DATA TECHNOLOGIES

One of the most common uses of this set of tools consists in the deployment of a data

centralization and exploration system. Several instances of Beats are deployed in those

systems where there is data to be monitored. Then, either a single or multiple Logstash

instances receive Beats messages with new data. This data is processed and pipelined for its

indexation in an ElasticSearch instance. Then, a Kibana instance queies the ElasticSearch

module in order to display the data in many different forms. This process can be seen in

Figure 2.3.

In the following sections each ElasticStack module will be described in more detail.

2.3.2 ElasticSearch

ElasticSearch [12] is a module that contains a distributed, RESTful indexing and analytics

engine which is capable of solving a growing number of use cases. It is key to the ElasticStack

architecture, since it takes on the task of storing the data in a centralized and scalable

manner.

ElasticSearch represents data as schema-free JSON documents, where each document

corresponds to a JSON document representing each entry of the data indexed within the

ElasticSearch instance. Furthermore, an ElasticSearch instance can hold multiple indices,

and each index can hold many different types of documents. ElasticSearch also provides a

primitive Hypertext Transfer Protocol (HTTP) web interface where the results of queries

can be consulted. We can also obtain statistics regarding each of the indices, such as the

amount of documents or its size.

ElasticSearch’s distributed nature allows it to gain speed and stability from each addi-

tional node. Due to this distributed nature, documents stored in ElasticSearch are parti-

tioned into different containers or shards, which can be stored on a single or multiple nodes.

We can duplicate these shards to provide redundancy, or we can balance access to the data

between these shards.

2.3.2.1 Lucene

The core of the ElasticSearch indexing and querying function is based on Lucene. Lucene

[13] is an open-source Java library that implements common search and searching-related

tasks such as indexing, querying, highlighting and many others. ElasticSearch can be seen

as a Lucene “wrapper”, allowing the user to use Lucene as a server-side search application

and automating such tasks as index management and distributed coordination.

Lucene works by adding content to a full-text index. It then allows the user to execute

15

CHAPTER 2. ENABLING TECHNOLOGIES

queries on this index, returning documents sorted by following a criteria specified in the

query. If no criteria was specified, Lucene finds the relevance of each document to the query

being executed. Lucene achieves fast responses since it searches indices instead of the text

directly.

2.3.2.2 Adding and searching data

ElasticSearch provides different means to upload data. We can configure other ElasticStack

tools, such as Logstash and Beats, in order to send data directly to multiple indices within

the ElasticSearch instance. We can also create new indices containing the data being sent

by such modules.

However, we can also add data to the ElasticSearch instance without using any other

ElasticStack module. For example, we can use HTTP requests sent directly to the Elastic-

Search index. An example of such message can be seen in the following listing:

PUT /website/blog/123

{

"title": "Elastic is funny",

"tag": [

"lucene"

]

}

In this message, we are creating a new sample document and storing it in the “website”

index. The document created is of type “blog”, and its id is “123”.

We can also use the ElasticSearch API libraries (available for Java, JavaScript, Go,

.NET, PHP, Perl, Python and Ruby) to manage data being stored in ElasticSearch. The

use of this APIs allows us to seamlessly integrate ElasticSearch into any application being

developed using any of the languages being supported by ElasticSearch APIs.

In order to search data in ElasticSearch, we need to compose queries that represent the

criteria selected for searching such data. Once we have translated our searching requirements

into a query or set of queries, the ElasticSearch engine will return a set of documents that

match our criteria. This searching action can be performed either through HTTP requests

or by using any of the API libraries mentioned before.

16

2.3. BIG DATA TECHNOLOGIES

2.3.3 Beats

Beats is a data monitoring ecosystem that allows us to automate the parsing and collecting

of data. It acts as an agent that can be deployed in any machine and is tasked with the

monitoring of any type of file or folder, sending a message (known as “beat”) for each new

entry in such file or folder. Beats accepts many types of log formats from such widespread

systems as MySQL, Apache, NGINX and more. However, Beats can also monitor and

collect raw data.

Once the data has been collected by Beats, it can be directly sent to the ElasticSearch

instance. However, the most common practice consists in deploying a Logstash instance

that performs processing and pipelining tasks. An example of the role of Beats in the

Elastic Stack scheme can be seen in Figure 2.4.

Figure 2.4: Beats in the Elastic Stack scheme.

2.3.4 Logstash

Logstash allows us to ingest data from multiple sources simultaneously, therefore signifi-

cantly easing the aggregation of data.

17

CHAPTER 2. ENABLING TECHNOLOGIES

Logstash is controlled by a configuration file in which the inputs, outputs and data

pipeline steps are specified. Logstash allows us to define filters that parse data being

received. It also allows us to specify conditional actions, therefore performing different

processing steps depending on the data being received in the Logstash instance. The fact

that we can configure Logstash to execute certain scripts depending on certain conditions

given by received data and internal variables allows us to integrate seamlessly Logstash

instances with current applications.

Finally, Logstash can route events to other output plugins which can forward these events

to other external programs besides ElasticSearch. The role of Logstash in the Elastic Stack

can also be seen in Figure 2.4.

2.4 Semantic Technologies

Semantic technologies are based on a single concept: the use of formal semantics to give

unstructured data a meaning. The use of semantic technologies lets us build concepts

and relationships between data with completely different formats and sources. This key

definition is the origin of the term “Linked Data”. Furthermore, in order to implement

these universal concepts and relationships between data, we need to define a semantic-

oriented standard. The most widespread semantic-related standard at the moment is the

Resource Description Framework (RDF), which is used to write data schemes which shape

the semantization of data. In order to execute queries over semantized data, the SPARQL

querying language is defined.

In the following sections, these concepts will be further explained. The Linked Data

paradigm will be described in Section 2.4.1. Next, in , the RDF standard will be introduced.

Lastly, in section 2.4.2 the SPARQL language will be outlined.

2.4.1 Linked Data

Linked Data [14] is a paradigm that represents the idea of publishing data in a structured

manner, using predefined vocabularies, entities and relationships. These features allow the

data to be connected to other data instances. They also allow for the data to be interpreted

by machines. Linked Data is defined by four principles:

• Use URIs to identify data entities

• Use HTTP URIs to publish these entities

18

2.4. SEMANTIC TECHNOLOGIES

• Annotate these entities, so when someone looks up a URI we can provide useful

information

• Include links to other entities represented by other URIs.

In order to structure the data, first we have to provide predefined structures. These

structures are specified using the RDF standard. Defining models that follow the RDF

standard allows us to create interchangeable data structures, which facilitate data merging

both between similar and different schemas. These structures are based on the concept of

“triple”. A triple is a data instance composed by three entities: a “subject”, a “predicate”

and an “object”. This structure follows the classical entity-attribute-value commonly found

in object-oriented programming. When we put together many triples, we obtain a RDF

graph. This graph can resemble a connected network of nodes, since an object in a triple

can be a subject in another triple. The common interaction between this graph and other

systems can be seen in Figure 2.5.

Figure 2.5: Integration of Linked Data schemes

In order to write out these graphs, several languages can be used. The RDF/XML

language is the most common option used for developing files representing RDF graphs.

However, there are other possible choices, such as Notation3 [15]. Notation3 is a serialising

19

CHAPTER 2. ENABLING TECHNOLOGIES

language developed to increase human readability of RDF graphs. Yet another option is

Turtle [16]. Turtle is a RDF syntax similar to the one provided by SPARQL. Finally,

another common option to formalise RDF graphs in files is JSON-LD [17]. JSON-LD is a

language based on the features provided by the JSON data representation language. This

is the format which is going to be used in this project.

RDF is based on a set of classes grouped in the RDF Schema. RDF Schema is an

extension of the basic RDF vocabulary which provides multiple tools in order to allow the

creation of new RDF vocabularies. It defines such mechanisms as “Class”, “domain” or

“range”, which allow us to create new vocabularies that make use of such definitions and

relationships. These new vocabularies are said to be “RDF-Schema defined vocabularies”.

We can also use Ontology Web Language (OWL) [18] to further define the semantics

of the extended vocabularies that we have created. The use of OWL allows us to define

further relationships between instances or infer implicit facts.

Once we have used RDF tools in order to define data, we obtain triples representing in-

stances stored in the data and relationships between each instances and these instances and

their attributes. However, we have to store these triples in systems that provide searching

and indexing services adapted to these triple-based structures. One of the most common

engines used for storing and indexing triples is Apache Jena Fuseki [19]. Jena Fuseki func-

tions as a SPARQL server with a storage layer. It stores triples and allows the user to

execute SPARQL queries in order to collect data.

SPARQL is a SQL-derived querying language specifically designed for RDF-based data.

In the following section we will further describe this language.

2.4.2 SPARQL

SPARQL [20] is a querying language specifically designed to perform queries over databases

storing RDF data. SPARQL was developed as a language inspired in the SQL querying

language for regular, relational databases. Therefore, it shares with SQL much of its syntax

structure. On 15 January 2008, SPARQL became an official W3C recommendation for its

use as a querying language in the semantic web.

As we stated before, Jena Fuseki provides the user with a SPARQL editor where data

queries can be written and executed. Here we can see an example of a SPARQL query:

PREFIX ex: <http://example.com/exampleOntology#>

SELECT ?capital

?country

WHERE

20

2.5. DATA VISUALIZATION TECHNOLOGIES

{

?x ex:cityname ?capital ;

ex:isCapitalOf ?y .

?y ex:countryname ?country ;

ex:isInContinent ex:Africa .

}

In this query we are selecting all the country capitals in Africa.

2.5 Data Visualization Technologies

2.5.1 Visualization libraries

D3.js [21] is a JavaScript library that allows us to bind our data to a Document Object

Model (DOM). Once this data is binded, we can apply data-driven transformations to

the document being displayed. This includes creating and displaying HTML elements that

depend on the value of certain data fields, such as tables of charts. We can also create

elements that allow the interaction with such data.

D3 puts the emphasis on complying with web standards for the purpose of providing

access to all the capabilities of multiple modern browsers. This allows the user to avoid

tying him/herself to the use of a proprietary framework, combining powerful visualisation

components with a data-driven approach to DOM modifying.

Instead of focusing of providing every possible feature available, D3 focuses on manip-

ulate efficiently the data-based documents. This design decision enables D3 to support

large-scale datasets and dynamic behaviour, allowing a fast response to changes in the en-

vironment. D3 also enjoys a widespread community support, which provides a wide array

of templates of HTML elements driven by the presence of different types of data and its

changes. These features are particularly interesting for our project, since our intention

consists in representing data via HTML elements that change as data changes.

2.5.2 Sefarad

Sefarad is a web application developed for the purpose of exporing semantic data by im-

plementing and executing SPAeRQL queries to predefined endpoints without coding this

behavior. This system has been developed by the Intelligent Systems Group (GSI) at the

Technical University of Madrid (UPM). It allows the user to easily design a graphical in-

terface for the purpose of presenting Linked Data by combining a set of data-driven visual

21

CHAPTER 2. ENABLING TECHNOLOGIES

plugins that represent the data stored in a SPARQL endpoint. Hence, linked data can be

easily explored.

Sefarad is based on Web components. Web Components are a set of standards currently

being produced by Google engineers as a W3C specification that enables the creation of

reusable widgets or components in web documents and web applications. The intention

behind them is to bring component-based software engineering to the World Wide Web. The

component model enables encapsulation and interoperability of individual HTML elements.

2.6 Machine Learning

Machine learning techniques are being widely used for the automation of problems resolution

within multiple sectors, such as computer vision, variable prediction and natural language

processing. In this section, we will review the main tools used for the implementation of

machine learning techniques within the scope of this project.

Specifically, we will describe the main library used for the learning and implementation

of machine learning models in Python, which is Scikit-learn. Scikit-learn [22] is an open

source machine learning library for the Python programming language. It enjoys widespread

support as one of the most praised Machine Learning libraries currently available in the open

source community, and it is being used in most Python-based Machine Learning applications

being deployed today. Its API-centered design sharply increases its usability in end-to-end

Machine Learning projects in the research, development and production phases. This library

is designed to interact with SciPy and NumPy [23], two of the most widely used calculus

libraries in Python, as it was originally created as an extension to the already-existent SciPy

library.

Scikit-learn provides the user with a broad set of Machine Learning methodologies for

the resolution of both supervised and unsupervised machine learning tasks. Scikit-learn pro-

vides tools and methods to develop such techniques as Clustering, Ensemble-based learning,

Nearest Neighbours, Multilayer Perceptrons, Support Vector Machines or Decision Trees.

Some of these techniques will be particularly useful in the development of a solution for

the analisis being performed in this project. We can see an overview of the algorithms

implemented by Scikit-learn in Figure 2.6.

22

2.7. CYBER-ATTACK DATASETS AND TOOLS

Figure 2.6: Categories of Machine Learning algorithms

2.7 Cyber-attack datasets and tools

In this section, we will describe the attack techniques and tools used to replicate the situa-

tions described in the datasets used in this project. These techniques and tools will allow us

to replicate the annotated datasets used to learn the Machine Learning models deployed in

this project. Specifically, we will describe the attack technique chosen and the tool selected

for such purpose. We will also introduce the data processing tool used in the process of

detecting attack patterns in the data collected.

2.7.1 CSE-CIC-IDS2018

The Communcations Security Establishment - Canadian Institute for Cybersecurity - In-

trusion Detection System 2018 dataset [24] is one of the most complete annotated datasets

23

CHAPTER 2. ENABLING TECHNOLOGIES

currently available with an open license. It consist in 1,4 GB of logs representing many

flow metrics collected at network level and annotated with attacks provoked while those

measurements were being taken. Due to this, the dataset presents an fitting structure in

order to perform Machine Learning techniques to detect patterns that might outstand over

the rest of the data. We could use the detection of these patterns to find relationships

between values in each metric and the label that indicates if an attack is being suffered by

a service being provided in such network. This network can be seen in Figure 2.7.

Figure 2.7: Topology of the CIC network

Even though many attacks have been simulated in this network, we are specifically

interested in the detection of DoS attacks. For this purpose, we have analysed the tool

used for the execution of DoS attacks within the environment described by the CSE-CIC

dataset. This tool is described in Subsection 2.7.2. We will also describe the tool used for

the collecting of the metrics related to each of the services being provided. This tool is

portrayed in Subsection 2.7.3

2.7.2 Low-Orbit Ion Cannon

One of the attacks represented in the dataset provided by the Canadian Institute of Cyber-

security consists in a HTTP-based denial of service attack. The concept being implemented

in this attack is based in establishing as many Transmission Control Protocol (TCP) con-

24

2.7. CYBER-ATTACK DATASETS AND TOOLS

nections as the service being attacked can possibly control. Therefore, once the socket limit

of the process controlling the service is reached, the service remains unusable for any other

user that may try to access such service.

There are several tools and methods of implementing this type of attack. Tools such as

Slowloris or HOIC allow us to easily prepare and execute DoS attacks without relying on

huge amounts of traffic that could be easily detected. However, in the case of the scenario

being represented by the selected dataset, the tool used for executing DoS attacks is the

Low Orbit Ion Cannon (LOIC).

The Low Orbit Ion Cannon is one of the most used DoS applications. It is an open

source application developed for Windows OS by Praetox Technologies. This application

allows the user to configure a TCP or User Datagram Protocol (UDP)-based attack. In

the case of TCP attacks, a configurable number of connections are opened and kept open

for the purpose of occupying all the available sockets in the servers providing the attacked

service.

2.7.3 CICFlowMeter

CICFlowMeter [25] is a network traffic flow analyser used by the providers of the CSE-CIC

dataset in order to build the annotated datasets used in this project. CICFlowMeter takes

traffic capture files as an input and generates metrics regarding Bidirectional Flows, where

the first packet of each flow determines the forward and backward directions. Depending on

the flow representing a TCP connection or an UDP connection, the condition for the closing

of each flow is given by the detection of FIN packets (in the case of TCP connections) or a

timeout (in the case of UDP connections).

25

CHAPTER 2. ENABLING TECHNOLOGIES

26

CHAPTER3
Cyber-attack Detection Models

Semantic technologies are being swiftly adopted in many areas of the Information and Com-

munication Technologies (ICT) industry. Furthermore, they have been widely embraced in

web-related technologies, resulting in the creation of the concept “Semantic Web”, which

enjoys a broad success among service providers. However, the use of semantic models is

more sparse in other areas, such as SDN. More so, there is a lack of semantic models

that represents SDN-related data within the context of a cyberattack. Due to this, we have

proposed an extension to present semantic models that allows us to represent the occurrence

of attacks targeted at services being provided in our network.

Machine Learning technologies are also being widely adopted in the field of attacks

detection. The use of Machine Learning techniques allows us to fully automatise the whole

lifecycle of the attack, from its detection to the taking of protective measures. Thus, in this

section we will present a Machine Learning model learned from the data provided by the

Canadian Institute for Cybersecurity that will be later integrated with other subsystems for

achieving full protection against DoS cyberattacks.

27

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

3.1 Introduction

The aim of this chapter consists in introducing and describing the semantic and Machine

Learning models designed and learned for this project. First we are going to present the

semantic model used as a basis for the development of our cybersecurity-focused SDN se-

mantic model. This model was selected due to the fact that it takes into consideration mul-

tiple metrics that are specifically adapted to the data structure of OpenDaylight-controlled

SDNs. Hence, it constitutes a great basis for the development of a security-focused SDN

semantic model.

When analysing scenarios where DoS techniques are used to attack service provisioning

in SDN environments, there are two main schools of thought regarding the methods and

targets for such attacks. The first scenario consists in focusing on attacking the nodes that

compose the network [26]. Specifically, due to the specification of the OpenFlow protocol,

when an OpenFlow node receives a new packet which does not match with any rules being

currently enforced, the node stores that packet and sends an OFPT PACKET IN message

to the controller. However, if the node does not have any space left in its buffer, it sends

the entire packet along the OFPT PACKET IN message to the controller. In this case, the

controller responds with an OFPT PACKET OUT message that also includes the entire

packet. This behaviour can be exploited by saturating a node with unmatchable packets

in order to fill the buffer and saturate the links between each node and the controller by

forcing the node to send and receive from the controller the whole data packet.

Another approach to SDN-based DoS attacks would be the targeting of a specific service

being provided through a SDN network. In this case, the attack resembles a server-targeted

attack in a legacy network. However, the use of SDN allows us to monitor multiple interfaces

in a centralised manner and taking synchronised countermeasuring actions in multiple nodes

throughout the network. This approach will be followed during the development of this

project.

Once we have selected an approach, we will train and develop a machine learning model

tasked with the detection of flow patterns that are related to attacks being executed against

services provided by the SDN. We will test the use of multiple Machine Learning techniques

in order to select the algorithm with the highest possible F1-Score.

This chapter is divided in two main sections. In Section 3.2 we describe the semantic

models used as basis in order to build our extension focused on attack scenarios over SDN

environments. Then, in Section 3.3 we describe the steps followed in order to test multiple

Machine Learning algorithms and select the most fitting one according to multiple selection

28

3.2. SEMANTIC MODELING

criteria.

3.2 Semantic modeling

The model used in this project has been developed by merging and extending other models

especialised in SDN networks and cyberattacks. In this section we will describe the process

followed in the development of this semantic model.

In Subsection 3.2.1 we describe the semantic model used as basis to represent data

collected from the controller regarding the general status of the network. Next, in Subsection

3.2.2 we describe the ontology used as basis for the inclusion of cyberattacks concepts and

relations in the previous model. Finally, in Subsection 3.2.3, we describe the model resulted

from the combination and extension of both previous models.

3.2.1 SDN-NDL

The SDN-NDL ontology [27] was developed with the goal of implementing a framework for

autonomous fault management in SDN environments. Therefore, it contains many classes

and relationships that represent metrics and variables regarding the functioning of a SDN

network. Hence, we have selected this ontology as the base of our model, since it allows us

to model the data directly collected from the SDN controller.

In SDN-NDL the representation of the topology of a SDN network is centered around

the Node class. This class represents each of the switching devices present in any net-

work. Specifically, the openflowNode class represents the variables and features provided

by the nodes that implement the OpenFlow protocol (as is the case with SDN switches).

The entity hierarchy associated to that element can be seen in Figure 3.1. As we can see,

each openflowNode entity has a set of interfaces (represented in the ontology by the class

Interface) that connects it with other elements of the network. Following the OpenFlow

protocol specifications, each openflowNode has a Flow Table where it stores the rules being

sent by the controller. In this ontology, the FlowTable class represents such table; fur-

thermore, those rules are structure into instances of the Flow class, which are stored in the

FlowTable. The ontology also allows for the monitoring of network statistics aggregated

by tables through the use of the FlowTableStats class.

Furthermore, the Flow class includes the FlowStats, Instruction and Match entities,

as we can see in Figure 3.2. The Instruction class, which can be seen in further detail in

Figure, represents the different actions that can be specified within a flow of an OpenFlow

29

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

node configured by a SDN controller. In fact, the SDN-NDL ontology defines an Action

class that encompasses these actions. Regarding the Match class, this entity represents

the matching rules that are specified in each flow rule in order to assign a behaviour to each

traffic flow.

Specifically, the actions considered in this ontology are three: dropAction, groupAction

and outputAction. This array of actions accurately represent the most common actions

being performed by nodes in a SDN network. Regarding matching rules, we can specify

matching rules according to Ethernet address (ethernetMatch), input or output ports

(inPort, outPort), or vlan tags (vlanMatch).

Figure 3.1: Class Hierarchy for the openflowNode entity

The FlowTableStats class aggregates just one of the multiple types of statistic data

that is available. We can also monitor statistics from each flow separately and statistics re-

garding the traffic flow in each interface. Thus, we define two new statistics-related classes:

InterfaceStats and FlowStats. These entities, along with FlowTableStats, are sub-

classes of the NetworkStats entity, which is directly controlled by a service represented in

the ontology by the StatsManager class. Finally, both NetworkObject and NodeOb-

ject have NetworkStats instances. This class hierarchy can be seen in Figure 3.3.

30

3.2. SEMANTIC MODELING

Figure 3.2: Class Hierarchy for the Flow entity

Figure 3.3: Class Hierarchy for the NetworkStats entity

These classes and relationships show that the SDN-NDL ontology is well adapted to

SDN scenarios and environments. However, not only this ontology fits the SDN paradigm,

but it also represents elements associated with the use of the OpenDaylight SDN controller

31

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

specifically. In order to keep track of the elements that compose the topology and its inner

workings OpenDaylight use a series of self-contained services, following the OpenDaylight’s

philosophy of a modular architecture. These services are also represented in the SDN-NDL

ontology through such classes as HostTrackerService, InventoryManager or Topolo-

gyManager.

SDN-NDL also includes classes and elements that allow us to represent topologies where

different technologies to the ones mentioned in Section 2.2 are defined. For example, instead

of using OpenFlow, the OpenDaylight controller can also use NetConf [28] to configure the

flow tables of each node in the topology. In that case, we can use the netconfNode entity

to represent such nodes.

3.2.2 Unified Cybersecurity Ontology

The Unified Cybersecurity Ontology (UCO) [29] is an ontology created with the purpose

of supporting the integration of cybersecurity-related information in systems that were not

designed for that specific purpose. With this aim, it incorporates and integrates hetero-

geneous data and knowledge schemas from different cybersecurity systems while reducing

them to the least common multiple. This ontology is itself an extension to the Intrusion

Detection System (IDS) ontology [30], extended with the purpose of including other types

of attacks instead of just network intrusion attacks and events.

This ontology is built upon the UCOThing class, which serves as the “parent” class

that every other entity in the topology inherits. Then, a series of classes which represent

a typical attack scenario are defined. We are going to describe the ones that we have

considered to be the most important for our use case.

Since the UCO ontology has been created with the aim of standardising the repre-

sentation of attack-related data, one of the most important entities is the Attack class.

The Attack class is the junction point for many entities that represent the means, effects

and causes of attacks being executed against the network or its services. The structure

surrounding this class can be seen in Figure 3.4.

The UCO ontology defines relationships between the Attack class and the Observable

and Indicator classes, tasked with showing the visible effects of the attack in the services

provided within the network. An Attacker class is also defined in order to describe the

known parameters of the topological source of the attack.

A CourseofAction entity is also defined. In this class, we represent the countermea-

sures being taken to protect certain services or the whole network from the attack being

32

3.2. SEMANTIC MODELING

executed. However, the UCO ontology does not specify a set of possible actions to be taken

in order to implement such Course of Action. This is only logical, since the original goal

of this ontology was for it to be used in any scenario. Hence, specifying a set of possible

countermeasures would limit the range in which this ontology could be used.

Therefore, one of the tasks to be completed during the extension of the SDN-NDL

ontology with the UCO ontology will consist in “filling the gaps” left by the designers of

this ontology with concepts from the SDN-NDL ontology in order to adapt it to a SDN

scenario.

Figure 3.4: Class Hierarchy for the Attack entity

3.2.3 SDN-AR: Software-Defined Network Attack Reporting Language

In this subsection we will describe the semantic model resulted from the extension of the

SDN-NDL ontology described in Subsection 3.2.1 with concepts, relationships and proper-

ties specified in the UCO ontology specified in Subsection 3.2.2. The goal of this extension

consists in adapting the SDN-NDL ontology with the purpose of enabling it to represent

attack scenarios over SDN networks while retaining its ability to accurately represent the

correct functioning of an SDN and its statistics.

Therefore, using the SDN-NDL ontology as base, we have extended it including concepts

33

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

and relationships from the UCO ontology. Specifically, we have included the Attack concept,

and some concepts and relationships related to this entity, as we can see in Figure 3.5. In

this image we can see the merging of UCO concepts (such as Attack, CourseofAction or

Attacker) with the SDN-NDL ontology and its concepts (HostNode, Node, Flow). In the

case of CourseofAction, in a SDN environment, all actions can be taken via the use of the

northbound API. Specifically, actions that affect networking rules can be translated into

Flow rules and pushed into the Flow Table of any network node via the API independently

of its position on the topology.

Figure 3.5: Class Hierarchy for the Attack entity within the SDN-AR ontology

Regarding attackers, we assume that attackers are hosted by Host elements in the SDN

environment. Therefore, we have created a hostedBy relationship, which relates an specific

attacker with the network element which is hosting it. This network element is a HostNode,

which inherits relationships and attributes from the Node class. Finally, we have also added

the Indicator class, which represents the parameters detected by the monitoring system that

were used in order to infer the presence of an attack to a service being provided within the

network.

Finally, we can obtain a general view from the architecture at Figure 3.6. As we can

see, it consists of a combination of SDN-NDL and UCO hierarchies with the addition of

34

3.3. MACHINE LEARNING MODELING FOR CYBER-ATTACK SCENARIOS

the Monitor class, which represents the monitoring system developed as a subsystem in this

project.

Figure 3.6: Class Hierarchy of the main classes of the SDN-AR ontology

3.3 Machine Learning modeling for cyber-attack scenarios

The learning of an accurate Machine Learning model is key, since it constitutes the core of

the system that predicts the presence of an attack. Therefore, the training dataset must

be carefully chosen. Once we have chosen an specific dataset to work with, we have to

test multiple algorithms and configurations to select the one with the highest performance.

These steps will be described in this section.

First, in Subsection 3.3.1 we will describe the dataset selected and the reasons behind

the selection of this specific dataset over other possibilities. Then, in Subsection 3.3.2 we

will analyse the main features of such dataset and we will portray the accuracy obtained

using different algorithms.

35

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

3.3.1 Intrusion Detection Evaluation Dataset (CICIDS2017)

When facing prediction challenges two approaches can be followed: supervised learning and

unsupervised learning. Unsupervised learning consists in using Machine Learning techniques

in order to detect patterns and clusters in features in order to divide the data entries among

different groups, since the data itself is not labelled. On the contrary, supervised learning

is used when the training data is already labelled and the learning task consists in finding

patterns that relate certain combination of values from certain features with each of the

values of the “target” variable (the variable to be predicted).

Our focus will be put in using supervised learning techniques in order to develop the Ma-

chine Learning model; therefore, we need to find a network-based cyberattack dataset that

contains annotated data regarding the attack represented by each entry. This requirement

itself is a challenge. There is a considerable amount of datasets available online that store

data collected during the execution of multiple types of attacks over a variety of networks.

However, most of these datasets are not annotated, since it is a complex task due to the

dimensionality of the data.

Regarding annotated datasets, one of the first datasets published tackling this issue

was the 1999 Defense Advanced Research Projects Agency (DARPA) dataset [31]. This

dataset was obtained from an ad-hoc testbed created in order to simulate a scenario with

background traffic similar to that on a government site with hundreds of users. In this

contexts, 58 different attack types were launched. Even though this dataset has been

the main benchmark for the testing of Intrusion Detection Systems during many years

[32], there are several reasons in order to discard its use in this project. First of all,

since details regarding the traffic generation software used in the testbed was never made

public, some authors have raised questions regarding the accuracy of such background

traffic. Furthermore, this dataset was generated using tools that may be outdated.

Further advancing along the timeline of IDS-related dataset publications, we find the

first contribution by the Information Security Centre of Excellence (ISCX). The 2012 ISCX

intrusion detection evaluation dataset [33] specifies accurately the tools and techniques used

to create the background traffic that surrounds the attacks being executed in the network.

Furthermore, the dataset is divided in seven days of normal network activity with multiple

intrusion scenarios specified and labelled in each dataset. Due to this features, this dataset

was originally considered to serve as the basis for our learning process.

However, the ISCX (and its successor, the Canadian Institute of Cybersecurity (CIC))

has been publishing new IDS datasets ever since. Therefore, we have selected a more recent

version of the IDS published by them: specifically, we have used the 2017 IDS CIC dataset

36

3.3. MACHINE LEARNING MODELING FOR CYBER-ATTACK SCENARIOS

(also known as CICIDS2017) [24]. This dataset shares the data structure with previous

datasets from the same research group, but it uses updated attack tools and it is based on

the 2016 McAfee report on the most common attacks on current networks.

In order to create this dataset, realistic background traffic has been created following

the B-Profile system [24]. B-profiling consists in individually extracting features of each

flow, such as packet sizes depending on protocol, patterns in the payload, size of payload or

request time distribution of protocols. Once these flows are individually profiled, they are

clustered and aggregated to generate groups of users with similar flow behaviour.

In this dataset 25 users have been specifically “B-profiled” based on their HTTP, HTTP-

Secured, FTP, SSH and e-mail protocol flows. These users, workers in the CIC office, have

been monitored during five days. During these days, multiple Brute Force FTP, Brute Force

SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS attacks were executed.

The resulting dataset was evaluated in order to check that it covers the following criteria:

• Complete network configuration: the dataset reflects data obtained from a network

with a complete topology that includes a Modem, Firewall, Switches, Routers and

multiple operating systems

• Complete traffic: the dataset reflects traffic created by user-profiling agents in multiple

machines and real attacks

• Labelled dataset: the data is labelled in order to allow its use for the finding of

patterns that establish relationships between the presence of attacks and certain flow

profiles

• Complete interaction: the dataset reflects both Local Area Network (LAN) commu-

nications and Internet communications

• Complete capture: since the method used for monitoring is based on Port Mirroring,

all traffic flows have been captured and recorded on the storage server

• Available protocols: the data does not represent traffic associated to a single protocol,

but it monitors flows following multiple common protocols

• Feature set: more than 80 network flow features have been extracted from the network

traffic files using the CICFlowMeter tool [25]

37

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

3.3.2 Classification algorithms and results

The first step in obtaining a prediction model for a certain variable using pre-determined

datasets consists in analysing such dataset. Hence, our first task will be obtaining a list

indexing the correlation of each feature with the “Label” feature, which is the variable to

be predicted. A graph representing the results of such table can be seen in Figure 3.7

Figure 3.7: Correlation values for each feature in the dataset

As we can see, there is a small set of features whose values have a correlation higher

than 0.5 with the value target value. A gap can be seen between these set of features and

the rest of the features that compose the dataset. In order to improve scalability and avoid

dimensionality issues, we are going to select these features in order to learn machine learning

models.

These features are:

• Bwd Packet Length Mean: Mean length of packets in a flow coming in backward

direction

• Avg Bwd Segment Size: Average size observed in flows coming in backward direction

• Bwd Packet Length Max: Maximum size of packets coming in backward direction

• Bwd Packet Length Std: Standard deviation of the length of packets coming in back-

ward direction

• Destination Port

38

3.3. MACHINE LEARNING MODELING FOR CYBER-ATTACK SCENARIOS

We can take a closer look at some of these features in order to understand the values ob-

tained in the correlation analysis. For example, if we analyse the histogram that represents

the values of the “Bwd Packet Length Mean” feature for entries labelled as Attack and as

Benign, we can observe that, while most of the Benign entries are valued lower than 1,000,

a significant amount of entries associated with attacks have values that range between 1,000

and 4,000. This can be seen in Figure 3.8. The “Avg Bwd Segment Size” feature presents

a very similar distribution.

Figure 3.8: Histogram portraying the mean length of packets in backward direction

Regarding the feature “Bwd Packet Length Max”, almost all of the entries that show

Benign traffic flows have a value of 2,000 or less. However, the distribution of values

regarding flows labelled as Attack is quite more spread. While most of attack flow entries

also have values between 0 and 2,000, there is a significant amount of entries with a value

higher than 3,000, as we can see in Figure 3.9.

Figure 3.9: Histogram portraying the maximum length of packets in backward direction

39

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

A similar statement could be made about the standard deviation of the length of back-

ward packets in flows. Traffic flows associated with benign traffic are very consistent re-

garding their packet length; therefore, most of the packets associated with benign flows

maintain a very similar packet length, and their standard deviation is small in comparison

with attack-labelled packets. On the other hand, flows associated with attacking actions

can be divided between a first set of flows with packet lengths following a small standard

deviation, and a second set with standard deviations higher than 2,000. These distributions

can be seen in Figure 3.10.

Figure 3.10: Histogram portraying the standard deviation of the packet length in flows in

backward direction

Finally, regarding the “Destination Port” field, the difficulty resides in the fact that,

while the attacks were performed against a small set of ports, most of the benign traffic

also is directed against those ports. Therefore, it is difficult to distinguish between attack

and benign traffic using only this field.

Once we have described the most important aspects of the variables used to learn the

Machine Learning models, we test multiple models and analyse the results obtained. In

order to test those models, we extract 25% of the data available for testing. We will use

the F1-Score parameter (which is a weighted average of the precision and the recall of

the algorithm in the classification process) in order to select the best algorithm. A table

comparing multiple Machine Learning algorithms can be seen at Table 3.1.

As we can see, most of the high-performance classifiers are ensemble-based methods.

This methods are based on the use of multiple machine learning algorithms that make

predictions (independently or not, depending on the ensemble technique) using most or all

the data available, and then the predictions made by each model are aggregated.

40

3.3. MACHINE LEARNING MODELING FOR CYBER-ATTACK SCENARIOS

Algorithm F1-Score

Random Forest 0.985071

Extra Trees Classifier 0.985070

SVC 0.985054

AdaBoost 0.985010

MLP Classifier 0.983062

Decision Tree Regressor 0.967289

Logistic Regression 0.759716

Gaussian Naive Bayes 0.749712

Table 3.1: F1 score obtained after using multiple algorithms for the prediction task

As we can see, the best result has been obtained using specifically one of these ensemble

methods known as Random Forest. This method consists in using multiple decision tree

classifiers that extract (with replacement) subsets of data and performs prediction over

them. Then, the set of predictions are averaged and the resulting average is the final

prediction being made. Several parameters regarding the decision trees being used can be

tuned; this tuning process will be performed next.

In order to perform this process, we define a range for the parameters that can be

configured in the Random Forest Classifier. First, we are going to define two possibilities

for the split criterion of each tree when it branches out. These two possibilities consist

in using either the Gini impurity or the Entropy. The Gini score values the split of each

branch depending on how mixed are the classes resulting of such split. On the other hand,

the Entropy criteria values the split of each branch using the Information Gain. The

Information Gain of a split is defined by the difference between the entropy of the original

branch and the average of the ehntropies of the resulting leaves.

We are also going to test multiple values for the min samples split parameter. This

parameter defines a minimum number of samples required to split a node. Since the dataset

used has a high quantity of entries, we predict that small variations in this number, specially

when this number is small (lower than 10), will only have a significant effect on the final

leaves of each Decision Tree. However, large variations might have a significant effect over

the whole tree.

41

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

We will test multiple values for the max features field too. This parameter controls the

number of features to consider when looking for the best split at each branch. Since we have

selected only five features to build the Machine Learning model, we will test values from

one to five to test the effect of changing the number of features considered in the F1-Score.

Finally, regarding the Random Forest classifier overall, we can choose if we use the whole

dataset to build each tree or we just bootstrap samples from the original dataset for each

of the trees that compose the Random Forest classifier.

The results of this process can be seen in Figure 3.11. Each point represents a different

combination of the parameters stated in the previous paragraphs. Even though the graph

could lead us to think that there is a wide variation of scores among combinations, we have

to keep in mind that the Y axis is ranged between 0.9808 and 0.9816. Therefore, there is

little variation of the F1-Score among combinations.

Figure 3.11: F1-Score obtained for each combination of parameters tested

The highest scoring combination of parameters obtained a F1-Score of 0.981634 over

the training dataset, with a value of 7 for the min samples split parameter, 1 for the

max features parameter, Gini as the splitting criteria and bootstrapping activated. Once

we test this model over the testing dataset (the one used for obtaining the scores showed in

Table 3.1, we obtain a F1-Score of 0.985102.

As we explained during the description of the Random Forest Classifier algorithm, it is

based on the combination of the results of multiple Decision Trees. One of these trees can

be seen at Figure 3.12

42

3.3. MACHINE LEARNING MODELING FOR CYBER-ATTACK SCENARIOS

Figure 3.12: Decision Tree used in the Random Forest Classifier

43

CHAPTER 3. CYBER-ATTACK DETECTION MODELS

44

CHAPTER4
Architecture

In this Mater Thesis we have designed and developed a system for the detection of attacks

within an SDN environment and designing of a suitable and scalable response to such attack.

In order to perform these tasks, we need to lay out an architecture with the appropriate set

of tools that allow us to perform such tasks. This involves adapting many tools related

with Linked Data and Big Data technologies to SDN tools, including data pipelining and a

visualisation system.

This chapter describes the architecture defined for this project. First, we describe the

modules that will compose the proposed architecture, putting an emphasis in the task imple-

mented by each subsystem. Then, we describe the implementation and connection of these

subsystems, obtaining the complete architecture of the system described in this Thesis as a

result.

45

CHAPTER 4. ARCHITECTURE

4.1 Introduction

The general architecture of the system developed in this master thesis is based on the

concept of Data Lake. A Data lake is a centralised system in the general architecture where

data obtained from multiple sources following different formats is injected. This data lake

stores vast amounts of data with different formats and offers multiple services related to

data storing, such as indexing, querying support and integration with other data tools.

This chapter is divided in the following sections: first, in Section 4.2, we describe the

general architecture of the system. In Section 4.3, we describe the architecture of the data

ingestion layer tasked with the ingestion of data into the Data Lake. Section 4.4 describes

the subsystem that includes all tools involved in the initial processing of data. Section

4.5 presents the subsystem tasked with the semantization of the data collected according

to the semantic models already reviewed. Next, Section 4.6 describes the inner workings

and fitting of the attack detection module in the general architecture. Finally, Section 4.7

portrays the inner workings of the dashboard developed for this project.

4.2 Architecture overview

The general architecture of this project is based on a modular conception of the tasks to be

implemented. Therefore, the main tasks have been roughly equally divided among different

modules. The resulting architecture designed with this criteria on mind can be seen in

Figure 4.1.

As we can see, the main system of the architecture is the Data Lake, which interacts

directly or indirectly with the rest of the modules. Therefore, this module is placed in the

center of the architecture. Data is fed to this module by the data ingestion layer. This layer

takes data directly from the network through the SDN controller and store it in the Data

Lake module. Depending on the type of data, it is ingested following different predefined

pipelines. Some of this data is processed and appended to the raw data being injected into

the Data Lake. Therefore, if we want to obtain a global view of the current status of the

network we only need to query one module: the Data Lake.

This statement can be observed in the fact that every other service implemented in the

architecture (the semantization service, the attack detection service and the visualisation

service) require a single link to the Data Lake module to collect the required data.

46

4.3. DATA INGESTION LAYER

Figure 4.1: Architecture Overview

4.3 Data Ingestion layer

The data ingestion layer can be implemented following two principles. The first method

would consist in implementing our own querying system, surpassing or complementing the

data provided by the SDN controller. We could query directly network elements, such

as hosts or nodes, in order to obtain data that the SDN controller was not programmed

to monitor. This approach has the advantage of potentially accessing data that would be

47

CHAPTER 4. ARCHITECTURE

otherwise inaccessible. This approach could also ease a transition from SDN environments to

legacy networks. However, this approach enters in conflict with the principle of centralising

the network management in one point, since we are overriding the network controller and

accessing each element directly.

This approach could also entail scalability-related issues, such an exponential increase of

network and computing resources requirements parallel to the increase of network elements,

since the data ingestion layer would have to control the monitoring of a ever-larger number

of nodes.

The second approach consists in using data already collected by the network controller.

Using queries targeted at its northbound interface, we can access data provided by services

already implemented in most SDN controllers, such as host trackers or interface monitors.

This data can contain enough information for us to infer the presence of a current at-

tack within the network, while also maintaining the scalability features provided by the

centralisation of network management tasks in the network controller. Hence, we would

be successfully protecting the complexity of the data ingestion layer from the potentially

limitless increase of complexity in the network being managed.

As we can see, each approach has its own advantages and drawbacks, which makes it

difficult to choose a method without knowing specific details regarding the environment to

be monitored. However, we can follow a “hybrid” approach, where we also collect data

directly from network elements instead of just querying the network controller, but we only

query a limited number of elements independently of the size and scale of the network.

Collecting data from only a small set of elements limits considerably the scalability issues

associated with the first method. This method will be followed when implementing the data

ingestion layer.

Specifically, we will monitor a small set of interfaces directly connected to hosts that

provide the services that we want to protect within the network. We will also query pe-

riodically the northbound interface of the SDN controller in order to obtain information

regarding the general status of the network. This data will be directly injected into the

Data Lake, while some of this data will be also processed with the goal of using it to detect

network attacks.

Hence, the monitoring process will be composed by two processes that represent the

two sides of the hybrid monitoring approach. This process can be seen in Figure 4.2. As

we can see, the ingestion process is divided in two flows associated to each of the sources

listed before. The first flow collects data directly from elements within the network, while

the second flow queries the data stored by the SDN controller regarding the current status

48

4.4. DATA PROCESSING MODULE

of the network.

Figure 4.2: Activity diagram of the data ingestion layer

4.4 Data Processing Module

In this section we describe the data processing module that can be seen in the system

architecture (Fig. 4.1). In the context of attack detection, processing tasks must be focused

in the extraction of useful features regarding traffic flows being currently active within

the interfaces being monitored. However, this entails the creation of a pre-processing step

where raw data extracted from network interfaces and nodes is aggregated into flows. This

data should also be included in the Data Lake, since it contains the features used in the

development and deployment of the Machine Learning model tasked with the detection of

attacks being performed in the network.

In the context of traffic flows associated to TCP connections, the development is rela-

tively simple. The focus should be put in monitoring the presence of TCP control sequences.

By monitoring the timeline of SYN and FIN messages within TCP connections (and their

respective ACK messages) while grouping them by origin and destination addresses and

ports, we can obtain aggregate single packets into TCP flows in an accurate manner.

However, when processing UDP flows, the need arises to establish a timeout per origin-

destination pair, since the UDP protocol does not have a mechanism to establish connections

like TCP does. The same goes for any protocol with a connection-less scheme.

As a consequence of the statements made in the previous paragraphs, the processing of

data regarding packets must be done in batches, since using aggregated packets during a

49

CHAPTER 4. ARCHITECTURE

pre-determined period of time is the only way of relating TCP connection control messages

or detecting timeouts over a set of related UDP packets. This entails a small delay in the

detection of flows in real time, since we need a set of accumulated packets before starting the

processing tasks. However, we can configure this “delay time” depending on our intentions:

we can reduce this time in order to improve the real time capabilities of our system, or we

could increase it in order to detect traffic flows with a long duration in time.

4.5 Data Enrichment System

In the previous sections, we described the process and systems involved in the collecting

of raw data needed for detecting network attacks. Furthermore, we described the precise

flow of data in Figure 4.2. However, most of this data is raw; therefore, it lacks flexibility

regarding possible future uses of such data. We could increase its flexibility by designing

and applying ontologies in order to enrich such data by semantizing it and thus provide a

structure for it. In this section we will describe the Semantization Module, which is tasked

with such duties.

As we have previously explained, we made use of multiple ontologies regarding SDN

scenarios and cyberattaccks. Therefore, the architecture of such process involves processing

and semantizing multiple batches of data following different flows.

Specifically, two different data flows have been set up regarding the data extracted and

processed in previous step. The first data flow is related to the data extracted regarding the

general status of the network. As we have previously stated, this data allows us to obtain a

wide view of the current status of the network. Depending on the use case, we might want

to focus on specific areas of the network, such as traffic statistics or services monitoring.

The proposed architecture supports the possibility of shifting the specific areas to which

this “first flow of data” references. In order to control the significance of such data, changes

must be applied to the data ingestion layer; specifically, changes regarding the queries being

sent to the SDN controller. Obviously, the ontology being applied must be adapted to the

data being processed.

The second data flow represents the semantization process being applied to data regard-

ing attacks being monitored or detected in the network. This data is also collected from

the Data Lake; however, it is injected into the Data Lake by the Attack Detection System

(which will be described in Section 4.6).

Semantizing data regarding attacks being detected in the network is useful not only for

the reasons previously listed (flexibility and standardisation of data), but also because it

50

4.5. DATA ENRICHMENT SYSTEM

will facilitate the listing and querying over attacks being detected in the network. This is

a fundamental feature in any attack diagnosis system, since obtaining a global view of the

attacks being performed in the network while also being able of designing complex queries

in order to select only a small subset of attacks.

In Figure 4.3, we can observe a diagram representing the flow dividing mentioned in

the previous paragraphs. As we can see, each type of data is semantized in a different data

flow, depending on the subject of the data. However, the semantized data is later stored in

the data lake, independently of the data path followed. Lastly, the process is repeated by

querying again the Data Lake.

Figure 4.3: Diagram representing the semantization process

Regarding the semantization process itself, it basically consists in extracting certain

fields from the data collected from the Data Lake, in order to assign values to each entity,

property or relationship that is being specified in the ontology used for such purpose in the

architecture. Therefore, it involves going through potentially vasts quantities of data fields

in order to select the ones that suit your ontology.

In fact, there is a trade-off between the reach of the ontology models being used in this

architecture (and thus, the quality and scalability of the structured data after it has been

semantized) and the size and scale of the data being semantized. Therefore, the objective

should consists in finding an equilibrium between the size of the data and the reach and

size of the ontologies being applied to the semantization process.

However, we can also use the indexing features of the tools and systems used in the Data

Lake in order to build complex queries that allow us to select only the specific data needed

to instantiate the ontologies being used. By building such queries, we can avoid scalability

issues regarding the amount of data being processed while also applying semantic models

that represent extensively the network being monitored.

51

CHAPTER 4. ARCHITECTURE

4.6 Cyber-attack Detection Module

The attack detection module is one of the most important modules present in the proposed

architecture. It holds most of the “ intelligence” present in this architecture, since it takes

on the task of monitoring each batch of data being pushed into the Data Lake by the

Data Ingestion Layer for the purpose of executing the reasoning process using the Machine

Learning model trained for such task. Therefore, it maintains connections with both the

Data Lake and the SDN controller.

This module not only addresses the task of detecting attacks being performed in the

network; it also communicates directly with the SDN controller in order to perform miti-

gating actions that limit the effect that the attacks being performed in the network might

have over the services being provided in it.

Instead of using a module that controls and coordinates the communications between

each module of the system proposed and the SDN controller, the decision has been taken to

allow the attack detection module to communicate directly with the SDN controller for the

purpose of allowing a much faster reaction to the attack being performed. In this scenario,

as soon as the Machine Learning model predicts the presence of an attack associated to a

data entry collected from the Data Lake, it will perform the necessary actions to block such

attack while also providing the services currently being provided in the network.

These actions, which are partially pre-programmed into the attack detection module’s

code, could range from trying to block all the traffic coming from the direction associated to

the attack, to trying to accommodate the attack by re-routing it to other network elements

for the purpose of giving the attacker the illusion that his/her attack is being carried

successfully while it is not affecting the provisioning of the services.

In a legacy network environment, this criteria could translate into developing a com-

plex software system tasked with calculating alternative blocking or re-routing rules and

distributing these rules among each network node separately, thus making the whole reac-

tive process significantly slower. Furthermore, such complexity could also carry significant

scalability issues, since the resources needed for such process would increase exponentially

with time.

However, thanks to the SDN paradigm, the attack detection module only needs to build

a set of high-level rules in order to either block or re-route such attack and send them to

a centralised point. The task of coordinating the updating of each node in the network is

being faced by the SDN controller in this architecture.

As we can see in Figure 4.4, the process is based on the existence of a Machine Learning

52

4.6. CYBER-ATTACK DETECTION MODULE

Figure 4.4: Diagram of the attack detection procedure

model which requires a set of features in order to make a prediction regarding the presence

of attacks.

53

CHAPTER 4. ARCHITECTURE

4.7 Visualization Module

Using the modules described in the previous sections we already can apply the core func-

tionality of monitoring an SDN network to the detection and mitigation of cyberattacks,

while also providing a semantic framework for the data collected regarding both the current

status of the network and the attacks being detected.

However, current methods for accessing and monitoring such data are very stiff. If we

want to access data that shows statistics on the current use of the network or a listing of

the attacks being detected, we have to compose complex queries in order to select exactly

the data required. We also have to get in contact with the Data Lake in order to send such

queries; most of the times this means using a REST API which has not been designed with

the goal of providing a satisfactory user experience.

Therefore, we consider that a visualization module is needed in order to greatly improve

the usability of the proposed system. Regarding this, one of the possibilities is consider

the use of the Elastic Stack mentioned in Section 2.3.1. This can be considered as an

appropriate solution, since ElasticSearch can be considered for the role of Data Lake (and

in fact it will, as we shall see in Chapter 5) and therefore we can consider Kibana for the

role of dashboard.

Kibana is a tool provided by the Elastic Stack which provides a Web interface for

the purpose of monitoring data stored in ElasticSearch. Since it is specifically designed

for working with ElasticSearch, it eases significantly the querting and observation of data

stored in ElasticSearch. However, it is too broad for the purpose of this project: we would

like to focus on specific fields regarding statistics on the current status of the network and

the presence of attacks.

Hence, another option consists in the development of our own visualization module. For

this purpose, we have selected and further developed a dashboard based on the Sefarad

architecture mentioned in Section 2.5.2. The Sefarad visualization system allows us to

represent data collected directly from the ElasticSearch module while also controlling the

default queries and data collected to be presented.

This represents an improvement over the default Kibana visualization system (which

shows all the information present at the ElasticSearch module, circumstance that can be

overwhelming to the user of this system). However, we would also like to use a semantic data

indexing system that would allow us to use SPARQL queries. This allows us to use a pure

semantic approach to the treatment and visualization of semantic data, further enriching

the flexibility of the visualization system.

54

4.7. VISUALIZATION MODULE

In order to make use of these SPARQL queries, we have selected the Apache Jena Fuseki

technology already mentioned in Section 2.4.2. In Jena Fuseki we will store the triples

representing the semantized data in RDF format, for the purpose of allowing the execution

of SPARQL queries by the visualization system. This system will execute queries in order

to collect specific fields regarding attacks and the network status, instead of collecting

widespread data. The architecture of the resulting system can be seen in Figure 4.5.

Figure 4.5: Visualization Module Architecture

55

CHAPTER 4. ARCHITECTURE

As we can see in Figure 4.5 all the interactions performed with the Jena Fuseki module

are carried out through Fuseki, which controls and redirects all the HTTP connections sent

to the Jena Fuseki module. First, the semantic data stored in the ElasticSearch module

by the Semantization System mentioned in Section 4.5 is collected and stored in the Tuple

Storing System also known as Jena Fuseki Module. This is done by creating a database

and sending each entry representing a semantic tuple. Then, the Jena reasoning core checks

the validity of such tuples and stores them in the in-memory data store. Finally, when the

Dashboard composes and sends a query in order to collect specific data, the reasoner core

analyses the query received via Fuseki (since this query is sent using the HTTP protocol)

and returns the queried data.

Then, the dashboard send queries to both the ElasticSearch module and the Jena Fuseki

module in order to collect the specific data required. The querying of data is controlled by

the Base Dashboard ecosystem. This submodule holds most of the logic required by the

dashboard and coordinates the functioning of each subelement present in the dashboard.

The role of the base dashboard ecosystem consists in offering a framework where dash-

board elements such as charts, graphs and lists can be easily added or removed. Further-

more, this framework provides these elements with the data needed for the representation

of the information associated to each element. It also coordinates the execution of each

element when new data is needed.

This process can be seen in Figure 4.6.

56

4.7. VISUALIZATION MODULE

Figure 4.6: Diagram showing the collection and visualization of data

57

CHAPTER 4. ARCHITECTURE

58

CHAPTER5
Case study

As we have previously stated, the SDN paradigm allows us to notoriously increase the flex-

ibility and quickness of current network managing techniques. This includes the collecting

and monitoring of information regarding possible attacks within this network, as well as

measures taken when attacks are detected in order to either block or re-route such attacks.

These advantages are heavily responsible for the current increase in the adoption of SDN

technologies.

Therefore, in this chapter we are going to describe an use case related to the goal of

detecting and blocking attacks in such environment, as well as semantizing the resulting

data and visualizing the results. The system developed for this use case will be based on the

architecture presented in Chapter 4.

In this chapter we will get into details regarding the specific network being virtualized in

order to be used as a testbed. We will also explain the deployment and execution of the SDN

controller, as well as the modules responsible for the data processing and pipelining. We will

also detail the use of the processed data in order to execute the Machine Learning model for

the purpose of detecting attacks. Finally, we will describe the semantization implementation

of such data, as well as the visualization module developed for such purpose.

59

CHAPTER 5. CASE STUDY

5.1 Introduction

In this and the following sections, we will describe the use case in the thesis in order to build

a prototype. The architecture described in Chapter 4 has been used as the basis for the

development of the prototype. This prototype creates a virtualized SDN scenario controlled

by Opendaylight which will serve as the testbed for the rest of the system.

Then, a data ingestion layer is implemented. In this layer data is collected from multiple

sources within the network. The SDN controller also represents another important data

source, specially regarding the current overall status of the network. While data from those

sources is being collected, some of this data is also being processed in order to be used by

the attack diagnosis system. Therefore, two different pipelines are laid out for each flow of

data being collected from the testbed.

Then, both raw and processed data are stored into the data lake module, which is

implemented using Elasticsearch. This data lake will serve as the central data store for all

the raw and processed data collected from the rest of the modules present in the prototype.

An image of the implementation of such architecture can be seen in Figure 5.1. Once the

data collected from the testbed is stored in the data lake, the attack diagnosis module

collects the necessary data from the Elasticsearch unit in order to detect the presence of

an attack in the network. This module will yield a result regarding the presence of an

attack in the network; furthermore, it will also compose networking rules in order to block

the attacks being detected. Then, both the data collected from the network and the data

regarding the attacks are semantized following the extended semantic model described in

3.2.3. Finally, the semantized data is stored in Elasticsearch and the tuples are also fed

to the Jena Fuseki tuple indexer. Finally, the visualization system collects data from both

Jena-Fuseki and Elasticsearch in order to show an overview of the status of the network.

This chapter is divided in the following sections. In Section 5.2, we will describe the

implementation and deployment of the environment where the test network is deployed, as

well as the target service. It also describes the deployment of the SDN controller and its

interactions with the network. Then, in Section 5.3, we will depict the inner workings of the

ingestion layer and the different paths that a data flow can follow depending on its source.

We will also describe the processing of the attack-related data for the extraction of features

necessary for the diagnosis of attacks.

Next, in Section 5.4, we will describe the implementation of the attack detection module

and the actions that this module takes in order to block the detected attacks. Then, in

Section 5.5, we will describe the functioning of the scripts tasked with the semantization

60

5.1. INTRODUCTION

Figure 5.1: Prototype architecture

of data. Finally, in Section 5.6, we will describe the indexing of tuples created by the

semantizing module and the visualization of data implemented by the dashboard.

61

CHAPTER 5. CASE STUDY

5.2 Network Environment

In this section, we are going to describe the network and controller modules deployed in

order to provide a testbed to obtain data and an environment to test the developed systems.

This description will include the detailing of the network deployment and the attack being

implemented in such network

This section is divided in two subsections. In Subsection 5.2.1, we will depict the

inner workings of the network being deployed. In Subsection 5.2.2, we will describe the

deployment of the OpenDaylight controller and its interactions with the network being

managed.

5.2.1 Software Defined Network

The goal of this project consists in learning a Machine Learning model that is able of pre-

dicting attacks using a labelled dataset provided by the Canadian Institute of Cybersecurity,

and deploy such model in a manner that it effectively detects and blocks attacks in SDN.

However, in order to test it, first we need to develop and deploy a SDN network where

attacks can be performed and monitored. Therefore, we will focus first in the developing of

this testbed.

First, we need a network composed by SDN-abled nodes. However, we do not have

the necessary resources to deploy such network physically, so we have to virtualize it. For

this purpose, we use a software tool known as Mininet, already described in Subsection

2.2.2. As we reviewed in such Subsection, Mininet allows us to virtualize an SDN while also

specifying hyperparameters such as the topology of such networks and the protocols being

used. Furthermore, we can also virtualize hosts connected to the network. This allows us

to deploy services that use the network for connecting to clients represented by other hosts.

Specifically, we have deployed the network topology that can be seen in Figure 5.3. We

have designed this topology with the purpose of selecting a host as the service provider and

the rest of the hosts as clients and potential attackers. Therefore, by monitoring specific

points in the topology, we can detect attacks and their influence in the providing of the

service. By default, those hosts that do not provide a service act like clients; however, any

client could turn into an attacker.

For testing purposes, we have developed a simple web server that returns a web page

every time that it is queried. We have developed such system by programming a Python

script. This server attends TCP connections, and it is programmed to keep them open

62

5.2. NETWORK ENVIRONMENT

until it stops receiving messages through each connection separately connection. In that

case, a timeout system is activated. If no new messages are received in a connection after

seven seconds, the connection is closed, so the associated socket can be used to attend new

connection requests.

As we have specified previously, we have used Mininet in order to deploy this network.

Specifically, we have used the Mininet Python API. This API allows us to use the build-in

host class to define clients, attackers and services within the network. We can either use

the base host class (which virtualizes network hosts in a process-based manner) or extend

such class in order to add parameters to it.

This API also allows us to specify nodes and links in order to build our topology. One

of the features of this API that we used in order to build the topology consists in the

ability of using links connected to traffic control interfaces. This enables the configuration

of the network testbed in order to replicate behaviours present in real networks, such non-

uniformity in links capacity within the same network, or irregular behaviours in different

interfaces.

Regarding the nodes, Mininet uses Open vSwitch 2.2.4 running in kernel mode to switch

packets among virtual Ethernet interfaces (created to emulate the interfaces and link defined

in the Python scripts implementing the network topology). Since the network is deployed in

a single computer (as we can see, Mininet virtualizes in such a manner that it does not allow

a distributed deployment without the use of other communication tools), the switching of

packets between hosts is very fast. Therefore, if we want to modify such behavior, we need

to use traffic control interfaces.

Once we have deployed the network, we need to connect it to the SDN controller.

This step will be further described in Section 5.2.2, along with the inner workings of said

controller. However, once the tandem composed by the network and its controller is finished,

we can test the functioning of such network and deploy software in the mentioned hosts.

Specifically, we begin by choosing a host and deploying a basic web server which was

already introduced in Section 5.1. This server, implemented in Python, will attend HTTP

GET and POST messages. It processes POST messages by reading and storing the infor-

mation sent in such messages. On the other hand, it processes GET messages by replying

with a simple Hypertext Markup Language (HTML) sample document.

Once we have deployed and executed this service in one of the hosts, it will listen to

HTTP connections coming from the rest of the hosts. Then, we can access to these hosts by

using the CLI provided by Mininet. Specifically, we can open xterm emulators for each of the

hosts and send HTTP requests to the server to emulate real traffic. We have implemented

63

CHAPTER 5. CASE STUDY

a five seconds timeout for TCP connections in order to allow an automated recovery of

sockets which are occupied by “unfinished” TCP connections.

One of these hosts will be used as an attacker. As we mentioned in Subsection 2.7.2, we

are going to use the tool known as Low Orbit Ion Cannon for performing the attack over the

service provided. The Low Orbit Ion Cannon performs attacks by saturating web servers

with a flow of TCP connections at a configurable rate. Hence, by configuring a rate that

saturates the server and occupies all its sockets, we can block the services by not allowing

it to reply to new connections from the clients.

However, the Low Orbit Ion Cannon is a tool programmed to be executed in a Windows-

based environment. Therefore, we have two options: the first option would consist in using

a virtualized Windows environment as host. However, this would entail deploying the

Mininet-virtualized network in Windows, and any other tool used in the testbed would

need to be Windows-compatible; hence, this option has been discarded.

Figure 5.2: Low Orbit Ion Cannon GUI

The second option consist in using a framework that allows the execution of Windows

software. In this prototype we have used Mono [34], an open-source implementation of the

Windows .NET framework that eases cross-platform development and deployment. Thanks

to this tool we can access the Low Orbit Ion Cannon graphical user interface, which can be

seen in Figure 5.2.

As we can see, we can configure many parameters regarding the DoS attacks generated

by this tool. In this case, due to the limitations of the testbed environment, we will use

the Manual Mode of the LOIC software, which allows us to turn a host into a DoS attack

vector manually configured. However, in a physical environment, the LOIC tool gives us the

64

5.2. NETWORK ENVIRONMENT

opportunity to create a HiveMind cluster where a single machine coordinates the execution

of multiple LOIC instances in different machines in order to increase the optimisation of

the saturating abilities of the DoS attack provoked by the attack system. The same goes

for the Overloard configuration. They both allow the conversion from a centralised DoS

attack to a Distributed DoS attack architecture.

Once the attack mode has been selected, we need to specify an IP address or an URL

where the target server is located. Then, we can specify options related to the attack

channels. For example, we can specify timeouts for the attack, in case that we only want to

disable the providing of the service during a specified amount of time. We can also specify

certain routes within the server being attacked in case that we want to direct the attack

against an specific vulnerable location in the target server. We can also send messages along

with the attack.

The last batch of options available in the Low Orbit Ion Cannon GUI also concerns

attack parameters. Particularly, we can select an specific port target. The selected port by

default is the standard HTTP port; however, we might want to attack systems where the

HTTP server listens to many ports with the purpose of avoiding attacks that only consider

web deployments using standardised parameters (for example the use of the port 80 as the

port to which the server listens).

We can also choose among TCP or UDP in order to perform the attack. UDP-based DoS

attacks have the advantage of not being built over an end-to-end mechanism. Therefore,

it is harder for defending mechanisms to detect UDP flood flows when they are being sent

form a massive set of source IP addresses.

However, TCP-based attacks have other advantages. Specifically, since TCP-based DoS

attacks establish connections that last as long as the attacker keeps sending messages to

the receiver. Therefore, while the goal of UDP attacks consist in saturating connections

between the elements providing the service and the rest of the network, TCP-based attacks

can also try to occupy all the sockets listening for TCP connections on the server side.

Once each TCP connection is established, the attacker only needs to send TCP messages

periodically in order to keep each connection open, without focusing on the rates of bytes

per second being sent to the attack target.

Hence, while flows are easily detected by monitoring messages related to the establishing

of TCP connections, systems based on the monitoring of byte rates find it harder to detect

TCP-based DoS attacks. This approach will be followed in the implementation of the attack

system in this use case.

Finally, we can select the number of threads dedicated to the performing of the attack

65

CHAPTER 5. CASE STUDY

and the number of sockets per thread involved in such attack. These parameters control

the output rates of the packets being sent by the Low Orbit Ion Cannon. If we use the TCP

approach, we can also select the “Wait for reply” option, which makes the attacker wait for

a response to each TCP message being sent.

In this use case, we are going to test the correct functioning of both the attacking and

the detection tools by performing attacks from different locations, using a single host as

attacker and using multiple hosts simultaneously. While we perform the attacks, we will also

try to connect to the attacked service from other hosts in order to check the unavailability

of the service being attacked and the successfulness of the attack being performed.

5.2.2 Opendaylight

As we described in Section 2.2, the SDN paradigm requires the presence of a network

controller which has a centralized view of the network and controls the routing rules stored

in each node. Mininet provides a default Python-based network controller known as POX

[35]. This controller is a Python-based version of the NOX controller [36] written in C++.

Even though this controller provides the basic functionalities needed for our network to

route traffic successfully, we need a SDN controller that provides an interface which allows

the access to the controller’s database. Therefore, we have chosen OpenDaylight as the

controller used in this use case. This SDN controller was already introduced in Subsection

2.2.5.

One of the advantages provided by the OpenDaylight controller is the fact that its

architecture fits an abstraction layer between the modules tasked with controlling the com-

munications with each element in the network and the rest of the controller. This allows

for the representation of network elements as objects, which eases the configuration of such

elements and the consulting of data regarding them. This layer is known as Service Ab-

straction Layer (SAL). Since network elements are represented as objects, modules and

APIs can be easily developed in order to allow the provisioning network services installed

into OpenDaylight and also provide an easy access to data regarding the network (each

data element being modeled as an object).

One of the network services being used in this use case is the Host Tracker. This service

monitors the number of hosts being present in the current simulation, and the status of

each one. This is particularly useful since it allows us to build a system that can actively

monitors the number of clients of our service. Furthermore, this information will be collected

and used in the visualization system described in Section 5.6. These modules, along with

the Switch Manager module (and Topology Manager module, which uses both the Switch

66

5.2. NETWORK ENVIRONMENT

Manager and the Host Tracker) will provide the core of the data required by our system to

provide the overview of the topology being monitored by our system.

Regarding the management of data within the OpenDaylight controller, OpenDaylight is

configured in such a way that it distinguishes between two types of data states: operational

data and config data. The operational data (defined by a concept known as Operational

Data Tree) represents data regarding the current status of the network. Therefore, this type

of data will be collected when querying the controller for information regarding the current

status of the network. This type of data is updated by using reports directly collected from

the SAL layer defined previously. Therefore, this data comes from reports being sent by

the SAL either directly or indirectly (for example, when data is collected and processed by

modules which use data from the SAL).

Figure 5.3: Opendaylight Topology UI

On the other hand, config data references data being pushed by the network administra-

tor using either the REST API or an in-house module developed by such administrator. In

this use case, we will push network traffic rules for the purpose of blocking ongoing attacks

by querying the REST API in the northbound interface of the controller. Therefore, data

entries tagged as config data represents data pushed by the attack detection module. This

data can also be queried by other monitoring systems using the adequate queries.

Regarding the communications between the controller and the rest of the architecture,

the southbound interface of the controller communicates with each network node through

the use of the OpenFlow protocol already described in Section 2.2.3. Data queries are sent

67

CHAPTER 5. CASE STUDY

to the northbound interface of the controller (specifically to its REST API) using HTTP

messages over TCP. This method is also used to sent built routing rules to the controller,

for them to be pushed into network elements specified in the messages being sent.

Once both the network and its controller are up and running, we can start the simulation

of an attack and monitoring of the network by the system developed over it.

5.3 Data Ingestion

In this section we will describe the inner workings of the modules associated with the

collecting and processing of data. We will also explain the tools involved in this process

and how do they interact with each other.

This section is divided in two subsections. First, in Subsection 5.3.1, we will analyse the

process followed in the collection of data form each source. Then, in Subsection 5.3.2 we

will describe the processing steps followed for the data used in the attack detection steps.

5.3.1 Data Collection

In order to describe the tools and processes specified for the collection of data from the

testbed, first we have to specify the sources involved in such data collection. In this use

case we are specifically interested in data stored by the OpenDaylight controller, and data

collected directly from interfaces connected to the service providers regarding packets being

sent and received at such interfaces. Therefore, our goals will consist in developing collecting

systems focused in querying those sources.

First, we focus on collecting data regarding packets flowing from and to the hosts rep-

resenting service providers. In this case, we have several choices. For example, we could

develop a module within the OpenDaylight architecture. This module could take advan-

tage of the SAL layer provided by OpenDaylight and monitor the object “Interface” of an

specific set of elements in order to register the data flowing across those interfaces.

However, this would force us to develop another module tasked with the decoding of

data collected from those interfaces, since OpenDaylight would force us to work at a very

low abstraction level. We would also be forced to work using Java, since most of the modules

and interfaces already included in OpenDaylight are also implemented using Java.

Therefore, we have focused in collecting this information directly from the network,

without consulting the SDN controller. Since we are using a virtualized network, we can

easily access the container where the network is being virtualized and use Wireshark over

68

5.3. DATA INGESTION

the interfaces connected to the service providers.

Wireshark [37] is a tool widely use for the purposes of monitoring traffic in computer

networks and analysing flows in interfaces. It has the advantage of providing data at

many levels of abstraction: it provides both byte streams representing data flowing through

the interfaces and also the decoding of such data, therefore providing vital information

such as the protocol of each packet, timestamps, sources, and other structured information

contained in each packet.

By collecting data directly from elements within the network instead of through a cen-

tralized entity such as the SDN network, some might consider that an scalability issue

might arise. However, since we do not monitor the entire network but only a small set of

interfaces (those directly connected to the hosts acting as service providers), any scalability

issue connected to the size of the network is heavily limited.

So, we configure Wireshark in order to monitor only the previously mentioned interfaces.

While these interfaces are being monitored, Wireshark outpus the data into multiple files

following two formats. It outputs the data in two different formats. The first format is

Libpcap, which is the format associated to PCAP files. Files with this extension will follow

the datapath which leads to the data processing module (which can be seen in Figure 5.1).

On the other hand, it also generates JSON files containing the same information. These

files are generated to be pushed into ElasticSearch, since one of the main principles of a

Data Lake based architecture consists in storing all the collected raw data in the Data Lake.

Once these two files are generated, they are monitored following different methods.

Regarding the JSON files, they are collected by Beats, a tool that was already introduced

in Subsection 2.3.3. This tool can be configured using a YAML file in order to select a set

of files to be monitored. Beats is configured to monitor any new entries in those files, and

it sends those files to the Logstash instance.

Logstash is a tool that was also described in Subsection 2.3.3. This tool receives data

from multiple sources (such as beat messages sent by Beats) and processes them in multiple

ways defined in a configuration file also written in YAML format. Specifically, we have

configured Logstash in order to analyse if the data received comes from the JSON file or

the PCAP file. When the data represents information stored in the JSON file generated

by Wireshark, it is directly sent to the Data Lake implemented with Elasticsearch for its

storage.

So far, we have described the data collecting process for data queried for attack detection

purposes. However, we would also like to collect data about the general status of the network

69

CHAPTER 5. CASE STUDY

in order to provide a context in our visualization system. Therefore, we will also describe

the process of collecting data from the network controller.

As we have previously mentioned, the OpenDaylight controller provides data through

the REST API present in the controller’s northbound interface. In order to ease the access

to the data provided by the API, this data has been modelled using YANG. Hence, by

consulting the YANG models used by OpenDaylight beforehand, we can know the structure

that the data queried to OpenDaylight is going to follow. This allows us to further “tune”

queries regarding specific data to be used in te use case.

We are interested in the data stored by an specific set of services within the Open-

Daylight’s REST API. The first of these services is the Inventory Manager. By accessing

the route that can be seen in Listing 5.1, we can obtain data related to any routing ele-

ment within the network. This is done by using the route specified in the listing and adding

node/{node identifier}, where {node identifier} represents the identifier of the network node

being consulted. Usually, this identifier consists in a name with the structure openflow:n

where n represents an integer.

However, this would return a massive amount of data, most of it useless. The OpenFlow

protocol requires that each node has a capacity of 255 routing tables. It also requires for

every table to be instantiated on start, even though only one (the first one, routing table 0)

is used to hold the routing rules sent by the controller. Therefore, if we just query all data

regarding a node, we will obtain many empty fields. Therfore, we must be very selective

regarding the data that we query regaring the Inventory Manager.

For example, if we want to obtain information of the routing rules being implemented in

the openflow:3 node (the third switch), we would need to send an HTTP GET query to the

endpoint http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/ope

nflow:3/flow-node-inventory:table/0. The result of such query can be seen in Listing 5.2

This listing includes only part of the data obtained (since the complete document would

contain many more fields regarding other flows), but here we can see the basics of the data

representing routing rules. Fields showing statistics related to each flow and the routing

table are of special interest. We are also interested in data showing the actual rules being

implemented (in this case, the presented flow sends packets being received through port 1

to the controller and other nodes).

Listing 5.1: Query to the Inventory Manager

http://{Opendaylight Endpoint}/restconf/operational/opendaylight-inventory:nodes

70

5.3. DATA INGESTION

Listing 5.2: Example of data obtained after querying the Inventory Manager for routing

information

<table xmlns="urn:opendaylight:flow:inventory">

<id>0</id>

<flow-table-statistics xmlns="urn:opendaylight:flow:table:statistics">

<active-flows>4</active-flows>

<packets-looked-up>103</packets-looked-up>

<packets-matched>100</packets-matched>

</flow-table-statistics>

<flow>

<id>L2switch-1</id>

<flow-statistics xmlns="urn:opendaylight:flow:statistics">

<packet-count>33</packet-count>

<duration>

<nanosecond>449000000</nanosecond>

<second>66</second>

</duration>

<byte-count>2590</byte-count>

</flow-statistics>

<priority>2</priority>

<table_id>0</table_id>

<cookie_mask>0</cookie_mask>

<hard-timeout>0</hard-timeout>

<match>

<in-port>1</in-port>

</match>

<cookie>3098476543630901249</cookie>

<flags />

<instructions>

<instruction>

<order>0</order>

<apply-actions>

<action>

<order>1</order>

<output-action>

<max-length>65535</max-length>

<output-node-connector>CONTROLLER</output-node-connector>

</output-action>

</action>

<action>

<order>0</order>

<output-action>

<max-length>65535</max-length>

(...)

We will also collect data from the Topology Manager in a similar manner. While the

Inventory Manager holds data regarding the rules and statistics of each element within

the network, the Topology Manager shows the topology and disposition of elements in the

71

CHAPTER 5. CASE STUDY

virtualised network, both routing elements (links and nodes) and hosts.

These two OpenDaylight modules will be directly queried by Python scripts being exe-

cuted periodically. Then, this data is going to be processed (this process will be explained in

the next subsection) and both the original and processed versions of this data will be stored

in the Elasticsearch module as ordered by the archtiecture of the Data Lake paradigm.

5.3.2 Data Processing

Once we have depicted the processes and tools used for the collection of data from the

multiple sources already described, in this section we will describe the different processing

steps being followed by each data flow.

First we are going to describe the steps involved in the processing of the data collected

for the purpose of detecting the presence of attack patterns. As we already described in

Subsection 5.3.1, this data is collected directly from the network. Once it reaches the Data

Ingestion layer (through the use of Beats), the Logstash instance filters the data collected

in order to separate data related to the detection of attacks from the rest of the data. Then,

this data is sent to a submodule where the CICFlowMeter is used. This submodule is known

as the Data Processing module.

The CICFlowMeter, which was already introduced in Subsection 2.7.3 plays a key role in

the processing of this data. Since our intention while developing this use case was to replicate

the scenario and environment described by the Canadian Institute of Cybersecurity involved

in the generation of the data used in this thesis for the creation of the Machine Learning

models, we have chosen use the CICFlowMeter tool (as they did) instead of developing our

own processing system.

As we already mentioned, CICFlowMeter detects the presence of flows in PCAP files by

analysing the contents of each message sequentially, and then it obtains multiple features

regarding such flows. However, we are only interested in a small subset of those features.

Specifically, we are interested in the features present in the Machine Learning model de-

veloped. These features are: Packet Length Mean, Avg Bwd Segment Size, Bwd Packet

Length Max, Bwd Packet Length Std and Destination Port.

Since CICFLowMeter does not distinguish between packets but between flows, it is able

to divide information extracted from such flows between information regarding data flowing

in one direction (Forward, or Fwd) and data flowing in the opposite direction (Backward,

or Bwd). In this case, we focus mostly in parameters related to data flowing from the server

to the attacker.

72

5.3. DATA INGESTION

Since, in order to detect flows, a set of sequential entries regarding traffic packets are

necessary for the purpose of identifying the connection establishing and tearing processes,

the data processing can not be done in real time, but in near-real time. Following this

criteria, the CICFlowMeter is executed repeatedly over small subsets of data (representing

captured packets) with a limited size.

As a result, we obtain a Comma Separated Value (CSV) file with 84 values. Even

though we are only interested in the subset of features already mentioned, we will push

all the data obtained into the Elasticsearch module. The Attack Detection submodule will

take on the task of selecting a subset of features. This choice allows us to easily change the

Machine Learning model being used and the features being used without modifying also

the Data Processing module, since all the information generated by such module is already

being provided, and the selection of features is performed within the Attack Detection

submodule.

Regarding the data collected from the OpenDaylight controller, most of the processing

steps performed within the Data Ingestion layer is limited to the formatting of the data in

order to ease its injection into the Elasticsearch module. This data will be further processed;

however, most of the processing steps related to such data consists in semantizing it. This

process will be further described in Section 5.5.

However, we do perform some pre-processing regarding data collected from the col-

lector. As we mentioned before, there is a quite large quantity of data fields that are

instantiated (since the OpenFlow protocol requires that those data fields must be present

in any database) but they do not hold any useful information. An example would be the

254 tables instantiated in the databases. These tables are completely empty, since all the

routing information is stored in the first table. However, if we send queries to the controller

in order to get data regarding routing entries in a node, we will get 254 entries with empty

fields along with the data stored in the first table.

Therefore, we will perform some pre-processing consisting in deleting data fields instan-

tiated but empty, such as the example previously described. This process is performed by

implementing and executing a Python script which executes HTTP requests to OpenDay-

light endpoints and uses an Elasticsearch client implemented by extending the Elasticsearch

class provided by the Elasticsearch Python library for the injection of data. The same

method is followed for the injection of data into Elasticsearch regarding the data processed

by CICFlowMeter.

73

CHAPTER 5. CASE STUDY

5.4 Cyber-attack Diagnosis

In this section we are going to describe the inner workings and implementation of the

Attack Detection module. We will start by describing the methods followed in order to

implement the model learned during the learning stage of the thesis using data provided by

the Canadian Institute of Cybersecurity. The learning of this model is briefly introduced

in Subsection 3.3.2. In this section we will further describe such model along with its

implementation.

Furthermore, we will also describe the composing of rules regarding the blocking of

detected attacks and the implementation of such methods. We will also depict the process

followed for sending these rules to the OpenDaylight controller and how the controller

accepts and implements the routing rules sent.

As we mentioned previously, the model selected for the detection of patterns related

to DoS attacks is based on Random Forest Machine Learning models. These models

are based on the concept of using multiple decision trees which are trained in a parallel

manner with subsets selected with replacement from the original training dataset. Then,

the resulting outputs of each tree are combined following a vote system where the output of

each tree is weighted by the estimated probability provided by each tree along its output.

Even though other methods can be followed when combining the outputs of each tree

that compose the Random Forest (such as non-weighted vote, regression, etc), this method

provides the best results. Furthermore, it is implemented by the library used in order to

programme the Machine Learning model.

However, first we are going to describe the process of collecting the processed data from

the Elasticsearch module in order to perform predictions using the model previously men-

tioned. The output of each execution of the CICFlowMeter tool is pushed into an index

named csv cicflowmeter. In order to query the Elasticsearch module for data regarding this

specific index, we build the data query that can be seen in Listing 5.3.As we can see, we

included a from data field in order to select data in a specific timeslot and avoid detecting

the same attack multiple times. This query is included in a Python class which extends the

ESClient class (provided by the Elasticsearch Python library) by implementing “get” and

“set” methods that targets the csv cicflowmeter specifically while also including variables

such as the one previously mentioned. For each time that we query attack-related data, we

update the from date variable.

74

5.4. CYBER-ATTACK DIAGNOSIS

Listing 5.3: Time-based query used to extract attack-related data

{

"query": {

"range": {

"@timestamp" : {

"gt" : from_date

}

}

},

"size": 1000,

"sort" : [

{"@timestamp" : "desc"}

]

}

Once we have completed the data querying system, we focus on implementing the attack

detection model. In this task, the use of the Scikit-learn library is key. As we already

mentioned in Section 2.6, Scikit-Learn is the standard library used for the implementation

of machine learning systems in Python.

However, first we have to extract the required features by the model. As we mentioned

in the previous section, this process is implemented in the Attack Detection module instead

of the Data Processing submodule in order to provide more flexibility to the overall architec-

ture. Once the features have been selected, we use Pandas dataframes [38]. Pandas is one

of the most used data managing libraries developed for Python, and it eases the selection

and processing of batches of data given certain rules expressed with Python conditions.

Therefore, by building a dataframe object with the data retrieved from Elasticsearch

and selecting only the necessary features, we have the data in the adequate format to predict

attacks. Now we focus on implementing the previously learned model. This model was saved

in a Pickle-generated file; Pickle allows us to store Python objects in regular files. Once we

have loaded the model previously learnt (which is an instance of the RandomForestClassifier

class within the Scikit-learn library), we iterate over each entry of the dataframe object,

using each feature value in order to predict if that entry represents an attack.

Then, we collect the results in a new dataframe object, which holds all the features

extracted by the Data Processing submodule for each entry classified as an attack. Thanks

to this method, we can consult all the data generated by the CICFlowMeter for the entries

classified as attacks. This is specially useful for the creation of rules in order to block such

flows.

And, in fact, that is the next step after detecting a set of attacks. Once we have a

75

CHAPTER 5. CASE STUDY

dataframe object that holds data regarding flows that are attacking our service, we use the

Policies Creation submodule in order to develop routing rules following the Opendaylight

data modelling structure so we can push them into the node providing access to the service

through its northbound interface.

5.5 Semantic Data Enrichment

So far, we have described multiple processes involved in the collecting, “cleaning” and

storing of data. These processes help us in adapting the data for its representation and

the detection of attacks. However, none of the processes described focuses on standardising

data by creating structures so they can be used in other contexts and new services can be

developed over it. Specifically, we create ontologies that we instantiate with data currently

stored in the Elasticsearch module using said ontologies and Python scripts.

Regarding the ontologies being used in this use case, we have already introduced them

in Subsection 3.2.3 we briefly introduced the ontology being used in this use case for the

purpose of representing both data regarding the general status of the network and specific

fields showing the presence of attacks and its features.

As we have previously mentioned, the SDN-AR ontology consists of a combination of

two ontologies: the SDN-NDL ontology and the UCO ontology, adding new entities and

relationships to adapt both ontologies among themselves and also to this use case. The

first ontology focuses on structuring data obtained from OpenDaylight-based controllers.

Specifically, it defines an structure based on entities and relationships that maps data pro-

vided by each module within OpenDaylight. In fact, many entities are defined with the

purpose of reflecting certain data structures.

On the other hand, the UCO ontology is completely focused on the standardisation of

datasets that represent attacks. Since it is not designed with an specific attack in mind, it

is a very general ontology. Furthermore, this ontology has not been designed considering

the SDN paradigm. Therefore, we have selected a specific set of entities and relationships

useful for our use case, and we have applied them to SDN related concepts (such as SDN

nodes) for the representation of data collected over attacks being detected.

We have merged these two ontologies into the SDN-AR ontology, which includes new

entities and relationships for the purpose of uniting UCO and SDN-NDL, such as the rela-

tionships attacksNode, suffersAttack and createsAttack (which connect the SDN-NDL-based

entity HostNode with the UCO-based entity Attack, for the purpose of identifying which

hosts are being attacked by which hosts).

76

5.5. SEMANTIC DATA ENRICHMENT

Listing 5.4: Semantic Cyber-attack Re-

port

{

"@context":{

"sdl":"http://www.gsi.dit.upm.es/

ontologies/sdl/ontology.xml#",

"uco":"https://ebiquity.github.io/

Unified-Cybersecurity-Ontology/

uco_1_5.owl#",

"att":"http://www.gsi.dit.upm.es/

ontologies/sdn/att-sdn#",

"topology":"http://bayesiansdn.

cluster.gsi.dit.upm.es/

simulationattack/topology/",

"@base":"http://bayesiansdn.cluster.

gsi.dit.upm.es/simulationattack/

attacks/",

"@vocab":"http://www.gsi.dit.upm.es/

ontologies/sdn/att-sdn#",

"timestamp":null,

"schema":"http://schema.org/"

},

"@id":"attack2",

"@type":"uco:Attack",

"timeOfAttack":"2019-05-14T10:13:21.000

Z",

"attacksNode":{

"@id":"topology:

host_06_f8_e3_ed_ea_cd",

"@type":"sdl:HostNode"

},

"hasAttacker":{

"@id":"attacker2",

"@type":"uco:Attacker"

},

"hasTakenCOA":{

"@id":"coa2",

"@type":"uco:CourseofAction"

}

}

Listing 5.5: Semantic Topology Report

{

"@context":{...},

"ndl:hasInterface":[

{

"@id":"openflow1_4",

"@type":"Interface",

"nml:name":"s1-eth4",

"configuration":"",

"currentFeature":"ten-gb-fd

copper",

"currentSpeed":10000000,

"describesInterface":{

"@id":"topology:openflow1_4",

"@type":"Interface"

},

"hardwareAddress":"7e:81:0e:00:d6

:e5",

"hasNetworkStats":{

"@id":"openflow1_4#

interfaceStats",

"@type":"InterfaceStats",

"bytesReceived":16363,

"bytesTransmitted":226971,

"packetsReceived":187,

"packetsTransmitted":2965,

"receiveCRCError":0,

"receiveDrops":0,

"receiveErrors":0,

"receiveFrameError":0,

"receiveOverRunError":0,

"transmitDrops":0,

"transmitErrors":0

},

"hasState":{

"@id":"openflow1_4#

interfaceState",

"@type":"InterfaceState",

(...)

In Listings 5.4 and 5.5 we can observe instances of the proposed ontology which refer-

ences the presence of an attack and some of its variables (such as attackers or actions taken)

and the topology of the network being monitored (specifically, part of the data obtained

referencing one of the interfaces of the node openflow:1).

The process of semantizing the data is implemented using Python. Specifically, first we

77

CHAPTER 5. CASE STUDY

define the SDN-AR ontology using the RDF file format, which is the standard language

used for the definition of data models within the Semantic Web Standards defined by the

World Wide Web Consortium.

Using this file as the basis for the structure of each document, we collect data from

the Elasticsearch module. Depending on the index being queried we collect data regarding

attacks or the current status of the network. Therefore, first we collect data related to

detected attacks and then we create Linked Data tuples such as the ones observed in Listing

5.4. After creating tuples storing information about attacks, we access the indices that store

data concerting the current status of the network to create Linked Data tuples such as the

ones observed in Listing 5.5.

5.6 Visualizing Data

So far, we have developed a prototype of a system that deploys a virtualized SDN network

controlled by an OpenDaylight instance where we simulate a service being attacked in order

to collect data and detect such attacks using a Machine Learning model previously learned.

Then, we semantize both the data collected from the network and its controller and the

data generated by the Attack Detection module.

As a result, we obtain an Elasticsearch instance with large amounts of data grouped

in different indices. Even though Elasticsearch provides an interface where queries can be

interpreted and results can be consulted using a standard web browser, we would like to

offer a more visual representation of the current status of the network.

In order to accomplish this, we can choose between two options. The first option would

be to use the Kibana tool. Kibana is the standard data visualizer used in deployments that

involve storing data in Elasticsearch. Since both Elasticsearch and Kibana are integrated

into the ELK stack (as a matter of fact, the E stands for Elasticsearch and the K stands

for Kibana), we considered this option first.

Even though it has some considerable advantages (such as an easy integration with the

Elasticsearch module being used as the central element in the Data Lake architecture), it has

the disadvantage of not being “specific” enough regarding the data being depicted. Since

we store most of the semantic data in Elasticsearch as instances in JSONLD format, we can

not take advantage of the benefits provided by the semantization of such data. Kibana is

only useful for providing an easier insight in raw data stored in Elasticsearch.

Therefore, we have chosen the second option, which consists in developing our own

visualization module in order to portray specific information that we considered of special

78

5.6. VISUALIZING DATA

interest. For this purpose, we will use the framework known as Sefarad (already introduced

in Section 2.5.2) as the base for such module.

Sefarad makes use of Polymer in order to control the cycle of data monitoring and

rendering within the visualization system. In order to portray the data collected, we use

multiple types of charts from the Google Chart web service. Data is collected both directly

from Elasticsearch and using SPARQL queries for semantic data.

However, as we have previously mentioned, Elasticsearch stores semantic tuples in

JSONLD-defined documents. Hence, it does not support SPARQL-based queries over se-

mantic data. This is the reason for adding a Fuseki-Jena module which receives and attends

each SPARQL query sent by the visualization module.

Before implementing and starting the visualization module, we push each JSONLD

generated in the system and stored in Elasticsearch into the Jena-Fuseki module. We do

this by creating a database within Jena-Fuseki, and then using its HTTP API for pushing

such JSONLD files. The reasoning module within Jena-Fuseki will create tuples representing

the entities and relationships being stored in each JSONLD file.

While the system is being run, this database keeps growing with new Linked Data

tuples representing new data being collected from the network as well as new attacks being

diagnosed. Therefore, when we reload the visualization system (which is accessed through

its HTTP endpoint), we can observe new data being collected from the underlying system.

The whole visualization module has been implemented using Javascript; since all the

libraries and web services previously mentioned are available for Javascript, the selection

of the programming language was a very short process. We also used Bower for managing

packets being used in our module, which is run using the http-server command.

In Listing 5.6, we can observe an example of a query used for retrieving attacks being

detected by our system. We can further tune this query in order to select subsets of attacks

depending on ranges in values of each attribute, such as time or origin of the attack. The

listed query is executed for the purpose of collecting data enumerating the attacks being

detected in the network. The results of this query are then showed in charts as the one

showed in Figure 5.4, and the results of the overall attack tab of the dashboard can be seen

in Figure 5.5.

Listing 5.6: Example of SPARQL query to collect data about the detected attacks

BASE <http://bayesiansdn.cluster.gsi.dit.upm.es/simulationattack/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX uco: <https://ebiquity.github.io/Unified-Cybersecurity-Ontology/uco_1_5.owl#>

79

CHAPTER 5. CASE STUDY

PREFIX att: <http://www.gsi.dit.upm.es/ontologies/sdn/att-sdn#>

SELECT ?id ?timeOfAttack ?origin ?target ?blockingIp

WHERE {

?id rdf:type uco:Attack .

?id att:timeOfAttack ?timeOfAttack .

?id att:hasAttacker ?attacker .

?attacker att:hostedBy ?origin .

?id att:attacksNode ?target .

?id att:hasTakenCOA ?coa .

?coa att:composedBy ?flow .

?flow att:hasMatch ?match .

?match att:ipAddress ?blockingIp

}

Figure 5.4: View of the attacks being detected

Figure 5.5: Overall view of attacks information

However, we do not use SPARQL queries just for collecting semantic data created by

the Attack Detection module. We also use these queries to extract information held by

the semantized version of the data collected from the OpenDaylight controller. This data,

as we have previously mentioned, is collected for the purpose of obtaining an overview

of the general status of the network and its nodes. We can observe an example of the

representation of such overview in Figure 5.6.

Just as we used SPARQL queries for collecting data from the Jena-Fuseki instance and

80

5.6. VISUALIZING DATA

Figure 5.6: View of the data flow through an specific interface

then format this data for its representation using a chart, we have also followed the same

process for other types of data. Specifically, we have followed the same process for such

information as the number of anomalies in each interface of each node in the network, a

counting of the number of attacks detected or the extraction of information regarding an

specific node.

Furthermore, regarding SPARQL queries, we have also included a Sparql Editor where

we can write our own queries. Then, this queries are sent directly to the Jena-Fuseki module,

and the result of resolving such queries is sent back to the visualization module. Finally, the

visualization system returns the result in a structure below the editor. In this view, which

can be seen in Figure 5.8, there is also a drop-down menu where a set of pre-configured

queries can be selected. These queries will be shown in the editor window once they are

selected. Then, we can execute them directly or modify them to extract specific pieces of

information.

Figure 5.7: View of flows and packets handled by each node

81

CHAPTER 5. CASE STUDY

However, we do not collect data only from the Jena-Fuseki module. The Sefarad frame-

work allows us to collect data also from the Elasticsearch instance. For example, we use

the Elasticsearch Javascript client in order to send a query to the Elasticsearch instance to

collect information related to the JSON files representing the traffic being captured in the

interfaces which connect the machine hosting the service to the network. Since this infor-

mation is stored in an specific index within Elasticsearch, it is easy to collect such data.

However, even if the structure of this information was complicated, it would only require a

more complex query. Another example of data collected from Elasticsearch can be seen in

Figure 5.7.

Figure 5.8: View of the Query Editor

82

CHAPTER6
Conclusions and Future Work

This project has resulted in a system that provides a continuous and automated monitoring

and detection of DoS attacks within a SDN context. Specifically, we have taken advantage

of the benefits of the centralized management of the network that the SDN paradigm pro-

vides. We have also successfully developed a semantic model extended over other ontologies

and used it to create tuples based on the collected data. Finally, we have also included a

visualization system which eases the use of this system. However, this project can be further

developed. In this chapter, we will deepen in the conclusions mentioned in this paragraph.

We will also describe some paths for further improving this system in the future.

83

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Our initial goal consisted in developing a system that takes advantage of the benefits pro-

vided by the centralized control of SDN networks for the purpose of detecting and blocking

DoS attacks created in a virtualized SDN testbed has been achieved. Furthermore, we have

also achieved the goal of implementing a semantic model that allowed the structuring of

collected data. We have also developed a module for the semantization of raw and processed

data.

Once we have selected and analyzed the tools to be used in the developing of the system,

we enumerate the specific tasks needed for reaching the goals defined in the previous para-

graph and divide these tasks among different elements, thus designing the architecture of

this system. Then, we have applied this architecture to an specific use case, where we have

used the tools previously selected to develop a deploy a scenario where an OpenDaylight-

controlled SDN network used for providing a service is being attacked by a LOIC instance.

The system deployed successfully detects this attack and pushes new rules into the con-

troller for its blocking. Data regarding this scenario is stored in Elasticsearch, semantized,

and provided to the user through a dashboard. This shows that the project has reached all

the proposed goals.

Regarding conclusions drawn from this project, first we would like to emphasise the

potential of the SDN paradigm. Due to the fact that the network control is centralized, we

only needed to create one specific routing rule and push it into one endpoint to successfully

block the detected attack without affecting other nodes or traffic flows.

Furthermore, we would like to highlight the potential use of Machine Learning models

for the automating of tasks within SDN environments. These models allow for the treatment

of ever-growing complex attack scenarios. However, a key role is played by the use of Big

Data technologies, which are essential in providing tools and modules for the collecting and

processing of large amounts of data needed for detecting and blocking the attacks previously

mentioned.

Finally, we must also emphasise the opportunities given by current SDN-virtualizing en-

vironments and open-source controllers for developing systems focused on improving tasks

in SDN without being able to access a real SDN network. The use of Mininet and Open-

Daylight has allowed us to develop this project, even though we could not enjoy access to

real SDN networks.

84

6.2. FUTURE WORK

6.2 Future Work

This project has successfully solved the challenge of automating the detection and treatment

of DoS scenarios within an SDN environment. However, we would like to extend the range

of attack types being detected and processed by our system in order to apply it as a general

cyberattack protection system for SDN environments.

Furthermore, we would like to extend the ontology being used in this project. By extend-

ing the current ontology, we could not only add new variables and data fields representing

the current status of the network, but also represent complex attack scenarios where attacks

do not have such a direct effect in the network being monitored. Furthermore, we would

also like to develop entities to represent the services being provided.

As a matter of fact, we would like to focus also on including multiple services and more

complex scenarios, where services depend on each other and we have to monitor multiple

types of resources.

Finally, we would like to modify the data collection module in such a way that it can

collect data from multiple types of SDN controllers, instead of being adapted to work with

OpenDaylight controllers. For example, we would like to include methods to collect data

from the ONOS controller, which is being widely supported by such telecommuncation

companies as NTT and AT&T.

85

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

86

Bibliography

[1] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific american,

284(5):34–43, 2001.

[2] Akamai Technologies. The cost of denial-of-services attacks. https:

//www.akamai.com/us/en/multimedia/documents/content/

ponemon-institute-the-cost-of-ddos-attacks-white-paper.pdf, 2015.

Accessed: 2019-06-06.

[3] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid prototyping

for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot

Topics in Networks, page 19. ACM, 2010.

[4] Cooperson, Dana and Chappell, Caroline. Telefonica’s unica architecture strategy for network

virtualisation. Telefonica White Papers, 2017.

[5] Orange Business Services. How sdn simplifies managing digital experiences. https:

//www.orange-business.com/en/blogs/connecting-technology/networks/

how-sdn-simplifies-managing-digital-experiences, 2016. Accessed: 2019-06-06.

[6] Vodafone Business. Vodafone is first to launch new cisco sd-wan technology in europe.

https://www.vodafone.com/business/news-and-insights/white-paper/

vodafone-is-first-to-launch-new-cisco-sd-wan-technology-in-europe.

Accessed: 2019-06-06.

[7] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer

Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innovation in campus net-

works. ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[8] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. Network innovation using openflow:

A survey. IEEE communications surveys & tutorials, 16(1):493–512, 2014.

[9] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme, Jesse

Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design and implementation of open

vswitch. In 12th {USENIX} Symposium on Networked Systems Design and Implementation

({NSDI} 15), pages 117–130, 2015.

[10] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards a model-

driven sdn controller architecture. In Proceeding of IEEE International Symposium on a World

of Wireless, Mobile and Multimedia Networks 2014, pages 1–6. IEEE, 2014.

i

https://www.akamai.com/us/en/multimedia/documents/content/ponemon-institute-the-cost-of-ddos-attacks-white-paper.pdf
https://www.akamai.com/us/en/multimedia/documents/content/ponemon-institute-the-cost-of-ddos-attacks-white-paper.pdf
https://www.akamai.com/us/en/multimedia/documents/content/ponemon-institute-the-cost-of-ddos-attacks-white-paper.pdf
https://www.orange-business.com/en/blogs/connecting-technology/networks/how-sdn-simplifies-managing-digital-experiences
https://www.orange-business.com/en/blogs/connecting-technology/networks/how-sdn-simplifies-managing-digital-experiences
https://www.orange-business.com/en/blogs/connecting-technology/networks/how-sdn-simplifies-managing-digital-experiences
https://www.vodafone.com/business/news-and-insights/white-paper/vodafone-is-first-to-launch-new-cisco-sd-wan-technology-in-europe
https://www.vodafone.com/business/news-and-insights/white-paper/vodafone-is-first-to-launch-new-cisco-sd-wan-technology-in-europe

BIBLIOGRAPHY

[11] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio

Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al. Onos: towards an

open, distributed sdn os. In Proceedings of the third workshop on Hot topics in software defined

networking, pages 1–6. ACM, 2014.

[12] Manda Sai Divya and Shiv Kumar Goyal. Elasticsearch: An advanced and quick search tech-

nique to handle voluminous data. Compusoft, 2(6):171, 2013.

[13] Andrzej Bia lecki, Robert Muir, Grant Ingersoll, and Lucid Imagination. Apache lucene 4. In

SIGIR 2012 workshop on open source information retrieval, page 17, 2012.

[14] Tom Heath and Christian Bizer. Linked data: Evolving the web into a global data space.

Synthesis lectures on the semantic web: theory and technology, 1(1):1–136, 2011.

[15] Dörthe Arndt, Ruben Verborgh, Jos De Roo, Hong Sun, Erik Mannens, and Rik Van de Walle.

Semantics of notation3 logic: A solution for implicit quantification. In International Symposium

on Rules and Rule Markup Languages for the Semantic Web, pages 127–143. Springer, 2015.

[16] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers. Rdf 1.1 turtle.

World Wide Web Consortium, 2014.

[17] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas Lindström. Json-ld

1.0. W3C Recommendation, 16:41, 2014.

[18] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language overview.

W3C recommendation, 10(10):2004, 2004.

[19] Ritika Bansal and Sonal Chawla. An approach for semantic information retrieval from ontology

in computer science domain. International Journal of Engineering and Advanced Technology

(IJEAT), 4(2), 2014.

[20] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql. ACM

Transactions on Database Systems (TODS), 34(3):16, 2009.

[21] Swizec Teller. Data Visualization with d3. js. Packt Publishing Ltd, 2013.

[22] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-

learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830,

2011.

[23] Eli Bressert. SciPy and NumPy: an overview for developers. ” O’Reilly Media, Inc.”, 2012.

[24] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating a new

intrusion detection dataset and intrusion traffic characterization. In ICISSP, pages 108–116,

2018.

[25] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and Ali A Ghor-

bani. Characterization of tor traffic using time based features. In ICISSP, pages 253–262,

2017.

ii

BIBLIOGRAPHY

[26] Rajat Kandoi and Markku Antikainen. Denial-of-service attacks in openflow sdn networks.

In 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pages

1322–1326. IEEE, 2015.

[27] Fernando Benayas, Álvaro Carrera, Manuel Garćıa-Amado, and Carlos A Iglesias. A semantic

data lake framework for autonomous fault management in sdn environments. Transactions on

Emerging Telecommunications Technologies, page e3629, 2019.

[28] Rob Enns. Netconf configuration protocol. Technical report, 2006.

[29] Zareen Syed, Ankur Padia, Tim Finin, Lisa Mathews, and Anupam Joshi. Uco: A unified cy-

bersecurity ontology. In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence,

2016.

[30] Jeffrey Undercofer, Anupam Joshi, Tim Finin, John Pinkston, et al. A target-centric ontology

for intrusion detection. In Workshop on Ontologies in Distributed Systems, held at The 18th

International Joint Conference on Artificial Intelligence, 2003.

[31] Richard Lippmann, Joshua W Haines, David J Fried, Jonathan Korba, and Kumar Das. The

1999 darpa off-line intrusion detection evaluation. Computer networks, 34(4):579–595, 2000.

[32] Ciza Thomas, Vishwas Sharma, and N Balakrishnan. Usefulness of darpa dataset for intrusion

detection system evaluation. In Data Mining, Intrusion Detection, Information Assurance, and

Data Networks Security 2008, volume 6973, page 69730G. International Society for Optics and

Photonics, 2008.

[33] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. Toward developing a system-

atic approach to generate benchmark datasets for intrusion detection. computers & security,

31(3):357–374, 2012.

[34] Jason King and Mark Easton. Cross-platform. NET Development: Using Mono, Portable.

NET, and Microsoft. NET. Apress, 2004.

[35] Sukhveer Kaur, Japinder Singh, and Navtej Singh Ghumman. Network programmability using

pox controller. In ICCCS International Conference on Communication, Computing & Systems,

IEEE, volume 138, 2014.

[36] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado, Nick McKeown, and

Scott Shenker. Nox: towards an operating system for networks. ACM SIGCOMM Computer

Communication Review, 38(3):105–110, 2008.

[37] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark & Ethereal network protocol

analyzer toolkit. Elsevier, 2006.

[38] Wes McKinney. pandas: a foundational python library for data analysis and statistics. Python

for High Performance and Scientific Computing, 14, 2011.

[39] Ben Pfaff and Bruce Davie. The open vswitch database management protocol. Technical report,

2013.

iii

BIBLIOGRAPHY

[40] Kenneth J Pickering. Evaluating the viability of intrusion detection system benchmarking.

Bachelor Thesis, University of Virginia, US, 2002.

[41] FRANCISCO DE and TORRE DÍAZ. La tributación del software en el irnr. algunos aspectos

conflictivos. Cuadernos de Formación. Colaboración, 22(10), 2010.

iv

APPENDIXA
Impact of the project

While usually services are the elements that generate the most value for companies, telecom-

munication networks are vital for the provisioning of such services. Therefore, the devel-

opment of software systems on top of these networks that assure the correct functioning of

such networks have great value for companies depending on these services. Furthermore,

when these services are essential (such as services that support the management of emer-

gency situations), they might become the target of attacks by cybercriminals that want to

cause mayhem. However, protecting networks and monitoring their functioning can be very

costly when using workforce. Therefore, the automating of such processes can result in a

considerable benefit for companies managing these networks.

In this appendix the social, economic and environmental consequences of this project will

be presented in Sections A.1, A.2 and A.3, respectively. A dissertation regarding its ethical

consequences will also be included in Section A.4.

v

APPENDIX A. IMPACT OF THE PROJECT

A.1 Social Impact

The social aspects related to this project are quite varied, but they can be grouped into two

fields: those related to the assurance of service providing and those related to cybersecurity.

The use of multiple services through computer networks (such as streaming, transport

or job-seeking services) have an ever-growing impact in our everyday life. Therefore, any

event that hampers the ability of users to access those services will have an impact in their

lives. This impact could be very significant if the services being affected are essential, such

as emergency services. However, our system helps in avoiding situations in which services

become inaccessible due to cyberattacks, hence reducing the impact of such failures in both

minor and serious situations.

Furthermore, systems that discourage performing attacks on networks also have an

impact on reducing both risks for people using services being provided by that network and

the motivation of potential attackers for employing their resources on preparing themselves

to perform an attack against a network. This disencouragement results in many people

avoiding going out of their way to become attackers, since the resources and time needed

to perform an attack successfully are now higher.

Finally, we must also remark the possibility of the creation of new jobs related to the

deployment and maintaining of systems like the one developed in this project, and the

creation of jobs related to the extension and further developing of the mentioned system.

A.2 Economic Impact

The automation of cyberattack protection-related tasks provided by this system could have

a significant impact in companies that manage computer networks. Specifically, it could

drastically reduce the resources consumed in the protection of the network. This protec-

tion could be guaranteed by a whole department tasked with providing cybersecurity; by

automating their tasks, the resources consumed can be drastically reduced, since after the

automation the company would just need to employ someone to maintain such automation.

Another reason to expect a considerable impact as a consequence of the deployment of this

system consists in reducing the mentioned value of 1,5 million US dollars mentioned in the

Motivation section.

Furthermore, since we developed this system specifically for SDN networks, and these

networks are being widely adopted by most telecommunication companies, the impact of

this project will be amplified.

vi

A.3. ENVIRONMENTAL IMPACT

A.3 Environmental Impact

As we have mentioned in previous sections, computer networks are key for managing many

different services and situations. This includes infrastructures which could have a heavy

impact in the environment, such as power stations, mines or centers for the treatment of

toxic waste. If any cyberattack were successful in making any service within that envi-

ronment unavailable, the situation could rapidly evolve into an environmental catastrophe

which could pollute significantly the surrounding areas and affect the lives of many people

that lives near such places.

Regarding the specific prototype presented in this project, its development process had

barely any effect on the environment. Since the testbed was virtualized using the tools

already described, we did not make use of any devices bought specifically for this project.

Therefore, we did not generated any waste during the development and testing of the system.

A.4 Ethical and Professional Implications

The main ethical implication related to the system developed consists in the collection of

data from the network. Specifically, by collecting data that shows the details of each packet

in the interface directly connected to the service, we should be very careful with the storing

and treatment of this data so it stays anonymous and no profiles can be inferred from it.

For this purpose, we should follow current laws regarding the treatment and privatization

of data regarding traffic flows.

We also collect sensitive data regarding the structure of the network being monitored.

A potential attacker could steal that data and obtain an insightful view of the topology

and elements of the network. This data could help him/her in detecting weak points in the

network topology, which could lead to a successful attack. As we stated in the previous

paragraph, we should be very careful regarding the storing and treatment of data.

vii

APPENDIX A. IMPACT OF THE PROJECT

viii

APPENDIXB
Cost of the System

The development of this project has required the expertise and time of the developer tasked

with the mentioned project; therefore, we must consider his/her salary. Furthermore, we

required computing elements for the development and testing of the system; these elements

also have a cost that must be included in the overall cost of the system. If the resulting

systems were to be commercialized, we should also include the expenditures related to the

infraestructure needed for the deployment of such system. All the mentioned costs have

associated taxes which must be considered.

Therefore, in this appendix we will enumerate the costs related to the development of

the system. We will also provide a projection regarding the potential costs of deploying this

system at a commercial level. First, in Section B.1, we will describe the elements required

for the development of this project. Next, in Section B.2, we will depict the costs related

to the workforce needed for the development and maintenance of this system. Finally, in

Section B.3, we will describe the taxes related to these costs.

ix

APPENDIX B. COST OF THE SYSTEM

B.1 Physical Resources

First, in order to develop and test the system, a computer is needed. Furthermore, this

computer must have enough memory and power for it to be able to run multiple containers at

the same time. Therefore, we consider that this computing unit must provide the following

resources:

• Hard Disk: 100 GB

• RAM: 16 GB

• CPU: Intel i7 processor, 2.80 GHz

We estimate the cost of a machine with these capabilities to be 800 e. During the

development of this project, a machine with similar characteristics have been used. Then,

this system has been deployed in a cluster consisting in a cluster head with a cost of 10,000

e and three computing units with a cost of 5,000 e each. This cluster also has a Network-

attached Storage unit with a cost of 5,000 e.

However, the costs previously described apply only to the development and testing

processes. If we intend to deploy the system at a professional scale, we should invest in

a cluster of, minimum, seven computers. The cost of such deployment would be around

15,000 e.

B.2 Human Resources

Human resources are required in this project for both the development and maintenance of

the system developed. We will estimate the salaries of the personnel required and the time

required for each task.

The cost in working hours spent in the development of this project is estimated to

be around 460 hours. This forecast is calculated considering that the academic programme

estimates the cost of this project to be around 12 ECTS (European Credit Transfer System)

credits. Since each credit entails from 25 to 30 work hours, the resulting time spent should

be 360 hours; we added 100 hours spent in the documentation related to this project. Since

the salary of an IT engineer could be considered to be around 2,500 e (gross) and a month

has 23 working days, the development of this project should take three months at most

(considering an eight-hour working day), or 7,500 e in costs related to workforce.

x

B.3. TAXES

We must also consider the costs related to the maintenance of this project. In order to

perform an optimal maintenance, we would need another IT engineer working full-time for

the purpose of providing a quick response when an incident occurs. Therefore, we should

consider the cost of employing him full-time, which will totals 30,000 e per year.

B.3 Taxes

Since we intend to further develop and commercialize this software, we must consider taxes

related to the selling and buying of services and software systems in Spanish soil.

According to [41], a tax of the 15% of the product value is applied over transactions

involving the mentioned product. However, this is applied only in Spanish soil: if we

intended to commercialize this product in other countries, we should consider taxes applied

in the country where we are selling our system.

xi

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Glossary
	Introduction
	Context
	Motivation
	Project goals
	Structure of this document

	Enabling Technologies
	Introduction
	Software Defined Networks
	The SDN paradigm
	Mininet
	OpenFlow
	Open vSwitch
	OpenDaylight

	Big Data Technologies
	Elastic Stack
	ElasticSearch
	Lucene
	Adding and searching data

	Beats
	Logstash

	Semantic Technologies
	Linked Data
	SPARQL

	Data Visualization Technologies
	Visualization libraries
	Sefarad

	Machine Learning
	Cyber-attack datasets and tools
	CSE-CIC-IDS2018
	Low-Orbit Ion Cannon
	CICFlowMeter

	Cyber-attack Detection Models
	Introduction
	Semantic modeling
	SDN-NDL
	Unified Cybersecurity Ontology
	SDN-AR: Software-Defined Network Attack Reporting Language

	Machine Learning modeling for cyber-attack scenarios
	Intrusion Detection Evaluation Dataset (CICIDS2017)
	Classification algorithms and results

	Architecture
	Introduction
	Architecture overview
	Data Ingestion layer
	Data Processing Module
	Data Enrichment System
	Cyber-attack Detection Module
	Visualization Module

	Case study
	Introduction
	Network Environment
	Software Defined Network
	Opendaylight

	Data Ingestion
	Data Collection
	Data Processing

	Cyber-attack Diagnosis
	Semantic Data Enrichment
	Visualizing Data

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Impact of the project
	Social Impact
	Economic Impact
	Environmental Impact
	Ethical and Professional Implications

	Cost of the System
	Physical Resources
	Human Resources
	Taxes

