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Tutor: Óscar Araque

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos
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Resumen

Recientemente, durante los últimos años, tanto el uso de Internet como la conectividad en

redes sociales se han visto in incrementados. Las redes sociales son plataformas que facilitan

la comunicación entre usuarios mediante diferentes interacciones. Desafortunadamente, las

redes sociales también se han convertido lugares para la proliferación de discurso de odio.

El discurso de odio se ha convertido en un tema popular en los últimos años. Esto

puede verse reflejado no solo en el aumento de la cobertura de este problema, sino también

en la creciente atención poĺıtica que está recibiendo. Ante la progresión de este fenómeno,

instituciones, asociaciones de minoŕıas internacionales, investigadores y redes sociales están

tratando de reaccionar lo más rápido posible. Debido a la escala masiva de las redes sociales,

se requieren métodos que detecten automáticamente el discurso del odio. Procesado del

Lenguaje Natural (PLN) enfocado espećıficamente en este fenómeno es necesario, dado que

filtros básicos de palabras no proporcionan suficiente remedio: un mensaje con discurso

de odio podŕıa estar influenciado por aspectos como el dominio, el contexto, el uso de

multimedia (imágenes, v́ıdeos, audios), etc.

Esta memoria es el resultado de un proyecto cuyo objetivo principal ha sido obtener un

detector de discurso de odio con una perspectiva multilingüe, con el fin de eliminar toda

forma de discurso de odio que pueda ocurrir en las redes sociales independientemente del

lenguaje en el que se produzca. Para desarrollarlo, se han utilizado herramientas de apren-

dizaje automático supervisado, técnicas de PLN y Python como lenguaje de programación.

El sistema propuesto ha sido evaluado haciendo uso de dos casos de estudio, la partici-

pación en una competición reconocida a nivel internacional, como es SemEval, y enfrentado

el sistema a un desaf́ıo transferencia de aprendizaje entre idiomas y rasgos del discurso de

odio. La extensa experimentación llevada a cabo ha resultado en una posición muy hon-

orable en la competición de SemEval y en una demostración de los beneficios que puede

aportar la aplicación de la transferencia de Aprendizaje al problema de la detección del

discurso de odio.

Palabras clave: Redes Sociales, Discurso de Odio, Aprendizaje Autómatico, Procesado

del Lenguaje Natural, SemEval, Transferencia de Aprendizaje, Python, Scikit-learn, NLTK.
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Abstract

Recently, during the last few years, activity over Internet and social network connectivity

has been increased. Social networks are platforms that ease communication between users

by means of different interactions. Unfortunately, social networks have also become places

for hate speech proliferation.

Hate Speech has become a popular topic in recent years. This is reflected not only by

the increased media coverage of this problem but also by the growing political attention it

is receiving. Given the constant progression of this phenomenon, institutions, international

minorities associations, researchers and social networks are trying to react as quickly as

possible. Because of the massive scale of the social networks, methods that automatically

detect hate speech are required. Natural Language Processing (NLP) focusing specifically

on this phenomenon is required since basic word filters do not provide a sufficient remedy:

a hate speech utterance might be influenced by aspects such us the domain, context, co-

occurrence media objects (images, video, audio), etc.

This thesis is the result of a project whose main aim has been to obtain a hate speech

detector with a multilingual perspective, in order to remove all shape of hate speech that

can occur in social networks, independently the origin language. During the development

phase, there have been used supervised machine learning tools, NLP techniques, and Python

as programming language.

The proposed system is evaluated against two study cases, a participation in a interna-

tionally recognized competition, such as SemEval and facing the system against a Transfer

Learning challenge across languages and hate speech traits. The extensive experimentation

carried out has resulted in a very honorable position in the SemEval competition and in a

demonstration of the benefits that can be brought by the appliance of Transfer Learning to

the hate speech detection problem.

Keywords: Social Networks, Hate Speech, Machine Learning, Natural Language Pro-

cessing, SemEval, Transfer Learning, Scikit-learn, NLTK.
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finalizar esta titulación de la manera más satisfactoria posible.

En primer lugar, quiero dar las gracias a mis padres, por hacer posible que yo pudiera

realizar estos estudios, tanto a nivel económico como a nivel ańımico.
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CHAPTER1
Introduction

This chapter introduces the context of the project, including a brief overview of all the

different parts that will be discussed in the project. Special attention revolves around the

hate speech definition statement which complexity may exceed prior expectations. After this,

we describe the motivation for the development of this project in a few lines.

It also breaks down a series of objectives to be carried out during the realization of the

project. Moreover, it introduces the structure of the document with an overview of each

chapter.
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1.1 Context

Nowadays, almost everyone has a device connected to the Net and if we focus on younger

people, we find that almost everyone shares personal information on social networks [86].

This information is the result of many interactions between users and their activity on the

Net like posting, friends or their network size.

Unfortunately, hate speech and other misuses are proliferating on the Internet. Hate

speech is a complex phenomenon, intrinsically associated with relationships between groups,

and also relying on language nuances. Hate speech authors justify this conduct based on

the freedom of speech argument and debate over hate speech legislation and freedom of

speech has been generated [48]. But this argument has no sense since freedom of speech is

not understood if people are afraid to express themselves as they are.

The task to decide if a piece of text contains hate speech is not trivial, even for humans.

Being subject to different interpretations and opinions, the manifestations of hate speech

become difficult to define. For this reason, establishing homogeneous and uniform criteria

that allows us to identify said discourse has become a controversial challenge. For that

reason, we have compiled in Table 1.1 some definitions from different sources (surveys,

social networks, minorities associations1, and The European Union Commission).

Despite the similarities between the definitions, we conclude that there are some aspects

that distinguish them. For example, Facebook and YouTube mention any content (not

only written language), inferring that multimedia content could include hate speech. Also,

Facebook makes a special mention of humor comments. In a similar way, Twitter has into

account the context of the message. ILGA-Europe does not classify hate speech into groups,

so any group could be a victim of hate speech. Having in mind all the subtleties cited above,

we can give a complete hate speech definition, which is very similar to that stated by Paula

Fortuna in her survey [42]:

“Hate Speech is any communication (text, image, video, etc.) that attacks, di-

minishes, incites violence or hate against individuals or groups, based on ac-

tual or perceived specific characteristics such as physical appearance, religion,

descent, national or ethnic origin, sexual orientation, gender identity, or any

other”.

Though it is not explicitly mentioned, we see necessary including jokes (if they fulfill

the previous specifications) as hate speech because even though they can be considered

1International Lesbian, Gay, Bisexual, Trans, Intersex Association (ILGA)
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Table 1.1: Hate Speech Definitions

Source Definition

EU Code of Conduct “Public incitement to violence or hatred directed to groups or

individuals on the basis of certain characteristics, including race,

colour, religion, descent and national or ethnic origin.” [26]

ILGA-Europe “Public expressions which spread, incite, promote or justify ha-

tred, discrimination or hostility towards a specific group. They

contribute to a general climate of intolerance which in turn makes

attacks more probable against those given groups.” [50]

Schmidt et al. “Any communication that disparages a person or a group on the

basis of some characteristic such us race, color, ethnicity, gen-

der, sexual orientation, nationality, religion, or other characteris-

tic.” [83]

Twitter “Encourage violence against other people, attack or threaten them

directly because of their race, ethnic origin, nationality, sexual ori-

entation, gender, gender identity, religious affiliation, age, disabil-

ity or serious illness. Taking into account the context in which

this information is published”[2]

Facebook “All content that directly attacks people because present what we

call ‘special traits’: race, ethnicity, nationality, religion, class, sex-

ual orientation, sex, sexual identity and disability or serious illness.

We allow humorous, and educative purpose comments related to

these topics.” [1]

YouTube “Content that promotes violence against or has the primary pur-

pose of inciting hatred against individuals or groups based on cer-

tain attributes, such as: race or ethnic origin, religion, disabil-

ity, gender, age, veteran status, sexual orientation/gender iden-

tity.” [3]

harmless, the repetition of these jokes can become a way to reinforce hate speech attitudes

without punishment. We also state that any group can be a target of hate speech instead of
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creating a “protected groups” classification because new targets of hate speech can appear

and those are undetectable unless the “protected groups” are redefined. Finally, we exclude

offensive content in case of the context is not inciting to violence.

There is an additional consideration to complete this definition because hate speech

is very dependent on the context. Offensive content does not necessarily have to be hate

speech and hate speech does not have to be offensive. In light of this definition, there is

a fine line between what is and what is not considered to be hate speech. For example,

merely mentioning an organization associated with hate crimes (“Ku Klux Klan”) does not

constitute hate speech. Even an endorsement of the organization does not constitute a

verbal attack on another group. For the same reason, an author’s excessive pride in his own

race (Aryan race) or group does not constitute hate speech. Another special case to notice,

is that criticize a nation is allowed, while attack someone based on his national origin is

not.

Although we have said that any group can be target of hate speech, historically these

groups have been very well identified and Table 1.2 gathers up each type of hate speech

that can be found in the actual literature.

Table 1.2: Types of Hate Speech and examples (Table from Silva et al. [85])

Categories Example of possible targets

Race nigga, black people, white people

Behaviour insecure people, sensitive people

Physical obese people, beautiful people

Sexual orientation gay people, straight people

Class ghetto people, rich people

Gender pregnant people, cunt, sexist people

Disability retard, bipolar people

Ethnicity chinese people , indian people, paki

Religion religious people, jewish people

Other drunk people, shallow people
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1.2 Motivation

The motivation of this project comes firstly by the increasing impact and popularity of hate

speech topic. In fact, hate speech is prohibited by law, typified alongside the known hate

crimes 2, therefore each country has its own laws approved against such crimes. Further-

more, The European Union Commission has founded several programs towards the fighting

of hate speech (e.g., No Hate Speech Movement by the Council of Europe [70]) and pres-

sured Facebook, Twitter, YouTube and Microsoft to remove any appearance of hate speech

in their platforms in less than 24h [47]. Nevertheless, it seems that neither Facebook and

Twitter are performing this task well enough [55, 19].

Secondly, the scientific study of hate speech, from a computer science point of view,

is recent, and there is a general lack of data about hate speech. For this reason, the

development and systematization of shared resources, such as guidelines, annotated datasets

in multiple languages, and algorithms, is a crucial step in advancing the automatic detection

of hate speech.

In addition, many companies and institutions might be very interested in hate speech

mitigation over their platforms. After all, they provide a service which they profit, conse-

quently, they assume public obligations with respect to the contents transmitted. Besides,

their reputation mainly comes from the perceived image by users, so they cannot risk be-

coming known as hate sites 3. Additionally, users can be interested in blocking discourse

with hate speech to avoid being exposed to it. In this case, it is necessary taking steps to

discourage online hate and remove hate speech within a reasonable time (as pretended by

the European Union Commission).

For this reason, the aim of this project is to develop a hate speech detector using

automated procedures in a social network context. These procedures are mainly supported

by two fundamental fields, Machine Learning and Natural Language Processing. For that

purpose, different techniques have been explored carrying out several study cases. In first

place, we decided to participate in SemEval-2019 Task 5 [12]: Multilingual Detection of Hate

Speech Against Immigrants and Women on Twitter. Then, in a second phase, a problem of

Transfer Learning [89] across languages and domains was addressed. Next section, describes

the expected results from this experimentation.

2https://ucr.fbi.gov/hate-crime
3A website that contains hate speech
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1.3 Project Goals

As stated before, the final objective of this project is to obtain a hate speech classifier

digging through different approaches using publicly available annotated data. In general

issues, among the main goals of the project we can find:

• Review the current state of the art of the field in terms of available corpus with the

aim of unifying the use of hate speech data.

• Develop a series of solutions capable of detecting hate speech in a social network

context.

• Apply our solution into two study cases, an internationalized competition to detect

hate speech, and a Transfer Learning problem.

• Explore the performance of our proposal in the Semeval participation

• Explore the performance of using architectures formed by traditional methods and

more recent techniques in the NLP field for text classification.

• Explore the potential of Transfer Learning applied to the problem of hate speech

detection across languages and hate speech traits.

• Conclusion extraction related to the results of the project and the presence of online

hate speech.

1.4 Structure of this Document

In this section, we provide a brief explanation of the chapters included in this thesis. The

structure follows this schema:

Chapter 1 explains the context in which this project is developed, mainly the hate

speech phenomenon. Moreover, it describes the main goals to achieve in this project, as

well as the motivation and the structure of this document.

Chapter 2 offers a brief review of the related published works found in the literature.

Besides, some characteristics of the field and the datasets encountered are presented.

Chapter 3 provides a description of the main technologies on which this project relies,

among them, we can find some Python libraries, NLP and Machine Learning technologies.

Chapter 4 describes the participation in SemEval-2019 Task 5.
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Chapter 5 presents the Transfer Learning system evaluated in both, multilingual and

cross-domain approach.

Chapter 6 discusses the conclusions drawn from this project, as well as the problems

faced in its development. Finally, it focuses on the possible next step to be done as future

work.
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CHAPTER2
State of Art

This chapter reviews the current state of the field, providing a general overview of previous

approaches, including core algorithms, methods, and main features used. We first describe

the work carried out by previous survey research which offers a general overview of the

field of automatic hate speech detection. After this, we focus on the features used by other

authors. Continuing, the main evaluation results are presented together with a discussion

about their reliability. To finalize, this chapter also covers a description of the datasets and

open source projects available to date.
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2.1 Related Work

Hate speech detection is a new exploited field so the number of studies related to the domain

is scarce. Figure 2.1 shows the number of publications per year since 2004, where can be

seen that before 2014 the number of documents in relation to hate speech rarely surpassed

two publications per year. However, since 2014 this number has been increasing until dozens

of research papers in 2015 and 2016. The smaller value in 2017 is due to the search stopped

in May 2017.

Figure 2.1: Number of publications per year (N = 51) (Figure from Fortuna et al. [42])

Most of our literature review from the field is referenced by previous survey research

which provides a comprehensive, structured, and critical overview of the field of automatic

hate speech detection using NLP techniques. One of them [83] was published in April 2017

and the other one [42] in July 2018, so the information they supply can be considered as

actualized. Summarizing both, it could be said that firstly they define hate speech and

compare hate speech with similar concepts (Hate, Cyberbullying, Discrimination, Abusive

language, Extremism, Radicalization, etc.) and enumerate rules for hate speech identifi-

cation. Then, they analyze the features used to solve the problem. Later, they focus on

different classification methods used. Finally, they present existing data collections for this

task, some applications, challenges, and problems faced.

Below we present a set of valuable characteristics extracted by the surveys that contain

some interesting information. In the first place, we will talk about the keywords referred in

the documents. These keywords were grouped and computed their frequencies. Table 2.1

shows the keywords with the highest frequencies. We conclude that a paper studies hate

speech detection when it is related to:
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• Hate speech concepts: cyberbullying, cyber hate, sectarianism, and freedom of

speech.

• Machine learning: classification, sentiment analysis, filtering systems, and machine

learning.

• Social media: internet, social media, social network, social networking, and hashtag.

Table 2.1: Keywords of the papers (Table from Fortuna et al. [42])

Keyword Frequency

Cyberbullying 5

Social media 5

Classification 4

Internet 4

Freedom of speech 3

Hate speech 3

Machine learning 3

NLP 3

Sentiment analysis 3

Social network 3

Social networking (online) 3

Cyber hate 2

Filtering systems 2

Hashtag 2

Sectarianism 2

The found documents analyze datasets with messages that were collected from social

networks. Table 2.2 presents the social networks used in the papers and their frequencies.

Twitter is the most commonly used source, followed by general sites, YouTube and Yahoo!.
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Table 2.2: Social networks used in the papers (Table from Fortuna et al. [42])

Keyword Frequency

Twitter 5

Sites 5

YouTube 4

Yahoo! finance 4

American Jewish Congress (AJC) sites 3

Ask.fm 3

Blogs 3

Documents 3

Facebook 3

formspring.me 3

myspace.com 3

Tumbler 2

Whisper 2

White supremacist forums 2

Yahoo news 2

Yahoo! 2

The surveys also analyzed the number of instances used by each paper. An instance

is an example that can be used by a model either to learn (if the instance belongs to the

training set) or to predict (if the instance belongs to the test set). In the context of hate

speech, an instance is a text message (it could also include meta or multimodal information,

we will discuss this later), with a classification label. The total number of instances is the

dataset size. Figure 2.2 shows a dataset histogram based on the dataset size. The number of

instances has a wide range of magnitudes. Nevertheless, we can conclude that the majority
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of papers use between 1,000 and 10,000 instances.

Figure 2.2: Dataset sizes used in the papers (Elaborated from Fortuna et al. [42])

We can analyze if the found documents focus on general hate speech or on more partic-

ular types of hate. Table 2.3 compile this information, and we can see that the majority (N

= 26) considers general hate speech, however, there is a large number of papers (N = 18)

that focus particularly on racism.

Table 2.3: Type of hate speech analyzed in the papers (Table from Fortuna et al. [42])

Hate type Frequency

General hate speech 26

Racism 18

Sexism 6

Religion 4

Anti-semitism 1

Nationality 1

Other 1

Physisical/mental handicap 1

Politics 1

Sectarianism 1

Social and economic status 1
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According to the task addressed, the most common approach found from the systematic

literature review carried out by Fortuna et al [42] consists of building a Machine Learning

model for hate speech classification. They also found that the most common algorithms

used are SVM, Random Forest, and Decision Tree. Additional information about other

algorithms is given in Table 2.4.

Table 2.4: Algorithms used in the papers (Table from Fortuna et al. [42])

Algorithms Frequency

SVM 10

Random Forest 5

Decision Tree 4

Logistic Regression 4

Naive Bayes 3

Deep Learning 1

DNN 1

Ensemble 1

GBDT 1

LSTM 1

Non-supervised 1

One-class classifiers 1

Skip-gram model 1
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2.2 Features

In this section, we analyze features used by other authors for hate speech detection. Finding

the right features for a classification problem can be one of the more complex tasks when

using machine learning. Therefore, we allocate this specific section to describe the features

already used by other authors. We divide features into two categories: general features

used in any field, which can be found in other data mining fields; and the specific hate

speech detection features, which are found in hate speech detection documents and are

intrinsically related to the characteristics of this problem. We present our analysis in the

following sections. It is recommended a previous reading on Sections 3.5 and 3.6 for better

understanding.

2.2.1 General Features

The majority of the papers found by the surveys try to adopt strategies already known

in text mining for the specific problem of automatic detection of hate speech. We define

general features as the features commonly used in text and multimedia content. We start

by the most simplistic approach that uses dictionaries and lexicons.

Dictionaries. This approach consists of making a list of words (the lexicon or dictio-

nary) that are searched and counted in the text. These frequencies can be used directly

as features or to compute scores. There are several publicly available lists that consist of

general hate-related terms1. Apart from sites that contain such lists, there are also sites

which focus on lists that are specialized in a particular subtype of hate speech, such as eth-

nic slurs2, Lesbian, Gay, Bisexual, and Transgender (LGBT) slang terms3, or words with a

negative connotation towards handicapped people4.

Distance Metric: in online content, it is possible that the offensive words are obscured

with a misspelling (intentional or not), often a single character substitution (“@ss”, “sh1t”,

“nagger”). The minimum number of edits necessary to transform one word to another can

be used as complement to dictionary-based approaches.

Bag-of-Words (BOW): is a model which represents a text inside a corpus, based on

the word occurrences that appear in the text, when these words have been extracted from

1www.noswearing.com/dictionary, www.rsdb.org, www.hatebase.org
2https://en.wikipedia.org/wiki/List_of_ethnic_slurs
3https://en.wikipedia.org/wiki/List_of_LGBT_slang_terms
4https://en.wikipedia.org/wiki/List_of_disability-related_terms_with_negative_

connotations
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the whole corpus, instead of using a predefined set of words, as in the dictionaries procedure.

After collecting all the words, the frequency of each one is used as a feature. BOW model is

an orderless document representation, only the counts of words matter. As an alternative,

the n-gram model can store spatial information.

N-grams: is a contiguous sequence of n items from a given sample of text. The items

can be phonemes, syllables, letters, words or base pairs. As in the previous case, the n-

grams are collected from a text corpus and the frequency for each n-gram inside each text

is computed. The most common approach is to use word n-grams, though character n-gram

features might be less sensitive to the spelling variation often faced when working with user

generated content.

Term Frequency - Inverse Document Frequency (TF-IDF): is a numerical

statistic applied to a BOW or n-gram model. It is intended to reflect how important a

word is to a document within a collection or corpus. A high value of TF-IDF is reached

when a word appears a lot in one document and does not appear in the others. In this way,

the frequency of the term is offset by the number of documents in the corpus that contain

the term, which help to identify important words having in mind the fact that some words

appear more frequently by default (like stop-words).

Profanity Windows: is a mixture of dictionary and N-gram approaches. The aim

is to check if a second person pronoun is followed by a profane word within the size of

a window and then create a boolean feature if this condition is fulfilled. For example,

considering “bastard” (a selection of words as in dictionary approach) as a profane word

and a window size of 3 (number of terms to consider as in n-gram features), the following

example complies the condition given: “You (1) stupid (2) bastard (3)”, while the following

one would not: “You (1) are (2) so (3) stupid (4), bastard (5)”.

Part-of-Speech (POS): is a category of words which have similar grammatical prop-

erties. Words that are assigned to the same part of speech generally display similar behavior

in terms of syntax (they play similar roles within the grammatical structure of sentences).

Commonly listed parts of speech are noun, verb, adjective, adverb, pronoun, preposition,

conjunction, interjection, and sometimes numeral, article or determiner. These approaches

consist in detecting the category of the word and extract a global feature for all texts and

each category (frequency or ratio of appearance in the texts).

Lexical Syntactic Feature-based (LSF): it consists in capturing the grammatical

dependencies within a sentence. Offensive words associated with another pejorative word

or with a second pronoun becomes more offensive from users perception. For example, “you

stupid” and “f***ing stupid” are much more insulting than “This game is stupid”. So the
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features obtained are pairs of words in which one word is offensive and depends on the other

one in the sense we have seen in the examples.

Rule-Based Approaches: involves to identify and use a set of relational rules that

collectively help a classifier to make decisions. Once the classifier is trained, to classify a

new sentence it finds all rules whose words are contained in the sentence and then use an

aggregation technique to choose a predominant class among those found by the rules.

Participant-vocabulary consistency: this method is used to characterize the ten-

dency of each user to harass (bully score) or to be harassed (victim score), and the tendency

of a key phrase to be indicative of harassment. In this problem, for each user, a bully score

(b) and a victim score (v) are assigned. And for each feature, a feature-indicator (w) is

associated that represents how much the feature is an indicator of a bullying interaction.

Learning is then an optimization problem over parameter vectors b, v, and w.

Template Based Strategy: the basic idea is to build a corpus of words, and for each

word in the corpus, collect K words that occur around. This gives information about the

context. “W-1:go W0:back W1:to” is an example of template with K = 2 on the word

“back”.

Word Sense Disambiguation Techniques: this problem consists in identifying the

sense of a word in the context of a sentence when it can have multiple meanings. This can

be achieved by carrying out word clustering which consists of clustering words which are

semantically similar and can thus bear a specific meaning. Latent Dirichlet Allocation (LDA)

is a slight variant of the previous one which produces for each word a topic distribution

indicating to which degree a word belongs to each topic instead of assigning each individual

word to one particular cluster.

Typed Dependencies: is a representation which provides a simple description of the

grammatical relationships in a sentence. Such relationships have the potential benefit that

non-consecutive words bearing a (potentially long-distance) relationship can be captured in

one feature. For instance, in “Jews are lower class pigs” a dependency tuple (pigs, jews)

will denote the relation between the offensive term pigs and the hate target Jews.

Sentiments: hate speech may be considered as subjective content and relation between

subjective content, sentiments, and emotions may appear. Hate speech is expected to have

a negative polarity in most occasions, and using sentiment as a feature can be very helpful.

Knowledge-Based Features: detecting if a message is hateful or benign can be highly

dependent on world knowledge, and it is therefore intuitive that the detection might benefit

from including information on aspects not directly related to language. “Put on a wig and
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lipstick and be who you really are” may not be categorized as some form of hate speech

when only read in isolation, however, if this expression is directed towards a boy one may

perceive it as an attack to the sexuality or gender identity of the boy being addressed. The

basis of this model is to encode concepts that are connected by relations and stereotypes

to form assertions, such as “a skirt is a form of female attire” or “lipstick is used by girls”.

This knowledge base allows computing the similarity of concepts of common knowledge

with concepts expressed in user comments. Obviously, this approach only works for a very

confined subtype of hate speech (i.e, anti-LGBT bullying). It could also be used for other

types of hate speech but it would require domain specific assertions to be included and this

would require a lot of manual work.

Word Embeddings: is the collective name for a set of language modeling and feature

learning techniques in NLP where words or phrases are mapped to vectors of real numbers.

These vectors are built in such a way that words with similar meaning have low distance in

the vectorial space created and vice versa.

Meta-Information: information about a message is also a valuable source to hate

speech detection. Having some background information about the user of a post may be

very predictive. A user who is known to write hate speech messages (e.g. number of previous

profanity words) may do so again. Knowing the gender of the user may also help because

there have been seen that men are much more likely to post hate speech messages than

women [98].

Multimodal information: Modern social media not only consists of text but also

include images, video and audio content. This context outside a written user comment can

be used as a predictive feature. In fact, it can be very helpful since, among hateful user

posts illustrated by websites documenting representative cases of severe cyber hate5, visual

context plays a major role. This features can be employed based on image labels, shared

media content, and pixel-level image features.

Other features: Other features used in this classification task were based on techniques

such as Named-Entity Recognition (NER), frequencies of personal pronouns in the

first and second person, the presence of emoticons and capital letters. Characteristics

of the message were also considered such as hashtags, mentions, retweets, URLs, number of

tags, terms used in the tags, and link to multimedia content, such as image, video, or audio

attached to the post. Figure 2.3 shows a classification diagram of all the features explained

before.

5One example documenting disturbing cases of gender-based hate on Facebook: www.

womenactionmedia.org/examples-of-gender-based-hate-speech-on-facebook/-
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Figure 2.3: General features (Elaborated from Fortuna et al. [42])
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2.2.2 Specific Hate Speech Detection Features

Complementary to the approaches commonly used in any other field, several specific features

are being used to tackle the problem of hate speech automatic detection. We briefly present

the approaches found.

Othering language: It is based on analyzing the contrast between different groups by

looking at “Us versus Them”. It describes “Our” characteristics as superior to “Theirs”,

which are inferiors. “Send them home” is an example of this type of language because it

uses the opposition between “them” from “us” through the action of removing “them” to

their “home”.

Objectivity-Subjectivity of the language: In most cases, hate speech is present

in subjective language, so detecting and erasing the objectives sentences can help in the

analysis.

Focus on Particular Stereotypes: Hate speech often employs well-known stereo-

types, especially in some types of hate speech such as racism or sexism. Given this, creat-

ing a language model for each stereotype is necessary for building a general model of hate

speech.

Intersection of Oppression. It refers to the connection between several particular

types of hate speech (For example, burka prohibition can be treated as Islamophobic, since

this symbol is used by Muslims, or as sexist, because it is just worn by women). It can help

to build a more general model of hate speech. For this purpose, it is necessary to feed the

classifier with instances belonging to several categories (a balanced number of examples for

each category is desirable) of hate speech.
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2.3 State of the art Performance

In the collected papers, several metrics were computed to estimate the performance of the

models. Precision, recall, and F-measure were the most common metrics and in some other

studies, Accuracy and Area Under the Curve (AUC) were also considered. In Table 2.5,

the results of the studies are presented in descending order of the F-measure value.

These results should be analyzed with some care because different datasets, definitions,

and rules for hate speech identification are being used. In the table is shown a summary of

the best results for each paper. It can be concluded that is it not clear which approaches

perform better. On the one hand, the best results were achieved when deep learning was

used either for feature extraction (word embeddings) or in the use as classification algorithms

(DNN, CNN, etc.). On the other hand, using dictionaries as features seem not to work well.

In light of the complexity of the hate speech domain, it could be argued that attending to

word knowledge context instead of isolated keywords could help in the analysis. But due

to what was commented previously, these results are not consistent. Comparative studies

could help to understand this question.
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Table 2.5: Evaluation Results from the Papers in the Metrics Accuracy (Acc), Precision

(P), Recall (R), F-measure (F) and AUC, Respective Features, and algorithms Used (Table

from Fortuna et al. [42])

Year Acc P R F AUC Features Algorithms Paper

2017 — 0.93 0.93 0.93 — — Logistic Regression, Ran-

dom Forest, SVM, GBDT,

DNN, CNN

[11]

2004 — 0.90 0.9 0.9 0.9 BOW, N-grams, POS SVM [44]

2017 — 0.91 0.9 0.9 — TF-IDF, POS, senti-

ment hashtags, mentions,

retweets, URLs, number

of characters, words and

syllabes

Logistic Regression,

acsvm

[31]

2017 — 0.833 0.872 0.851 — POS, sentiment anal-

ysis, wor2vec, CBOW,

N-grams, text features

SVM, LSTM [35]

2016 — 0.83 0.83 0.83 — N-grams, length, punctua-

tion, POS

Skip-bigram Model [69]

2014 — 0.89 0.69 0.77 — N-gram, typed dependen-

cies

Random Forest, Decision

Tree, SVM

[22]

2015 — 0.89 0.69 0.77 — N-gram, typed dependen-

cies

Random Forest, Decision

Tree, SVM, Bayesian Lo-

gistic Regression, Ensem-

ble

[20]

2016 — 0.72 0.77 0.73 — User features Logistic Regression [98]

2016 — 0.79 0.59 0.68 — BOW, dictionary, typed

dependencies

SVM, Random Forest, De-

cision Tree

[21]

2015 — 0.65 0.64 0.65 — Rule-based approach, sen-

timent analysis, typed de-

pendencies

Non-supervised [43]

2012 — 0.68 0.6 0.63 — Template-based strategies,

word sense, disambigua-

tion

SVM [95]

2016 — 0.49 0.43 0.46 0.63 Dictionaries SVM [90]

2015 — — — — 0.8 paragraph2vec Logistic Regression [37]

2016 0.91 — — — — word2vec Deep Learning [100]

2013 0.76 — — — — N-grams Naive Bayes [56]

2016 — 0.73 0.86 — — Topic modelling, sen-

timent analysis, tone

analysis, semantic analy-

sis, contextual metadata

One-class Classifiers, Ran-

dom Forest, Naive Bayes,

Decision Trees

[4]

2004 — 0.93 0.87 — — BOW, N-grams, POS SVM [45]

2014 — 0.97 0.82 — — TF-IDF, N-grams, topic

similarity, sentiment anal-

ysis

Naive Bayes [59]
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2.4 Datasets and Open Source Projects

In the majority of the papers, new different data was collected and annotated. However, only

in a few studies data is made available for other researchers (label “own, available”), and

only in one case an already published dataset is used (“published dataset”). The reduced

number of datasets that are publicly shared is a relevant aspect in this area, making more

difficult the comparison between different approaches. Figure 2.4 and Table 2.6 summarize

the main information found. Despite the fact that some datasets and corpus for hate speech

already exist, there are no established ones.

Figure 2.4: Dataset availability used in the papers (Elaborated from Fortuna et al. [42])

We had the goal to check if there are any projects available for automatic detection of

hate speech that can be used or sources for annotated data. For this, we inspected GitHub

using the expression “hate speech” in the available search engine. The search for projects

in GitHub occurred in October 2018. A total of 180 repositories were found. We describe

here the main conclusions from this research.

First, taking a first lookup we can say that the main approach found was to build models

and classifying messages as hate speech. There is also a library for hate speech detection

and projects that store datasets like the ones mentioned in Table 2.6. In what concerns to

the programming language, Python is the most frequent language, followed by JavaScript

and Java. Figure 2.5 presents the complete information about programming languages.

Regarding the datasets used by the projects, its source and language can be analyzed.

Most projects do not provide any new data and there are also a few projects that use

datasets already described in Table 2.6. Twitter is the social media most used although

projects that use Facebook and Instagram have also been found. Projects that not use
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Figure 2.5: Programming languages used in the projects

social networks also appear, data collected from Wikipedia6 or Reddit7 is used instead. In

most cases, projects use messages in English, but Italian, German and Indonesian are also

used.

6https://www.wikipedia.org/
7https://www.reddit.com/
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Table 2.6: Dataset and Corpus for Hate Speech Detection (Table from Fortuna et al. [42])

Name Distribution Year Type Number of instances Classes Used Language Ref

Hate

speech

Twitter an-

notations

Github repos-

itory

2016 Dataset 16,914 Sexist, racist English [97]

Hate

speech

Stormfront

annota-

tions

Github repos-

itory

2018 Dataset 10,945 Hate speech,

no hate speech

English [71]

Hate

speech

Instagram

annota-

tions

Github repos-

itory

2018 Dataset 573 Hate speech,

no hate speech

Indonesian [78]

Indonesian

Hate

speech

detection

Github repos-

itory

2018 Dataset 713 Hate speech,

no hate speech

Indonesian [7]

Hate

speech

identifica-

tion

Available for

the commu-

nity

2015 Dataset 14,510 Offensive with

hate speech,

offensive with

no hate speech,

not offensive

English [29]

Abusive

language

dataset

Not available 2016 Dataset 2,914 Hate speech,

not offensive

English [99]

German

Hatespeech

Refugees

Creative

Commons

Attribution-

ShareAlike

3.0 Unported

License

2016 Dataset 470 Hate speech,

not offensive

German [92]

Hate

Speech and

offensive

language

Available for

the commu-

nity

2017 Corpus 24,783 Offensive with

hate speech,

offensive with

no hate speech,

not offensive

English [30]

Italian

Twitter

Corpus

of Hate

Speech

Github repos-

itory

2017 Corpus 1,827 Hate speech,

no hate speech

Italian [39]

HateSpeech Github repos-

itory

2017 Dataset 1,244 Hate speech,

no hate speech

Portuguese [33]
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CHAPTER3
Enabling Technologies

This chapter offers a brief review of the main technologies that have made possible the real-

ization of this project. Throughout all this master thesis, Python was the programming lan-

guage used for the implementation. In order to carry out most of the experiments, Jupyter

notebooks have been used. Jupyter provides a rich framework for interactive computing,

allowing the user to execute short code cells and outputting the results in the same window.

The mentioned experiments need the previous tools to be enriched with some Python libraries

which can be divided into data managing libraries, natural language processing libraries, and

machine learning libraries. Following sections describe the fundamentals and usefulness of

the different libraries that supported the development in this project. Finally, the chapter

ends with a theoretical explanation about the fundamental concepts concerned with Machine

Learning and Natural Language Processing fields.
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3.1 Data Managing

This section encompasses libraries which ease data manipulation in Machine Learning re-

lated tasks.

3.1.1 Numpy

Numpy 1 [93] is the fundamental package for scientific computing with Python. Most of

the remaining libraries use NumPy in their implementation. In relation to the usefulness

in this project, Numpy was used due to its powerful high performance over multidimen-

sional arrays and matrices, and the large collection of high-level mathematical functions to

operate on these arrays. In addition, Numpy also contains tools for integrating C/C++

and Fortran code, along with broadcasting functions that transparently adapt dimensions

between arrays.

3.1.2 Pandas

Pandas 2 [64] is an open source, BSD-licensed, Python data analysis library that provides

fast, flexible, and expressive data structures. It is built on top of Numpy and is intended to

integrate well within a scientific computing environment with many other 3rd party libraries.

The two primary data structures of pandas are Series (1-dimensional) and DataFrames (2-

dimensional).

• Series is a one-dimensional labeled object, capable of holding any data type (integers,

strings, floating-point numbers, Python objects, etc.). It is similar to an array, a list,

a dictionary or a column in a table. Every value in a Series object has an index.

• DataFrames is a two-dimensional labeled object with columns of potentially dif-

ferent types. It is similar to a database table, or a spreadsheet. It can be seen as a

dictionary of Series that share the same index.

During the implementation, Pandas has been useful to structure datasets into unified

arrangements as well as to apply operations on whole datasets. Here are some of the

functions that Pandas implements:

1http://www.numpy.org/
2https://pandas.pydata.org/
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• DataFrame object for data manipulation with integrated indexing.

• Reading and writing data in different formats: CSV and text files, Microsoft

Excel, SQL databases and the fast HDF5 format.

• Intelligent data alignment and integrated handling of missing data

• Intelligent label-based slicing, fancy indexing, and subsetting of large datasets.

• Columns can be inserted and deleted from data structures for size mutability

• Aggregating or transforming data with a powerful group by engine allowing split-

apply-combine operations on datasets.

• High performance merging and joining of datasets.

3.2 Natural Language Processing

The main information source employed in this project are text messages displayed in so-

cial networks. Consequently, NLP techniques acquire a role of utmost importance for the

fulfillment of this thesis. Among the NLP tasks desired, text preprocessing, and feature

extraction methods are the most valuable capabilities offered by the libraries described

below.

3.2.1 NLTK

The Natural Language Toolkit (NLTK) 3 [60, 14] is the fundamental platform for building

Python programs to work with human language data. It provides a suite of text processing

tools for classification, tokenization, stemming, tagging, parsing, and semantic reasoning.

Here are some library highlights.

• It offers easy-to-use interfaces to over 50 corpora and lexical resources such as Word-

Net [40].

• Lexical analysis: word and text tokenizer.

• n-gram and collocations.

• Part-of-Speech tagger.

3https://www.nltk.org/
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• Tree model and text chunker.

• Named-Entity Recognition.

3.2.2 Gensim

Gensim 4 [79] is a free Python library designed to extract semantic topics from documents,

as efficiently (computer-wise) and painlessly (human-wise) as possible. The algorithms in

Gensim automatically discover the semantic structure of documents by examining statistical

co-occurrence patterns within a corpus of training documents in an unsupervised way. Once

these statistical patterns are found, any plain text documents (sentence, phrase, word...)

can be succinctly expressed in the new semantic representation.

The essential algorithm used in this project is Word2Vec [66] which proposes two model

architectures for computing continuous vector representations of words from very large

corpus. These models are shallow, two layer neural networks are trained to reconstruct

linguistic contexts of words. The resulting vector space, typically of several hundred di-

mensions, positions word vectors in the vector space such that words that share common

contexts in the corpus are located in proximity to one another in the space.

Nevertheless, a requirement of these approaches is the use of large amounts of data and

efficiently training neural networks in small datasets is still an open challenge. In light

of such trend, it is not reasonable to train a model with the available hate speech wise

data, pre-trained word vectors with general purpose collections billion words sized are used

instead.

3.2.3 TextBlob

TextBlob 5 [61] is a Python (2 and 3) library for processing textual data. It is based

on NLTK and Pattern 6 and plays nicely with both. It provides a simple API for dividing

into common NLP tasks such as Part-of-Speech tagging, noun phrase extraction, sentiment

analysis, classification, translation (powered by Google Translate), and more.

• Splitting text into words and sentences

• Word and phrase frequencies

4https://radimrehurek.com/gensim/
5https://textblob.readthedocs.io/en/dev/
6http://thepatternlibrary.com/
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• Parsing

• n-grams

• Word inflection (pluralization and singularization) and lemmatization

• Spelling correction

• WordNet integration

In the case of this project, the sentiment property from the toolbox was plenty exploited.

Such property provides text polarity and subjectivity which can be directly included as

features in our data processing pipeline. Initially was also thought to take into account the

translation option but currently, it is failing due to deprecation issues.

3.3 Machine Learning

This section gives an overview of the libraries used for Machine Learning purposes. Such

libraries are in charge of performing Machine Learning tasks, including classification taking

matrix data as input which, in this case, has been obtained using the previously described

technologies.

3.3.1 Scikit-learn

Scikit-learn 7 [73] is an open source, BSD-licensed, Python library providing simple and

efficient tools for data mining and data analysis. It is built on NumPy, SciPy, and mat-

plotlib. Scikit-learn implements a range of machine learning, preprocessing, cross-validation

and visualization algorithms.

Scikit-learn can perform classification (identifying to which category an object belongs

to), regression (predicting a continuous-valued attribute associated with an object), clus-

tering (automatic grouping of similar objects into sets), dimensionality reduction (reducing

the number of variables to consider), model selection (evaluating, validating, and selecting

best hyper-parameters and models), and feature extraction.

This final work is focused on classification tasks, where the aim is to assign each input

vector to one of a finite number of discrete categories. Another way to think of classification

is as a discrete (as opposed to continuous) form of supervised learning where there is a

7https://scikit-learn.org/stable/index.html
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limited number of categories and for each of the samples provided, the algorithm has to

label it into the correct category or class.

Scikit also implements some evaluation metrics to measure how well a model performs.

These functions compare a ground truth and a prediction, that is, the output of a fitted

Machine Learning algorithm when faced with a test sample. Apart from the train/test

approach, cross validation is also included into the Scikit-learn functionalities. In cross-

validation, data is divided into k groups of samples, called folds, of equal sizes (if possible).

The prediction function is learned using k − 1 folds, and the fold left out is used for test.

This procedure is repeated k times until all folds are used as test.

3.3.2 Imbalanced-learn

Imbalanced-learn [57] 8 is an open-source Python toolbox aiming at providing a wide range

of methods to tackle the curse of imbalanced datasets in Machine Learning. The imple-

mented state-of-the-art methods can be categorized into four groups: (i) under-sampling,

(ii) over-sampling, (iii) combination of over and under-sampling, and (iv) ensemble learning

methods. The proposed implementation depends on Numpy, Scipy, and Scikit-learn and is

distributed under MIT license.

The learning phase and the subsequent prediction of machine learning algorithms can be

affected by the problem of data imbalance. The balancing issue corresponds to the difference

between the number of samples in the different classes. In this situation, the decision

function of the different learning models could be highly impacted, with an important

imbalanced ratio, favoring the class with the greater number of samples, usually known as

the majority class.

Since hate speech is a real, but limited phenomenon, is frequent facing with datasets

where non-hateful samples are predominant. Therefore, we mostly exploit the under-

sampling capabilities provided by the toolbox.

3.3.3 GSITK

GSITK 9 [9, 10] is a library developed by the GSI on top of Scikit-learn that eases the devel-

opment process on NLP machine learning driven projects. It uses, Numpy, Pandas, NLTK,

Gensim, and related libraries to easy development. GSITK manages datasets, features,

8https://imbalanced-learn.readthedocs.io/en/stable/
9https://github.com/gsi-upm/gsitk
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classifiers, and evaluation techniques, so its scope is much larger than Machine Learning

utilities. GSITK is divided into five main modules.

• Datasets and DatasetManager. These modules are responsible for managing

datasets, allowing information loading in a quick manner. GSITK provides some

datasets by default that can be directly employed, furthermore it enables to import

your custom data by means of a Python module and a yaml file. Besides, as addi-

tional functionality, persistence is implemented in order to accelerate the reading of

the dataset once it has been loaded before. All datasets are processed as a Pandas

DataFrame.

• Preprocess. These modules provide tokenization and preprocessing methods for

cleaning data before applying feature extraction and Machine Learning techniques.

Among these preprocessing approaches, there is special attention under the one ori-

ented towards the Twitter domain. User mentions normalization and flagging of

hashtags, Universal Resource Locations (URLs), and all caps words are some of the

principal utilities supported.

• Features. This module has the aim to extract features on top of Scikit-learn algo-

rithms input format. Most of the components are built following the Scikit-learn API,

permitting them being included as a part of a pipeline. Moreover, it contains feature

extraction methods for sentiment analysis, as well as some deep learning capabilities,

such us Word2Vec features.

• Evaluation. This module facilitates addressing exhaustive evaluations. GSITK

evaluation combines one or more pipelines with one or more datasets. It computes

standard evaluation metrics, including accuracy, precision, recall, and f-score for each

pipeline-dataset combination with the aim of establishing comparison between differ-

ent systems.

This project extensively exploits the preprocessing functions in order to make a Twitter-

oriented preprocessing, as well as the features module to use word embeddings and similarity

features.
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3.4 Hatebase API

Hatebase 10 is a software platform built to help organizations and online communities detect,

monitor and quarantine hate speech. Their natural language engine, Hatebrain, performs

linguistic analysis on public conversations to derive a probability of hateful context. This

analysis is based on a broad multilingual vocabulary based on nationality, ethnicity, religion,

gender, sexual discrimination, disability, and class to monitor incidents of hate speech across

200+ countries. The regionalized vocabulary makes monitoring trends in hate speech usage

and correlating with other datasets affordable to perform. All the Hatebase process is

presented in Figure 3.1.

Figure 3.1: Hatebase community

All data is made available through the Hatebase web interface and API 11. Supported

queries include data on vocabulary and sightings. The read-only API returns XML or

JSON formatted responses. As shown in Figure 3.2, querying the Hatebase API is a two-

step process. The first step is an authentication handshake in which a one-hour valid token

is received. The second step is the actual query itself, in which the authentication token

is required. Specifically, in this project, the /get vocabulary endpoint is consumed. This

function allows users to download Hatebase’s lexicon of multilingual hate speech filtering

by language, nationality, ethnicity, religion, gender, sexual orientation, disability, and class.

10https://hatebase.org
11https://github.com/hatebase/Hatebase-API-Docs
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Figure 3.2: Hatebase API

3.5 Machine Learning Fundamentals

During the following sections, we review some basic notions about Machine Learning and Nat-

ural Language Processing technologies that will be used later in the project. In first place,

Machine Learning theory is explained and then, in Section 3.6 the chapter ends with an NLP

explanation.

Machine Learning is the scientific study of algorithms and statistical models that make

possible computers have the ability to learn. More concretely, given a set of data Machine

Learning goal is to obtain a computer program able to generalize behaviour relying on the

data seen.

Machine Learning tasks are classified into several broad categories. This thesis focuses

on supervised learning, in which the learning procedure consists of learning a model giving

the algorithm a list of examples with the associated desired output and then, when faced

with new input data responses with the most appropriate value what has been learned with

the examples given.

Classification and regression algorithms are types of supervised learning. Classification

algorithms are used when the outputs are restricted to a limited set of values, which is

the problem we face in this study. Given a text example our system outputs a categorized

value regarding the text hatefulness. Therefore, the values are restricted to presence of hate

speech and absence of hate speech.

Classification models can be validated by accuracy estimation techniques like the holdout

method, which splits the data in a training and test set and evaluates a model trained over
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the training set with the test set. In comparison, cross-validation strategy divides the data

into k folds, and iterates over these folds, taking in each iteration one of the sets as test

data and taking the remaining k-1 sets as training data. Operating like this, every data

sample acquires the train and test role. Finally, the estimation of the results is averaged in

all tests to obtain the level of success of our model.

A few paragraphs above, we have said that with Machine Learning we are seeking to

generalize. That is why when facing a Machine Learning problem we have to take care

of avoiding overfitting issue. Overfitting is the effect of adapting too much a system to a

set of data being unable to fit well on another set of data, generating so, a system with

generalization lacking. Figure 3.3 illustrates an example of such problem in two dimensions

comparing a pair of decision lines. The green line represents an overfitted model and the

black line represents a regularized model. While the green line best follows the training

data, it is too dependent on that data and it is likely to have a higher error rate on new

unseen data, compared to the black line.

Figure 3.3: Overfitted versus regularized system

Another problem in Machine Learning is the selection of the best algorithm to perform

a certain taska. This causes that we have to experiment with different models to select

the algorithm best adapted to the problem addressed. In this project, we have evaluated

the performance of three different types of algorithms: Logistic Regression, Support Vector

Machines (SVM) with linear kernel, and Random Forest.
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3.5.1 Logistic Regression

Regression name is a bit confusing since this algorithm is used for categorical data. Regres-

sion here refers to the internal operation of the model which runs a linear regression over

the input training data. Following, we will see a shallow understandable explanation of the

algorithm.

Let ~x = (x1, x2, ...xM ) the feature vector of a document and y ∈ {0, 1} the label to

predict. The objective is to learn a weighting vector ~w = (w1, w2, ..., wM ) which multiplied

by the input vector ~x plus a bias term returns a value z that compared with a decision

function (if z > threshold y will be 1 and vice versa) gives us y = 1 if the document was

categorized with the label y = 1 and y = 0 if the document was categorized as y = 0. So

we have z like this:

z = ~w · ~x + bias

Really we are not applying the threshold using z directly, however, an intermediate

function is used. This is the logistic (the reason for naming it “logistic”) or sigmoid function

(Figure 3.4).

h(z) =
1

1 + e−z

Figure 3.4: Logistic function

This way, we see if h(z) > threshold (typically will be threshold=0.5), the final decision

is y = 1 and backwards. Finally, weights and bias are learned to minimize the error between

the output and the expected value.
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3.5.2 Support Vector Machines

A support vector machine [28] is an algorithm that constructs a hyperplane with the aim

of separating each class through said hyperplane. Again, we have ~x, ~y, and ~w in the same

way than in Logistic Regression and the hyperplane can be written as the set of points ~x

satisfying

~w · ~x− b = 0

In this case, ~w is defined so that distance between the hyperplane and the nearest point

~x from either class is maximized (Figure 3.5).

Figure 3.5: Maximum margin hyperplane

If classes are not linearly separable, the algorithms transform the input vectors to a

higher dimensional space where data is linearly separable. This transformation is known as

the kernel-trick (Figure 3.6).

Figure 3.6: Kernel-trick

In order to avoid overfitting in the input data, SVM defines the Cost parameter (C) to

allow misclassification of some instances of the training data (Figure 3.7).
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Figure 3.7: Effect of changing C parameter

3.5.3 Random Forest

Random Forest [18] is an ensemble learning method which uses a Decision Tree as base

estimator. Various trees are trained and at prediction time the contribution of each tree is

taken into account for the final decision. In order to understand Random Forest, first, we

need to understand Decision Trees.

Decision Tree constructs a hierarchical model structure where each node represents a

decision based on features values and final leave nodes represent the class selected relying

on previous decisions. Figure 3.8 shows an example with Titanic data.

Figure 3.8: Tree learned on titanic data

Algorithms for constructing decision trees usually work top-down, by choosing a variable

at each step that best splits the set of items. Different algorithms use different metrics for

measuring “best”. These generally measure the homogeneity of the target variable within

the subsets. Gini impurity and information gain are the most famous approaches.
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The technique used to construct the trees produce that they overfit 12 their training sets.

Random forests are a way of averaging multiple deep decision trees, trained on different parts

of the same training set, with the goal of reducing variance. For that purpose, Random

Forests work applying the general technique of bootstrap aggregating. Given a training

set of feature vectors X = ~x1, ~x2, .., ~xN with their respective annotations ~y = y1, y2, ..., yN

bagging repeatedly (B times) selects a random sample of X and features to construct a

tree in each iteration. After training, predictions for unseen samples ~x’ can be made by

averaging the predictions from all the individual trees on ~x’.

3.5.4 Artificial Neural Networks

Neuron models [63] are another type of algorithms important for the thesis development,

though they are not used to make predictions. Instead, they are used to extract features

from text input, so it is not unwell include a description of the basics of Neural Networks.

3.5.4.1 Perceptron

The simplest model is a single neuron also known as the perceptron. The perceptron receives

an input vector ~x and outputs a single binary value. The mapping function from input to

output is the unitary step function (Heaviside step function) with the following condition.

f(x) =


1 if ~w · ~x + b > 0

0 if ~w · ~x + b < 0

(3.1)

Where ~w is a vector of real-valued weights and b is the bias. Weights and bias must

be learned in a way input vectors are mapped suitably to its corresponding output. The

overall perceptron architecture is presented in Figure 3.9 13.

In the context of neural networks, the mapping function is known as the activation

function. Using the step function as the activation function presents several problems. First,

it can only learn linear relationships between variables and target since all the operations

carried out are linear functions. Besides, it is very abrupt and the output values are specific,

12Real implementations of Decision Trees provide parameters to avoid overfitting controlling the learning

process, but generally, this assumption is considered to be true
13Usually the bias is modeled as a component of the weights vector, being the associated component from

the input vector a one constant.
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Figure 3.9: Perceptron architecture

so they are not real numbers inside a range which cannot be interpreted as probabilities. For

fixing this problem, the sigmoid function (Figure 3.4) is added at the end of the perceptron.

This model is equivalent to the logistic regression.

3.5.4.2 Multi-Layer Perceptron

Making use of the individual neuron or perceptron units which were described previously,

it is possible to create more complex architectures. It is possible to combine lots of neurons

arranging them in layers which take as input the output of the neurons in the previous

layer. The naming of the layers is the following. Input layer is the one composed of the

data which enters the network, output layer is the final layer where final predictions are

yielded, and finally, intermediate neurons are part of the called hidden layers. A graphic

representation of a simple multi-layer perceptron is shown in Figure 3.10.

Figure 3.10: Multi-Layer Perceptron

Apart from Sigmoid function, another activation functions can be applied to neural
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networks. Two of the most used ones are tanh (hyperbolic tangent) and ReLU (Rectified

Linear Unit). A comparison is presented in Figure 3.11.

Figure 3.11: Comparison between activation functions

The process of learning the optimal weights of each neuron in the network is known

as training. Training goal is to minimize the cost function. The cost function is an error

measure which states how far the predictions are from the real values using the current

weighting vectors. This error is computed in the output layer and by means of backprop-

agation neurons from the previous layers can know their contribution to the final output

error. Backpropagation works using the chain rule deducting the weighting factors when

propagating from the output to the input. Once all neurons know how they contribute to

the error, they can update their weights to minimize such error. Neural networks follow the

Stochastic Gradient Descent [17] minimization algorithm. It is applied in an iterative way,

learning new weights in each iteration, until convergence is reached and the model achieves

a decent performance over the training data.

3.6 NLP Fundamentals

Natural Language Processing (NLP) is a set of engineering techniques and methods con-

cerned with the interactions between computers and human languages, in particular auto-

mated textual and linguistic analysis, generation, representation, and acquisition. There

exists a broad variety of researched areas in NLP. These areas goes from machine transla-

tion [54] to question answering passing through Natural Language Understanding (NLU) [8]

or Natural Language Generation (NLG) [80]. During the realization of this project, the task

addressed is text classification.

Text classification is the process of assigning tags or categories to text according to

its content. It’s one of the fundamental tasks in NLP with broad applications such as
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sentiment analysis [10] or spam detection [94]. In order to carry out a text classification

based on machine learning techniques, the first step to tackle is feature extraction: a method

to transform each text into a numerical representation in the form of a vector. Some

approaches are shallowly explained in Section 2.2, but in the following sections, a more

deeply explanation is given to the methods used in the thesis.

3.6.1 BOW

The BOW model is one of the most popular representation methods for text categorization.

The key idea is to transform each document within a corpus to a vector of terms that occur

in the corpus. In the identification of terms, a term can be represented by simple words or

characters (1-gram) or a composed version of the previous terms (1,2,...,n-gram) that occur

in the documents. Then, each term is used as an attribute of the text set represented in

the attribute-value form resulting in a representation similar to that shown in Table 3.1.

Table 3.1: BOW representation

t1 t2 ... tm

d1 a11 a12 ... a1m

d2 a21 a22 ... a2m

... ... ... ... ...

d3 a31 a32 ... a3m

In Table 3.1 n documents are represented, and each document vector is composed by m

terms (ai1, ai2 , ...aim). The vector size is equal to the vocabulary size found by analyzing

the corpus. An aij value refers to the frequency of appearance of term j in the document i.

The following models a pair of texts using Bag-of-Words:

(1) John likes to watch movies. Mary likes movies too.

(2) John also likes to watch football games.

Based on these two text documents, a list of words for each document is constructed

"John","likes","to","watch","movies","Mary","likes","movies","too"

"John","also","likes","to","watch","football","games"

Representing each Bag-of-Words as a JSON object:
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(1) {"John":1,"likes":2,"to":1,"watch":1,"movies":2,"Mary":1,"too":1}

(2) {"John":1,"also":1,"likes":1,"to":1,"watch":1,"football":1,"games":1};

Resulting in a document vector like this:

(1) [1, 2, 1, 1, 2, 1, 1, 0, 0, 0]

(2) [1, 1, 1, 1, 0, 0, 0, 1, 1, 1]

In order to normalize the output vectors, binary values can be used, so the value 1 means

the presence of the term j in the document i, and the value 0 means the term is absent.

Bag-of-word model is an orderless document representation (only the counts of words

matter). For instance, in the above example “John likes to watch movies. Mary likes movies

too”, the Bag-of-Words representation will not reveal that the verb “likes” always follows

a person’s name in this text. As an alternative, the n-gram model can store this spatial

information. Applying to the same example above, a bigram model will parse the text into

the following units and store the term frequency of each unit as before.

"John likes",

"likes to",

"to watch",

"watch movies",

"Mary likes",

"likes movies",

"movies too",

3.6.2 TF-IDF

A better practice when working with statistical measures is to take into account the fre-

quency a term appears in a document and also the frequency this term is found in other

documents. That is the basis of TF-IDF [5] representations whose main goal is to obtain the

word importance used in a set of documents. It works in a similar way than BOW model,

converting a text input as a vector representation, but in this case being its components

the importance of each term.

The TF-IDF value increases proportionally to the number of times a word appears in

the document, but this value is contrasted by the frequency of the word in the corpus, which

helps us to adjust the importance of a word according to the fact that some words appear

more frequently in general.

The first step, again, is creating a vocabulary from the corpus creating a dictionary
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of terms that appear on it. Following, the term frequency is computed to represent each

text in the vector space (as done in BOW model). In this way, each document within the

corpus is represented by a vector with zeros on the terms that did not appear and the

number of occurrences on the terms that did appear on it. Once we have the vectors, it

is important normalizing them because the importance of a word appearing a number of

times depends on the text length. Now we are in a good position to calculate the inverse

document frequency.

The inverse document is defined as:log |D|
1+|d:t∈d| being 1 + |d : t ∈ d| the number of

documents where the term t appears and |D| the number of documents in the corpus.

There are many versions of this function since it tries to get the impact of a term inside a

corpus and in this case it smooths it by computing it into a logarithmic scale.

When we have both calculated term frequency and inverse document frequency, we

multiply both values, and we obtain the TF-IDF value. So finally, a high TF-IDF is reached

with a word with a high frequency in a document and with a low frequency in terms of the

whole set.

3.6.3 LDA

One of the problems when working with Bag-of-Words and TF-IDF is the feature size, cause

the resulting vectors are sparse (most of their components are zero and a few have non null

values). More sophisticated approaches such us LDA [15] try to find short descriptions

of the members of a collection that enable efficient processing of large collections while

preserving the essential statistical relationships that are useful.

LDA is a generative probabilistic model for collections of discrete data such as text

corpora. It is also a topic model that is used for discovering abstract (latent) topics from

a collection of documents in an unsupervised way. The algorithm assumes a collection of k

topics, each topic following a multinomial distribution over the vocabulary available in the

corpus. Then, LDA represents each document as a mixture of those k topics in basis of the

word probabilities of pertaining to a certain topic.

In more detail, LDA works with the following generative process for each document.

First, draw a topic mixture for the document according to a Dirichlet distribution over a

fixed set of k topics. Following, generate each word in the document by:

1. Selecting a topic according to the previous mixture drawn

2. Finally, using the topic to generate the word itself in line with the topic’s multinomial
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distribution

Assuming this generative model for a collection of documents, LDA then tries to back-

track from the documents to find a set of topics that are likely to have generated the

collection. One way of doing this is known as collapsed Gibbs sampling. It consists in

randomly assigning to each word for each document one of the k topics. Notice that this

random assignment already gives you both topic representations of all the documents and

word distributions of all the topics (albeit not very good ones). In order to improve previous

allocation, for each word w in each document d we compute two things 1) p(topic t | doc-

ument d) = the proportion of words in document d that are currently assigned to topic t,

and 2) p(word w | topic t) = the proportion of assignments to topic t over all documents

that come from this word w. Reassign w a new topic, where you choose topic t with prob-

ability p(topic t | document d) · p(word w | topic t) (according to our generative model,

this is essentially the probability that topic t generated word w, so it makes sense that we

resample the current word’s topic with this probability). In other words, in this step, we’re

assuming that all topic assignments except for the current word in question are correct,

and then updating the assignment of the current word using our model of how documents

are generated. After repeating the previous step a large number of times, we’ll eventually

reach a roughly steady state where the assignments will be pretty good. Finally, these

assignments can be used to estimate the topic mixtures of each document (by counting the

proportion of words assigned to each topic within that document) and the words associated

to each topic (by counting the proportion of words assigned to each topic overall).

3.6.4 Word Embeddings

One essential technique used extensively in this project is creating the so-called Word Em-

beddings [91], which are mappings from words to vectors. Any operation that fulfills pre-

vious statement is called word embeddings. The simplest way to carry out this task can

be done by one-hot encoding. With one-hot encoding, each word has a unique vector

formed by zeros except a one in the position that represents that word in the vocabulary.

Applying this method results in a vector size equal to vocabulary size, which may have

extremely high dimensions when working with large sets of data. The same thing occurs

when using TF-IDF vectors, so in order to solve this problem, dense (instead of sparse) word

representations have recently appeared. Dense representations are the ones considered as

real word embeddings and have become well-known during the last few years.

Dense representations are able to capture some of the regularities from the human lan-
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guage, such as gender relationships, verb tenses, and countries and their respective capitals

as shown in Figure 3.12. Next sections show some intuitions of how these vectors are

extracted.

Figure 3.12: Word Embeddings patterns

3.6.4.1 Word2Vec

There are several approaches which can obtain these vectors with such properties, and

almost all of them rely on unsupervised techniques. One of the most popular models is

Wor2Vec [66], which learns the representations using a neural network architecture to solve

a predictive task. Such neural network has a simple architecture consisting of an input

layer, a projection layer (hidden layer), and an output layer. There are two variations of

this structure: Skip-gram and Continuous Bag of Words (CBOW).

Skip-gram model topology is presented in Figure 3.13, being its aim predicting the

context of a word (words before and after that word) given such word. The input layer

consists of the word one-hot encoded, being V the vocabulary size. The hidden layer has N

neurons with N < V and the output layer are the one-hot encoded context words, with C

as the context window size. Finally, the weights learned between the input and the hidden

layer give the word vector of size N .

CBOW model inverts the topology of the skip-gram model (Figure 3.14), being its aim

predicting a word given its context. In this case, the input layer consists of the one-hot

encoded context words and the output layer is the word predicted also in one-hot encoded

format. After training the network, the word vectors are provided by the weight matrix

between the hidden layer and the output layer.

Although the training process relies on a neural network based supervised prediction

model, the real training results are the vector representation of words instead of the neu-
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Figure 3.13: Skip-gram model

Figure 3.14: CBOW model

ral network prediction model. Because of such idea, the training of word embedding is

unsupervised and can be applied in various textual corpus without labeled datasets.

3.6.4.2 GloVe

Global Vectors for Word Representation (GloVe) [74] is another approach to learn word

representations. GloVe vectors are obtained through defining a function whose target is
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obtaining ratio probabilities (Equation 3.2) of co-occurrence based on a word co-occurrence

matrix. In order to better understand, we first must establish some notation. Let the

matrix of word-word co-occurrence counts be denoted by X, whose entries Xij tabulate the

number of times word j occurs in the context of word i. Let Xi =
∑

k Xik be the number

of times any word appears in the context of word i. Finally, let Pij = P (j | i) = Xij/Xi

be the probability that word j appears in the context of word i. Therefore, starting from

equation 3.2 and deriving some calculus the equation 3.3 is obtained which gives us the

word representations.

F (wi, wj , ~wk) =
Pik

Pjk
(3.2)

wT
i · ~wk + bi +~bk = log(Xij) (3.3)

There is one problem with the equation above: it weights all co-occurrences equally.

Unfortunately, not all co-occurrences have the same quality of information. Co-occurrences

that are infrequent will tend to be noisy and unreliable, so we want to weight frequent

co-occurrences more heavily. On the other hand, we don’t want co-occurrences like “it is”

dominating the loss, so we don’t want to weight too heavily based on frequency. Through

experimentation, GloVe authors found the following weighting function to perform relatively

well (Figure 3.15):

weight(x) = min(1, (x/xmax)
3
4 ) (3.4)

Figure 3.15: Weighting function

3.6.5 SIMON

SIMilarity-based sentiment projectiON (SIMON) [10] is a method to include external spe-

cific information together with the semantics given by a word embedding model. Arguably,
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it is accepted that pre-trained word vectors do not enclose specific domain information, as

the training process was carried out with general purposes with no target goals. In order

to include specific information, additional information must be included in the feature ex-

traction process. In this way, semantic similarity features exploit the aforementioned word

embeddings regularities using a selection of words, namely, a lexicon vocabulary which

contains the specific information (sentiment, subjectivity, etc.) we want to include in the

analysis.

More concretely, this work proposes the representation of a certain word, that may be

outside the lexicon vocabulary, by a projection to a set of domain-specific words extracted

from a domain lexicon. Such projection is computed using the semantic similarity between

words, which can be computed by means of a word embedding model. This way, the word

embedding model can be exploited via the cosine similarity.

Formally said, cosine similarity is a measure of similarity between two vectors of a

vectorial space. Given two word vectors, ~wi and ~wj , the cosine similarity is represented

using a dot product and a magnitude as

similarity =
~wi · ~wj

‖ ~wi ‖ · ‖ ~wj ‖
(3.5)

As stated, in general, word embeddings contain semantic and syntactic information,

therefore, applying cosine similarity to a word embedding model results in a semantic sim-

ilarity measure of words. Such idea is illustrated in Figure 3.16

Figure 3.16: Cosine similarity in a Word Embeddings model

The resulting similarity ranges from −1 meaning exactly opposite, to 1 meaning exactly

the same, with 0 indicating orthogonality or decorrelation, while in-between values indicate

intermediate similarity or dissimilarity.

The process to generate the features is as follows. The method considers a selection of

words S that constitutes a lexicon vocabulary to which the input documents are projected.
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Given a text document (e.g., tweet), a similarity value between the input word vectors of

that document and each of the words in S is computed. After iterating over all input words

and all lexicon words, a matrix I × |S| is obtained, where I is the number of input words

in a particular document and |S| the lexicon vocabulary size. Following, the maximum

pooling function is applied column-wise, obtaining the semantic similarity feature vector of

dimensionality |S|. This process is presented in Figure 3.17.

Figure 3.17: Similarity features computation

Additionally, SIMON incorporates a selection of lexicon words in two steps. First se-

lection step is carried out before computing similarities and consists of filtering words by

frequency of appearance in the dataset. The second step is done after the similarity compu-

tation and makes use of ANalysis Of VAriance (ANOVA) statistical test between features

(which correspond to the selected words from the first step) and labels. The ANOVA or

F-value measures for each feature its informativeness regarding the classification task (label

to predict) of a certain dataset. Scikit-learn implements the one-way ANOVA test which

can be calculated as:

F =
between-group variability

within-group variability
(3.6)

between-group variability = N · ((Ȳ − S̄)2 + (X̄ − S̄)2) (3.7)

within-group variability =

∑N
i=1((Yi − Ȳ )2 + (Xi − X̄)2)

N − 2
(3.8)

Being X the vector of the values of a specific feature, Y the vector of the values of the
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target value (what we want to predict), X̄ amd Ȳ the respective mean of each vector, S̄

the global mean (i.e. S̄ = X̄+Ȳ
2 ), and N the total number of documents.
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CHAPTER4
Participation at SemEval-2019 Task 5

Such big impact has generated the hate speech phenomenon during the last few years that

among the proposed tasks organized in SemEval-2019 hate speech appears as principal sub-

ject in one of those tasks. This chapter describes the GSI-UPM system for SemEval-2019

Task 5, which tackles multilingual detection of hate speech on Twitter. The main contri-

bution of the participation is the use of a method based on word embeddings and semantic

similarity combined with traditional paradigms, such us n-grams, TF-IDF, and POS. This

combination of several features is finetuned through ablation tests, demonstrating the useful-

ness of different features. While our approach outperforms baseline classifiers on different

sub-tasks, the best of our submitted runs reached the 5th position on the Spanish sub-task

A.
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4.1 Introduction

SemEval (Semantic Evaluation) is an ongoing series of evaluations of computational se-

mantic analysis systems; it evolved from the Senseval word-sense evaluation series. The

evaluations are intended to explore the nature of meaning in language. These exercises

have evolved to articulate more of the dimensions that are involved in our use of language.

They have adapted to investigate the interrelationships among the elements in a sentence

(e.g., semantic role labeling), relations between sentences (e.g., coreference), and the nature

of what we are saying (semantic relations and sentiment analysis).

The Task 5 from SemEval-2019 [12] focus the analysis towards the hate speech problem.

The proposed task consists in Hate Speech detection in Twitter but featured by two specific

different targets, immigrants and women, from a multilingual perspective, for Spanish and

English tweets. The task will be articulated around two related subtasks for each of the

involved languages: a basic task about Hate Speech, and another one where fine-grained

features of hateful contents will be investigated in order to understand how existing ap-

proaches may deal with the identification of especially dangerous forms of hate, i.e. those

where the incitement is against an individual rather than against a group of people, and

where an aggressive behavior of the author can be identified as a prominent feature of the

expression of hate. Participants will be asked to identify, on the one hand, if the target

of hate is a single human or a group of persons, on the other hand, if the message author

intends to be aggressive, harmful, or even to incite, in various forms, to violent acts against

the target.

• TASK A - Hate Speech Detection against Immigrants and Women: a two-

class (or binary) classification where systems have to predict whether a tweet in En-

glish or in Spanish with a given target (women or immigrants) is hateful or not hateful.

• TASK B - Aggressive behavior and Target Classification: where systems

are asked first to classify hateful tweets for English and Spanish (e.g., tweets where

Hate Speech against women or immigrants has been identified) as aggressive or not

aggressive, and second to identify the target harassed as individual or generic (i.e.

single human or group).

According to the FBI hate crime statistics 1, sexism and racism victims increased during

2017. For this reason, participating in SemEval-2019 Task 5 is such an interesting challenge

1https://ucr.fbi.gov/hate-crime/
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and is supposed a good first contact with the hate speech domain. The system proposed

relies on a supervised classifier using different text features combined with several strategies

with the aim of finding an optimal performance. The remainder of this chapter is structured

as follows. After this introductory section, Section 4.2 presents the data and its distribution.

Following, the proposed evaluation metrics are described in Section 4.3. Then, Section 4.4

presents the proposed approach to afford the suggested problem, and finally, Section 4.5

concludes the chapter showing the experimental results and a final discussion.

4.2 Data

All data for the competition was collected from Twitter and manually annotated mainly via

the Figure8 2 crowdsourcing platform. Datasets were specially released for the competition

according to the languages and targets involved. More specifically, it was organized in two

datasets, both containing tweets about hate against women and immigrants, in English and

Spanish, respectively. Each dataset was partitioned into train, development, and test sets.

Data distribution for Task A is presented for each language in Table 4.1.

Table 4.1: Data distribution in Task A

Split HS no HS Total

English

Train 3,783 (42%) 5,217 (58%) 9,000

Development 427(43%) 573 (58%) 1,000

Test 1252 (42%) 1719 (58%) 2,971

Spanish

Train 1,838 (41%) 2,631 (59%) 4,469

Development 222 (44%) 278 (56%) 500

Test 660 (41%) 940 (59%) 1,600

As seen, each category is fairly represented in all cases, so imbalanced data is not a

problem to tackle within this task. Non hate speech instances are a bit more numerous in

2https://www.figure-eight.com/
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the same proportion in all sets and both languages. This fact may lead to think that the

splitting has been done randomly. Nevertheless, the majority class never gets to surpass a

sixty percent of the total data.

On the other hand, if we focus on data distribution of Task B, that is to say, distribution

of hateful Tweets in terms of aggressiveness and target goals, we can observe some notable

differences across languages in Table 4.2.

Table 4.2: Data distribution in Task B

Split AG no AG TR no TR

English

Train 1,559 (41%) 2,224 (59%) 1,341 (35%) 2,442 (65%)

Development 204 (48%) 223 (52%) 219 (51%) 208 (49%)

Test 590 (47%) 662(53%) 522 (42%) 730 (58%)

Spanish

Train 1,485 (81%) 353 (19%) 1,117 (71%) 721 (39%)

Development 176 (79%) 46 (21%) 137 (62%) 85 (38%)

Test 474 (72%) 186 (28%) 423 (64%) 237 (36%)

In this case, there are different distributions along languages and sets, but different

labels show a similar layout. This result goes in line with the work presented in [38], which

states that directed hate speech is more informal, angrier, and often explicitly attacks the

victim. Regarding the language, Spanish-speaking people tend to be more aggressive and

more direct towards specific individuals. Seeing this skewed distribution, applying some

balancing technique becomes quite appealing.

4.3 Evaluation

For the evaluation of the results of task A and B different strategies and metrics are applied

in order to allow for more fine-grained scores.
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4.3.1 Task A

Systems will be evaluated using standard evaluation metrics, including accuracy, precision,

recall, and F1-score, but predictions are ranked by F1-score metric alone. The equations

below show how the calculations are done. For better understanding, we will show the

following definitions:

• True Positive (TP): is an instance correctly classified as hateful. For example, the

target class is hateful and the model predicts it as hateful.

• True Negative (TN): is an instance correctly classified as not hateful. For example,

the target class is not hateful and the model ranks it as not hateful.

• False Positive (FP): is a not hateful instance wrong classified as hateful. In this

case, the target class is not hateful and the model says hateful.

• False Negative (FN): is a hateful instance miss classified as not hateful. In this

case, the target class is hateful, but the model fails predicting it as not hateful.

Finally, the four mentioned metrics will be computed as follows 3:

• Accuracy: proportion of correctly predicted samples (in binary classification, both

true positives and true negatives) among the total number of cases examined.

Accuracy =
TP + TN

TP + FN + FP + TN
(4.1)

• Precision: computes the proportion of instances predicted as positives that were

correctly evaluated (it measures how right our classifier is when it says that an instance

is positive).

Precision =
TP

TP + FP
(4.2)

• Recall: counts the proportion of positive instances that were correctly evaluated

(measuring how right our classifier is when faced with a positive instance)

Recall =
TP

TP + FN
(4.3)

3Precision, Recall, and F1-score are metrics which can consider as positive instance any of the possible

values of the target class. In this case, metrics are computed considering hateful tweets as positive class, then

considering non-hateful tweets as positive class, and finally, the macro-average (unweighted mean without

taking label imbalance into account) operation is applied to each metric

57



CHAPTER 4. PARTICIPATION AT SEMEVAL-2019 TASK 5

• F1-score: is the harmonic mean of precision and recall combining both values in a

single number.

F1− score =
2 · Precison ·Recall

Precision + Recall
(4.4)

4.3.2 Task B

In this task, systems will be evaluated on the basis of two criteria: partial match and exact

match but predictions are ranked by exact match metric alone.

• Partial Match: each dimension to be predicted (Hate Speech HS, Target TR and

Aggressiveness AG) will be evaluated independently of the others using standard

evaluation metrics, including accuracy, precision, recall and F1-score as defined above.

The report for each participant will include all the measures and a summary of the

performance in terms of macro-average F1-score, computed as follows:

F1− score =
F1(HS) + F1(AG) + F1(TR)

3
(4.5)

• Exact Match: all the dimensions to be predicted will be jointly considered computing

the Exact Match Ratio [53]. Given the multi-label dataset consisting of n multi-label

samples (xi, Yi), where xi denotes the i-th instance and Yi represents the corresponding

set of labels to be predicted (HS ∈ 0,1, TR ∈ 0,1 and AG ∈ 0,1), the Exact Match

Ratio (EMR) will be computed as follows:

EMR =
1

n

n∑
i=1

I(Yi, Zi) (4.6)

where Zi denotes the set of labels predicted for the i-th instance and I is the indicator

function, that is to say, I returns 1 if Yi and Zi are equal in all the dimensions

considered (HS, TR, and AG) and 0 otherwise.

The reason for choosing EMR to rank the predictions comes from the willingness from

the most difficult task of capturing the entire phenomena, and therefore to identify the most

dangerous behaviours against the targets. When presenting the evaluation results we will

discover the rigorousness of this metric.

4.4 System Overview

This section gives a completely explanation of the techniques utilized to tackle the problem

we were aimed within the competition. Our system mainly relies on a supervised machine
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learning algorithm. This final classification step is fed by a data processing pipeline formed

by the preprocessing and the feature extraction modules. Regarding the implementation,

Python has been used, including additional capabilities offered by the enabling technologies

explained in the previous chapter, such as, Scikit-learn for the classification and feature

extraction step, NLTK for text preprocessing purposes, and GSITK for general purposes.

Figure 4.1 illustrates the system architecture from a global perspective.

Figure 4.1: System Overview

4.4.1 Preprocessing

In this phase, the raw text is taken and cleaned using common NLP techniques [62]. We must

have in mind that some existing words do not contribute any information, these are called

stop words and are formed mainly by prepositions, pronouns and articles. These words

need to be preprocessed so that our learning algorithm does not consider them. Besides,

punctuation marks, special characters, URLs, and other stuff need also to be removed.

Tweet preprocessing relies on tokenization, user mentions normalization, the appearance of

hashtags, URLs, and all caps words flagged supported by the tools provided by GSITK.

It is also necessary to preprocess documents in another way, which consists in extracting

the root or lemma of each word. This performance is necessary because there is more

information on a specific concept than on its variations. Ignoring this variation could cause

noise introduction and complexity addition. In the implementation of this project, we have
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decided to use the Porter stemmer [76].

4.4.2 Feature Engineering

The next step we need to address is to obtain features from our unique information source

input, the text message from the Twitter post. From a computer’s point of view, the raw

text gives no information at all. In order to get that information, we must perform some

language processing techniques. Those consist in following different strategies to transform

raw text data into a vector in such a way each position within the vector encompasses some

kind of information which is expected to be helpful for the final decision phase. Those vectors

are known as features and are the input format accepted to feed the final classification layer

as seen in 4.1.

Different features have been taken into account during the feature engineering stage.

Such features are divided into subcategories: statistical features, content analysis, word

embeddings, semantic features, and linguistic features.

4.4.2.1 Statistical features

The first set of features considered are word and character n-grams frequencies evaluat-

ing both approaches, Bag-of-Words (BOW) and Term Frequency - Inverse Document Fre-

quency (TF-IDF). The reason to include character n-grams comes from the Twitter domain,

where texts are short and misspelling may occur; this effect can be attenuated at the char-

acter level [83]. Apart from the mentioned reasoning, previous research [65] has shown the

effectiveness of character n-grams in the problem of offensive language.

Besides tokens included within the text corpus, the system also considers frequencies

from words pertaining to external lexicons. Lexicons with hate speech terms 4, for senti-

ment [49, 58], and subjectivity [72] analysis domain were considered.

4.4.2.2 Content Analysis

As seen, sentiment and subjectivity information has been included. Hate speech can be

considered as subjective content, and a relation between subjectivity, sentiments, and emo-

tions can occur. Sentiments and subjectivity were included by means of word matching. For

example, given a sentiment lexicon and input text, word matching counts each lexicon word

4https://hatebase.org/
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in the input text as shown in Figure 4.2. Word matching can also be used with the TF-IDF

measure.

Figure 4.2: Keyword Matching

Besides, hate speech is expected to have a negative polarity, so text subjectivity and

polarity provided by the TextBlob [61] library were included in the analysis.

Another interesting analysis was carried out using Latent Dirichlet Allocation (LDA).

Topic modelling with LDA was added to the study. In our project, we have implemented

it using the LatentDirichletAllocation module that provides scikit-learn, using parameters

such as the number of topics we want to discover, priors of document-topic, and topic-word

distributions.

Additionally, inside this set of features we include a method for focusing on topics from

another perspective. We created a hashtag (which are really Twitter topics) vocabulary

from the corpus given and computed frequencies using this lexicon as done with sentiment

and remaining lexicons.

4.4.2.3 Word Embeddings

One of the problems in BOW models is that they do not have any knowledge about semantics

of words. The similarity between two messages is calculated based on how many matching

words there are in the messages (and their weights from TF-IDF). Therefore, we tried word

embeddings which encodes words that are semantically similar with similar vectors. These

vectors can be trained with the given data but there is still an open challenge on obtaining

good vectors with low sized data. Due to this, is frequent to work with pre-trained word

vectors learned over huge amounts of data. As said, pre-trained word vectors convert words

into a vector space where semantically similar words tend to appear close by each other.

In this system, a vector is extracted for each word in the input text; then, as done

in [9], the average pooling operation is performed on all word vectors, resulting in a vector

of the same dimensions as the original ones. Several models have been tested during the

development of this project due to language variety and vectors themselves will vary based

61



CHAPTER 4. PARTICIPATION AT SEMEVAL-2019 TASK 5

on the documents or corpora they are trained on.

For the Spanish case, 1,000,653 word vectors of dimension 300 trained on the Spanish

Billion Words Corpus [23] were used. The skip-gram algorithm with negative-sampling

was used, together with five as minimum word frequency, the 273 most common words were

downsampled and the amount of “noise words” for the negative sampling was 20. The origi-

nal corpus had a total of 1,420,665,810 raw words, 46,925,295 sentences and 3,817,833 unique

tokens and after the model was applied a total of 771,508,817 raw words and 1,000,653

unique tokens were obtained.

For the English case, two models were evaluated. One of them was trained using GloVe

and the other one using fastText. GloVe model was trained on data extracted from the

Wikipedia 5 and Gigaword 6 containing 6 billion of raw words outputting a word represen-

tation of 300 dimensions (Other versions of 50, 100, and 200 are also available) and 400,000

as vocabulary size.

Last model proved was learned using the fasText approach which consists in an evolution

over the previous explained Word2vec model. The gist of fastText is that instead of directly

learning a vector representation for a word (as with word2vec), we learn a representation

for each character n-gram. Each word is represented as a bag of character n-grams, so the

overall word embedding is a sum of these character n-grams. This model resulted in a 2

million word vectors size trained [67] on Common Crawl 7 data.

4.4.2.4 Semantic Features

A central part of the system consists of a method [10] that exploits the semantic similarity

measure that a word embedding model provides, via cosine similarity. In general lines,

this approach uses a lexicon to which the input text is projected, employing the similarity

measure obtained from an embedding model (See Section 3.6.5).

Typically, lexicons are used through word matching or BOW approaches as seen in

Section 4.4.2.2. Using SIMON, lexicon information is extracted in a more sophisticated

way and the final representation of a text is relies on how similar are the input words to

lexicon words which can help the decisions of the final classifier.

In this work, the previously mentioned lexicons have been used, as well as a domain-

oriented word selection, which have been extracted from the given dataset. In this last

5https://www.wikipedia.org
6https://catalog.ldc.upenn.edu/LDC2011T07
7http://commoncrawl.org/
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approach, words were filtered by its frequency of appearance considering the document

annotation, being the cutoff frequency an adjustable parameter.

4.4.2.5 Linguistic Features

The last set of features are related to linguistic aspects. Among all the approaches consid-

ered from this sub-module, Part-of-Speech (POS) stats stand out from the rest. POS features

focus their analysis on lexical categories of words. The aim is collecting statistics about

word categories from the input text and see if hateful tweets use some specific categories.

The parts of speech analyzed include adjectives, adpositions, adverbs, conjunctions, nouns,

numerals, pronouns and verbs. The tag set (categories) depends on the corpus annotation.

Fortunately, NLTK defines a Universal tag set which is presented in the Table 4.3

Table 4.3: Universal tags defined by NLTK

Tag Meaning English Examples

ADJ adjective new, good, high, special, big, local

ADP adposition on, of, at, with, by, into, under

ADV adverb really, already, still, early, now

CONJ conjunction and, or, but, if, while, although

DET determiner, article the, a, some, most, every, no, which

NOUN noun year, home, costs, time, Africa

PRT particle at, on, out, over, per, that, up, with

PRON pronoun he, their, her, its, my, I, us

VERB verb is, say, told, given, playing, would

. punctuation marks . , ; !

X other ersatz, esprit, dunno, gr8, univeristy

The proposed system also relies on lexical statistics, including the number of sentences

and length from the tweet, as well as a count of several Twitter-related features such as

hashtags, URLs, mentions, all caps words, emojis, and exclamations. A better way of
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exploiting emojis essence consisting in creating an emoji vocabulary and applying it the

previous explained lexicon-based methods 8 is also considered.

4.4.2.6 Feature Selection

Reminding Figure 4.1, an intermediate step called feature selection between feature extrac-

tion and classification phases can be found. At this point, we have transformed the input

text into a feature output vector and what we pretend in this state is to select the most

helpful characteristics to solve the addressed problem.

Some advantages come by using this feature selection step. Firstly, reducing the feature

vector size can avoid the overfitting problem. Feeding the classifier with too many features,

may cause that the parameters learned by the classifier adapt too much to the the training

set, and the algorithm will only be able to predict some very specific results, failing to

predict new ones.

Secondly, with a lower number of features complexity is reduced and features dropped

are the less significant, those without meaningful impact on the final decision. This way,

we are favouring the classifier labour letting it focusing in the most important data. For

this project, the k best features according to the ANOVA statistical test are used.

4.4.3 Classification

Finally, the furthest step in the data processing pipeline makes use of a machine learning

classifier. There are many options among machine learning models that can be used. In this

project, we have evaluated the performance of three different types of algorithms: Logistic

Regression, Support Vector Machines (SVM) with linear kernel, and Random Forest.

4.5 Experiments

This section presents the results obtained by the proposed system in the competition, consid-

ering both test and development phase submissions. The evaluation of the different feature

extraction approaches has been done by using a holdout strategy. Using the training set

for training the models and the development set for testing it.

8TF-IDF and BOW statistics can be computed over an emoji lexicon, however it is not possible to use

such vocabulary in the semantic similarity approach because emojis are not part of a word embedding model

(they do not have an a associated vector in the model)
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In order to optimize the algorithm behaviour, the GridSearchCV tool provided by Scikit-

learn has been used. This module allows you to know the hyper-parameters that give the

best results to a classifier when classifying a dataset with certain features. Proceeding

using grid-search is better than choose hyper-parameters randomly cause the value given

to different hyper-parameters can influence the obtained results by our algorithms. Special

attention has been paid in the regularization parameter of the algorithms: “C” parameter

in the Logistic Regression and Linear SVM case and “maximum depth” of the trees in

the Random Forest case. Finally, the system is trained, and the evaluation metrics are

computed. This workflow has been repeated several times from the feature extraction step,

changing the set of features in every iteration.

4.5.1 Sub-task A

We remind that the goal of this task is to classify both Spanish and English tweets as hateful

or not hateful. Systems are evaluated using standard evaluation metrics, including accuracy,

precision, recall, and F1-score, but predictions are ranked by F1-score metric alone.

As seen, Task A data was partitioned into train, development, and test sets. Train and

development sets were used to obtain the best feature combination by training over the train

set and testing over the development one. Finally, for the final submission, the predictions

for the test set were obtained with a system trained over both train and development sets.

Test results, which represent the official submission, as well as development phase results

are presented in Tables 4.4 and 4.5 respectively. Task organizers included two baselines [12]

in the competition, a linear SVM based on a TF-IDF representation and a trivial model

that assigns the most frequent label from the training set to all instances in the test set.

The Spanish-oriented system used to make the official submission, relies on linguistic

features (excepting POS), semantic similarity with a domain-oriented lexicon, sentiments

(using the sentiment vocabulary weighted by the TF-IDF measure), word embeddings, topic

modeling (both LDA and hashtags), and word and character TF-IDF n-grams. These fea-

tures are filtered according to the ANOVA F-test, selecting the best 3,000. Linear SVM

has been the selected machine learning algorithm for classification. On the other hand, the

English-oriented system considers the same feature set excluding word embedding represen-

tation; the number of selected features has been set at 17,500. In contrast to the previous

system, a Logistic Regression model was used to perform the classification.
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Team Accuracy Precision Recall F-score

English

Best 0.506 0.65 0.566 0.457

SVM baseline 0.492 0.595 0.549 0.451

GSI-UPM 0.483 0.643 0.549 0.42

MFC baseline 0.579 0.289 0.5 0.367

Spanish

Best 0.731 0.734 0.741 0.73

GSI-UPM 0.728 0.726 0.733 0.725

SVM baseline 0.705 0.701 0.707 0.701

MFC baseline 0.58 0.294 0.5 0.37

Table 4.4: Official test set results for Task A

4.5.2 Sub-task B

We also remind that the goal of this task is firstly to classify hateful tweets (i.e., tweets

identified as hate speech against women or immigrants) as aggressive or not aggressive, and

secondly to identify the target harassed as individual or generic (i.e., single person or group).

Systems are evaluated by two criteria: partial match and exact match, but predictions are

ranked by exact match metric alone.

For this task, the data has been delivered in the same way than sub-task A, so we

emulated the same workflow than before, but in this case, considering solely hateful tweets.

In this case, there are different data distributions 4.2, so we outlined the idea to balance

aggressiveness and directed messages by oversampling hateful tweets with not hateful ones,

assuming that not hateful tweets are not aggressive nor directed.

As done previously, Tables 4.6 and 4.7 present official and development results, respec-

tively. The Spanish-oriented system in this task is identical to that from Task A, but finally

selecting 2,500 features. For the English case, in light of aggressiveness and target tweets,

a different combination of features have been chosen. In order to detect aggressive tweets,
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Feature combination Accuracy Precision Recall F-score

English

Official submission combination 0.777 0.774 0.780 0.775

Lexical, similarity, embeddings, and

n-grams (1)

0.757 0.754 0.758 0.754

Bigrams, trigrams, similarity, and

embeddings (2)

0.75 0.747 0.752 0.748

Embeddings, similarity, twitter

stats, and LDA (3)

0.736 0.731 0.733 0.732

Spanish

Official submission combination 0.856 0.856 0.852 0.853

Lexical, similarity, embeddings, and

n-grams (1)

0.812 0.811 0.807 0.808

Bigrams, trigrams, similarity, and

embeddings (2)

0.796 0.794 0.791 0.792

Embeddings, similarity, Twitter

stats, and LDA (3)

0.784 0.781 0.782 0.782

Table 4.5: Development set results for Task A

all features except semantic similarity have been used, filtering the 32,500 best. Otherwise,

for target messages, the complete set of features (sentiments and subjectivity were included

by means of TF-IDF and semantic similarity) are used just considering the 2,500 best. Fi-

nally, different models were applied for each label, Logistic Regression for Target label and

Linear SVM for the Aggressive one. The same algorithm selection was made in the Spanish

case.

4.5.3 Discussion

In general terms, the results obtained are auspicious: the best submitted system achieved

the 5th position in the Spanish Task A, 0.5% points under the best result obtained in the
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Team F-score(HS) F-score(TR) F-score(AG) F-score (Avg) EMR

English

MFC baseline (Best) 0.367 0.452 0.445 0.421 0.58

GSI-UPM 0.421 0.686 0.556 0.555 0.312

SVM baseline 0.45 0.697 0.587 0.578 0.308

Spanish

Best 0.729 0.798 0.737 0.755 0.705

GSI-UPM 0.725 0.79 0.735 0.75 0.624

SVM baseline 0.701 0.781 0.726 0.736 0.605

MFC baseline 0.37 0.424 0.413 0.402 0.588

Table 4.6: Official Results for Task B

Feature Combination F-score(HS) F-score(TR) F-score(AG) F-score (Avg) EMR

English

Official submission 0.775 0.811 0.723 0.770 0.665

(1) 0.754 0.797 0.712 0.755 0.641

(2) 0.748 0.788 0.699 0.745 0.628

(3) 0.731 0.767 0.687 0.728 0.611

Spanish

Official submission 0.853 0.876 0.824 0.851 0.78

(1) 0.808 0.839 0.777 0.808 0.732

(2) 0.792 0.843 0.776 0.804 0.718

(3) 0.782 0.836 0.783 0.800 0.714

Table 4.7: Development Results for Task B

same task. For the Spanish Task B, the proposed model outperforms the baseline. In

contrast to this, results in English Task A are lower than expected, where there was not

any team that surpassed the 50% threshold in terms of F-score. As a general trend, test
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set results are worse than development results, which may indicate that our systems suffer

over-fitting, and cannot generalize properly. This observation is enforced by attending to

the English Task B, where no system has surpassed the baseline.

Since the data distribution is equal along languages in Task A (Section 4.2), the dif-

ference in performance across languages may be due to Spanish-speaking people are more

explicit when typing any utterance with hate speech goals. As previously mentioned, we

have observed that this type of hate speech messages show more aggressiveness. Language

characteristics may be involved since the Spanish language has a morphologically-richer

nature than English.

The presented results constitute the outcome of exhaustive experimentation of a variety

of feature combination tests. In contrast with earlier work, semantic similarity and word

embeddings representations do not produce such high performance results when compared

to other domains such as sentiment analysis [10] and sleep disorder detection [87] tasks.

This circumstance suggests that hate speech detection is still an open challenge and more

research must be done into the specific characteristics of such an exciting task.

Attending to the Spanish case, sentiment information and character n-grams were fea-

tures that helped in a meaningful manner, confirming the issues raised in Sect. 4.4. For the

English case, the improvement of the proposed features was incremental. While subjectivity

and emojis had a relevant role in the results, this improvement was not as high as in the

Spanish case. In light of the complexity of the hate speech domain, it could be argued

that attending to word context instead of isolated words could help in the analysis. Indeed,

n-grams include this type of information to some extent, but capturing the grammatical

dependencies within a sentence [24] or template based strategies [96] could enhance the

performance.
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CHAPTER5
Transfer Learning for Hate Speech Detection

The penultimate chapter reviews some experiments related to the Transfer Learning research

problem. The selected use case discusses the feasibility of two approaches: multilingual hate

speech detection, and cross-domain hate speech traits study. Overall, the chapter includes an

introduction to the problem, a Transfer Learning statement, multilingual word embeddings

fundamentals, a description of the data used, and finally, architectures, experiments, and

results of both approaches.
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5.1 Introduction

First of all, we must start introducing the Transfer Learning concept:

“Transfer learning is the improvement of learning in a new task through the

transfer of knowledge from a related task that has already been learned.” [89].

Previous statement says the following. We have a model trained with data annotated

to solve a specific task, and by applying minor changes in such model we can use it to solve

other specific tasks in relation to the former one. That is to say, the final goal is to broaden

the scope of our algorithm to generalize from solving one problem to solve similar problems.

Figure 5.1 illustrates the whole process. The source learning task step corresponds to a

traditional Machine Learning approach as the ones afforded in Chapter 4. Then, Transfer

Learning module can be fed with new data from the target task, but it is not necessary

neither such data matches to classification data. After Transfer Learning step we have

obtained a system ready to use in the target class.

Figure 5.1: Transfer Learning process

If classification data is used in the transfer process, then the Machine Learning model

is being fine-tuned. fine-tuning consists of keep training a previously trained model, taking

the learned parameters (for example, weights from the neural network) as initialization

to the new training process. Note that this is only applicable for some models and some

parameters, and even some orders of parameter values. Indeed, from now on the traditional
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optimization strategy of linear SVM has to be changed, so the Stochastic Gradient Descent

implementation has to be used.

There are three common measures by which transfer can be evaluated. All of them

are based on plotting the learning curves of both, a transfer learned system and a model

learned from scratch. A learning curve is a graphical representation of how an increase in

learning (measured on the vertical axis) comes from a greater number of training examples

(the horizontal axis).

Figure 5.2 presents these three measures. First is the initial performance achievable in

the target task using only the transferred knowledge, before any further learning (without

fine-tuning) is done, compared to the initial performance of an ignorant agent. Second

is the amount of time it takes to fully learn (with fine-tuning) the target task given the

transferred knowledge compared to the amount of time to learn it from scratch. Third is

the final performance level achievable in the target task compared to the final level without

transfer and fine-tuning.

Figure 5.2: Transfer Learning evaluation (Figure from Torrey et al. [89])

In our specific case, we are going to test two Transfer Learning approaches. One of them

is the use of Transfer Learning for multilingual hate speech detection. The idea is to train

a hate speech system in a specific language, and use this system to serve as hate speech

detector in any other language. The fundamentals of this idea are explained in Section 5.1.1,

which relies on aligned word vectors and SIMON as feature extraction method.

The other study case consists of Transfer Learning across hate speech traits, the same

from those used in SemEval-2019 Task 5, aggressiveness and target goal. The idea now is

to use hateful tweets to detect aggressiveness with a system trained to classify the target
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and vice versa.

5.1.1 Multilingual Word Embeddings

Usually, word embeddings are trained with a single language corpus. This way, we have a

vector model for Spanish, another for English and so on. Initially, different language vectors

do not share vectorial space (as shown in Figure 5.3 (A)) because the training process is

different. Different data is used, initialization weights of the neural network are different,

model hyper-parameters to train the model are also different.

Nevertheless, in [68] first noticed that continuous word embedding spaces exhibit similar

structures across languages, even when considering distant language pairs like English and

Vietnamese. The work presented in [27] proposes an unsupervised approach to exploit this

similar shape by learning a linear mapping from a source to a target embedding space. The

resulting monolingual embeddings are overlapped in the space, so the same word in different

languages has the same vector (as shown in Figure 5.3 (D)).

Let X = (~x1, ~x2, .., ~xn) and Y = (~y1, ~y2, .., ~xm) be two sets of n and m word embeddings

coming from a source and a target language respectively. Then, the optimal linear mapping

is a matrix W which multiplied by X gives Y . Therefore, the goal is to learn a matrix W

which minimizes

‖WX − Y ‖ (5.1)

An illustration of the approach is given in Figure 5.3. In Figure 5.3 (A), two distribu-

tions of word embeddings initially separated are presented. Then, in Figure 5.3 (B) us-

ing adversarial learning two neural networks contest with each other in a zero-sum game

framework. A network is trained to discriminate between elements randomly sampled from

WX = (W~x1,W~x2, ..,W~xn) and Y . The other network is trained to prevent the discrimi-

nator from making accurate predictions. As a result, the discriminator aims at maximizing

its ability to identify the origin of an embedding, and the other model learns W preventing

the discriminator from doing so by making WX and Y as similar as possible. Afterwards,

in Figure 5.3 (C), we can see that the matrix W obtained with adversarial learning roughly

aligns the two distributions, but the adversarial approach align words irrespective of their

frequencies. However, rare words have embeddings that are less updated and are more

likely to appear in different contexts in each corpus, which makes them harder to align.

In order to refine the mapping, a synthetic parallel vocabulary is constructed using the W

just learned. Subsequently, the Procrustes solution from [84] on this generated dictionary is

applied. Considering the improved solution generated with the Procrustes algorithm, it is
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possible to generate a more accurate dictionary and apply this method iteratively. Finally,

in Figure 5.3 (D), the resulting vectors are aligned.

Figure 5.3: Toy illustration of the method. Figure from Conneau et al. [27]

Besides, they provide multilingual embeddings already aligned. In particular, they re-

lease fastText Wikipedia supervised word embeddings for 30 languages, aligned in a single

vector space 1. Having these vectors aligned, a system constructed with these word embed-

dings can be extrapolated from one language to another.

5.2 Data

This section focuses on the public data found to carry out the later experiments. We will

follow a similar approach to that presented in Section 4.2, a brief description of the data

will be given, as well as the corresponding label distribution. We are using data from

six languages: English, Spanish, German, Indonesian, Portuguese, and Italian. Following

sections describe data as mentioned for each language. Spanish language is not included

since it is the same data used in the SemEval competition and it has been already outlined

in Section 4.2.

5.2.1 English Data

English is the language in which more data is available (See Table 2.6). For this reason, we

have made a selection of three well-established datasets in the hate speech field in addition

to the SemEval data. Each of the three datasets is presented below.

5.2.1.1 Davidson Data

This section treats the data from Davidson et al. study [31]. They used the Twitter API

to search for tweets containing terms from the Hatebase.org lexicon. Then, 25k tweets

were selected and manually coded by CrowdFlower workers. Workers were asked to label

1https://github.com/facebookresearch/MUSE#Download
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each tweet as one of three categories: hate speech, offensive but not hate speech, or neither

offensive nor hate speech. Each tweet was coded by three or more people, using the majority

decision for each tweet to assign a label. Only 6% (1,430 tweets) of tweets were labeled

as hate speech. The majority of the tweets were coded as offensive (19,190, 77%) and the

remainder were considered to be neither hate speech nor offensive (4,163, 17%).

5.2.1.2 Waseem Data

This data is part of the Waseem et al. research [98]. Their data set consist of tweets

collected over the course of 2 months, again using the public Twitter search API looking

for tweets containing common slurs and terms used pertaining to religious, sexual, gender,

and ethnic minorities. Finally, they manually annotated 16,914 tweets, 3,383 (20%) of that

for sexist content, 1,972 (12%) for racist content, and 11,559 (68%) for neither sexist or

racist. 2

5.2.1.3 Stormfront Data

The files provided within this dataset [32] were extracted from Stormfront 3, a white

supremacist forum. Textual hate speech is annotated at sentence level, allowing to work with

the minimum unit containing hate speech and reduce noise introduced by other sentences

that are clean. A total number of 10,944 sentences have been extracted from Stormfront

and classified as conveying hate speech or not, and into two other auxiliary categories.

• Relation: if the sentence is not an utterance of hate speech, but in combination with

other sentences it is.

• Skip: sentences that are not written in English or that do not contain information

as to be classified into hate speech or no hate speech.

Table 5.1 shows the distribution of the sentences over classes.

2The dataset they provide contains the TweetID instead including directly the text, so when downloading

the tweets the distribution was a bit different due to tweet removal. 3,167 for sexist tweets, 1,935 for racist

tweets, and 11,033 for non hateful tweets
3https://www.stormfront.org/forum/
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Assigned label sentences %

Hate 1,196 11

No hate 9,507 87

Relation 168 1

Skip 73 1

Table 5.1: Distribution of sentences over categories in the Stormfront dataset

5.2.2 German Data

German data [81] is centered over the recent topic of the refugee crisis. They used Twitter as

source with 10 hashtags 4 that can be used in an insulting or offensive way. The resulting

corpus consists of 469 tweets, none of which contain links or pictures or are retweets or

replies. They personally annotated the tweets based on their previous expertise. Data were

split into six parts and each part was annotated by two annotators in order to determine if

hate speech was present or not. The annotators were rotated so that each pair of annotators

only evaluated one part. So there are two sets of annotators which annotation distribution

is presented in Table 5.2

Annotator #Hate (%) #No Hate (%)

Experts set 1 110 (23) 359 (77)

Experts set 2 98 (21) 371 (79)

Table 5.2: Distribution of German data for each label and each expert set

5.2.3 Indonesian Data

We did not expect to found data in such exotic language as Indonesian, but surprisingly

there is more than one available dataset for hate speech detection written in this language.

In particular, there exists a dataset which uses Instagram 5 as source, meanwhile, there is

4#Pack, #Aslyanten, #WehrDich, #Krimmigranten, #Rapefugees, #Islamfaschisten,

#RefugeesNotWelcome, #Islamisierung, #AsylantenInvasion, #Scharia
5https://www.instagram.com/

77

https://www.instagram.com/


CHAPTER 5. TRANSFER LEARNING FOR HATE SPEECH DETECTION

also another one extracted from Twitter.

5.2.3.1 Instagram Dataset

The dataset provided was used to detect hate speech on Instagram comments [77]. They

crawled comments from nine suspected hateful accounts based on a keywords and hashtags

search. As a result, they gathered 1,200 comments to be manually labeled by three anno-

tators representing a certain diversity in terms of age and sex: a woman (25) and two men

(25, 20). After the annotation process, the tweets where the annotation agreement was not

100% were removed due to ambiguity. This decision reduced the data to a total of 835

comments, consisting of 286 hateful comments and 549 labeled as not hateful ones. Finally,

they decided to make available a balanced version of the data with 286 samples for each

category.

5.2.3.2 Twitter Dataset

The data here provided [6] uses the more habitual social network, Twitter. The new dataset

created aims to cover hate speech in general, including hatred against religion, race, eth-

nicity, and gender. In this case, they collected tweets using the Twitter Streaming API.

These tweets were related to a political event, the Jakarta Governor Election 2017. This

election was a potential source of hate speech data because one of its candidates came

from a minority group in Indonesia, in terms of religion and race, while another candidate

was a woman that potentially could trigger hate speech related to gender. After removing

duplicated tweets, they had 1,100 tweets to be labeled manually.

The annotation process was done in binary format, by means of deciding if a tweet

contained hate speech or not. Annotators were 30 volunteers who were all college students

in Jakarta and surrounding areas with the age range of 17-24 years. Gender distribution

was of 43.3% of men and 56.7% of women. The previously 1,100 collected tweets were

divided into 22 sets, each one of them being of 50 tweets size. Each set would be annotated

by three people from different religious, racial and gender backgrounds. Following the same

approach than in the previous case, only 100% annotator consensus tweets were considered.

Thus, the resulting tweets were 713 consisting of 260 (36%) tweets with hateful content and

453 (64%) tweets with hate absent.

78



5.2. DATA

5.2.4 Portuguese Data

The source of the data is the most accessed news site in Brazil 6. During the research [34]

where the data was generated, they noticed that the new categories with the most offensive

comments are politics and sports, so the data collection was limited to those sections. At

the end of the process, they obtained 10,336 comments posted for 115 news.

Because of human limitation, a sample of 1,242 comments was randomly selected for

annotation. Following the standard procedure adopted for dataset annotation, each com-

ment was annotated by three judges which were asked to whether it was offensive. In case

of an affirmative answer, the annotator was also asked to categorize the offence as racism,

sexism, homophobia, xenophobia, religious intolerance, or cursing. Two datasets were gen-

erated from the annotations. The first has all 1,242 instances and the class assigned to each

comment was the one picked by at least two of the judges. The second is a stricter dataset,

composed solely of the comments for which all three judges agreed as to identify whether

or not the comment was offensive. In this project, we are using the first dataset of both

previously presented, which presents the following binary distribution. 414 (33%) samples

resulted to be offensive, while 828(66%) instances were not.

5.2.5 Italian Data

The last dataset used in this chapter was proposed for an Italian task 7 (similar to SemEval).

Two research groups made an effort to create two datasets, in order to allow their exploita-

tion in the task. The first dataset is a collection of Facebook comments developed by the

group from CNR-Pisa and created in 2016 [35], while the another one is a Twitter corpus

developed in 2018 by the group from the Computer Science of Turin University [75, 82].

Data was protected, so we were only able to access training data which consists of 3,000

tweets for both cases.

5.2.5.1 Facebook Dataset

Facebook data was retrieved from public pages of Italian newspapers, politicians, artists,

and groups, which typically host discussions spanning across a variety of topics. Among all

the available information only direct comments to the posts were considered. Five bachelor

students annotated the data, assigning a class to each post among the two possibilities as

6https://g1.globo.com/
7http://www.di.unito.it/˜tutreeb/haspeede-evalita18/index.html
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usual: hate and no hate. Finally, the distribution turned out to be almost balanced: 1,618

(54%) for non hateful posts and 1,382 (46%) for hateful ones.

5.2.5.2 Twitter Dataset

Tweets were collected according to three specific targets: immigrants, Muslims and Roma.

They first annotated 1,827 thanks to the labour of four independent annotators. The corpus

was split in two, and each part was annotated by two annotators. The annotator pairs then

switched to the other part, in order to provide a third (possibly solving) annotation to

all those tweets where at least one category was labelled differently by the previous two

annotators. Then, another data collecting was carried out filtering by words that more

frequently occur in texts annotated as hate speech in this first dataset. The final version

of the corpus consists of 6,009 tweets, having the ones for the training data in the task,

the following distribution. 2,028 (%) inoffensive tweets and 972 (32%) tweets categorized

as hateful ones.

5.3 Cross Language Transfer Learning

The first set of experiments address the problem of Transfer Learning across languages.

Seeing data distributions for each language in Section 5.2, we can observe that except for

English, hate speech publicly available data is very poor. For this reason, we can build a

robust classifier with English data and making few changes, apply this model to new data

from other languages. In the following section, we will see how to do this.

5.3.1 Architecture

The key idea, in order to achieve the desired transfer, is supported by the multilingual word

embeddings. If we learn a system based on a method which in turn depends on a monolingual

(English) word embedding model and such model is aligned with other different monolingual

embeddings, we can export the learning to other languages by means of changing the original

(English) word embedding model by the word vectors from the target language.

The first step is to generate the English system. Because of the data in target languages

is annotated in a binary format, we must transform English data into the same binary

format. Davidson data was encoded to have two categories grouping offensive (but not hate

speech) tweets with no offensive ones in the no hate category. Racist and sexist samples

from Waseem data were grouped into the hate speech class. Regarding the Stormfront
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data, only samples labeled as hate and no hate were used. Remember that SemEval data

was already encoded in a binary format. After cleaning the data and removing possible

duplicates, a dataset of 63,472 instances was formed with 50,483 (80%) hateful examples

and 12,989 (20%) no hateful ones. Finally, data was balanced using only a random subset

of 12,989 instances from the no hate class.

Then, following a similar approach than the one presented in Section 4.4 and Figure 4.1,

the English system is built. As opposed to the system presented in the competition, we now

only consider SIMON sub-module in the feature extraction step, since we need a method

based on word embeddings. Besides, the feature selection step has been removed. The

lexicon used to feed the semantic similarity extractor is a mix of Hatebase terms and most

frequent words from the English corpus recently generated. Figure 5.4 illustrates the system

used to learn from English data with SIMON step zoomed. In fact, this system, with some

changes, will be used in other languages.

Figure 5.4: System trained with English data

SIMON implementation stores the lexicon word vectors during the training process,

which facilitates the transfer implementation because word embeddings alignment makes
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those vectors valid for all languages in which there exists a corresponding aligned vector.

This fact makes ourselves to save from translating the lexicon or some similar approach.

This causes that by only changing the word embedding model we can use this system in

any other language as shown in Figure 5.5.

Figure 5.5: English trained system transformed to predict hate speech in the target language

Finally, further modification can be carried out to improve the transfer process. We

refer to keep training the algorithm in the classification step with data from the target

language. This is known as fine-tuning in terms of Transfer Learning and can also serve us

to measure the transfer quality as seen in Section 5.1. Fine-tuning in our system is depicted

in Figure 5.6.
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Figure 5.6: English trained system fine-tuned with target language data

5.3.2 Results

This section provides a set of results obtained using the Transfer Learning process explained

in the previous section. For each language, the system with Transfer Learning is compared

against what we call the native system. Native system is built in the same way than the

English system was, but only considering target language data (in Figure 5.4 changing

“English” by the target language).

The evaluation is made by means of learning curves as seen in Figure 5.2. With the

exception of the Spanish case, F1 scores of the curve are obtained with a three-fold cross-

validation approach. The same three algorithms used in the previous chapter will be evalu-

ated. In the posterior graphics, green curve represents the system with Transfer Learning,

while red line is represented by the native system in the language at hand.
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5.3.2.1 Spanish

Spanish experiments represent a special case due to data splitting. Instead of using cross-

validation we have taken advantage of the data separation provided in the competition.

This way, we use the training data to fit the model and the development and test sets to

compute the scores. Recycling data this way can serve us to make further comparison.

Learning curves for both, development and test experiment can be found in Figures 5.7

and 5.8 respectively.

Figure 5.7: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Spanish development set

With the development data, some promising results can be observed. First, Random

Forest system with Transfer Learning achieves a better performance after training is com-

plete. Nevertheless, such improvement is not significative, and we appreciate more the

Logistic Regression results where English fine-tuned system starts better. This is a key

result since if this becomes a trend we can assume that the transferred system can be used

in languages where data is scarce. In this case, we have more than 4,000 training examples

and normally the native system will surpass the English trained model, but next experi-

ments where only exist hundreds of examples, the improvement in the beginning will be

much more clear. Additionally, the fine-tuned model grows more linearly than the native

system which grows in a noisy way.

Figure 5.8: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Spanish test set
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On the other hand, test results are a bit worse. F-score metric is five point under

the results from the previous graphic (from 75% to 70%) and transfer systems do not

behave better than native systems, excepting Random Forest at the learning commence. In

relation to the competition results, in the development set, we are far from the best feature

combination (85%), while we are really near in the test set (72.5%), though it was easier

since results are lower.

Another aspect to keep in mind is the noisy behaviour of Linear SVM. This fact will be

repeated along with all the experiments. This noise may be introduced by the Stochastic

Gradient Descent optimizer which divides training data into mini-batches and the optimiza-

tion process into steps. The use of smaller mini-batches might produce a bad minimization

of the cost function, but that is compensated by the fact that there will be much more

steps, and taking the wrong direction sometimes means escaping local minimum.

5.3.2.2 German

German data was annotated separately by two annotators groups, so another pair of ex-

periments were carried out. Unfortunately, authors in [81] did not develop any solution to

classify texts as hateful or not, being unable to compare the results obtained. These results

in terms of learning curves for experts group 1 and 2 are presented in Figures 5.9 and 5.10

respectively.

Figure 5.9: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for German annotation from experts group 1

Seeing the end of the curves, expert 2 seems to be easier to predict. With Logistic

Regression a higher start is always achieved with the Transfer Learning system, while also

the linear SVM has a higher start in the expert 2 annotation. Also notice the great results of

native Random Forest at the beginning of expert 1, though when training finalizes Transfer

Learning system matches the results. Although it is true that German data we have is

very limited and the Transfer Learning curves should have a better shape, results are also

affected by the imbalanced distribution of the data.
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Figure 5.10: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for German annotation from experts group 2

5.3.2.3 Indonesian

Indonesian is one of those cases where low data is available, data size is not bigger than

thousand samples. Therefore, this set of experiments can really test the Transfer Learning

quality at early learning stages.

Figure 5.11: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Indonesian Instagram dataset

Graphics from Figure 5.11 represent the curves for the Instagram Indonesian dataset.

In [77] the authors reported an F-measure of only 65.7%, consequently, our both approaches

make a significative improvement of 8% approximately. Since we lack Indonesian linguistic

understanding this is such a surprising thing. One more time, best results are achieved

when using Logistic Regression, but in this case, the Transfer Learning system surpasses

the native system during almost the whole training process.

Nevertheless, much more promising results are obtained in the Twitter data, as shown in

Figure 5.12, where the difference in the start is much higher than in previous experiments.

Also note that the three algorithms with Transfer Learning has a higher start. Besides,

final F-scores obtained are really good, around 85%, though in the original research [6] they

reached up to 93.5% of F-score 8.

8Results may not differ so much, but they evaluated their algorithm using a balanced distribution of the
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Figure 5.12: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Indonesian Twitter dataset

5.3.2.4 Portuguese

Portuguese experiments go in line with results already seen with other languages. Logistic

Regression performs well, linear SVM behaves noisily, and Random Forest Transfer Learning

system performs really bad. The three curves are presented in Figure 5.13. In relation to

the data providers [34], both achieve similar results: around 77% of F-score.

Figure 5.13: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Portuguese data

5.3.2.5 Italian

The final cross-language experiment is concerned with the Italian language. Data size is

similar to that used in the Spanish case, however, some interesting results can be observed.

As occurred with German data, we cannot establish a comparison, since we do not know

the results from the Italian competition over the training data. Curves evaluated with

Facebook data are included in Figure 5.14, while Twitter related evaluation can be found

in Figure 5.15.

With Facebook data, the system with Transfer Learning that uses Logistic Regression

outperforms native system throughout all the training process. In addition, this happens

dataset, so the comparison does not match exactly
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Figure 5.14: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Italian Facebook data

when working with 3,000 training examples, which excluding Spanish data is one more

magnitude bigger than other languages data.

Figure 5.15: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Italian Twitter data

Twitter data results are better than Facebook data results regarding the F-score metric.

This is an expected result because our text preprocessing is mainly oriented to the Twit-

ter domain (the same thing occurred with Instagram and Twitter data in the Indonesian

language). Again, Logistic Regression transferred system has a higher start.

Overall, results achieved during experimentation suggest that the performance of Lo-

gistic Regression is indeed positive in the studied scenario. Logistic Regression is a simple

algorithm with also a simple training process what makes it few adapted to the data seen.

Consequently, this makes a better adaptation in order to learn from new data than other

algorithms that are much more adapted to the first training data. For this reason, Logistic

Regression is a good algorithm to use in Transfer Learning problems.

5.4 Cross Domain Transfer Learning

The last set of experiments try to address a cross-domain Transfer Learning problem. Par-

ticularly, we are going to study aggressiveness and target goals of hateful tweets from those
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provided in SemEval-2019 Task 5. The experiments consist of creating a system to detect

aggressiveness and use it to detect the target and the same in opposite order. The workflow

is easier than in previous experiments because a system trained to classify aggressive tweets

can immediately be evaluated to predict the target, there is no word embedding behind.

We are going to test Spanish and English-speaking tweets, but the experiments will be

mono-language, that is to say, the systems created will only be able to detect aggressiveness

and target in one unique language. For better performance, the best systems developed

during the competition will be used. Nevertheless, in order to make able the fine-tuning,

it is necessary that features extracted for aggressive tweets and target ones must be the

same. Therefore, we will use the features optimized to detect aggressiveness cause it was

the label most difficult to predict and these results do not make target results to differ in a

significative manner.

5.4.1 Results without Fine-tuning

In this section, we present the results when no fine-tuning process is applied. Systems

trained in one domain are directly evaluated in the other domain, we also include the results

for systems without Transfer Learning. As aforementioned, we are going to use SemEval

data, training with the training set and testing over the test and development set. The

combinatorial problem makes us computing 48 different values: 2 languages × 2 domains

× 2 evaluation sets × 2 kind of systems (Transfer Learning and no Transfer Learning) ×
3 algorithms = 48. These 48 values are separated into development and test evaluation in

Tables 5.3 and 5.4 respectively.

The obtained results must be interpreted by only considering the only four results corre-

sponding to an algorithm and can be observed in two directions, column-wise and row-wise.

When looking column-wise we are comparing the Transfer Learning system with the native

system for one label, while when looking row-wise we are seeing the performance of a sys-

tem trained with one label in such label and the other label. Column-wise results are as

expected, native system always achieves better results than systems with Transfer Learning.

On the other hand, row-wise results differ for each language. In the English case, the

systems trained for a label always predict better that label than the other one. However,

there are Spanish systems when the label used to train is not the best predicted. For

example, in Table 5.4 algorithms trained with aggressiveness predict better the target.

This may be due to that the target label is easier to predict, cause results achieved in this

class are around 90% in all native cases.
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— Logistic Regression Linear SVM Random Forest

Trained\Evaluated AG TR AG TR AG TR

English

AG 0.705 0.44 0.707 0.55 0.681 0.40

TR 0.50 0.934 0.50 0.932 0.48 0.911

Spanish

AG 0.813 0.23 0.830 0.7 0.779 0.81

TR 0.75 0.924 0.72 0.924 0.75 0.919

Table 5.3: Cross Domain Transfer Learning results in the development set

— Logistic Regression Linear SVM Random Forest

Trained\Evaluated AG TR AG TR AG TR

English

AG 0.682 0.33 0.674 0.25 0.639 0.25

TR 0.40 0.892 0.39 0.895 0.39 0.896

Spanish

AG 0.787 0.88 0.787 0.87 0.725 0.76

TR 0.70 0.902 0.78 0.900 0.76 0.869

Table 5.4: Cross Domain Transfer Learning results in the test set

5.4.2 Results with Fine-tuning

We now proceed to apply fine-tuning in the Transfer Learning process. When a system

has been first built to detect one label, then training follows using the same features than

before changing the label to learn. In this case, the number of graphics to plot is equal to 24

cause the Transfer Learning and native systems are grouped into one unique graphic. The
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analysis is divided into languages and evaluation sets resulting in eight figures presented

below. For each language there are four images, two evaluated with the development set

and another two with the test one. Finally, each set is used in a Transfer Learning problem,

aggressive model to detect target and target model to detect aggressive tweets.

We start by discussing English curves which are plotted in Figures 5.16, 5.17, 5.18,

and 5.19. Generally, there are few successful cases where Transfer Learning advantages

can be seen. These cases are concentrated in Figure 5.18, where Logistic Regression and

Linear SVM Transfer Learning systems achieve better scores at early stages. In addition,

native systems in the experiments with the test set have a notable step around 2,000 training

examples.

Pearson correlation coefficient gives a measure of how similar are two variables, applying

it to this case, we obtain a 0.04 in the development set and a 0.21 in the test set. This

result suggests that the two tasks are quite different in the development set and therefore

applying transfer learning as has been done does not serve to improve a system without

Transfer Learning. In the test set correlation between variables is better, so we have been

able to see better curves.

Figure 5.16: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for English development set and transfer from aggressive to target learning

Figure 5.17: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for English development set and transfer from target to aggressive learning

Better results can be observed in Spanish curves, represented in Figures 5.20, 5.21, 5.22,
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Figure 5.18: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for English test set and transfer from aggressive to target learning

Figure 5.19: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for English test set and transfer from target to aggressive learning

and 5.23. First of all, unlike the previous case, it can be seen a better start of some systems

with Transfer Learning and some of them are significant (see for example Linear SVM

in Figure 5.23). Secondly, even there is no such better start, some Transfer Learning

curves grow really fast surpassing the native ones in few iterations (see for example Logistic

Regression and Linear SVM in Figure 5.23). Lastly, Random Forest with Transfer Learning

is always above in the last experiment.

This improvement can also be seen as an improvement in the correlation between the

variables for the Spanish language. In this case, the Pearson correlation coefficient is of 0.42

for the development set and 0.47 for the test set, which are really high correlation values

and consistent with the results observed.
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Figure 5.20: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Spanish development set and transfer from aggressive to target learning

Figure 5.21: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Spanish development set and transfer from target to aggressive learning

Figure 5.22: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Spanish test set and transfer from aggressive to target learning

Figure 5.23: Logistic Regression (left), Linear SVM (center), and Random Forest (right)

curves for Spanish test set and transfer from target to aggressive learning
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CHAPTER6
Conclusions

This final chapter presents the conclusions derived from this master thesis, as well as the

achieved goals, problems faced and future work that can be initialized from this project. The

conclusions offer some final thoughts about the development of this project. Then, with the

achieved goals, the main results that were obtained are pointed out. Next, main problems

encountered during the realization of this project are described. Finally, As for the future

work, some lines of research are outlined, with special attention to the Transfer Learning

and neural network fields, in which many of this master thesis work is inspired.
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6.1 Conclusions

Social networks platforms contain huge amount of information which is really hard to process

manually. The proliferation of hate speech within this information needs to be filtered and

automated tools are required. The solutions developed mainly relies on NLP and Machine

Learning tools in order to ease such treatment automatically. New emerged paradigms

based on deep learning technologies have been explored, specially those concerned with

word embeddings and semantic similarity. As seen throughout the previous reading, our

project has been evaluated against two different study cases, the participation at SemEval-

2019 Task 5 and the Transfer Learning for hate speech detection research.

Regarding the SemEval-2019 Task 5, we presented our system in the famous interna-

tional competition of SemEval, which the task addressed [12] revolves around analyzing

text messages from Twitter in order to detect hate speech against immigrants and women.

The different features that feed this system have been thoroughly evaluated, considering its

suitability in the field of hate speech detection. It has been seen that both novel and tradi-

tional approaches do not yield so promising when used separately. Nevertheless, properly

combining several types of features, as well as with content analysis features (e.g., senti-

ments and subjectivity) can improve the system to the point of reaching a reasonably good

performance.

Overall, results confirm that hate speech detection against women and immigrants in

micro-blogging texts is challenging, with a large room of improvement. Hate speech con-

cept has demonstrated its complexity, which significantly requires better definitions and

guidelines in order to be annotated reliably. For the same reason, researchers might want

to consider hate speech detection a regression problem, predicting, for example, the degree

of hatefulness of a message, instead of a binary yes-or-no classification task. Language de-

pendence on the context in which it is expressed makes it a rather complicated task to solve

by simply looking at keywords. Swear words used in a humorous context and hate speech

phrased in a slightly convoluted way are common error sources.

Task 5 has been one of the most popular tasks in SemEval-2019, which confirms the

growing interest of the community around abusive language in social media and hate speech

detection in particular. Besides, the multilingual perspective contributed to make the task

accessible to a wider community of scholars.

Concerning the Transfer Learning problem, we described the principles of Transfer

Learning and applied them by tackling out two transfer approaches, Transfer Learning

across languages and across domains. Firstly, when working with Transfer Learning be-
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tween languages, an English trained model was used to predict hate speech in different

languages. Then, we showed how to afford this problem using a technique strongly based

on multilingual aligned vectors. Compared to this, the second Transfer Learning approach

is much more trivial, where a system trained to detect aggressive hateful tweets can be

immediately used to detect target or not, hateful tweets.

Furthermore, with the aim of evaluating the proposed models, the corresponding native

models without Transfer Learning were built for comparison. In order to do this, trained

systems are fine-tuned with the target task data and learning curves of both systems are

plotted in the same graphic with the aim of facilitating the visual comparison. Through

this evaluation, we empirically verified some benefits of using Transfer Learning to solve

some specific tasks.

6.2 Achieved Goals

The development of the project has successfully reached the proposed goals. Firstly, we

have reached some degree of expertise with the hate speech domain. An extensive current

state-of-the-art research has been carried out to know the fundamentals of this field.

Then we decided to participate at SemEval-2019 Task 5, where we got the first contact

with practical hate speech detection, and we reached 5th place on the Spanish sub-task A,

being only 0.5% apart from the best performing system. This is, undoubtedly, a promising

result that highlights the capacity of the proposed method to obtain nearly state-of-the-art

performance in this task. When comparing with the same sub-task in the English case, in

which we scored lower, it is necessary to study further the applicability of the system to

different languages.

For that reason, a multilingual experiment was carried out to see how to take advantage

of the learning acquired in one language to apply it to another language from scratch, or

with few data in the target language. Experiments addressed has shown the improvement

of using Transfer Learning when target language data is scarce or even does not exist.

6.3 Problems Faced

During the development of this project, we had to face some problems. These problems are

listed below:

• Lack of knowledge: the development of the project strongly depends on really com-
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plex theoretical concepts related to neural networks in the NLP field. At early stages

of the thesis, these concepts were not mastered at all, so it was necessary to include

study phases to understand the theoretical fundamentals in which this project relies

on. The knowledge acquired helped to improve the analysis, troubleshoot emerging

errors efficiently, and make more accurate interpretations of the results obtained.

• Out of vocabulary words: This is a limitation of word embeddings models, which

forces a word to be seen in the training data in order to have an embedding vector. But

not all words are inside the training data, so these words do not have an embedding

vector associated and are called out of vocabulary words. Handling out of vocabulary

words can be done in different manners, specifically in this project out of vocabulary

words are mapped to all null values vectors. A derived problem of out of vocabulary

words appears when the input text is compound by only out of vocabulary words.

These samples are assumed to be very rare and can be removed from the analysis.

• Errors in user-generated content: this is a frequent problem encountered by any

project that works with social network data. People share their opinions on social

networks committing grammatical errors and/or with an incorrect language structure.

Order-less approaches such us BOW or TF-IDF do not care about language structure

and are not affected by inconsistent text inputs. On the other hand, the effect of

misspelling errors can be attenuated using features at the character level. Writing

a word badly can cause it to become an out of vocabulary words. Besides, special

characters, including non-alphanumeric characters need to be cleaned at the text

preprocessing step.

• Language ambiguity: ambiguity is a characteristic and essential language require-

ment in order to afford world complexity and avoid having a word for each thing.

Words can have several meanings and the associated meaning at each moment will

depend on the human interpretation or the context in which it is being expressed.

Ambiguity affects when working with aligned vectors, where we assumed to use the

same lexicon embedding vectors extracted with the English embedding in the target

languages. While it is true that this decision is correct due to alignment, when cal-

culating similarity between words, the meaning considered is the one provided by the

word embedding model at hand that could be making a wrong interpretation. For

example, terms that refer to certain Spanish female animals usually have negative con-

notations. Therefore, should have a similar position in the vectorial space than slang

terms, but instead, these words are near other animal words. The fine-tuning process

in the target language can be seen as a partial solution to the ambiguity problem.
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• Imbalanced data: the last problem consists on the predominance of harmless texts

in the overall sets of data used. The amount of representation of each class can

cause classifiers to predict more frequently the majority class. Thanks to the library

Imbalanced-learn, some under-sampling techniques have bee tested in order to obtain

the optimal performance of the algorithms.

6.4 Future Work

Results obtained in the English tasks of SemEval evidence that hate speech detection still

represents an open challenge with great room of improvement. As future work, several lines

of work could be addressed. Firstly, we plan to implement deep learning architectures which

have shown to obtain better results in previous research [101, 102]. These architectures have

the advantage of saving the feature extraction step because it is done automatically. It works

by means of an embedding matrix at the input that feeds a Convolutional Neural Network

which applies several filters to extract the features. Each row in the embedding matrix is the

corresponding embedding vector of each word in the text input. Another benefit of using

deep learning is that embedding vectors are seen as weights in the network and are actualized

during the training process, so they are fine-tuned to solve the task addressed. Also, context

aware approaches [36] could represent an improvement, since having general knowledge of

hate speech (e.g., anti- LGBT or racism) may boost the performance of learning systems.

In addition, in order to afford imbalanced distributions, data augmentation [46] tech-

niques could be explored. Data augmentation generates new samples of data instead of

selecting a sub-sample of the original data. New hateful text samples can be generated

using the original hateful texts and replacing synonyms on the basis of two criteria: the

grammar category and the cosine similarity.

Finally, more refinement could be done in relation to the work carried out with word

embeddings. Initial training of a word embedding model does not consider language ambi-

guity and hate speech problem, so fine-tuning word vectors as aforementioned can modify

the vectorial space to represent properly the correct meaning of the words. But then, the

alignment between language vectors are not consistent and same transformation must be

applied to other models. In order to conclude, a more elegant way of treating out of vocab-

ulary words could be implemented. Given an out of vocabulary word and the sentence it is

in, language modelling is used to sequence words in the sentence and predict the meaning

of the word by comparison with similar sentences.
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APPENDIXA
Ethical, Economical, Social and

Environmental Impact

A.1 Introduction

This appendix will show the Ethical, Economical, Social and Environmental impacts of this

project. In order to clarify the identification of impacts and problems, the context in which

the project has been developed should be defined beforehand. This thesis is framed within

the sector of Information Technology (IT), specifically, there has been made a research work

on the applicability of novel technologies, such as NLP and Machine Learning. As it has

been described in the document, the project is mainly centered in the context of the social

networks in order to study online hate speech. Some stakeholders may be affected by the

realization of the project and the whole analysis will be focused around them.

The interested parties analyzed will be directly or indirectly affected by the development

and implementation of the project in any of its phases, both positive and negative. We start

from the idea that most of the institutions are positioned in favor of the elimination of hate

speech content. The beneficiaries left by the development of this thesis are listed below.
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• Public authorities: Govern and Administrations must promote a citizen coexistence

based on respect and harmony.

• Social networks: they have to protect decent users because otherwise the will be-

come unused platforms or the use they receive will be different from the one they

intended. Besides, the European Union Comission has obliged them to do it (See

Section 1.2).

• Researchers: the study carried out here can serve as initialization for further re-

search.

• Hate speech victims: They are not willing to be discriminated.

On the flip side, hate speech authors, sites promoting hate speech including white

supremacist forums and similar will be negatively affected cause their content could be

possibly banned or blocked. Following, each of the dimensions is evaluated, but due to the

nature of this project, the realization of this impact makes sense specially concerning social

and ethical impacts, so they will be more deeply analyzed.

A.2 Ethical Impact

This project has clear ethical implications as it gathers data from public profiles on social

networks and the Internet and tries to classify their content according to whether they

contain any hate speech utterance or not. The automatic classification of online posts

carried out in this project has several ethical issues: freedom of speech, information privacy,

and human job dignity. The last of them also affects in the economic impact as seen in

Section A.3.

Due to advances in technology, machines are automating human tasks, so they are being

replaced in order to save costs. We believe that a system such as ours provokes jobs reducing

and a transformation of jobs because although the system does work that until now has

been manual, it requires people to maintain it and analyze the results it presents. The

remaining two dimensions are more in-depth studied in the following sections.

A.2.1 Freedom of Speech

Freedom of speech is a right that supports the freedom of an individual or a community to

articulate their opinions and ideas without fear of retaliation, censorship, or legal sanction.
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Our system can cause some individuals and online hate communities are deprived of the

right to freedom of expression because if their content is identified as hateful should be

banned or blocked. In this case, the suppression of this right is justified since some limits

on expression must be contemplated and hate speech must be treated as an exception. In

fact, hate speech violates other human rights relative to justice, non-discrimination and

equal treatment regardless of age, gender, sexual orientation, social class, race, ethnicity,

religion, disability, etc. This right states that no one should be self-conscious or attacked

for showing himself as he is. It is true that the system could wrong classify non-hateful

content as hateful one and no blame users would be adversely affected. In that case, human

intervention should be needed to solve the problem.

Another aspect to consider is hate crime, which is a crime motivated by hate speech.

Therefore, hate speech has entered into the legislation and The International Covenant on

Civil and Political Rights (ICCPR) states that “any advocacy of national, racial or religious

hatred that constitutes incitement to discrimination, hostility or violence shall be prohibited

by law”. On top of this, many countries have developed their own laws to fight against hate

speech, Spain has the following considerations [41] in relation to hate speech into its penal

code:

• Threats to a group with an evil that constitutes a crime

• Provocation of discrimination, hatred or violence against groups or associations and

dissemination of insulting information about groups or associations

• Unlawful association to promote discrimination, hatred or violence against persons,

groups or associations

• Crimes against freedom of conscience and religious feelings

• Discrimination in the workplace

A.2.2 Information Privacy

The new General Data Protection Regulation (GDPR) [88], which limit of appliance ended

in May 2018, has raised awareness around personal data and information privacy. Personal

data is any information that serves to identify a natural person, which is a very broad

definition and makes that almost any data can be considered as personal. For example,

knowing if a person is a hate speech author is personal data. This project makes use

of public data available via Internet and social networks which are also protected by the

regulation. Users consent their data to be treated when publishing content in the platform
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on the social network. There are exceptions because users can make their profile private and

remove the content they want. Special attention requires what is considered sensitive data,

which includes information related to health, political beliefs and also information relating

to the commission of a crime. It can be considered that we are using sensible information

because of hate crimes. The project only works with text information and the associated

annotation information, so data is anonymized and anonymous data is not under GDPR

scope. On the other hand, when using social network data, we must adhere to what is

stated in the social network’s privacy policy and be aware of the rights of users so that they

do not conflict with our treatment. We have been careful about using only the data needed

and no information is related to any real person.

We have seen that our treatment is legal, but also we have to analyze if is ethic. Maybe

persons want their content to be public to interact with friends and/or relative, but not for

data analytics and/or text mining. It is true that our system contributes to equality, but

the goal does not justify the means. Social networks could help in a solution by offering the

possibility of avoiding the automatic processing of user data (even if it is public) as they

offer the possibility of making an account private.

A.3 Economic Impact

This section asses the possible economic impact that companies and public institutions may

experience by using the ideas developed in this project. As told in the previous section, the

process of machine automating tasks can lead to savings in personnel costs. On the other

hand, acquisition of new equipment to deploy de system will cause new additional costs. It

will then be discerned whether the automation is more cost-efficient.

The cost of manually doing all the tasks performed by the system would be extremely

high with respect to the automated approach. Using some Twitter stats as example 1, 326

million of users should be monitored, which post around 500 millions tweets per day. On

top of this, the amount of human resources to tackle the problem in a single social network

is vastly huge. The transfer of this effort to the technology can reduce the people needed

since a machine can do the work of several people at once. Assuming that a machine is

cheaper than several people and that the number of machines can be updated depending

on the load (specially in cloud environments), the developed system is cost-effective against

other methodologies. Finally, despite all the above, human labour is always needed cause

1https://s22.q4cdn.com/826641620/files/doc_financials/2018/q3/TWTR-Q3_18_

InvestorFactSheet.pdf
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the automated system is not perfect and may fail, so companies will be helped considerably

and humans shall intervene in a few cases.

A.4 Social Impact

The social impact in this project is also important cause we have worked with a social

environment as social networks and Internet are. Due to the popularity reached by these

social communities during the last few years, many studies have emerged in order to draw

conclusions about human behaviour as the one presented in this thesis.

In our specific case, the study carried out around hate speech can serve the scientific

community to make further analysis and research in this field. Specifically, the guidelines

given in the future work section can be used as initialization for improvements in terms

of deep learning and Transfer Learning applied to hate speech. Besides, hate speech is a

really good candidate to test new discoveries to come in computer science and artificial

intelligence because of the challenging nature of this phenomenon.

Another interesting social perspective of this project is the quest for equality of this

project. The developed tool contributes to the fulfillment of human rights in terms of

equality non-discrimination and culture diversity. This is achieved by making research for

automating identifying non-respectful content in as many languages as possible. We have

made analysis in six languages due to data availability, but thanks to word embeddings

alignment, we have the potential to extend the system until 30 languages.

In addition, the thesis has also been developed within a social environment with the

participation at SemEval-2019 Task 5. Different teams of different countries of different

native language participated. All of them contributing to find the best solution to the

automation of hate speech detection, some of them also sharing their findings to help in the

investigation of this field.

A.5 Environmental Impact

The effect over the environment of this project is not clear, except for the computing power

needed for running the described experiments. Computers and other information technology

systems need electrical energy in order to work properly. Personal computers and shared
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pool of resources in a cloud environment (specifically, Google Colab 2 and GSI cluster 3

have been used) have made possible the realization of this project. In addition to this

consumption, the energy required for the cooling system associated with this equipment

must also be added. The process of generating this electrical energy can result in the

emission of greenhouse gases depending on the type of generation. In Spain, almost 40%

(2018) of electricity consumption comes from technologies that emit CO2 4. Therefore, 2/5

parts of our consumption generate CO2, which according to an online calculator 5 are 148

kg of CO2 6.

2https://colab.research.google.com
3https://hub.gsi.upm.es
4https://www.diariorenovables.com/2019/01/generacion-electrica-en-espana-2018_

17.html
5https://www.ceroco2.org/calculadoras/electrico
6We have considered a total consumption of 400 kWh summing up the personal computer, cloud services,

and cooling systems.
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APPENDIXB
Economic Budget

B.1 Introduction

When carrying out a project, a series of costs are incurred which define the final budget of

the project. In this appendix, we evaluate the possible costs that the development of this

system could have. These costs come mainly from the salaries of the developers, although

some costs have been provoked by hardware needs. Besides, the taxes involved will be

outlined.

There are many types of costs faced by a project. It is important to clearly know what

each of them consists of in order to analyze how they affect us correctly. The costs incurred

in this project can be classified according to how they affect it:

• Direct costs: are costs attributable to the project at hand.

• Indirect costs: are costs not attributable to the project we are developing and are

transversal to other projects.

They also can be classified depending on their behaviour:

• Fixed costs: are costs that do not change over time.
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• Variable costs: are costs that depend on the production activity of the project. The

higher the latest, the higher the variable cost

Following, the different costs of this project are described.

B.2 Physical Resources

This project requires a personal computer for its development and a server to run the

experiments. The server is the most resource demanding, so the requisites of the computer

can be relaxed. The computer used needs the following:

• Hard disk: 1 TB

• RAM: 8 GB

• CPU: Intel i5 processor, 3.20GHz × 4

On average, a machine with such capabilities costs around 600e as of 2019. The re-

quirements from the server are much stricter. The GSI cluster consists of two computers

with the following capabilities.

• Hard disk: 3 TB

• RAM: 16 GB

• CPU: Intel Xeon E5-2430 v2 2,50GHz × 6

The price of each computer reach 2,000e, but the cluster is used by other people, and

we can consider that we have used only one of those computers with an associated cost of

1,000e.

These machines are acquired at the beginning of the project, and they do not produce

more costs during the development, so they are catalogued as fixed costs, which summing

up reaches the amount of 1,600e.

B.3 Human Resources

Human resources are a variable cost which depends on time, so it is necessary to calculate

the total time needed to develop the project. This Master thesis has assigned 30 ECTS
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credits 1, which approximately compute as 30 work hours, so the amount of work in the

development would be of 900 hours. Assuming that each month has 30 days, of which 22

are working days and each working day is 8 hours, then the total duration of the project

are five months.

We suppose to have two employees, a software engineer for developing the whole so-

lution and another engineer for configuring the server and maintaining it. No experience

is needed, only some notions about programming and Machine Learning, so we suppose a

gross monthly salary of 1,300e for each one. The maintenance person could also be focused

on similar tasks for other projects, so his associated cost in this project would be around

500e. The final cost due to human resources is: (1,300 + 500) × 5 = 9,000e.

B.4 Indirect Costs

Other costs considered are associated with the activity of the project. These are indirect

costs and include Internet connection, electricity, water, and gas. These costs are not unique

for this project, they are shared among other projects, so we will only consider a 10% of

the total indirect costs.

The Internet connection used has a velocity of 100 Mbps which is valued with a price

of 30e monthly. Electricity price in Spain is 0.11854e/kWh, so the cost assumed can be

calculated knowing the kWh consumed (In this case the 10% do not have to be applied,

cause the direct cost associated to the project is calculated). Approximately half of the

kWh spent (400kWh) in the project are generated by us and the total electricity cost is

then: 200 kWh × 0.11854e/kWh = 23.71e.

The bill associated with the natural gas under consideration is 15e per month, as well

as the consideration for water, is 10e per month. Finally, total indirect costs are: (1.5 +

1) × 5 + 23.71 = 36.21e.

Having shown all the costs incurred, we are now in good position to calculate the total

cost: 1,600 + 9,000 + 36.21 = 10,636.21e, a part of this budget is caused by Spain imposed

taxes, which are accounted in the next section.

1https://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_

en
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B.5 Taxes

This final section assesses the taxes involved in the project. The entire set of costs outlined

in the previous sections have an associated tax which is expressed as percentage of the total

cost. Taxes to consider are:

• 21% of VAT in computer systems, electricity and gas. VAT in water is a 10%.

• Electricity tax additional to VAT of 5.113%.

• Tax on hydrocarburos (natural gas) of 2.34%.

• 23.6% of gross salary to social security.

On top of this, the total taxes are:

0.21 ·1,600 + 0,236·9,000 + 0.05113·23.71 + 0.21·(23.71 - 0.05113·23.71) + 0.0234·7.5 +

0.21·(7.5 - 0.0234·7.5) + 0.1·5 = 2,468.15e.
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Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and Mehwish Alam,

editors, The Semantic Web, pages 745–760, Cham, 2018. Springer International Publishing.

xviii


	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Motivation
	Project Goals
	Structure of this Document

	State of Art
	Related Work
	Features
	General Features
	Specific Hate Speech Detection Features

	State of the art Performance
	Datasets and Open Source Projects

	Enabling Technologies
	Data Managing
	Numpy
	Pandas

	Natural Language Processing
	NLTK
	Gensim
	TextBlob

	Machine Learning
	Scikit-learn
	Imbalanced-learn
	GSITK

	Hatebase API
	Machine Learning Fundamentals
	Logistic Regression
	Support Vector Machines
	Random Forest
	Artificial Neural Networks
	Perceptron
	Multi-Layer Perceptron


	NLP Fundamentals
	BOW
	TF-IDF
	LDA
	Word Embeddings
	Word2Vec
	GloVe

	SIMON


	Participation at SemEval-2019 Task 5
	Introduction
	Data
	Evaluation
	Task A
	Task B

	System Overview
	Preprocessing
	Feature Engineering
	Statistical features
	Content Analysis
	Word Embeddings
	Semantic Features
	Linguistic Features
	Feature Selection

	Classification

	Experiments
	Sub-task A
	Sub-task B
	Discussion


	Transfer Learning for Hate Speech Detection
	Introduction
	Multilingual Word Embeddings

	Data
	English Data
	Davidson Data
	Waseem Data
	Stormfront Data

	German Data
	Indonesian Data
	Instagram Dataset
	Twitter Dataset

	Portuguese Data
	Italian Data
	Facebook Dataset
	Twitter Dataset


	Cross Language Transfer Learning
	Architecture
	Results
	Spanish
	German
	Indonesian
	Portuguese
	Italian


	Cross Domain Transfer Learning
	Results without Fine-tuning
	Results with Fine-tuning


	Conclusions
	Conclusions
	Achieved Goals
	Problems Faced
	Future Work

	Ethical, Economical, Social and Environmental Impact
	Introduction
	Ethical Impact
	Freedom of Speech
	Information Privacy

	Economic Impact
	Social Impact
	Environmental Impact

	Economic Budget
	Introduction
	Physical Resources
	Human Resources
	Indirect Costs
	Taxes

	Bibliography

