UNIVERSIDAD POLITECNICA DE MADRID

ESCUELA TECNICA SUPERIOR .
DE INGENIEROS DE TELECOMUNICACION

TEENICA SUP] ENI LECQRUNICAC 7 = =g
\\‘ = ":,4_!}.
W ¥
= - 22
=5 NisZ:
» A

MASTER UNIVERSITARIO EN
INGENIERIA DE TELECOMUNICACION

TRABAJO FIN DE MASTER

DESIGN AND DEVELOPMENT OF A MACHINE
LEARNING SYSTEM FOR OPINION AND NATURAL
LANGUAGE ANALYSIS IN SOCIAL MEDIA.
APPLICATION TO THE RIDE-HAILING AND
RADICALIZATION DOMAINS.

ALVARO DE PABLO MARSAL
2021

TRABAJO DE FIN DE MASTER

Titulo: Diseno y desarrollo de un sistema de aprendizaje automatico
para el analisis de opinién y lenguaje natural en redes so-
ciales. Aplicacién a los dominios de ride-hailing y radical-

izacién.

Titulo (inglés): Design and Development of a Machine Learning System
for Opinion and Natural Language Analysis in Social Me-

dia. Application to the Ride-Hailing and Radicalization Do-

mains.
Autor: Alvaro de Pablo Marsal
Tutor: Oscar Araque Iborra

Departamento: Departamento de Ingenieria de Sistemas Telematicos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —
Vocal: —
Secretario: —

Suplente: —

FECHA DE LECTURA:

CALIFICACION:

UNIVERSIDAD POLITECNICA DE MADRID

ESCUELA TECNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACION

Departamento de Ingenieria de Sistemas Teleméaticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE MASTER

Design and Development of a Machine Learning System for
Opinion and Natural Language Analysis in Social Media.
Application to the Ride-Hailing and Radicalization Domains.

2021

Resumen

El analisis del contenido de los posts escritos en redes sociales ha establecido una importante
linea de investigacion en los Ultimos anos. El estudio de dichos textos, asi como su relaciéon
entre ellos y la dependencia de los mismos con respecto a la plataforma en la que se escriben,
permiten analizar el comportamiento de los usuarios y la opiniéon de los mismos con respecto
a diferentes dominios.

La aplicaciéon de técnicas y algoritmos de Inteligencia Artificial, concretamente de la
rama del Procesamiento del Lenguaje Natural (PLN), ha logrado avanzar en este sentido,
de tal manera que es posible desarrollar modelos que predicen la teméatica de los posts o
la manera en que se habla de un determinado tema. Esto es fundamental para entender la
opinion de los usuarios sobre un tema concreto, para conocer el grado de satisfaccién de los
clientes de un servicio o incluso para identificar posibles mensajes de odio o con un claro
contenido extremista.

En este proyecto se ha desarrollado un sistema que analiza de manera automatica y
en tiempo real el contenido de los posts escritos en distintas redes sociales con el objetivo
de analizar el lenguaje utilizado y la opiniéon de estos usuarios sobre diferentes temas,
concretamente, relacionados con plataformas de movilidad (Ride-Hailing) o tematicas de
caracter extremista y radical.

El sistema desarrollado estd basado en diversas técnicas de PLN y de Aprendizaje Au-
tomatico, como son el Modelado Temaético, el Andlisis de Sentimientos o la creaciéon de
modelos de clasificacién, entre otros. Los resultados de este analisis se pueden observar gra-
cias a la implementaciéon de un médulo de visualizacion, donde se muestran los resultados
de manera agregada y pueden filtrarse para realizar andlisis personalizados.

Finalmente, este proyecto trata de estudiar la viabilidad de utilizar los modelos de
clasificacion desarrollados con otros tipos de datos con los que los modelos no han sido
entrenados. Esto permitiria el desarrollo de aplicaciones cuyo uso pudiera extenderse a
otros medios, facilitando la reutilizacién de modelos que han sido generados en base a

conjuntos de dtaos limitados.

Palabras clave: Redes Sociales, Inteligencia Artifical, PLN, Aprendizaje Au-
tomatico, Modelado Tematico, Analisis de Sentimientos, Ride-Hailing, Radical-

izacion, Aprendizaje por Transferencia

VII

Abstract

The analysis of the content of posts written on social media has established an important
line of research in recent years. The study of these texts, as well as their relationship
with each other and their dependence on the platform on which they are written, allows to
analyze the behavior of users and their opinions with respect to different domains.

The application of Artificial Intelligence techniques and algorithms, specifically from the
branch of Natural Language Processing (NLP), has made progress in this regard, in such
a way that it is possible to develop models that predict the subject matter of posts or the
way in which a certain topic is discussed. This is essential to understand the opinion of
users on a particular topic, to know the degree of satisfaction of the customers of a service
or even to identify hate speeches or messages with a clear extremist content.

In this project, it has been developed a system that analyzes automatically and in real
time the content of posts written in different social media to analyze the language used
and the opinion of these users on different topics, specifically related to mobility platforms
(Ride-Hailing) or topics of extremist and radical character.

The developed system is based on several NLP and Machine Learning techniques, such
as Topic Modeling, Sentiment Analysis, or the creation of classification models, among
others. The results of this analysis can be observed thanks to the implementation of a
visualization module, where the results are shown in an aggregated way and can be filtered
to perform a customized analysis.

Finally, this project tries to study the feasibility of using the developed classification
models with other types of data with which the models have not been trained. This would
allow the development of applications whose use could be extended to other media, facili-

tating the reuse of models that have been generated based on limited data sets.

Keywords: Social Media, Artificial Intelligence, NLP, Machine Learning,
Topic Modeling, Sentiment Analysis, Ride-Hailing, Radicalization, Transfer

Learning

IX

Agradecimientos

Quiero agradecer a todas las personas que me han apoyado en el desarrollo del proyecto
durante este ano, especialmente a Oscar Araque, ya que sin su ayuda este proyecto no habria
sido posible. Gracias a todos los miembros del GSI, tanto companeros como profesores, con
los que a lo largo de estos afios he aprendido tanto.

Gracias a todos.

XI

Contents

Resumen VII
Abstract IX
Agradecimientos XI
Contents XIII
List of Figures XVII
List of Tables XXI
1 Introduction 1
1.1 Context e 1
1.2 Project goals 2
1.3 Structure of this document oL 3

2 Background 5
2.1 Stateofthe Art L 5
2.2 Enabling Technologies o 7
2.2.1 APIs and Web Scraping Tools 7

2.2.1.1 Pushshift API 7

2212 Twint 7

2.2.1.3 Google Play Scraper 8

2.2.2 Natural Language Processing Tools and Processes 9

2.2.2.1 Stanford CoreNLP 10

2222 NLTK 12

2.22.3 WordFreqo 14

2224 CLD3 14

2.2.2.5 Langdetect oL 14

2.2.3 Machine Learning and Deep Learning 14

2.23.1 Gensim 14

2.3

2.2.3.2 Scikit-Learn 15

2233 XGBoost 15
2.2.34 Hugging Face 15
2.2.4 Virtualization and Orchestration Tools 16
2.2.4.1 Docker and Docker-Compose 16
2242 Luigli 16
2.2.5 Data Storage Tools oL 16
2.2.5.1 ElasticSearch oo 17
2.2.5.2 Semantic Technologies and Ontologies 17
2.2.6 Visualizationo 18
2.2.6.1 HTMLand CSS 18
2.2.6.2 JavaScript Frameworks: Polymer and D3 18
2.2.6.3 Sefarad 19
2.2.7 Standard Python Libraries 19
2271 Pandas 19
2.2.72 Numpy e 20
2273 SciPy e 20
2274 Re . .. e 20
2.2.7.5 Matplotlib and Seaborno oL 21
2.2.7.6 Pickle and Joblibo 21
2.2.8 Other Python Libraries 21
2.28.1 GSITK e 21
2282 GEODPY -« v v e e e 21
Machine Learning Algorithms 21
2.3.1 Topic Modeling 21
2.3.1.1 The LDA Algorithm 22
2.3.1.2 Measures of Performance 23
2.3.2 Word Embeddingso 25
2.3.2.1 Word2Vec. 26
2.3.2.2 FastText 27
2.3.3 SIMON . . . 27
2.3.4 Tf-idf representation L. 28
2.3.5 Logistic Regression L o 29
2.3.6 Gradient Boosting 29

3 System Architecture 31

3.1 Imtroduction L 31
3.2 Collecting data L 32
3.2.1 Scraping Processo 33
3.2.1.1 Translation Subprocess 34

3.2.2 Cleaning Processo 35
3.2.3 Validation Process Lo 36

3.3 Enrichment Process 38
3.3.1 Sentiment Analysis and NLP Data Extraction Process 39

3.4 Classification Processo 41
3.4.1 Topic Modeling 41
3.4.2 Features Selection Lo Lo 46
3.4.2.1 Word Embeddings Approach 46

3.4.2.2 N-grams Approach 48

3.4.3 Training and Optimization 48

3.5 Data Storage 50
3.6 Orchestration L 52
3.7 Visualization 54
4 Use Case - The Ride-Hailing Domain 59
4.1 Introduction L 59
4.2 Collecting and Inspecting Data 60
4.3 Topic Modeling 64
4.4 Validation Process, Sentiment Analysis and NER extraction 72
4.5 Classification Model 76
4.6 Results. o 83
4.7 Conclusions 88
5 Use Case - The Radicalization Domain 91
5.1 Introduction L 91
5.2 Collecting and Inspecting Data, 91
5.3 Topic Modeling 95
5.4 Validation Process, Sentiment Analysis and NER extraction 100
5.5 Classification Model 103
5.6 Results. e 106
5.7 Conclusions e e 111

6 Cross-Source Validation: Transfer Learning 113

6.1 Introduction 113

6.2 Inspecting Data 114

6.3 Evaluation. e 115

6.3.1 General Evaluation 117

6.3.2 Cross-Platform Evaluation. 119

6.3.3 Cross-Language Evaluation 121

6.4 Results. e 122

7 Conclusions and Future Work 127

7.1 Conclusions e e 127

7.2 Achieved Goals 128

7.3 Problems Encountered 128

7.4 Future Worko 129

A Ride-Hailing use case Appendix I

B Radicalization use case Appendix XI

C Transfer Learning Appendix XV

D Impact of this Project XXI

D.1 Introduction e XXI

D.2 Social Impact L XXI
D.3 Economic Impacto XXII
D.4 Environmental Impact XXII
D.5 Ethical Implications XXII

E Cost of the System XXV
E.1 Introduction e XXV
E.2 Physical Resources XXV
E.3 Human Resources. XXVI
E.4 Licenses e XXVI
E.5 Total Costs 0 e XXVI

Bibliography XXVII

List of Figures

2.1 English Google Play Store Buttons 8
2.2 Spanish Google Play Store Buttons

2.3 Stanford CoreNLP pipeline used in this project 10
2.4 The Penn Treebank POS tagset [48] 11
2.5 Sefarad Architecture 20
2.6 LDA Graphical Model [7] 23
2.7 CBOW and Skip-gram Word2Vec models [30] 26
2.8 SIMON features generation [5] 28
2.9 Decision Tree Example oo 30
3.1 Full System Architectureo 32
3.2 Validation Flow Chart 37
3.3 Stanford CoreNLP Web Interface Example 41
3.4 LDA Procedure Flow Chart 42
3.5 Bag of Words vectors generation example 44
3.6 Semantic Data Structure 51
3.7 Pipeline Architectureo oL 53
3.8 Luigi Interface 54
3.9 Number Chart Example 55
3.10 Google Pie Chart and Google Bar Chart Example 55
3.11 Google Chart for Dates Example 55
3.12 Radar Chart Example 56
3.13 Entity Chart Example oL 56
3.14 Heatmap Example 57
3.15 Post Chart Example 57
3.16 Filters Chart Example oL 58
4.1 r/uber and r/uberdrivers over time L. 61
4.2 Analyzing some fields in r/uber and r/uberdrivers retrieved data 62

4.3 Relationship between comments and submissions in r/uber and r/uberdrivers 62

4.4 Most common words in r/uber Lo 63

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Most common words in r/uberdrivers. L 63

Baseline Model - Coherence Score through the Ride-Hailing domain 65
Ride-Hailing domain LDA baseline model - Visualization. 65
pyLDAvis word selection example 66
Coherence Score through the Ride-Hailing domain 67
Perplexity through the Ride-Hailing Domain 68
Optimizing LDA Hyperparameters (Ride-Hailing Domain) 69
Visualization of the best models in the Ride-Hailing domain 69
Sentiments distribution in r/uber and r/uberdrivers 73
Sentiments distribution in r/uber and r/uberdrivers by text type 74
Sentiments distribution in r/uber and r/uberdrivers by subreddit 74
NER tags distribution in r/uber and r/uberdrivers 75
NER tags distribution in r/uber and r/uberdrivers by subreddit 76
Total data retrieved per date oL, 78
FastText 100-dimensional model PCA representation 79
Word2Vec 100-dimensional model PCA representation 79
Prediction of topics in r/uber oL oL 83
Prediction of topics in r/uberdrivers L0 84
Comparison in predictions between r/ubers and r/uberdrivers 84
Aggregated topic prediction in Reddit L. 85
NER tags in r/uber by topic oo Lo 86
NER tags in r/uberdrivers Lo o 86
Sentiments per topic inr/uber o 0oL 87
Sentiments per topic in r/uberdriverso oo 87
Sentiments per topic in both subreddits 88
Hashtag weights within tweets 92
Radical tweets collected with Twint over the time. 92
Radical tweets from other data sets over the time 93
Hashtags weights within alternative data sets 94
Baseline Model - Coherence Score through the Radicalization domain . . . 95
Coherence Score through the Radicalization domain 96
Perplexity through the Radicalization domain 97
Optimizing LDA Hyperparameters (Radicalization Domain) 98
Visualization of the best models in the Radicalization domain 98
Sentiments distribution in the Radicalization domain 101

Sentiments distribution in the Radicalization domain per ideology 102

5.12 NER tags distribution in the Radicalization domain 102
5.13 FastText 100-dimensional model PCA representation - Radicalization domain 103
5.14 Word2Vec 100-dimensional model PCA representation - Radicalization domain104
5.15 Samples per topic in the radical training dataset 104
5.16 Prediction of topics in the neutral tweets corpus 106
5.17 Prediction of topics in the radical tweets corpus 106
5.18 Prediction of topics in the whole tweets corpus 107
5.19 NER tags in radical tweetso oo 108
5.20 NER tags in neutral tweets oo 108
5.21 Sentiments per topic in the radical tweets corpus 109
5.22 Sentiments per topic in the neutral tweets corpus 109
5.23 Sentiments per topic in radical a neutral tweets corpus 110
6.1 Annotated samples per topico 116
6.2 Annotated documents per topic and per source 119
6.3 General Analysis: Weight of the sources 122
6.4 General Analysis: Number of posts collected by date and source 123
6.5 General Analysis: Topics and Sentiment Analysis Representation 123
6.6 Reddit Analysis: Topics and Sentiment Analysis Representation. 124
6.7 Twitter Analysis: Topics and Sentiment Analysis Representation 124
6.8 Google Play Analysis: Topics and Sentiment Analysis Representation . . . 124
A.1 Total Reddit data retrieved per date I
A.2 Total Twitter data retrieved perdate. II
A.3 Total Google Play data retrieved per date II
A.4 Word2Vec 300-dimensional model PCA representation III
A.5 FastText 300-dimensional model PCA representation III
A.6 Word2Vec 500-dimensional model PCA representation v
A.7 FastText 500-dimensional model PCA representation v
A.8 Genetic Algorithm for XGBoost optimization: Word2Vec - 100-dim \%
A.9 Genetic Algorithm for XGBoost optimization: FastText - 100-dim VI
A.10 NER tags in r/uber titles Lo oL VI
A.11 NER tags in r/uber post texts VII
A.12 NER tags in r/uber comments VII
A.13 NER tags in r/uberdrivers titles L. VIII
A.14 NER tags in r/uberdrivers post texts VIII

A.15 NER tags in r/uberdrivers comments IX

B.1
B.2
B.3
B4

Word2Vec 300-dimensional model PCA representation - Radicalization domain XI
FastText 300-dimensional model PCA representation - Radicalization domain XII
Word2Vec 500-dimensional model PCA representation - Radicalization domain XTI

FastText 500-dimensional model PCA representation - Radicalization domain XIII

List of Tables

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5

C.1
C.2
C.3
C4
C.5
C.6
C.r
C8
C.9

Lemmatization Process Examples 0oL 11
Sentiment Analysis Values 12
Stemming Process Examples L0000 13
Optimizing LDA Hyperparameters (Ride-Hailing Domain) 68
Analyzing Uber-Related Reddit Data 72
Averaged sentiment values L Lo 73
Multi-Platform Collected Data 7
SIMON results o 81
Logistic Regression Results in the Ride-Hailing Domain 82
Gradient Boosting Results in the Ride-Hailing Domain 82
Statistics of the used data sets 0oL, 94
Optimizing LDA Hyperparameters (Radicalization Domain) 97
Validation Process with the Radicalization domain data 101
Logistic Regression Results in the Radicalization Domain 105

Scraping, Cleaning and Validation Processes Results: The Ride-Hailing Domain115

Distribution of the annotated data over Source and Language 117
Transfer Learning General Evaluation Results 118
F-Score results in every platform dataset 120
F-Score results in every platform data set with translated Spanish posts . . 121
The Validation Process in all Reddit data XV
Logistic Regression with Word2Vec-100dim model results XVI
Logistic Regression with FastText-100dim model results XVI
Gradient Boosting with Word2Vec-100dim model results XVII
Gradient Boosting with FastText-100dim model results XVII
Logistic Regression with Word2Vec-300dim model results XVII
Logistic Regression with FastText-300dim model results XVIII
Gradient Boosting with Word2Vec-300dim model results XVIII
Gradient Boosting with FastText-300dim model results XVIII

XXI

C.10 Logistic Regression with Word2Vec-500dim model results XIX

C.11 Logistic Regression with FastText-500dim model results XIX
C.12 Gradient Boosting with Word2Vec-500dim model results XIX
C.13 Gradient Boosting FastText-500dim model results XX
C.14 Logistic Regression with Tf-idf model results XX

C.15 Gradient Boosting with Tf-idf model results XX

CHAPTER

Introduction

This project has been done as part of the Cétedra Cabify - UPM (Cabify - UPM Chair)?
in the Intelligent Systems Group (GSI).
In this section, the objectives of the project and an introduction to the developed system

will be related.

1.1 Context

This project arose from the need to develop a multidomain and multiplatform language and
opinion analysis tool focused on social media. Social media platforms have been growing
both in the number of platforms available and in the number of users who use them daily.
These platforms have become a tremendously useful source of information, especially some
of them in which users write about current issues, often giving their opinion or even forming
debates.

For this reason, the develop of a system which allows to monitor these social media,
allowing to analyze the posts of different users writing about different domains will be a
useful tool. This tool could make it possible to analyze opinions, complaints, current issues
on different topics, or different biases that may occur in certain population segments, such

as extremist or violent attitudes.

"https://catedra-cabify.gsi.upm.es/

CHAPTER 1. INTRODUCTION

With the objective of creating a tool of these characteristics, it has been developed a
system based on Artificial Intelligence techniques, such as Machine Learning and Natural
Language Processing procedures. The developed system has the function of analyzing the
language used in different social media to know the opinion and the way of speaking of the
different users that use these media, so important nowadays. It has been developed to be
able to analyze posts from different domains, for studying the behaviour of social media
users when talking of a specific topic.

The system is able to obtain social media posts from different sources and to process
them in different ways depending on the source. This processing has been designed to be
as efficient as possible for the final performance, and to be as accurate as possible.

Then, the developed system applies different techniques to the posts to obtain informa-
tion such as to know what users talk about or how they talk in the different domains of
study. Finally, new unseen data will need to be processed and analyzed in the same way to
maintain system functionality over time and to understand new needs or new user reactions.

The system also needs to provide a persistence layer and a visualization module to
facilitate the analysis and observation of social media. Moreover, it should be useful in
different use cases, such as the competitive analysis of a company, the security of a certain
entity or state, and more.

Therefore, this project will focus on the development of a system that processes text from
different sources, from different domains, and that is available in real time. In addition, the
system will be developed based on virtualization technologies, so this tool will be portable

to different machines.

1.2 Project goals

This project aims to cover different needs in a single system. The system must be able to
analyze different sources, process them, and display results that can be easily analyzed by
the observer.

Also, the system needs to be developed in a generic way to analyze data belonging
to different domains unified in the same system. The mainly goal of the system will be
the integration of every needed component in an easy way, allowing, among others, the
processing of texts, the validation of the texts, the classification of texts, the extraction of
information based on NLP techniques such as sentiment analysis, NER or POS, the topic
extraction, data persistence and visualization of the analysis. Moreover, the system will
need to be developed to work in a virtualized way.

In addition , this project will cover the different studies that have been done to show

the feasibility of the project, especially regarding the extrapolation of the study to other

1.3. STRUCTURE OF THIS DOCUMENT

sources, where it is necessary to include machine learning mechanisms, introducing and
applying both traditional and more modern techniques, such as Deep Learning or automatic
translation of texts with transformers.

In conclusion, the main goals of this project can be resumed in three parts:

e The development of the real-time system.
e The application of the system to different domains.

e The study of the feasibility of extending the trained models to other social media

sources and types of data.

1.3 Structure of this document

The remaining of this document is structured as follows:

Chapter 2: On Background. This chapter will explain the context on which this
project is based, with an introduction to the state of the art of the technologies and processes
carried out in the project, as well as an explanation of the most important technologies and
tools used in the development of the system.

Chapter 3: System Architecture. The general architecture of the developed system
will be explained here. This section includes both the different processes of which the
developed system is composed, as well as the procedure that has been carried out to develop
the different components and functionalities of which the complete system is composed.

Chapter 4: Use Case - The Ride-Haziling Domain. This chapter will discuss
the application of the developed system in the domain of the study of posts published in
different social networks about Ride-Hailing companies, such as Uber, Lyft, or Cabify. The
procedure will be explained, as well as the results that have been reached.

Chapter 5: Use Case - The Radicalization Domain. In this chapter, radical
tweets, in particular those who are related to the extremism ideologies, pro-Islam and anti-
Islam ideologies, will be analyzed with the developed system. The obtained results for this
domain will be discussed here.

Chapter 6: Cross-Source Validation. Transfer Learning. This chapter will
explain the application of the developed system to the study of other social media sources.
This chapter builds on Chapter 4 and will attempt to analyze the feasibility of extrapolating
the results obtained by analyzing one social network to other social networks.

Chapter 7: Conclusions. The results and conclusions of the analysis and develop-
ment of the project will be discussed here.

Appendires. Some figures and more detailed explanations will be explained here.

CHAPTER 1. INTRODUCTION

CHAPTER

Background

2.1 State of the Art

Artificial Intelligence and, more specifically, Natural Language Processing (NLP) tech-
niques, have been applied to social media data on numerous occasions. The objectives
behind the application of these types of techniques cover many studies, as varied as the
study of the opinion of the population on public health issues based on the content of posts
on Twitter [15], the analysis of different social media sources to develop suicide identifi-
cation and prevention techniques [12], or the detection of different ways of speaking and
expressing opinions, such as the detection of hate speech in these media [43], among many

others applications.

The techniques used in NLP range from simple text transformations to more complex
representations that have been developed in recent years with incredibly good results. Some
of these techniques can be the Tf-idf representation, which is useful to determine word
relevance in documents [37] or other representations based on Neural Networks which can
infer interesting features from texts such as the similarity between words within a semantic
context [24].

Moreover, beyond text representation, which is necessary for algorithms to understand
and work with texts, other methods for extracting other types of features from texts have

come to the fore in recent years. One of them can be Sentiment Analysis, which analyzes

CHAPTER 2. BACKGROUND

texts extracting from them the intent of the person who writes them, that is, if he/she
wants to express an idea with negative or positive connotations. This kind of analysis has
been used in many approaches, such as the identification of subjectivity [26], or to know
the opinion of the population in certain situations, performing opinion mining techniques
based on sentiment analysis to know opinions in social media [25], as we intend to do in
this project.

On the other hand, for opinion mining, in addition to knowing the intent of the messages,
it is important to know their subject matter. Therefore, several studies have applied Topic
Modeling algorithms to social network posts for this purpose [19] [36]. As stated, topic
modeling results can be joined with other opinion mining techniques, such as sentiment
analysis, to understand and to analyze the way in which users write on social media on a
specific topic, such as the prediction of the stock market [34] or to know how people talk
about some important events, such as the global climate change [13], among others.

Other applications of these technologies applied to social media have to do with the
approach of modern cities. These are increasingly looking for the transformation of cities
into sustainable cities, with green areas and sustainable transport, among others, and these
techniques can be used both to know the opinion of the population on these changes or
to know the needs of the residents of these cities [44]. On the other hand, many of these
changes have been introduced by certain companies, such as those involved in sustainable
passenger transport or those that are suppliers of public furniture. Therefore, an important
application of this type of technology is the analysis of the competitiveness between different
companies to analyze the opinion of customers or users, to increase the quality of the service
offered or to anticipate problems that may arise [33] [54].

Furthermore, NLP techniques, as well as different Machine Learning approaches, have
been used to detect radical content in texts, specially in social media or newspapers con-
tent [14]. Sentiment analysis has also been used in the detection and classification of radical
texts on social media [1]. These techniques can be used also to search for certain linguistic
markers with which to identify this type of content.

It is important to note that every of these techniques are modeled with data collected
from some sources and usually the generated models are applied to classify new unseen
data from the same sources. However, some NLP applications could need to analyze new
unseen data from other sources, in this case from other social media sources. In this
sense, some studies have demonstrated that the application of these techniques can be used
to predict data in other sources, both as applied to issues of radicalism or hate speech
identification [39], as well as in other domains [58] [21].

For all these reasons, the different branches of Natural Language Processing have proven

to be tremendously useful for the classification of different domains discussed in social media.

6

2.2. ENABLING TECHNOLOGIES

Thus, numerous studies have used these techniques and presented more than convincing

results on the performance of the use of these technologies.

2.2 Enabling Technologies

This section introduces those technologies used and implemented in the project develop-
ment process. These technologies range from standard Python libraries to other libraries
for Machine Learning, Natural Language Processing, or Deep Learning, as well as other

technologies such as virtualization tools and more.

2.2.1 APIs and Web Scraping Tools

This project has been focused on social media sources such as Reddit, Twitter, or the Google
Play Store. With the aim of obtaining data from these sources, several APIs and libraries

have been used.

2.2.1.1 Pushshift API

Pushshift! is a Big Data project which provides different statistics and analytics about
Reddit data. In addition, it provides an API that serves Reddit objects in a real-time way.
There exist other Reddit scraping tools, such as PRAW? (Python Reddit API Wrapper),
but the Pushshift API is recommended when attempting to collect large amounts of data.
Each API request returns a set of Reddit posts (maximum 100 posts per request). The
API request supports different parameters, such as the name of the subreddit, the date
range in which we want to obtain the posts, the type of posts (they can be submissions
or comments), and more. Therefore, it is possible to specify other parameters, such as the
name of the author, and thus obtain aggregated data based on the specified parameters.
Moreover, each post data is composed by several interesting parameters, such as the
text of the post, the title, and other metadata fields. An explanation of the API response

content can be seen on the Pushshift API documentation?.

2.2.1.2 Twint

Twint* (Twitter Intelligent Tool) is a Python library that allows to obtain data from Twit-
ter. It is a great alternative to the official Twitter API, as it only allows to collect around

3200 tweets per day.

"https://search.pushshift.io/
*https://praw.readthedocs.io/
3https://reddit-api.readthedocs.io/
“https://github.com/twintproject /twint

CHAPTER 2. BACKGROUND

Twint works by searching for specific words in the tweets. Therefore, tweets can be
collected based on specific hashtags, account names, or other keywords.

Tweets are retrieved in a JSON format and the information that can be obtained from
each tweet is very extensive, including the user name, the tweet identifier, the number of

retweets, the content of the post and more.

2.2.1.3 Google Play Scraper

To obtain data from Google Play Store reviews, different methodologies have been tested.

Firstly, a scraper tool was developed trying to obtain the data directly from the HTML
code of the web page of each app. In this approach, different libraries were tested, such as
BeautifulSoup®, which allows to dissecting an HTML or XML content and extract in an easy
way information of the page, Scrapy®, which allows to obtain the information directly from
the website based on spiders (classes that make the requests and obtain the information),
and Selenium”, a tool that allows to automate the interaction with a website and to collect

the DOM tree data resulting from that interaction.

To obtain the required information about the reviews on the Google Play website, it is
mandatory to run JavaScript code to perform actions such as scrolling the page or clicking a
few buttons. This website displays a button every time it is scrolled four times. Additionally,
when texts are long, it is necessary to click on the Full Review button in the English version
or Opinion completa in the Spanish version to visualize the whole text. Figure 2.1 and

Figure 2.2 show the visual interface of Google Play, where these buttons can be seen.

o -
L

For some reason, no matter what time of day it is-including 6 a.m., which is at least an hour

before rush hour--the fares are inexplicably high due to "high demand." | wouldn’t mind if the
money actually went to the drivers, but we all know it doesn't. That, plus long wait times, has

made it frustr...

Full Review

SHOW MORE

Figure 2.1: English Google Play Store Buttons

®https://www.crummy.com/software/BeautifulSoup /

Shttps://scrapy.org/
"https://www.selenium.dev /

2.2. ENABLING TECHNOLOGIES

' i
* W W

La app en si tiene mucho errores y los conductores son cada vez mas villeros. Cuando no

[T

viene uno trucho que salio ayer de la carcel, te cae un Corsa destartalado o uno con la cum-
bia al palo. La mayoria tienen muy poca seguridad, profesionalismo y compromiso. Cada
vez pasa mas seguido gue te tomane...

Opinidn completa

MOSTRAR MAS

Figure 2.2: Spanish Google Play Store Buttons

Because of this, a scraper tool based on Selenium was developed, discarding other options
since it was necessary to run JavaScript code and BeautifulSoup and Scrapy do not natively
support it.

By having to scroll several thousand times to retrieve all possible reviews of each of the
analyzed applications, the RAM memory fills up. Due to the memory limitation, although
the tool worked correctly, it was decided to look for another approach to collect reviews
from the Google Play Store.

For this reason, it was decided to use the google-play-scraper library®. This library
collects almost every Google Play Store review or some reviews if two dates are set. It allows
to collect reviews sorted by relevance or by date (although the review sorting functions do
not work well), to set the language of the app version, to filter reviews by their rating, and
much more.

Reviews are saved in a JSON format with the information of each review: user name,
date, the content of the review, possible responses to the content of the review, score of the

review, relevance of the review, and more.

2.2.2 Natural Language Processing Tools and Processes

The analysis of the content of posts, tweets, or reviews are the main information source to
understand how people communicate in social media, as well as what opinions they have
on certain topics, what they talk about, etc.

Because of this, several processes, such as sentiment analysis, stemming, lemmatizing,
and others have been applied to the texts to obtain information. All of these processes are

included in Natural Language Processing technologies.

Shttps://github.com/JoMingyu/google-play-scraper

CHAPTER 2. BACKGROUND

2.2.2.1 Stanford CoreNLP

The Stanford CoreNLP? is a tool written in Java that provides several annotators based
on Natural Language Processing techniques. It is available for texts in Arabic, Chinese,
English, French, German and Spanish. The annotators are just processes that are applied
to the texts and return an output. Processes such as Sentiment Analysis, Named Entity
Recognition (NER), Part of Speech (POS) Tagging, tokenizing by words or sentences, de-
pendency and constituency parses and more can be applied to the texts. Also, one of the
most powerful and useful capabilities offered by Stanford CoreNLP is that it provides a
Python module which makes it possible to call the tool by using code written in Python.
In this project, only Sentiment Analysis, NER and POS have been used. However, other
annotators are essential to get the output we want. The annotators used when processing
texts are Tokenizer, Sentence Split (ssplit), POS, Parser, Lemmatizer, NER and Sentiment
Analysis. Stanford CoreNLP works with a pipeline of annotators, in which the input is the
raw text and the output is the text with its annotations. A representation of this can be

seen in Figure 2.3.

tokenize ssplit pos parse lemma ner sentiment

o
=-0-0-0-0-0-0-0-8

input text annotated text

Figure 2.3: Stanford CoreNLP pipeline used in this project

e Tokenizer Annotator: It splits texts into words. This splitting will be different
depending on the language of texts. Some words are split into different parts (“isn’t”

4

to [“is”, “n’t”] or “you’ve” to [“you”, “’ve”]) to make it easier to process the different

tokens with other annotators.
e Sentence Split (ssplit) Annotator: It splits texts into sentences.

e Part of Speech (POS) Annotator: Tokens are labeled with its corresponding POS
tag. The Stanford CoreNLP uses a Java implementation of the log-linear part-of-
speech tagger described in [50]. Also, as the project is based on social media analysis,
a caseless model'® (trained on Twitter data) has been used. In English texts, POS

tags are belonging to the Penn Treebank tagset [28]. Figure 2.4 shows these tags.

9https://stanfordnlp.github.io/CoreNLP/
Ohttps://stanfordnlp.github.io/ CoreNLP /caseless.html

10

2.2. ENABLING TECHNOLOGIES

CC
CD
DT
EX

IN

1
JIR
11S
LS
MD
NN
NNS
NNP
NNPS
PDT
POS
PRP
PP$
RB
RBR
RBS
RP
SYM

Coordinating conj.
Cardinal number
Determiner
Existential there
Foreign word
Preposition

Adjective

Adjective, comparative
Adjective, superlative
List item marker
Modal

Noun, singular or mass
Noun, plural

Proper noun, singular
Proper noun, plural
Predeterminer
Possessive ending
Personal pronoun
Possessive pronoun
Adverb

Adverb, comparative
Adverb, superlative
Particle

Symbol

TO
UH
VB
VBD
VBG
VBN
VBP
VBZ
WDT
WP
WPS$
WRB

infinitival ro

Interjection

Verb, base form

Verb, past tense

Verb, gerund/present pple
Verb, past participle
Verb, non-3rd ps. sg. present
Verb, 3rd ps. sg. present
Wh-determiner
Wh-pronoun

Possessive wh-pronoun
Wh-adverb

Pound sign

Dollar sign
Sentence-final punctuation
Comma

Colon, semi-colon

Left bracket character
Right bracket character
Straight double quote
Left open single quote
Left open double quote
Right close single quote
Right close double quote

Figure 2.4: The Penn Treebank POS tagset [48]

e Parser Annotator: Performs a syntactic analysis of sentences from input texts. It

is an essential function to analyze the dependencies of the different parts that make

up the texts to be able to correctly analyze them with other annotators.

Stanford CoreNLP provides various parsers that, depending on the situation, will

work better or worse. As in the POS annotator case, a caseless model has been used

as the parser annotator.

¢ Lemmatizer Annotator:

Performs the process of lemmatization.

This process

transforms words into their lemmas, as it can be seen in Table 2.1.

Original token

Lemmatized token

eats

eat

gaming game
terrified terrify
went go

Table 2.1: Lemmatization Process Examples

e Named Entity Recognition (NER) Annotator: This is the process in which

those words that represent an entity are labeled with an entity-tag. These entities

11

CHAPTER 2. BACKGROUND

could be useful to know if a text is talking about an important person, a city, or about
time-related terms. As in both POS and Parse Annotators, a caseless model has been

used for the NER Annotator.

The Stanford NER Annotator provides models with several tags, which are: Organiza-
tion, Date, Money, Criminal charge, Title, Duration, Number, Person, Miscelaneous,
Religion, Ordinal numbers, Location, Set, City, Time, Percent, Cause of death, State
or Province, Nationality, Country, Ideology, E-mail, URL and Handle.

Sentiment Analysis Annotator: This annotator provides a sentiment analysis tool
for labeling the sentences of each of the texts with sentiment. The model used in the

Stanford CoreNLP for sentiment analysis is based on [45].

The relationship between the sentiment value that the model provides with each sen-

timent name is shown in Table 2.2.

Sentiment Value | Sentiment Label
0 Very Negative
1 Negative
2 Neutral
3 Positive
4 Very Positive

Table 2.2: Sentiment Analysis Values

2.2.2.2 NLTK

The NLTK (Natural Language Toolkit) Python library [27] is one of the most popular

libraries in the Natural Language Processing domain. It provides a lot of useful functions

and packages for almost every NLP processes.

The most important functions and facilities that this library provides and that have

been used during the development of the project are:

12

e Tokenizers: NLTK provides several tokenizers, either for generic use or for their use

in specific situations. They can be mainly used to split text into words or sentences.

In this project they have been used:

— nltk.tokenize.word_tokenize: Used in generic texts and in almost every situ-

ation (mainly used in Reddit and Google Play texts).

— nltk.tokenize.TweetTokenizer: Used with posts from Twitter.

2.2. ENABLING TECHNOLOGIES

— nltk.tokenize.RegexpTokenizer: Based on regular expressions, it has been

used in some specific situations.

e NTLK Corpora: NLTK provides a lot of pretrained models and corpora'’. They
can be downloaded by typing nitk.download(“name_of-the_corpus”). The corpus used

in this project are:

— StopWords Corpus: It is available for most languages, including English and

W o

Spanish. It is a set of tokens consisting of words such as “is”, “you”,

“me” , or

“of”, commonly called “stopwords”. It makes easier their elimination from the

texts in case it is necessary in any of the processes.

— WordNet Corpus: A lexical database to identify synonyms and similar words
to other words. It has other applications, such as help in the lemmatization

process.

— Punk Tokenizer Models: Pre-trained models created to identify and tokenize

texts into sentences.
e nltk.stem package: It provides models for stemming and lemmatizing words.

— Lemmatizer: As explained before, lemmatization is the process of transform-
ing words into their lemmas. The NLTK package used in this project for this

purpose was the WordNetLemmatizer, which is based on a WordNet model.

— Stemmer: Stemming is the process of removing morphological affixes from

words, leaving only the word stem. In Table 2.3 is shown an example of this

process.
Original token | Stemmed token
eats eat
gaming game
terrified terrifi
went went

Table 2.3: Stemming Process Examples

The NLTK package used in this project for stemming is the SnowballStemmer.

e FreqgDist: Implements a function to count the occurrences of tokens in a sample of

texts.

"http://www.nltk.org/nltk_data/

13

CHAPTER 2. BACKGROUND

e nltk.textcat: It is a module for language identification using the TextCat [10] algo-

rithm, which is based on the Zipf’s Law [52] and the n-gram occurrences in texts.

2.2.2.3 WordFreq

WordFreq is a Python library “for looking up the frequencies of words in many languages,
based on many sources of data” [46]. It has different models in almost every implemented
language, usually being a small one to save memory and a larger one for more precise
processes.

It implements a version called zipf_frequency, which is based on the Zipf’s Law [52] and

gives the probability of occurrence of a word in a specific language in a logarithmic scale

2.2.2.4 CLD3

CLD3!? (Compact Language Detector v3) is a model generated by a neural network for
language identification created by Google. The network is composed by three layers and

the language prediction is based on the n-grams of words.

2.2.2.5 Langdetect

Langdetect'® Python library is another language identifier library. It supports 55 different
languages and it can directly detect the language of a text or give the probability of belonging

to several different languages.

2.2.3 Machine Learning and Deep Learning

The developed system has some processes in which machine learning techniques are essential.
Python has some of the most used Artificial Intelligence libraries and in this project some

of them have been used.

2.2.3.1 Gensim

The Gensim library [38] is a Python library for Natural Language Processing that imple-
ments unsupervised Machine Learning algorithms such as Topic Modeling or Word Embed-
dings models. It can handle very large collections of text data and each algorithm can be
parallelized.

Among the most important algorithms implemented in this library are LDA, Word2Vec,
FastText, LSI, and other NLP techniques such as n-gram generation, lemmatization, and

other basic NLP processes.

2https://github.com/google/cld3
Bhttps://github.com/Mimino666 /langdetect

14

2.2. ENABLING TECHNOLOGIES

2.2.3.2 Scikit-Learn

The Scikit-Learn library (also known as sklearn) [35] is one of the most important Ma-
chine Learning libraries in Python. It implements virtually all existing Machine Learning
algorithms, using a very easy-to-use API.

It includes both regression algorithms, classification, multiclass classification, unsuper-
vised learning, neural networks, clustering algorithms, and more. In addition, it implements
hyperparameter optimization methods as well as data modeling techniques and other func-

tions of interest. It is one of the most complete Machine Learning available libraries.

2.2.3.3 XGBoost

XGBoost!* is a Machine Learning library which implements the gradient boosting algo-
rithm. It implements a common Machine Learning framework in several languages, such
as Python, C++, Java or R, among others. The Python version uses the same API as

Scikit-Learn, so is an easy-to-use library in this language.

2.2.3.4 Hugging Face

In this project, translation is an important task which needs to be done with powerful tools
that allow for the most efficient and correct translation possible. There exist several tools
which allow to translate texts, such as Google Translator API'® or Deepl API'®. However,
due to the use restrictions of these APIs and the needs of the project, a transformer provided

by the Hugging Face library was used.
The Hugging Face library [57] is a Natural Language Processing library which includes,

among others, the Transformers library. This library implements some transformers such

as BERT or translator transformers.

A transformer [53] is a neural network architecture which works as an encoder-decoder
system, using a mechanism known as attention, which sets different weights to different
parts of the input data. They are mainly used in the NLP field and they are becoming a
new paradigm in these Machine Learning tasks.

In this project, the Marian Machine Translator [22] tool was implemented. This trans-
lator is included in the Hugging Face library as a transformer, following the described below

architecture.

https://xgboost.readthedocs.io/
5https://cloud.google.com/translate/
https://www.deepl.com/es/docs-api/

15

CHAPTER 2. BACKGROUND

2.2.4 Virtualization and Orchestration Tools

With the aim of developing the complete system with all its components, some of them have
been virtualized and connected between them. Therefore, powerful tools such as Docker
and Luigi have been used, the latter being necessary to make sense of the system in the

form of a consistent and persistent process pipeline.

2.2.4.1 Docker and Docker-Compose

Docker [29] is a virtualization tool based on containers. Each container is an isolated virtual
system that runs its own code over its own Operative System or platform. It is one of the
most widely used virtualization tools, since each container is capable of abstracting itself
from the machine that hosts it, unlike other virtualization tools based on virtual machines,
which are highly dependent on the host.

Therefore, several containers have been instantiated, each containing a system process.
Furthermore, docker-compose has been used to interconnect each of the containers that

contain the virtualized systems.

2.2.4.2 Luigi

Luigi'” is a Python package created by Spotify engineers that works as an orchestrator for
building complex pipelines or batch jobs. It can easily create pipelines of processes in which
the output of a process becomes the input of the next process. It is based on tasks, being
each task (each process) a unit of work.

It also allows having a global vision for error control of each of the parts that make up

the execution of the pipeline.

2.2.5 Data Storage Tools

One of the main targets of the project is the data persistence, needed to be able to analyze
the data in an aggregated way and to have as much data as possible, as well as to be able
to continue collecting data since the system is launched.

In addition, data must be stored in a format that is understandable, accessible, and
available when needed.

For all this, storage technologies such as ElasticSearch have been used, as well as Linked

Data techniques for data modeling.

"https://github.com /spotify/luigi

16

2.2. ENABLING TECHNOLOGIES

2.2.5.1 ElasticSearch

ElasticSearch!® is a free and open data analytics engine based on the Java Apache Lucene
library. It supports several data types, such as textual data, data based on documents
(JSON), and both structured and unstructured data. It stands out for its ease of use through
simple REST APIs with which complex queries can be performed, with data aggregation
and many other facilities. It is developed in Java and it has numerous clients developed in
different languages, including Python, Ruby, and Java.

One of the main characteristic of ElasticSearch is that it only supports the JSON format
as a response, so formats like CSV or XML are not supported. Even so, the JSON format
is widely supported by numerous programming languages, so it makes ElasticSearch the
perfect tool to use, for example, in Big Data analysis.

ElasticSearch JSON data is sorted by indexes, where each of these indexes will be where
the result of a kind of analysis or another is stored. Each analysis will be stored in documents

inside its corresponding index.

2.2.5.2 Semantic Technologies and Ontologies

Semantic technologies can be seen as technical approaches that facilitate or make use of
the interpretation of meaning by machines [18]. That is, semantic technologies make it
possible to express data sets that make sense among themselves and, above all, among
other data sets. This is useful for creating consensuses between data from different sources
but representing the same thing. Data modelled with semantic technologies are commonly
known as Linked Data.

To talk about Linked Data, it is necessary to define in some way the relationship between
data, such as the classes they belong to, possible properties they have, subclasses, etc. In the
Artificial Intelligence and Semantic Web domains, the abstraction that models and defines
these relationships is called Ontology. These ontologies are modelled by languages such as
OWL (Web Ontology Language) [20].

There are different specifications and technologies that model different areas of knowl-

edge. Some of the most common, which have been used in this project, are defined below.

e RDF: The Resource Description Framework (RDF) [23] is a set of specifications for
the World Wide Web Consortium (W3C). It is based on the concept of triples, which
creates a relation subject - predicate - object between web resources, allowing searches

for resources based on their relationships to other web resources.

Bhttps://www.elastic.co/

17

CHAPTER 2. BACKGROUND

e DC: The Dublin Core (DC) [55] is a set of 15 properties for describing web resources,
based on RDF, which includes the title of the resource, the date, the creator or the

language, among others.

e SIOC: The Semantically-Interlinked Online Communities (SIOC) [9] is a semantic-
web technology which defines methods for the interconnection between online blogs or
social media web pages. These functionalities aim to ensure that posts from different
social media, for example, are linked to other posts from other social media, thus
providing a better understanding of how people are talking in different networks and

what they are talking about in these networks.

e MARL: An Ontology for Opinion Mining (MARL) [56] is an ontology for opinion
mining, in particular sentiment analysis. It has been developed by the Intelligent
Systems Group. It includes classes and properties to measure the polarity of a text,

its source, or the aggregated opinion value, among others.

2.2.6 Visualization

With the aim of showing data in a comfortable and simple way, a visualization system based

on web technologies has been developed.

2.2.6.1 HTML and CSS

As the visualization system is based on web technologies, HTML (HyperText Markup Lan-
guage) and CSS (Cascading Style Sheets) are the main languages used in the visualization
system. One of the main HTML frameworks is bootstrap, which allows to structure the
web page in columns and rows, making easy development and allowing a comfortable and

simple visualization.

2.2.6.2 JavaScript Frameworks: Polymer and D3

JavaScript is one of the most used programming languages. It is mainly used in the devel-
opment of dynamic web pages, executing the JavaScript code on the client side.

As the Dashboard is based on the Sefarad project (which will be discussed below), the
graphics displayed on the web are made using both the Polymer and D3 libraries, both

written in JavaScript.

19 is an open-source JavaScript library created by Google re-

e Polymer: Polymer
searchers and developers. It is used to create dynamic web pages based on web

components, which are cells that display graphs and panels in an interactive way.

Yhttps://github.com/Polymer

18

2.2. ENABLING TECHNOLOGIES

Polymer is used in several interactive web pages, such as Google Earth, Google Music,

Youtube or Youtube Gaming and by companies like McDonald’s or Coca-Cola?°.

e D3 (Data-Driven Documents): D32! is a JavaScript library that tries to make
easier the creation of graphs and tables from data. It uses other web technologies such
as HTML5, CSS, or SVG.

It allows to set the properties of graphs in a comfortable way, allowing to set colors,

sizes, interactions, and more.

2.2.6.3 Sefarad

Sefarad?? is an environment developed by the Intelligent Systems Group (GSI in Spanish)
to analyze and visualize data. It is based on web components, each of them shows a different
diagram in which to view and analyze data. These web components are developed with the
Polymer library, and some specific functionalities are based on D3.

Sefarad provides an ElasticSearch-based persistence layer and this functionality facili-
tates data aggregation. This is useful for displaying data in a way that makes it easier to
see what they mean. In addition, it is possible to filter the data by showing only the data
you want to see at that moment, facilitating analysis and accessibility.

Moreover, Sefarad provides a SPARQL query engine to perform Linked Data based
searches to sites such as DBPedia or to the data stored in ElasticSearch itself. The archi-

tecture of Sefarad can be seen in Figure 2.5

2.2.7 Standard Python Libraries

To develop the whole project, some other libraries have been used.

2.2.7.1 Pandas

Pandas?® is one of the most used Python libraries in the Data Science field. It has many
functions for data manipulation, based on the DataFrame concept, which is nothing more
than an organized table of data (rows) and features (columns). It allows to find mistakes
in data in a comfortable and easy way, as well as find duplicate data and more. It is a

fundamental tool in the area of Python data science.

20https://github.com/Polymer/polymer/wiki/Who’s-using-Polymer%3F
2https://d3js.org/

*2https://github.com/gsi-upm /sefarad-3.0

Z3http://gsi.upm.es:9080 /software/projects/sefarad/

Z4https:/ /pandas.pydata.org/

19

CHAPTER 2. BACKGROUND

e
DBpadia ™™

- weo
/ Component
OO0
Web
Geelastic | | L Il D ‘ ‘ | Component

Dashboard \ ® -

Component

e

elasticSearch

Figure 2.5: Sefarad Architecture?

2.2.7.2 Numpy

Numpy?® is also a fundamental Python tool. It is an open source library for working with
complex data such as n-dimensional arrays and other numerical computing tools, such as
complex operations, Fourier Series, linear algebra operations, random sequence generation,

and more.

2.2.7.3 SciPy

SciPy?% is an open source Python library for mathematics, science, and engineering. It
works with packages such as Numpy, Pandas or SymPy, all of them in the same package,

making it an essential tool.

22.74 Re

The Re?” Python library provides regular expression matching operations. It is useful to
find patterns in texts, as well as to change substrings or to modify text extracts if they

match what is expressed in the regular expression.

Zhttps: //numpy.org/
26https://www.scipy.org/

ZThttps://docs.python.org/3/library/re.html

20

2.3. MACHINE LEARNING ALGORITHMS

2.2.7.5 Matplotlib and Seaborn

Matplotlib®® and Seaborn? libraries allow to graph and plot figures. They are useful to see
the data and to analyze it.

2.2.7.6 Pickle and Joblib

Pickle3? and Joblib3! libraries are useful to serialize objects and, therefore, be able to store
them. This is very useful to save objects such as Machine Learning models or different

objects which can be used later or integrated into a defined architecture.

2.2.8 Other Python Libraries
2.2.8.1 GSITK

GSITK?? is a library on top of scikit-learn that eases the development process of NLP
machine learning. It has been developed by the Intelligent Systems Group. Among others,
it provides some useful functionalities, such as the managing of datasets or features to
facilitate the creation of machine learning pipelines. In addition, it provides some packages
such as SIMON [5], which is a feature extractor based on Word Embeddings and a specific

lexicon and which has been used in the development of the project.

2.2.8.2 Geopy

GeoPy?? is another Python library used for geolocation and geocoder tasks. In this project,
it has been used to get the coordinates of some geolocations such as cities, countries, or

places around the world.

2.3 Machine Learning Algorithms

2.3.1 Topic Modeling

Topic models are unsupervised machine learning algorithms that try to make clusters (top-
ics) with data, based on the words appearances within documents and the similarity between
these documents [2]. For this reason, they are useful to extract information in large corpora

and to classify texts.

Z8https://matplotlib.org/
2https://seaborn.pydata.org/
30https://docs.python.org/3/library /pickle.html
3https://joblib.readthedocs.io/
32https://github.com/gsi-upm/gsitk
33https://github.com/geopy/geopy

21

CHAPTER 2. BACKGROUND

There are various topic modeling algorithms such as Latent Semantic Analysis (LSA),
Correlated Topic Model (CTM), or Latent Dirichlet Allocation (LDA). In this project, the
LDA algorithm has been used and the following is an explanation of how this algorithm

works.

2.3.1.1 The LDA Algorithm

The Latent Dirichlet Allocation (LDA) algorithm [7] is a generative probabilistic model
mainly used on text data. This algorithm is based on the distribution of words within
documents, viewing these documents as random mixtures of words over latent topics, be-
ing each of these topics a set of weighted tokens. From here on, the used terminology
corresponds to that used in [7].

LDA algorithm defines the next terms:

e A word, w,, which is the basic unit of data, represented as a vector with all positions
equal to zero except the position where the word is stored in a dictionary composed

of all the distinct words in the corpus, which is represented by 1 in this vector.

e A document, which is a whole text, composed by a sequence of N words denoted by

w = (wy, W, ..., WN).
e A corpus, which is a collection of M documents denoted by D = {wy, wg, ..., wnm}

Given « and f, which are corpus-level parameters, a set of N topics z and a set of
N words w, the joint distribution of a topic mixture 6, which is a k-dimensional Dirichlet

random variable is given by

N
p(0.2,wla, B) = p(0]a) [T p(zal0)p(wnln, B), (2.1)

n=1
where p(2,|0) is 6; for the unique i such that z!, = 1, p(wn|2z,,) is a multinomial
probability conditioned on the topic z, for a word w,, and p(f|«) is the probability density
on the (k — 1)-simplex of ¢, which lies in the (k — 1)-simplex if 6; > 0, Zle 0; = 1. This
probability density of 0, p(f|«), is

INO DS _
p(0la) = %9?1—1...9;3 L (2.2)
Hi:1 [(a)
where « is a k-vector with a; > 0, and I'(x) is the Gamma function. Finally, integrating

over 0, the marginal distribution of a document can be calculated as follows:

N
p(wla, B) = /p(Q\a) (H Zp(zn\ﬁ)p(wn]zn,6)> do. (2.3)

n=1 zn

22

2.3. MACHINE LEARNING ALGORITHMS

A graphical representation of a LDA model can be seen in the next figure.

Figure 2.6: LDA Graphical Model [7]

As it can be appreciated, LDA is a hierarchical three-layer model. In the above figure,
M represents documents and N is the number of words within a document. Also, « (per-
document parameter) and 3 (per-topic parameter) are corpus-level parameters, 6, is the
topic distribution for document d and zg, and wy, are word-level variables, which z4, means
the topic for the n-th word in document d and wg, means that n-th word of the document
d.

After the generation of a LDA model, it can be used to predict topics for any text. It
will generate a k-dimensional vector with its elements € [0, 1], which indicate the weight of

each topic in the text and, therefore, it is possible to get an idea of what the text is about.

2.3.1.2 Measures of Performance

As LDA is highly dependent on the choice of hyperparameters, especially the parameter
k (the number of topics), it is necessary to measure the performance of the generated
model. The main available metrics are the Coherence Score and the Perplexity. Both are

implemented in the Gensim library.

e Coherence Score: The Coherence Score [40] is the main metric used to measure the
performance of the model. This metric defines a way in which the coherence between
the topics is measured. This is an important task in topic models because, at least
in the LDA algorithm, the number of the required topics must be set before training.
A lower value of k results in broad topics, and an extremely higher value results in

indescribable topics [47].

There are several versions of this metric, but in this project the Cy version has been

used, which is based on four parts [47]:

23

CHAPTER 2. BACKGROUND

— The segmentation of data into words and the pairing of each of the top-N

words belonging to a topic with every top-IN word of another topic. The authors
refer to W as the set of the top-N words belonging to a topic, to S; as the
segmented pair of each word W’ € W paired with all other words W* € W and
to S as the set of all pairs.

— The computation of the probability of single words p(w;) and the joint

probability of two words p(w;, w;), calculated as the number of documents within
the corpus in which w; or (w;, w;) occurs divided by the number of documents. To
take into account the frequencies and distances between different words, the Cy,
metric incorporates a sliding window and reduces the number of documents and
the appearance of the words to the number of documents and word occurrences

within that window.

— The computation of a confirmation measure ¢ for every S; = (W', W*)
which measures how strongly is the relationship of W’ with W*. This relationship
is calculated representing W’ and W* as vectors o (W') and v (W*), created by
pairing them to every word in W, as shown in equation 2.4. The association
between w; and w; is measured with the NPMI (Normalized Pointwise Mutual
Information) function, which is calculated with the equation 2.5. In 2.4 and 2.5,
€ is used to account for the logarithm of zero and ~ is used to apply a bigger

weight to higher NPMI measured values

Finally, each confirmation measure ¢ for each S; is calculated by the cosine

similarity between @ and @, being v (W’) € @ and ¢ (W*) € @, as shown in 2.6.

E(W’):{ > NPMI(wi,wj)v} (2.4)
=1, W]

w; eW/’

.....

P(wi) P(w;)
—log(P(w;,w;) + €

lOg P(w;,wj)+e 5
s Y,

NPMI(’U)Z, 'U)j)’y = (

R Z'V_Vl'uzwz
¢s; (U, W) = == (2.6)
[]2 []2

— The aggregation of the measured ¢ values, calculated as the arithmetic

mean of all the confirmation measures, as shown in 2.7 .

wi .
Cy = % (2.7)

2.3. MACHINE LEARNING ALGORITHMS

The main reason of using Cy is because this metric is, with respect to the other
existing ones, the one that has the highest correlation with respect to the perception

of topics by humans [40].

The higher the value of the Coherence Score, the greater the independence between
sets (topics) and, therefore, the more different they will be from each other. Therefore,
the objective in terms of optimizing the model will be to obtain the highest number
of topics with the highest coherence value, in a process that also involves human

perception and other metrics and processes.

e Perplexity

The perplexity is a measure of how much a model is surprised if it sees new unseen
words. There are some ways to measure it, but in this project it has been used the Gen-
sim log_perplezity function, which implements the below log-likelihood approach [41],
where wy is a set of unseen documents, and k£ and a are two of the hyperparame-
ters of the model (number of topics and per-document topic weight hyperparameters,

respectively). Higher values of perplexity imply a higher performance of the model.

perplexity = log(p(w|k, a)) = Zlog(p(wd|k:,a)) (2.8)
d

The generated LDA models in this project have been selected based on these two metrics,
but mainly the Coherence Score since it returns results that are easier to analyze. Perplexity
results are not always correlated with the results derived from human observations, so a
priori it will be more effective to analyze the Coherence Score, although in this project both

metrics have been analyzed.

2.3.2 Word Embeddings

Word Embedding is a NLP technique which is used to transform words into numerical
vectors. These vectors tend to be near, within the vector space, to other vectors which
are semantically related. For this reason, this technology makes it possible to relate words
based on their transformation into vectors of real numbers, making it possible to extract
meaning relationships that other methods, such as the Bag of Words or Tf-idf formats, do
not allow.

In this project, two approaches of Word Embedding techniques, Word2Vec and FastText,

both implemented in the Gensim library, have been implemented and tested.

25

CHAPTER 2. BACKGROUND

2.3.2.1 Word2Vec

The Word2Vec approach [30] is a Word Embedding algorithm developed by Google. It
arises as an alternative to the representation of texts in bag-of-words format, where the
semantic characteristics of the words are not taken into account, but only their distribution
throughout the corpus.

The Word2Vec algorithm is presented with two variations: the Continuous Bag-of-Words
Model and the Continuous Skip-gram Model. Both are based on neural networks trained
in two steps: the learning of the word vectors using simple models and the training of the
n-gram NNLM (Neural Net Language Model) [6] on top of these vectors. Figure 2.7 shows

the architecture of both models.

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2) w(t-2)
w(t-1) w(t-1)
SUM /
T w(t) w(t) —
w(t+1) 7/' x\ w(t+1)
w(t+2) w(t+2)

CcBOwW Skip-gram

Figure 2.7: CBOW and Skip-gram Word2Vec models [30]

The main differences between them are:

¢ CBOW model: Words are predicted when given their context. The architecture is
similar to a feedforward NNLM and the non-linear hidden layer is removed and the
projection layer is shared for all words. Every word is projected into the same position
(average vector) and the order of words does not affect the projection. For this reason,
it is called Continuous Bag-of-Words model. Future words are also used and improve
the performance of the model, but it is also more computationally expensive the more

future words are used.
e Continuous Skip-gram model: Surrounding words are predicted when any word

26

2.3. MACHINE LEARNING ALGORITHMS

is given. Each word is the input of a log-linear classifier with a continuous projection
layer, and it predicts words within a certain range before and after the input word.
Furthermore, increasing the range makes the model better but more expensive. Words
that are more distant are given a lower weight than those that are closer, since each
word depends to a greater extent on the words that are closer to it, although words

that are more distant can also give context information.

In this project, the Word2Vec generated models have been used the CBOW approach,
since the Skip-gram approach has been applied with the FastText variation which will be

explained below.

2.3.2.2 FastText

The FastText approach [8] is another Word Embedding algorithm developed by Facebook.
The main characteristic of this approach is that, when creating vectors, the model takes
into account the morphological differences between the different words. To do this, FastText
implementations consider subword units instead of the whole word, and represent words by
a sum of its character n-grams.

This model is derived from Continuous Skip-gram models [30], which, as explained
before, try to obtain the surrounding words (context) when a word is given.

Nevertheless, in the FastText approach, instead of analyzing the context of each word,
the context of the n-grams of each word formed by its characters is analyzed. To achieve
this, the special symbols < and > are added at the beginning and at the end of each n-gram.
For example, the word where, with n = 3 will be represented as <wh, whe, her, ere, re>
and also it will include the whole word <where> [8]. It is important to note that, in this
case, the word her will be represented as <her> and it will be different to the tri-gram her
derived of the division of the word where.

This way of representation makes it possible to take into account, for example, the
suffixes and prefixes of the words in the corpus. Finally, each word is represented as a tuple
containing the index of the word in the corpus dictionary and the set of n-grams, which are
previously hashed.

The performance of this model, in contrast to the skip-gram model, will take into account
the n-grams context instead of the whole word context, which will also take into account

because the whole word is included in the n-grams set.

2.3.3 SIMON

SIMON [5] is a tool developed by the Intelligent Systems Group (GSI), which is a feature

extractor originally designed for sentiment analysis. SIMON needs two things for working:

27

CHAPTER 2. BACKGROUND

e A lexicon, which is a set of words related to the domain. E.g., in the sentiment
analysis domain, the lexicon will contain words which express negative, positive, or

neutral sentiments.

¢ A Word Embeddings model, which computes words as vectors.

The idea behind SIMON is that it generates a training matrix of dimensions (dy,(y),
where dpy is the number of documents and [y is the length of the lexicon. Features are
generated by a similarity function which measures the similarity of the embeddings vector

of each document with every word of the lexicon, as it can be seen in the next figure.

0.40
thoughtful
provocative
interestingly
humanizing
film -0.10

l maXx

Figure 2.8: SIMON features generation [5]

SIMON can be easily implemented in a scikit-learn pipeline, and it is possible to apply
functions that act as feature selectors. Specifically, SIMON provides a parameter which
allows to set a percentile function and select only some of the features, with the aim of
selecting the best features and avoiding those which introduce noise into the system. When
sentiment analysis is performed, SIMON generates features depending on the relationship of
the words of a document with the lexicon words, which can be labelled as positive or negative

words. The use of SIMON for this type of analysis has been extensively demonstrated [4].

2.3.4 Tf-idf representation

As well as Word Embeddings, Tf-idf is another methodology used for text representation.
This format transforms a Bag of Word matrix or a token count matrix into another ma-
trix in which the frequency of the words in every document is taken into account. This

transformation is made based on the next expression

28

2.3. MACHINE LEARNING ALGORITHMS

tEidE(t, d) = tf(t, d) % idf () = tf(t, d) * (log (%) + 1), (2.9)

where t is a token, d is a document, tf(t,d) is the term-frequency of a token in a
document (how many times ¢ appears in d), n is the number of documents and df(¢) is the
document frequency of ¢ (the number of documents in which appears t divided by the total

number of documents in the corpus).

2.3.5 Logistic Regression

The Logistic Regression algorithm is a predictive supervised algorithm used in classification
problems. In particular, in this project the Multiclass Logistic Regression algorithm based
on the One vs. All technique have been used in order to be able to classify data into multiple
classes. This algorithm is a generalization of the binary Logistic Regression, which only can

predict two classes based on the Sigmoid function and a threshold (usually located at 0.5).

1

fz) = pRp— (Sigmoid function) (2.10)
If the probability of an input data is > threshold, it will be classified as belonging to
one of the categories. If the probability is < threshold, it will be classified as belonging to

the other category.

For multiclass classification, the One vs. All implementation generates as many different
classifiers as the number of classes. Each classifier tries to classify one category versus the
rest of categories. The combination of each classifier generates the full Logistc Regression

model.

2.3.6 Gradient Boosting

The Gradient Boosting algorithm is a Machine Learning supervised algorithm for regression
and classification tasks. It produces a classification model based on an ensemble of decision

trees.

A decision tree is one of the most used Machine Learning algorithms. Consists of a
decision selector based on certain conditions. An example of a decision tree can be seen in

Figure 2.9.

29

CHAPTER 2. BACKGROUND

Age

> 18 <18

Genre not accepted

woman man

accepted not accepted

Figure 2.9: Decision Tree Example

The Gradient Boosting starts creating weak classifiers (decision trees) and then gener-
alizes them creating an ensemble model.

The used library for the implementation of this algorithm is XGBoost. This library
allows to implement the algorithm using the scikit-learn API, so it is easy to assign pa-
rameters to the algorithm. The used implementation is the XGBClassifier, which allows

multiclass classification and has the following parameters:

e objective: To specify the learning task for which the model is trained. in this
project, the objective used has been multi:softprob, which allows to train the model

for multiclass prediction.
e random_state: It establishes a random seed for reproducibility.

e eval_metric: The metric used to evaluate the model. In this project, the mlogloss

metric has been used.
e num-_class: Number of classes that the model must identify.
e learning rate: The learning rate of the algorithm € [0, 1].
e max_-depth: Defines the maximum depth of the base learners.

e min_child_weight: Defines the minimum weight for a child to be considered part of

the tree.

e gamma: Minimum loss reduction required to make a further partition on a leaf node

of the tree.

e colsample_bytree: Subsample ratio of columns when constructing each tree.

30

CHAPTER

System Architecture

3.1 Introduction

The developed system is composed of several components that need to work together in
a coordinated manner to provide the total required service. The different processes that
constitute the system have been virtualized and are launched in Docker containers. The
overall system is assembled as a pipeline, so that each input of a process is the output of the
previous process. The global system is launched with docker-compose and data is retrieved,
analyzed, and stored once every 24 hours, so that data can be displayed in real time.

In addition, many of the processes are accessible through a web interface that is enabled
on different ports. The next figure shows the schema of the system architecture, which will

be explained in this section, as well as each process that makes up the entire system.

31

CHAPTER 3. SYSTEM ARCHITECTURE

N
‘ Validation Process
J
N A A
* \4 A4 Y V. VY
‘ Cleaning Process J Features Selector
1 1) GENSIM | g ;
‘ UPM . m
! Word : : N-Grams
) . Embeddings : SIMON | (rigp ! CoreNLP
o

-
<

Translator (es-en) A
Transformer
A A R ‘ z
Google Play t Classifier

Scraper

\ 4
~
y =
-
‘ elasticsearch

Data Storage
reddit twitter Google Play g D,

pushshlft i Twint

\4

The future of the web today

sy
‘ Sefarad 3.0

Visualization)

Figure 3.1: Full System Architecture

3.2 Collecting data

The data on which we have worked during the development of the project and for which the
system has been developed are mainly texts. Specifically, as previously mentioned, these
texts have been collected from social media sources such as Reddit, Twitter and the Google
Play Store.

As explained in Section 2.2.1, several tools and libraries have been used to extract
texts from these social media sources. The main data have been collected from Reddit
(Ride-Hailing domain) and Twitter (Radicalization domain) and almost all the processes
carried out have been based on these posts. In addition, Twitter data and Google Play
data belonging to the Ride-Hailing domain have been collected to study the impact of
extrapolating this analysis to other sources and types of data.

The Collecting Process also includes a Cleaning Process and a Validation Process, which

are in charge of processing data for its correct later analysis, and a Translation Subprocess,

32

3.2. COLLECTING DATA

which main function is to translate Spanish texts into English texts.

3.2.1 Scraping Process

The Scraping Process retrieves the required data. As said before, the Pushshift API, the
Twint library, and the google-play-scraper library have been finally used for collecting data
from Reddit, Twitter, and Google Play, respectively.

Firstly, the Pushshift API, which has been used for Reddit posts, has many parameters
to make searches as specific as possible. The requests to the API used in this project uses
several parameters to collect data, such as before and after parameters, to choose the dates
between the collected posts were posted, size, to set the size of the request, sort, to sort in a
descendent or ascendant way the retrieved posts, or the subreddit parameter, to choose the
subreddit. Also, the endpoint of the API needs a parameter to set which kind of post will
be retrieved. This field can be either comment or submission. An example of this request
can be seen below:

https://api.pushshift.io/reddit/submission/search?subreddit=
uber&before=1618790400&after=1618012800&size=100&sort=desc

The above request will get 100 submission posts (it only returns 43, since only 43
submissions were published in the r/uber subreddit between those dates) posted in the
r/uber subreddit, published between April 10 and 19, 2021.

As explained before, Reddit is composed by two types of post: submissions and com-
ments. A submission is a main post, composed by the title, the text (called “selftext” in
the API response) and another metadata information, such as the score (punctuation of the
post), images or videos, hyperlinks, Reddit awards, etc. On the other hand, a comment is
a post which hangs from another post or comment. They are composed by the text (called
“body” in the API response), the score, multimedia data, and more.

Furthermore, Twitter data has been collected using the Twint library, as said before.
The search for the respective tweets has been made based on certain hashtags and usernames
related to the domain.

An example of Python code that collects tweets featuring a particular hashtag posted

between two specific dates is shown below.

33

CHAPTER 3. SYSTEM ARCHITECTURE

import twint

c = twint.Config ()

c.Search = ’t#hashtag’ # The term that must be in the retrieved tweets
c.Hide_output = True

c.Store_object = True

c.Since = ’'%YYYY-%mm-%dd’ # The date since tweets will be retrieved
c.Until = ’"3YYYY-%mm—-%dd’ # The date until tweets will be retrieved

twint.run.Search (c)

Finally, Google Play data have been collected by the google-play-scraper Python library.
Requests have been made searching for the names of specific applications.
A piece of sample code in which all reviews of a particular app are collected is shown

below:

from google_play_scraper import reviews_all

result = reviews_all (
"app_name’, # Name of the app
lang='es’, # Language of the app
country='es’, # Country of the app
sleep_milliseconds=0, # Sleep time between requests

filter_score_with=None # Filter reviews by score value

3.2.1.1 Translation Subprocess

Some collected data sources are written in Spanish. The performed analysis and architecture
has been developed only to analyze texts written in English. Processes such as data cleaning
or almost every NLP process applied to the texts are specifically designed for English texts.
For this reason, as explained in 2.2.3.4, the Marian Machine Translator transformer has been
implemented in the system architecture to translate all texts that are written in Spanish.
Texts written in another language are not considered, since they are rejected in the Cleaning
Process that will be described below.

The Marian transformer needs a special tokenizer and a pretrained model to work.
This model has been downloaded from the Language Technology Research Group of the
University of Helsinki web page, accessible from the Hugging Face website!. This research

group provides a lot of packages called opus, which are specifically designed for translation

"https://www.huggingface.co/Helsinki-NLP

34

3.2. COLLECTING DATA

purposes. In particular, the opus-mt-es-en package, which has been trained from Spanish
to English translation, has been used.

For translation, a label is added to the text indicating the language into which it is to
be translated (in this case, “>>en<<"). After this, the text is loaded and tokenized. The
tokenizer is configured so that, in the encoding process, the different tokens are not encoded
as simple numbers, but return tensors. In this case, it has been configured so that these
tensors are PyTorch? objects. After that, these tensors enter the decoding process, from
which the translated text is extracted.

An example of the code is shown below.

Loading tokenizer

tokenizer = MarianTokenizer.from_pretrained(’Helsinki-NLP/opus-mt-es-en’)

Loading pretrained model

model = MarianMTModel.from_pretrained(’Helsinki-NLP/opus-mt-es-en’)

src_text = [’>>en<<’ + text] # Adding the language label

Encoding the text as tensors
tensors = self.model.generate (xxtokenizer (src_text, return_tensors=‘'‘pt’’,

padding=True))

Translating text
translated_text = [tokenizer.decode(t, skip_special_tokens=True) for t in

tensors]

3.2.2 Cleaning Process

The Cleaning Process is done once the data is obtained. Its function is to clean the data,
meaning to clear the texts, leaving them machine-readable, without strange characters that
may affect the operation of other algorithms and processes.

The main component of the process, which is common to every data source, is based on
regular expressions that try to clean the text as much as possible. These expressions reject
some characters that do not provide information to the text and introduce noise. Moreover,
these expressions try to fix some misspelled words that are often misspelled when writing
on social media interfaces from a cell phone, a computer, or another similar device. An

example of this cleaning process could be:

e Original sentence: “Uber is operating/working in Barcelona and they dont pay

taxes. What can be done? https://www.oneweb.com”

*https://pytorch.org/

35

CHAPTER 3. SYSTEM ARCHITECTURE

e Cleaned sentence: “Uber is operating / working in Barcelona and they don’t pay

taxzes. What can be done?”

Before texts are readable and well-written, it is important to know what kind of words
contain. In Twitter and Google Play data, the language of texts is known because the way
in which the texts are collected specifies the language of the page and the texts. However, in
Reddit data, although the subreddits are supposed to be in English, some texts are written
in other languages and usually contain expressions that are not suitable for translation to
perform the intended analysis. For this reason, Reddit texts go through another process of

language identification after the cleaning phase.

Different approaches have been tried for language identification, specially with short
texts, where the most common techniques are a dictionary-based identification or the use
of n-grams [51]. As Reddit is composed by short and large texts, in the Cleaning Process

the language identification process has been divided in two phases.

The first phase consists of a search for the probability that the text belongs to some
language. It is made with the CLD3 library. If its English probability is the higher, the
text is considered to be in English and the text is added to the data set.

The second phase is a dictionary-based approach and it is for texts that have been
rejected in the first one. In this phase, several dictionaries of different languages are loaded
and compared with the words of the text. The language of the text will be the language of
the dictionary that has the closest match to the words in the text. If this language is not

the English language, the text is definitely rejected.

The approach made in the second phase is necessary to avoid the noise produced by social
media related words that can be identified as other language words. After this Cleaning
Process, every cleaned English-written text is included in the whole data set and it passes

through the next process.

3.2.3 Validation Process

After cleaning, posts need to be validated to be finally integrated into the data set to be
analyzed and visualized. This validation is based on a rules-based approach. These rules
are different depending on the source of the posts, although there are some shared rules.

Figure 3.2 shows how this process works.

36

3.2. COLLECTING DATA

Scraped and
cleaned post

“Which i the ™

No e Twitter—" - Reddit : No
“ s wr];it;;l m ,-;;“—:::'- source ’_;Zf—ll—" :Z"k - L ! i E'lon7 o
~,_ ~ English? o . of the post? Y P
., _,:"' . _.--""t.mog]e Play o
l‘"?s l‘hes
No ‘Has itmmum’m'él'-.,v Analyzing title and
[¢——<_ words than hashtags = selftext separately
", and u59n:am05?/
l\es B .
“?5 Has it been i e T
[oe—_ published by a i { \
. skewed account? / | Validate Post |
INO ;
L v ‘“l
Yes - No . Yes [t contains at laast
o Is it spam? o ':h':‘“t’a““ “‘::f ———< oneword from the
g I A “._predefined lexicon?
P . . o
;‘JJJ "-\'- o h . ""-'.
p ~— [-\;“-— o
- - g
',‘/ . No

Figure 3.2: Validation Flow Chart

As it can be seen, the validation process is slightly different depending on the source
of the data. Google Play and Reddit posts are usually more formal and well-written than
Twitter posts. Additionally, the way in which Twitter posts are collected is less specific

than the others. For this reason, Twitter posts have a more exhaustive validation process.

e Twitter Validation Process: As said before, Twitter data is collected by searching
for specific words, in particular hashtags and user names. For this reason, its validation

process is more strong.

The first step is to analyze the language of the post. This is easier than in the Reddit
case because the Twint library retrieves the language of the collected posts. If the

text is not written in English, it will be rejected.

The second step is to analyze the text of the post for hashtags (words starting by the

37

CHAPTER 3. SYSTEM ARCHITECTURE

Twitter special character #) and usernames (words starting by the Twitter special
character @). If the text contains a lot of these kinds of words, the analysis of the
text will not provide much information. For this reason, if the text had more hashtags

and usernames than normal words, it would be rejected.

Next, the user that had post the tweet is analyzed. If the post was posted by an
official account with a strong relationship with the analyzed domain, the post will
be rejected. Also, if the username information of the post contains words related to
the domain, this post will be rejected too. With this rule, it is intended to analyze
data provided by users that express their opinion in a disinterested way. For instance,
if @cabify-espana or @Quber-is_cool would publish a post and the system collects this

post, it will be rejected.

The next filter consists on checking if a tweet is spam or not. The words of the tweet
are compared with a vocabulary that contains expressions related to spam. If there

is a coincidence, the tweet is rejected.

Another mandatory rule is that texts need to have more than one word. Posts with

less than two words are rejected.

Finally, if the intersection between an extracted vocabulary (extracted from the topic
modeling procedure, Section 3.4.1) and the words of the tweet is not null, the post

will be accepted.

e Reddit Validation Process: Reddit posts can be either submissions or comments.
If the analyzed post is a submission, the title and the text of the submission are
analyzed in a separately way. The process can reject the title and accept the post

text, and vice versa.

The text will pass through a two-step process. First, the text must have more than
one word. Finally, the text must have at least a word that matches any of the words
that make up the vocabulary mentioned above. If the text passes these steps, the text

will be accepted.

e Google Play Validation Process: Google Play reviews follow the same steps than

Reddit texts.

3.3 Enrichment Process

The Enrichment Process includes all the processes that add interesting data to the retrieved
texts. This data addition is based on the processing of texts to extract data with which to

analyze the texts from the intended perspective in this project.

38

3.3. ENRICHMENT PROCESS

The Enrichment Process involves Sentiment Analysis and NLP Data Extraction Process.

3.3.1 Sentiment Analysis and NLP Data Extraction Process

The Sentiment Analysis and NLP Data Extraction Process is the process in which a large
amount of information is extracted from texts. The result of this process is an annotated
text including some relevant information. As it was explained in 2.2.2.1, the Stanford
CoreNLP was used in this process.

The Stanford CoreNLP can be executed in different ways. Mainly, both the server and
client version can be used, depending on how it is to be used.

The client version is useful when data is stored in files. These files can be divided
in different files, containing each one a text. This process can increase the speed of the
execution, allowing multi-threading execution too. It can be launched as a docker container,
building a predefined image which contains an environment with the Java compiler installed,
such as Alpine 3 and downloading inside the container the Stanford framework, or directly
as a shell command, having previously downloaded the Stanford package. Once texts file

has been split and stored in different files, the client version can be executed as follows:

#Create a file that contains every .txt path.

ls tmp/text*.txt > all-files.txt

#Run Stanford CoreNLP client version

java -mx12g -cp ‘‘*’’ edu.stanford.nlp.pipeline.StanfordCoreNLP

-parse.model edu/stanford/nlp/models/lexparser/englishPCFG.caseless.ser.gz

-pos.model edu/stanford/nlp/models/pos-tagger/english-caseless-left3words—
distsim.tagger

-ner.model edu/stanford/nlp/models/ner/english.all.3class.caseless.distsim.
crf.ser.gz,edu/stanford/nlp/models/ner/english.muc.7class.caseless.
distsim.crf.ser.gz,edu/stanford/nlp/models/ner/english.conll.4class.
caseless.distsim.crf.ser.gz

—annotators tokenize,ssplit,pos,parse, lemma,ner,sentiment -filelist all-

files.txt -outputFormat json -timeout 100000 -threads 4

As it can be seen, the Stanford CoreNLP framework specifies some parameters that
must be defined. There are several parameters that can be set to perform the analysis. The

above parameters are:

o -mxXXg: It specifies the amount of RAM that the core will be allowed to use. For
large amounts of text, it is recommended to use at least 8 GB of RAM, especially if
multi-threading is to be used. In this case, a maximum of 12 GB of RAM has been

allocated.

3https://alpinelinux.org/

39

CHAPTER 3. SYSTEM ARCHITECTURE

e -cp: Used to select the jar files that will be loaded in the current directory. It is set

Wk

as , which means that all available jar files will be loaded.

e edu.stanford.nlp.pipeline.StanfordCoreNLP: The version of the Stanford Core
NLP. This version is the client version, which allows to send lists of text files to

annotate them.

e -parse.model, -pos.model, -ner.model: They are the caseless models which have

been used in the project.

e -annotators: Specifies the annotators to be used to annotate the texts. As explained
before, to perform sentiment analysis, POS-tagging, and entity extraction, it is nec-
essary to load other annotators that process the texts previously to perform such

analysis and annotations.

The annotators used in this project are tokenize (to tokenize texts in words), ssplit
(sentence split), pos (POS-tagging), parse (to apply a parser and annotate texts ac-
cording to this parser), lemma (to perform the lemmatization process), ner (NER

extraction) and sentiment (sentiment analysis).
e -filelist: A list containing the path of every text

e -outputFormat: The output format of the annotated texts. It can be set as JSON
or XML, among others.

e -timeout: The maximum time that any thread can be processing a text. If it takes

longer than the time specified here (measured in milliseconds), the text is rejected.

e -threads: The number of concurrent threads used in the analysis. It is recommended

to use as many threads as the number of cores available in the used machine.

This way of using the Stanford CoreNLP is useful in some situations, as explained above.
However, with the aim of integrating this framework in the system, it is necessary to use
the server version, which will be listening for new input data.

The framework has been integrated in the system as a Docker container, built from the
same Alpine image. The executed program in this version is
edu.stanford.nlp.pipeline.StanfordCoreNLPServer, which starts a server listening on port
9000. For testing, the server can be accessed from a web interface where a text can be
entered and annotators can be selected in an interactive way, viewing the result of the
process from the same web interface. This web interface can be seen in Figure 3.3. It is

important to note that the example shows how caseless models work.

40

3.4. CLASSIFICATION PROCESS

> C @ © D localhost:9000 e v IND & =

Stanford CoreNLP 4.2.0 (updated 2020-11-16)

— Text to annotate —

— Annotations — — Language —
parts-of-speech X | | named entities x | | sentiment x English v Submit

Part-of-Speech:

cc VEP!IN N
John and Laura are in madrid on holiday
[PRP) VBP| (VBG) [PRP) RBI RB [)
They are enjoying it very much !

Named Entity Recognition:

PERSON PERSON) cy)
John and Laura are in madrid on holiday
They are enjoying it very much !

Sentiment:

(NEUTRAL
John and Laura are in madrid on holiday .
[POSITIVE/
They are enjoying it very much !

Figure 3.3: Stanford CoreNLP Web Interface Example

For the automation of this process, the rest of the parameters are not specified from
the command line, but, using the Python module pycorenlp.corenlp.StanfordCore NLP, they

can be specified from the same code in which this process is launched.

3.4 Classification Process

The Classification Process is the process in which texts are annotated with labels that
identify the main topic of the text. This process includes several processes which are based
on machine learning for the identification of such topics. Firstly, the LDA algorithm is used
to analyze the topics that are latent in the corpus. Once the topics have been extracted,
it is necessary to develop a technique to find these topics in new texts that have not yet
been seen. This technique will be based on Word Embeddings models. Finally, a Machine
Learning classifier has been developed to predict new labels.

The procedures carried out for this task, as well as the implementation of various algo-

rithms and data modeling will be explained in this section.

3.4.1 Topic Modeling

Topic extraction is useful to know in which terms social media users are talking and it is
one of the fundamental processes in the development of the system. In this project, two
models, one per domain, were generated with the aim of classifying by topic each text of

the corpora.

41

CHAPTER 3. SYSTEM ARCHITECTURE

The performed procedure is similar in both domains and the scheme can be seen in

Figure 3.4.

First cleaning

Lowercase texts, delete
numeric tokens, delete

Lemmatizing

tokens that have a lenght stemming
equal to 1, delete
punctuation marks, delete Redl}‘lc:fplmls, genre Reduce words to their
v stopwords v erences, .. v o
o o o o o o
A4 A4 A4 A4 < A4 I
Tokenization NENESEEN Remove specific mEEDENN Remove other EEEECEENN

Split texts into words
(tokens)

Grid Search

The best models are re-
trained to find the best
values for the

words

Delete some specific words
that do not add meaning

Dictionary and
Corpus

Once texts are processed,
a Dictionary and a Bag of

words

This process delete words
based on their frequency
of appearance

Cleaning again \

Cleaning other words
that may be generated in
the previous processes,
such as words without real

hyperparameter alpha and Words (BoW) Corpus are meaning, new stopwords,
W beta to optimize the model W created v short words, ...
O oY o O O oY _J
A A A A A A
Choosing the mlENn Training = ow Bigrams o

best model Several LDA models are

trained finding the optimal
number of topics

Extract bigrams

The final model is chosen
based on a Coherence
Score - Number of topics
- Human observation
commitment

Figure 3.4: LDA Procedure Flow Chart

As it can be seen, the LDA procedure has 12 steps. Phases 1 to 8 belong to document
processing, while phases 9 to 12 belong to training, model generation and model selection. It
is important to note that many of these phases have been modified during the development
of the process to achieve the best model as possible. This has been carried out using certain
techniques, such as direct observation or computational techniques. These techniques will

be explained later.

e Phases 1 to 8 - Processing of documents

The first two phases correspond to the preparation of the corpus, carrying out pro-
cesses such as the tokenization of the documents, the transformation of texts avoiding
capital letters, short words (short words are usually prepositions, wrong-written words
or words with no interesting meaning), punctuation marks, numbers and stopwords

(prepositions, personal pronouns and determiners, among others).

Once the documents are prepared, a vocabulary is created to remove some specific
words that do not have interesting meaning and could add noise to the model. Then,
the lemmatization process has been carried out with the aim of reducing data sparsity.
This process can generate new words that do not add meaning and they must be

removed.

42

3.4. CLASSIFICATION PROCESS

After these processes, the stemming process is applied to each document. After this
transformation, documents are cleaned again removing new words because new stop-

words or words without real meaning may have been generated.

Finally, once the documents are completely cleaned, the texts are processed searching
for bigrams. This process creates new words which are combinations of two words that
appear together in some documents. This is an important process that tries to avoid
to analyze words that have no meaning if they are analyzed as separated words. For
instance, “united” and “states” have different sense if they are analyzed as separated
tokens and the bigrams extraction process joint this two words into a single token,
“united_states”, which has sense and adds meaning. New tokens generated in this
process appears as single tokens joint by an underscore character (“.”), as can be
observed in the previous example. Bigrams extraction has been carried out with the
Gensim Phrases package, which allows to search for n-grams within documents and
provides some parameters to change the way in which these n-grams are generated,
such as window size (the distance between the n words must have to consider them as

a n-gram) or the value of n, to search for unigrams (n = 1), bigrams (n = 2), trigrams

(n = 3) and more.

Phase 9 - Dictionary and Corpus

After processing the documents with the previous processes, a dictionary composed
of every unique token that makes up the documents is created. This dictionary can
be filtered to contain only words that appear within the corpus at least determined
times. This function is useful to avoid wrong-written tokens that appear a few times

and can add noise to the models.

Once the dictionary is created and filtered, the corpus is transformed into a Bag of
Words (BoW) so that the model is able to understand the distribution of words in a
machine-readable format. This format transforms tokens into tuples, been the first
position of the tuple the identifier of the word within the dictionary, and the second
position is the number of appearances of this word within the document to which the

word being processed belongs. This transformation can be seen in Figure 3.5

43

CHAPTER 3. SYSTEM ARCHITECTURE

Dictionary
ID Token
0 car
1 fast

2 uber_car

3 | wheel Document vector
B = \ (BoW format)

5 uber [(2,1),(1,1),(0,2)]

Raw text Processed text

"Uber cars are faster than
any other car. | love cars!"

44

_+ ['uber_car", "fast", "car”, "car"]

Figure 3.5: Bag of Words vectors generation example

e Phases 10 to 11 - Training and Hyperparameter Optimization

The next step is to train the model. As said before, the LDA models of this project
were generated using the Gensim library. This library provides mainly two versions
to generate a LDA model: the LdaModel module and the LdaMulticore module, both
available in the gensim.models package. The generated models of this project have
been generated using the LdaMulticore module with the aim of using the most efficient

way to generate these models and thus accelerate the process.

The LDA algorithm needs some parameters that must be specified:

— The number of topics k that will be extracted from documents. This value
must be fixed before training and the algorithm will try to classify documents

into k topics.

The corpus in a BoW format, as explained in the previous paragraphs.

— The dictionary containing the tokens and their identifiers.

The chunksize, which is the number of documents used in each training chunk.

The random_state parameter, used for reproducibility.
— The number of passes through the corpus during the training process.

— «a and 3, called alpha and eta, which are the hyperparameters of the model.

3.4. CLASSIFICATION PROCESS

Every LDA model trained in the development of this project was trained with the
multicore version, with chunksize = 100, random_state = 100, and passes = 10. In
addition, every model was trained with & € [2,50) in order to know which is the

optimum number of topics for each model.

In the first approach, to get the best models and discard the worsts, o and [hyper-
parameters were set to their default values. The election of the best models was based

on the performance metrics explained before: the Coherence Score and Perplexity.

Perplexity does not provide as much information about the best model and the optimal
number of topics as Coherence Score, so the latter has been used mainly to analyze

the models, although Perplexity has also been used.

The hyperparameters selection has been mainly based on the application of the Co-
herence Score to the best models. These best models are those that, with the number
of topics already defined, are optimized by selecting the value of the hyperparame-
ters. This optimization process has been carried out with a Grid Search optimization,

finding the values that get the highest Coherence Score value.

Phase 12 - Choosing the best model

The chosen model, in addition to having a high coherence value, must be under-
standable to human beings and must have the largest number of topics that clearly
represent a theme clearly differentiated from the rest of the topics. Therefore, the
choice of the best model was based on a Coherence Score - Number of topics -

Human observation commitment.

For this reason, the chosen model will be the model with the highest coherence value
and with the greater number of topics, but it has to be understood by a human being
and make sense beyond the computational techniques used to analyze it. For the
observation, the models have been plotted with the pyLDAvis tool, which allows to
draw each cluster in a two-dimensional (X and Y) diagram and allows to see the
correlation of two or more topics, if there are clusters intersecting with other clusters

or if on the opposite they are far apart and therefore are totally independent topics.

The pyLDAvis tool has a A parameter that can be set between 0 and 1. The lower
the X value, the more words are selected from each cluster that belong only to that
cluster. If a higher value is selected, the words displayed will have more weight in
the topic, but may also appear in other topics. For this reason, the pyLDAvis tool
has been very useful in the process of improving models, because it allows to see if
topics are similar and why, making it easier to add words to a rejection vocabulary to

remove these words from the corpus and increase the independence between topics.

45

CHAPTER 3. SYSTEM ARCHITECTURE

After all this process, once the best model is chosen, the model is saved and stored to

be used later implemented in the whole system.

3.4.2 Features Selection

The main functionality of the Classification Process is to predict the topic of new unseen
texts. For prediction, a multiclass Machine Learning classifier must be trained. The training
set of these models must be composed by two types of data: features and target data.
Features are the representation of each text which a Machine Learning algorithm will try
to learn, while the target data will be the topic information of each text. The objective of
the classifier will be to relate the representation of each feature vector to its corresponding
topic, and in this way assign topics to texts that the model has not yet seen.

As the objective is to relate texts to topic labels, it is mandatory to obtain good rep-
resentations of every whole text. For this purpose, several different techniques have been

implemented, with different performance results.

3.4.2.1 Word Embeddings Approach

As explained before, Word Embeddings models allow to transform the words of a set of
texts into vectors of real numbers. This is fundamental to take into account the semantic
similarity between words and to know if a word is strongly related to another word or if it
is not related.

To generate these models, the first step of the procedure consists of extracting the texts
to be fed into the models and processing them. These texts are directly extracted from
the Cleaning Process output. It is important to note that texts are collected before the
Validation Process. This is done with the objective of modeling as many texts as possible,
without determining whether those texts will be rejected later or not. The more texts there
are, the better the models will be able to relate the words correctly.

Texts must be processed before the model is trained. Accordingly, texts are processed in
the same way that in the Topic Modeling step (Section 3.4.1). The output of this processing
step must be the corpus with the cleaned and tokenized texts.

After that, different FastText and Word2Vec (CBOW approach) models are trained.
Both models have been trained using some special parameters according to the Gensim
API and both models have been trained using the same values for these parameters. These

values are:

e sentences: The corpus, in a list of lists format, each list containing a cleaned and

tokenized text.

46

3.4. CLASSIFICATION PROCESS

e vector_size: The dimensions number of the output vectors. These vectors are the
representation of each word within the corpus. Models with 100, 300, and 500 dimen-

sions have been trained.

e window: The size of the window around each word. This window covers those words
to be taken into account (i.e., the context of the word) when each word is represented

as a vector. Every model developed in this project has a window size of 10.

e min_count: The number of times that at least a word must appear in the corpus
to be taken into account when establishing relationships and making transformations.

Every model developed in this project has a min_count = 5.

e epochs: Number of iterations around the corpus. Every model developed in this

project has been developed with 10 iterations around the corpus.

e workers: For multicore computation. This number defines how many cores will be

used to train the model.

Once a Word Embeddings model has been generated, every word of each text can be
transformed into a real number vector. However, this is not enough, since the vector
representation of the complete text is necessary. Therefore, this representation has been

done in two different ways, which will be explained below.

e Averaging vectors:
As each word is represented as a real number vector, and each text is composed of
different words, the representation of a text can be modelled as the average of the

sum of the vectors that compound that text.

N
Dy Wi

text_vector = ,
N

(3.1)

where N is the number of words that forms the text and w; is each word vector. This
approach generates n-dimensional vectors, where n can be 100, 300, or 500, for each

text of the corpus.

¢ SIMON:
In this project, SIMON has been used as an alternative to the more traditional feature
extraction based on Word Embeddings. The lexicon, which SIMON needs to work, is
composed of a set of words from each topic. The problem is that the higher the number
of topics, the larger the lexicon. This imply that the generated features become very

larger and the computation tasks can be difficult.

47

CHAPTER 3. SYSTEM ARCHITECTURE

The experiments that have been carried out in this work will be explained in the

sections related to the use cases of each domain.

3.4.2.2 N-grams Approach

Another approach to feature extraction that has been used is n-gram extraction. This
approach does not depend of Word Embeddings and it has been used mainly to observe if
the use of Word Embeddings improves the performance of the models.

The n-grams are extracted in two phases which are integrated into a scikit-learn pipeline.

e Count Vectorizer: It converts a list of documents into a a matrix of token counts.

It provides several parameters, which those that have been used are:

— tokenizer: It sets the way in which texts will be tokenized. A callable function

must be passed.

— max_df: When creating the vocabulary, ignores tokens which appear more times

than specified in this parameter.

— max_features: Consider only the specified features, ordered from most frequent

to least frequent.

— ngram_range: A tuple which indicates the way in which the n-grams will be
formed. The first index indicates the minimum and the second the maximum
unit. Thus, a ngram_range of (1,1) will create unigrams, (1,2) will create uni-

grams and bigrams and (2,2) will create only bigrams.

e Tf-idf: Using a Tf-idf (Term frequency — Inverse document frequency) transformer,
features can be converted into a Tf-idf format. The scikit-learn TfidfTransformer
provides these functionalities and can be used in several ways using its provided pa-
rameters. In this project, some of them have been used:

— use-idf: If True, the idf is used, and if False, only the tf part is computed.

— norm: It sets different ways of normalizing the data.

The result of this process will be a matrix filled with the frequency terms of the different

tokens, with which Machine Learning algorithms can be fed.

3.4.3 Training and Optimization

Once the features are selected and modelled, the training phase can start. In this phase,
two classifier algorithms have been tested and optimized. It is important to note that, as

the system will label texts with their respective topic, multiclass classifiers will be needed.

48

3.4. CLASSIFICATION PROCESS

Thus, the Logistic Regression algorithm and the XgBoost ensemble algorithm have been
used and tested.

The process of training is strongly related to the process of optimization. The training
process has been carried out inside the optimization process and the final models come

directly out of this process.

e Hyperparameter Optimization: In In machine learning, optimization usually
refers to the optimization of the hyperparameters of the algorithms. There are several
ways to do this, either by brute force techniques, random techniques, or with specific
algorithms. In this project, they have been used different functionalities implemented

in the scikit-learn library that allows to carry out these processes.

— Grid Search: It trains models iterating over every possible combination of
hyperparameters. It is an implementation of brute force optimization technique.
When it finishes, returns the best model based on the score function, which can

be selected too.

— Halving Grid Search: It is a new implementation and it is still in an early
version, but it works very well. It iterates over the selected parameters but
through several global iterations. In each global iteration, the features are divided
by the number of global iterations, reducing the computation time of the normal
Grid Search implementation. When a global iteration finishes, the features are
duplicated and only the best estimators are recalculated, rejecting the worsts.
At the end, the estimator which has had the best score in every global iteration
is the final model. The best individuals are selected based on a fitness function,
which in this case was the measure of the F-Score. Thus, those models who get

the best F-Score values will pass to the next generation.

— Genetic Algorithms: A genetic algorithm [31] is a Machine Learning algorithm
based on the process of biological evolution. It can be used to train models in

the usual way or in optimization tasks [32].

Genetic algorithms start training with an initial population. This population will
be changing through generations. When a generation finishes, the individuals of
the population mutate between them and the next generation starts with other
populations. Thus, the model evolves until it converges.

For optimization tasks, the initial population is formed by different implementa-
tions of the same algorithm but with different parameters. The mutation process
merges the values of the parameters trying to achieve the best model. The best

models are selected based on a fitness function, which in this case is based on

49

CHAPTER 3. SYSTEM ARCHITECTURE

the F-Score. This implies that those models with higher F-Score values will pass

to the next generation.

e K-Fold Cross Validation: Is a Machine Learning technique designed to avoid bias
due to bad partitions in the train and test data. When K-Fold is applied, the model is
trained K times and then the score is measured as the arithmetic mean of the different
K scores. The training data vary depending on the fold: the model is trained using
K different training data and testing data. With this technique, the model is trained
and validated with all available data to avoid overfitting and to obtain more efficient
and verifiable results. In this project, K-Fold has been used with K = 10 in most of

the processes.

The training process has been done partitioning data into equal sets to prevent bias,

deleting duplicates, erroneous values, and shuffling the data to avoid mislearning.

3.5 Data Storage

The Data Storage process saves in a server the annotated and analyzed data. This server
is provided by the ElasticSearch engine, which is available on port 9200. ElasticSearch is
a document-oriented database, and the JSON documents generated in each analysis are
posted.

The engine allows to make requests based on simple queries and aggregations, which
allow to extract the information grouped by any variable. The results are provided in a
JSON format, so the information retrieved is easy to process and analyze.

ElasticSearch saves the information in indexes, through which data can be accessed.
The developed system saves data in an index called posts.

Data is stored following a Linked Data schema, using the semantic technologies explained
at Section 2.2.5.2. Therefore, each uploaded post has an identifier, which is the result of
applying a hash function to the post. This process is carried out to prevent the same
document from being uploaded several times. A general schema of how each analyzed post
is labelled and uploaded is shown in Figure 3.6. The keys of each field of which the data is

composed are the following.

e _id: The identifier of the post inside ElasticSearch. It is the result of the application
of the hash function to the post.

e @type: It is the type of the content. In this project, the Qtype key can be set as

tweet, google_play-review or reddit.

e sioc:name: The name of the author of the post.

50

3.5. DATA STORAGE

sioc:name
@type : sioc:content
4L ioc:id
id sioc:i
has_creator '
dcterms:created sioc:url
dc:title POST / sioc:links_to
#//A\\‘ Pr— \. /.)
 sioc:dominant sioc:container of
L _topic ye { has_topics — _,/ \
~Z_ —) \
; . |schema:inLanguage sioc:parent_id
schema:name y _
= \ sioc:avatar
- [@type -
h titi
(schema:latitude \ — 05 entitles v sioc:has_reply
o schema:geo has sentiments

(schema:longitude ‘/ o
= (nif:beginIndex) ’ b)

7 marl:hasPolarity (marl:polarityValue
(nif:endIndex -) .

Figure 3.6: Semantic Data Structure

e sioc:content: The content of the post, that is, the text.

e sioc:id: The identifier of the post inside the social media source.

e sioc:url: The url in which that post is accessible.

e sioc:links_to: The web links that a post could include inside its content.

e sioc:container_of: Its belonging subgroup inside the social media source. It can be

a specific app, a subreddit...
e sioc:parent_id: The id of the parent post, if exists.
e sioc:avatar: The link to the user image.
e sioc:has_reply: The possible replies that a post could have.
e schema:inLanguage: The language in which the post is written.
e dc:title: The title of the post, if any.
e dcterms:created: The created date of the post.

51

CHAPTER 3. SYSTEM ARCHITECTURE

e has_entities: The entities within the post:
— schema:name: The name of the token / tokens that have been detected as an
entity.
— @type: The type of entity: Organization, Time, Person, ...

— schema:geo: The geographic location of the entity if is a place entity. It has

two properties: schema:longitude and schema:latitude.
— nifibeginlndex: The index of the character in which the entity starts.

— nifiendIndex: The index of the character in which the entity ends.
e has_sentiments: The analyzed sentiments of the text:

— marl:hasPolarity: It can be Positive, Neutral, or Negative.

— marl:polarityValue: The value of the sentiment, which can be between 0 to 4.
e has_topics: The extracted topics of the text:

— sioc:dominant_topic: The dominant topic of the post.

3.6 Orchestration

The system follows a pipeline architecture, where processes extract information from data
and transform them, sending the output of each process to the next process. This pipeline
is handled by Luigi, which acts as an orchestrator and manages the pipeline.

Luigi organizes the pipeline into tasks, which are each process of the system. In addition,
there is a main task that starts the pipeline by calling the first task to be executed.

Tasks are composed of different functions, of which the most important are:

e requires() function, which returns the task which needs to be executed before the

current task.
e run() function, which contains the code of the current process.

e output() function, which is used to save the result of the process in an external file.

It is very useful for debugging and error handling.

Since each task requires the output of the task that precedes it, the main task starts
calling to the last process of the pipeline. When the first task to be executed is required, in
this case it would be the task containing the Scraping Process, as this task does not require

any other process to be executed, the pipeline starts to run.

52

3.6. ORCHESTRATION

This process is executed once every 24 hours, collecting and analyzing data published in
the last day. This functionality makes the system a real-time scanning and analysis system.

The architecture schema is shown in Figure 3.7.

8 o= Sentiment ;
Scraper Validation » Analysis and » Classifier > Store
Task Task NLP Data Task Task
Extraction
\ /'/V/'

Figure 3.7: Pipeline Architecture

A

\ 4

As it can be seen, the system pipeline consists on 6 tasks, being the last one the Main
Task. Each task executes its corresponding processes, which are in call order (from end to

beginning):

e Main Task: Initializes a logger file, in which the results of the different tasks will be

stored, and starts the task calls.
e Store Task: Uploads analyzed files to the predefined ElasticSearch index.

e Classifier Task: Predicts the category of each text file and it annotates each file

with its topic.

e Sentiment Analysis and NLP Data Extraction Task: It makes a call for each
text to the Stanford CoreNLP server and saves the texts with the corresponding

annotations.
e Validation Task: Executes for each text the Validation Process.

e Scraper Task: Run the Scraper Process and the Cleaning Process and save the

cleaned files in text files.

Luigi also offers a web interface available on port 8082. In this interface, the state of the
processes can be checked, as well as the relations between the different tasks. This interface

can be seen in Figure 3.8.

53

CHAPTER 3. SYSTEM ARCHITECTURE

= C @ O D localhost:8082/static/visualiser/index.html#tab=tasks Pkl =

Luigi Task Status = Tasklist DependencyGraph Workers Resources Runnlngl

>
(-] A

DONE TASKS
0

PENDING TASKS
0

RUNNING TASKS
0

BATCH RUNNING ...
0

UPSTREAM FAILURE
0

DISABLED TASKS
0

UPSTREAM DISAB...

0 0

n o B

Show| 10 tri
w v | entries Filter table: Filter on Server (]

Name Details Priority Time Actions

No data available in table

Showing 0 to 0 of 0 entries Previous Next

Figure 3.8: Luigi Interface

3.7 Visualization

Once the analysis of the data is finished, this analysis can be seen in the visualization
module or Dashboard. This Dashboard is composed of Polymer web components which
are graphs in which data can be observed and analyzed in an easy and comfortable way.
Data is shown separately or in an aggregated way, depending on the specific analysis. These
aggregations are provided by the JavaScript ElasticSearch engine and they allow to combine
data or to show several fields at the same time. The Dashboard also provides filters to make
the analysis easier and allowing to search for certain queries.

As stated before, the web components follow the Polymer interface and they are based
on the D3.js or other common JavaScript libraries. The main web page is also a web
component which loads other web components inside it to which it sends the data with new
filters or aggregations so that the entire visualization system changes in real time according
to the actions of the users. The next are every web component used in the visualization

module.

e Number-chart: The number chart is used to see how many posts are retrieved
and how many posts are shown. For instance, if a filter is applied to the data, this
component will show how many posts pass through this filter. Figure 3.9 shows an

example of the number chart.

54

3.7. VISUALIZATION

Reddit posts
298

Total: 56.4k

Figure 3.9: Number Chart Example

e Google-chart: The Google chart is a web component which allows to represent

different graphs such as pie charts, bar graphs, gauges, or simple plot graphs, among

others. In this project, different Google charts have been used. The first one is a pie

chart which is used to observe how many posts are from each source. In addition, a

bar chart has been used to analyze the sentiment distribution over the texts. These

examples can be seen in Figure 3.10.

@ uber

@ r/uberdrivers
® Iyt

@ /lyftdrivers
@ r/uber

@ riLyft

12V

(a) Google Pie Chart Example

@ com.ubercab...
@ com.ubercab...

Number of posts

1,500
1,000

500

0 l

Negative Neutral Positive

(b) Google Bar Chart Example

Figure 3.10: Google Pie Chart and Google Bar Chart Example

Moreover, other Google charts have been used in the visualization module. Specifi-

cally, another bar chart has been used for entity analysis and a plot chart has been

used to see the dates on which the posts were collected. Figure 3.11 shows the latter.

24-05- 25-05- 26-05- 27-05- 28-05- 29-05- 30-05- 31-05-

2021 2021 2021 2021 2021

—— r/uberdrivers = uber —— lyft

2021
—— com.ubercab_en —— r/Lyft —— cabify 13 p

1-06- 2-06- 3-06- 4-06- 5-06- 6-06- 7-06- 8-06-

2021 2021 2021 2021 2021 2021 2021 2021

Figure 3.11: Google Chart for Dates Example

55

CHAPTER 3. SYSTEM ARCHITECTURE

e Radar-chart: The radar chart has been used to show the distribution of the topics
for each collected text. This chart allows to select a topic to see the statistics of texts

that belong to this topic. Figure 3.12 shows this web component.

Application /
Communications / Support
Job conditions Travelling / Cancelations
32 and requests / Taking a car
! GPS and Navigation tools

Inside the car / Riding / Prices / Different
Requests / Safety-related ride-sharing services /
Charges / Tolls / Payments
Time related / Differences ' a Ratings
in the time of the day /
Concrete areas
Delivery service / Tipping / Legal Coverage /
Cash money Employment /

Unemployment

Vehicles / People Social media related /
Racism / Explicit content

Figure 3.12: Radar Chart Example

e Entity-chart: The entity chart is another web component which shows the most
common entities in the analyzed texts. As there are so many entities, for reasons of
visibility on the Dashboard website, only the six entities with the greatest weight in
the texts were included in this component. The contribution of the other entities can

be seen in another Google chart available in the Dashboard.

= Organization * Title ®Person = Nationality ® Place ®Handle

Figure 3.13: Entity Chart Example

e Heatmap-chart: The heatmap chart shows the PLACES_AND_LOCATIONS enti-

ties marking on a map those areas that have been marked as entities.

56

3.7. VISUALIZATION

Weddell

& Leaflet | © OpenStreetMap contributors

Figure 3.14: Heatmap Example

e Posts-chart: The posts chart shows every post from a given source. It also allows
to select them and to observe, in addition to the full text, the analysis that has been
done on that news. Thus, it shows entities, topics, and feelings in a fast and com-
fortable way. It also allows to access the website from which the post was extracted.
Figure 3.15 shows this chart in two images. The first image is the general chart, where
a post can be selected, and the second is the window that opens when clicking on a

post.

o Can | bring bags on standard Uber ride? 5/24/2021

B Reddit posts
é Some of the scents that enter

the car ar [...]

= Nationality ® Location/Place ® Ideology Can | bring bags on standard Uber ride?

é Driver ran over my foot :(

[an i hour | | just have two backpacks and a bag. | ve never taken
é S T S E T Uber, so | m curious if they allow bags. | m assuming
Uber ride? Topics yes. | have to go in an hour so please help lol.
No. It s to keep people from .
é Vehicles / People
getting int [...]
é Love picking up hot guys as Sentiment Analysis
pax on Uber
é My dad gave me an odor Positive (2.500)
eliminator he got [...]

had a pax literally spill bong

(b) Posts chart when clicking on a post

(a) General posts chart

Figure 3.15: Post Chart Example

e Filters-chart: The filters chart consists of a search bar on which the content of the

displayed posts can be filtered by specific words. This filter allows to select as many

57

CHAPTER 3. SYSTEM ARCHITECTURE

words as required, in addition to being able to remove each word one by one following

the desired order.

(a) Filtered words (b) Search bar

Figure 3.16: Filters Chart Example

o8

CHAPTER

Use Case - The Ride-Hailing Domain

4.1 Introduction

The developed system can be applied to several domains in which there is an interest in
analyzing and observing what is happening in social media regarding that domain. One of
the parties interested in this type of system would be companies that want to analyze other
competing companies based on the opinions of their users in social media. The identification
of topics and the way in which users talk in social media can become very useful information
for companies to improve their services and products, to solve problems and to keep their
users satisfied.

A market that can benefit from the use of this system is the Ride-Hailing market. There
are several Ride-Hailing companies, which the most known companies are companies such
as Uber, Didi, or Lyft. Analyzing the market share over the world of these companies!, in
2019 the most important company was Uber, followed by Didi, with a similar market share
between them (both over the 30%). Then companies such as Lyft, Ola, or Cabify appear,
this last with a market share of a 1.46% in 2019.

Moreover, the Ride-Hailing market has been growing each year. This market? was
valued at $36,450.0 million in 2017 and is projected to reach $126,521.2 million by 2025.

"https://www.statista.com/statistics/ 1156066 /leading-ride-hailing-operators-worldwide-by-market-

share/
2https://www.alliedmarketresearch.com /ride-hailing-service-market

99

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

This implies that the Ride-Hailing market is a big market in which companies need to be
competitive with other companies for growing.

On the other hand, Ride-Hailing companies rely heavily on their apps and they are a
fundamental part of their business model, so their users have easy access to social media
where they can share their experiences, complaints or opinions.

The developed system has been designed to collect data from Uber, Lyft, and Cabify
social media-related posts. This decision has been based on the availability of these compa-
nies when retrieving data from social media. For instance, in the case of Didi, such as this is
a Chinese company, the analyzed social media sources did not provide certain information
about this company, and for this reason the Didi analysis is not implemented on the system.
On the other hand, although the decision of analyzing Uber and Lyft posts has been taken
due to the importance of these companies and the availability of their posts on social media,
the Cabify implementation has been decided because of its social media availability and for
the fact that it is a Spanish company, most of whose posts are written in Spanish and it
is interesting to see if the analyses carried out can be extrapolated to companies in other
countries and in other languages. This analysis will be explained in Section 6.

This use case has been centered on Uber, which is one of the most popular Ride-Hailing
platforms around the world. The information has been extracted from Reddit, in which
several subreddits talk about this company in different ways.

The developed system can be a very useful platform for Cabify, as it would allow to
observe in real time the complaints of its users or the opinions about different applications
and thus be able to improve its services to increase the satisfaction of its users. In addition,
it would be able to compare the opinions of its users with those of users of other platforms

to ensure the improvement of its services based on improving those of its competitors.

4.2 Collecting and Inspecting Data

As explained before, different subreddits have been analyzed to extract useful information
with the aim of developing the system. In particular, two subreddits were analyzed: the
r/uber subreddit, created on October 29, 2011 and with about 22,000 members (as of May
2021) and the r/uberdrivers subreddit, created on November 5, 2013 with about 181,000
members. The r/uber subreddit is a more generic subreddit, where riders and drivers tell
their experiences, and the r/uberdrivers subreddit is a more specific subreddit, which focus
on Uber drivers experiences. These are public forums and have not any influence from Uber.

To have as many posts as possible, all texts were extracted from the time of the creation
of the subreddits up to the specific time when they started to be collected. Figure 4.1
shows the amount of posts collected by date. In that figure, it can be appreciated that both

60

4.2. COLLECTING AND INSPECTING DATA

subreddits have been increasing their popularity over time. In addition, there are more

posts in the r/uberdrivers subreddit.

— rjuber

— rluberdriver
25000

20000

VAY,

/

15000

5000

R RN R EEE R R EEEEEEEEEEEERS
R A A R e R R e AU A S R R SR U R R St Sl S S A A S A A g R S
o g P S S L S L L S
AT AT AR AT AT AR AR AR AR AT AR AR AT AR AR AR AR AT AR AR DT AR AT AR AR AR AR AR AR AR AR AR AR AT AR AR AR AT AR AR AR AR AR A

Figure 4.1: r/uber and r/uberdrivers over time

The Pushshift API, with which Reddit data has been collected in this project, also
provides other fields such as the author of the post, its id, and other interesting data.
Moreover, each type of post has different fields depending on whether it is a submission or
a comment.

Unfortunately, almost every field is not complete and has a lot of empty data. Inspecting
the collected data, some of the fields that can give useful information about the data, that
are almost complete and that can be related to the texts are the author field, the score field,
the stickied field or the over-18 field. Almost all other data are incomplete, so they have
not been taken into account. The explanation of every field can be found on the Pushshift
official site3.

The main problem of this limitation of these fields is that they do not provide useful
information since they are are not very relevant. To give an example, Figure 4.2 show the
over_18 and the stickied fields in r/uber and r/uberdrivers.

As it can be seen in Figure 4.2, the percentage of texts targeting users over 18 years
of age of texts marked as stickied is minimal and similar in both subreddits. This fact,
in addition to the fact that most of the data is incomplete, is the reason that only data
related to the textual content of the posts has been used for the analysis in this project.
In addition, as most of the processes that have been carried out are related to Natural
Language Processing, and as one of the objectives is to carry the analysis from some social
media to others using the same type of analysis, other fields such as score have been rejected

to perform these analyses. Even so, many of these fields are shown and can be observed in

3https://pushshift.io/api-parameters/

61

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

Uber over_18 ratio Uberdrivers over_18 ratio Uber stickied ratio Uberdrivers stickied ratio

Over 18 Over 18 Is stickied Is stickied

Not over 18 Not over 18 Is not stickied Is not stickied

(a) The over-18 field in r/uber and r/uberdrivers (b) The stickied field in r/uber and r/uberdrivers

Figure 4.2: Analyzing some fields in r/uber and r/uberdrivers retrieved data

the visualization part of the complete system.
As for the analysis of the texts in this social media platform, some preliminary analy-
ses have been carried out before starting the development. For example, the relationship

between comments and submissions can be seen in Figure 4.3.

Num. Comments / Submission Max. Comments / Submission

400

10

300

200

100
2

0 0

Uber Avg. Uberdrivers Avg. Uber subreddit Uberdrivers subreddit

(a) Comments per Submission in r/uber and r/uber- (b) Maximum number of Comments per Submission

drivers in r/uber and r/uberdrivers

Figure 4.3: Relationship between comments and submissions in r/uber and r/uberdrivers

As it can be seen, the average number of comments per submission is similar in both
subreddits, but slightly higher in r/uberdrivers, indicating more activity in this subreddit.
In addition, the maximum number of comments per submission is similar in both subreddits
too.

Another easy and useful analysis is to see what are the most common words in both
subreddits. Figure 4.4 and Figure 4.5 show these most common words for each subreddit,
where it can be appreciated that the most frequent words in both subreddits are similar.

3

It should be noted that some contractions such as “n’t” or “’ve” have been removed from

62

4.2. COLLECTING AND INSPECTING DATA

these graphs to better appreciate the most common words.

100000

Bo000

60000

40000

Number of appearances

20000

)

WoeT el et uerSike Lould nde yme caf e0PIB0NS oW TP 3PP akeouel waY Q0 aKe yar goindynink ot pack quid 51S0 uSE Grve see qavel

Most common words

Figure 4.4: Most common words in r/uber

300000

250000

200000

150000

100000

Number of appearances

50000

et gt e “ou\%ﬂ,,eﬁ @' ‘\m"ggod-ﬁé‘-\ue‘ of® (08 ¥ el e of 6‘*“"“9"‘9“ ot oot qo\nﬁ\‘(m* W) 0¥ (8 otk §°o° W e a\s"mg‘\“‘

Most common words

Figure 4.5: Most common words in r/uberdrivers

In both subreddits, the most common word is uber, followed by some common English
words such as get, like or would. Moreover, words such as driver/s, time, people or car have a
huge relevance. It can be seen that in r/uber the word app seems to be most important than
in r/uberdrivers, although in this subreddit is important too. In r/uberdrivers, in contrast
to r/uber, words such as pax or money appear, which indicates that in r/uberdrivers more

posts about working conditions or the day-to-day life of the drivers are published.

63

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

This first glance at the data indicates a clear similarity in terms of content in both
subreddits, although perhaps the topics they talk about are quite different due to the type
of users that use these forums. In addition, it can be seen that the metadata associated with
each post does not provide much information, so the analysis and the system developed will

be based exclusively on the textual data of the posts.

4.3 Topic Modeling

Before starting to train the first models, each collected text is passed through the Cleaning
Process explained in Section 3.2.2. This process already rejects some texts, such as empty
texts (which may have been removed by the moderators of the subreddit) or texts written

in another language, among other cases.

Once the texts are cleaned, the first analysis performed on the texts is Topic Modeling.
As stated in Section 2.3.1, a LDA model is trained to extract topics from the corpus. Before
training, the preprocessing pipeline explained in Section 3.4.1 is applied to the corpus. This

preprocessing pipeline changes from one model to another to try to improve the models.

The performance of the models, as explained before, has been analyzed using mainly the
Coherence Score and the visualization of the topics using the pyLDAvis tool. Every model
was iterated over around 50 topics (in particular, from 2 to 49 topics) and the model with a
number of topics with a higher Coherence Score is taken as the best model. Then, the model
is plotted and the distribution of the topics in a two-dimensional plane is analyzed. Thus,
mistakes and possible improvements can be taken into account in the next training process,

where we attempt to improve the model until we arrive at a coherent and analyzable model.

The first model approach, the baseline model, was trained following a first approach
of the final preprocessing pipeline. Some interesting facts about this model is that it was
trained without stemming, removing only modal verbs, forming bigrams with the criterion of
appearing a minimum of 20 times in the whole corpus, and without using the filter_extremes
function when creating the dictionary. The maximum Coherence Score of this model was
around 66.17% and the variation of this metric around the number of topics can be seen in
Figure 4.6.

As it can be seen in Figure 4.6, the maximum values are obtained for topics between 11
and 15, being 11 topics the more coherent value. As explained before, to improve the model,
topics are plotted with the pyLDAvis tool. The representation of the topics relationship

can be appreciated in Figure 4.7.

64

4.3. TOPIC MODELING

Coherence Score / Number of Topics (Ride-Hailing Domain)
Baseline model

0734
0724
0.714
0.70 4
0.69

< 0681

U'oe7

5 0.66

o 0.65 1

& 0641

@ 0.634

(=]

C 0.62

5 0611

£ 0.604

O 0591
0.58 1
0.57 4
0.56 4
0.55 1
0.54 4
0.53 4

23456 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849
Topics

Figure 4.6: Baseline Model - Coherence Score through the Ride-Hailing domain

1 rate

Figure 4.7: Ride-Hailing domain LDA baseline model - Visualization

As it can be seen, almost every topic shares words with other topics. This fact implies
that most of them are not independent from each other, and they can be talking about
the same thing although the model may identify them as different topics. The aim of the
optimization of the LDA model is to achieve the maximum possible independence between
these topics. This optimization has been reached refining the process once each model has

been trained and analyzed.

Several ideas have been applied to optimize models, such as adding new processes (e.g.,

65

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

the stemming process), improving the cleaning rules, modifying the parameters of some
processes (the minimum number of occurrences when doing bigrams or creating the dic-
tionary, among others) and more. One of the most important ideas that has contributed
the most to the optimization of the process has been the creation of word bags at the end
of certain processes composed of tokens which will be rejected. These words are included
based on the POS-Tagging (modal verbs, pronouns without meaning, common verbs with
no special meaning, and more) but mainly in the observation: the least common and rarest
words that do not provide much information have been observed, both based on the POS
and directly observing the topics with the pyLDAvis tool. This tool, in addition to allowing
to see the distribution of topics, provides functionalities to select specific words and, thus,
it shows the distribution of this word through topics. If a word is common in most topics,
it can be deleted or processed in another way to reach the independence between topics.

Figure 4.8 shows an example of the weight of the word “uber” in the baseline model.

tip

car

ride

driver

3 uber

trip

10 rating
surge

app

minute

hour

insurance

night

people

year

5 mile
6 phone

1 pay

4 star

pax

money

shit

1 rate
lol

fuck

7 fare

support

use

job

Figure 4.8: pyLDAvis word selection example

As shown in Figure 4.8, when selecting a token in the right panel, the bubbles repre-
senting each topic become bigger or smaller depending on the weight of that token in the
topic. Thus, it can be appreciated that this word is present in almost every topic, and,
consequently the model will identify this word in a wrong way. Therefore, this kind of
words must be deleted or processed again to optimize the model.

Following this approach, 12 different preprocessing pipelines were applied to the corpus
before training until one was found that the LDA models trained on this corpus identified
the topics in the best possible way. It is important to note that the objective is not to find
a model with a coherence result of 100%, but to find the one that best identifies the topics,

based on the aforementioned Coherence Score - Number of topics - Human observation

66

4.3. TOPIC MODELING

commitment.

The results of the analysis of the Coherence Score for each trained model are shown in
Figure 4.9.

Coherence Score / Number of Topics (Ride-Hailing Domain)

w= LDA_baselne
m— | DA2

2345 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849
Topics

Figure 4.9: Coherence Score through the Ride-Hailing domain

It can be seen that the best model in terms of coherence is the one corresponding to
preprocessing LDA12, which is the most elaborate preprocessing pipeline and which was
reached after the analysis and observation of the rest of the developed models. This model
has a coherence value of 72.21% when the model is trained searching for 8 topics, which
implies an improvement of about 6% over the initial model.

Figure 4.9 shows that this pipeline is the best throughout the search for the different
sets of topics, as well as being the one that achieves the highest coherence. As the hyperpa-
rameters o and 8 have not been changed, the next process is to try to improve the training
process as much as possible. This optimization has been done using a brute-force search.

As this kind of search is costly both in terms of execution time and resources, only a
few models were chosen for optimization. This choice was based on both Coherence Score
and Perplexity values, which can be seen in Figure 4.10.

As can be seen in the Perplexity figure, for all preprocessing pipelines, the graph de-
creases steadily from topic 12 or 13 in all cases. This means that the model does not learn
too much from that number of topics. Even so, the Coherence Score graph shows that the

values do not start to decrease steadily until topic 18. Therefore, to reduce the computa-

67

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

-8

-104

Perplexity

tional load, it was decided to optimize the 4 best models within that range (from 2 to 18
topics). These models are the ones with 7, 8, 11, and 18 topics, with coherence values of
72.10%, 72.21%, 70.71% and 70.49%, respectively. Then different training processes were
carried out, iterating over o (with possible values of 0.01, 0.31, 0.61, 0.91, “asymmetric”

and “symmetric”) and (with possible values of 0.01, 0.31, 0.61, 0.91 and “symmetric”).

The results of this optimization were analyzed in two ways: with Coherence Score and

observation. The obtained coherence values and the visualization of the best models for

Perplexity / Number of Topics (Ride-Hailing Domain)

-11

—— LDA_baselne
= LDA2
= LDA3
—— LDA4
—— LDAS
LDAS
— LDA7
—— LDAB
—— LDAY
LDAlOD

— LDAl1l
N~ LDA12

T \\

Topics

Figure 4.10: Perplexity through the Ride-Hailing Domain

each set of topics are shown in Table 4.1, Figure 4.11 and Figure 4.12.

68

Topics C.v «@ Ié]
7 72.41% | asymmetric | 0.31
8 72.82% 0.31 0.9
11 72.70% 0.9 0.31
18 71.13% 0.9 0.61

Table 4.1: Optimizing LDA Hyperparameters (Ride-Hailing Domain)

4.3. TOPIC MODELING

Optimizing LDA Hyperparameters (Ride-Hailing Domain)

0.730

0725

0720

IEI.?lS

0.710

0705

Coherence Score (C_v)

0.700

0.695

0.690

w— Tupics = 7
mm— Topics = &
= Topics = 11
w— Topics = 18

Figure 4.11

3
Margina topic distribution
™

5%
10%

(a) Optimal 7 Topics

Y
5%
10%

(c) Optimal 11 Topics

15
Steps

20

: Optimizing LDA Hyperparameters (Ride-H

............. ion
™

5%
10%

(b) Opt

uuuuuuuuuuuu ion
™

5%
10%

(d) Opti

30

ailing Domain)

imal 8 Topics

mal 18 Topics

Figure 4.12: Visualization of the best models in the Ride-Hailing domain

69

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

Regarding the obtained coherence values in Table 4.1 and Figure 4.11, the bests models
seem to be the models with 8, 11, and 7 topics, in this order. On the other hand, the
model with 18 topics is by far the worst of all, as was already evident from the Perplexity
and Coherence Score graphs. However, it is necessary to see what these topics are like and
how many of them are related before being able to choose the best model, since the best
coherence values are very similar to each other.

Figure 4.12 shows the distribution of each model with the best hyperparameter combi-
nation in coherence terms. As it can be seen, the 7 topics model and the 11 topics model
have only two topics related between them and the others seem to be independent. On the
other hand, the 8 topics model and the 18 topics model have more than one topic related to
others. Moreover, at a glance, it can be seen that the 18 topics model is the worst model.

As the selection of the model is based on the Coherence Score - Number of topics -
Human observation commitment, the selected LDA model for this domain is the 11 topics
model. This choice is due to the fact that it has the second highest coherence value, 72.70%,
only 0.12 away from the best, it has only two topics related, the distribution on the plane
is very good and it has as many topics as possible with a good distribution between them.

Once the LDA final model is selected, it is necessary to identify the topics because this
algorithm does not name topics and it only calculates the weight of the words for each topic
and finds an optimal distribution for them. To perform this task, the words that have more
weight in each topic and those words that only appear in that topic were analyzed. It is
important to analyze both groups of words since they do not necessarily have to be the same
words and sometimes one group gives more information than the other. It is also important
to know that the word groups extracted by LDA are preprocessed and therefore do not
show their natural form since, among others, the processes of lemmatization, stemming or
the creation of bigrams vary the representation of the tokens. For this reason, the name
assignation process is not an easy process and the words shown below have been inferred
from the extracted words.

After analysis, it has been decided to name the 11 extracted topics in this way:

e Topic 1 - Inside the car / Riding / Requests / Safety-related: Conversations,
situations occurring inside a car. Important words: talk, accept, request, ride, pool,

music, conversation, safe.

e Topic 2 - Vehicles / People: Situations that occur with specific people, such as
situations with drunk people, the police or drugs. The characteristics of the car, such
as cleanliness or any other characteristic of the vehicle, also fall under this topic.

Important words: car, seat, clean, water, door, man, girl, drunk.

70

4.3. TOPIC MODELING

Topic 3 - Delivery service / Tipping / Cash money: Topic related to food
home delivery, courier or parcel shipping. It also includes the tipping topic. Important

words: ubereats, restaurant, food, cash, delivery, order, eat, tip.

Topic 4 - Time-related / Differences in the time of the day / Concrete
areas: Time-related topic. Situations that occur during the day, night, a particular
day, the weekend, a particular time of day, ... It also includes situations in concrete
places, cities, and more. Important words: hour, day, morning, weekend, drove, today,

start.

Topic 5 - Prices / Different ride-sharing services / Charges / Tolls / Pay-
ments: Topic related to pricing and also to competing companies. Important words:

lyft, market, taxi, price, fare, uberx, cab.

Topic 6 - Travelling / Cancelations / Taking a car / GPS and Navigation
Tools: Related to the trips, the type of trip, its duration, if a driver was late or took
a long time, if he took you on a long trip or on the contrary took a short time, if he
arrived on time, ... Important words: cancel, trip, traffic, waiting, destination, pickup,

location.

Topic 7 - Social media related / Racism / Explicit content: Related to the
language used in social media. Important words: post, lol, shit, troll, sub, comment,

idiot.

Topic 8 - Job conditions: Working conditions, such as how much the company pays,
how much money is earned, how much is paid per kilometer, and more. Important

words: money, tazx, gas, maintenance, income, wage, mileage.

Topic 9 - Legal Coverage / Employment / Unemployment: Legal issues,
such as robberies, kidnappings, murders, racist issues, questions about laws in certain
places, accidents, ... It also includes employment-related texts. Important words:

insurance, state, law, employee, legal, claim, worker.

Topic 10 - Ratings: Driver, application or general scores. Important words: driver,

rate, star, experience, reason, system, matter.

Topic 11 - Application / Communications / Support: Related to the perfor-
mance of the app, of the phone... A technological topic (beta versions, new versions,
if something fails in the app, if something else fails because of the app, battery con-
sumption, ...). Important words: app, phone, support, report, account, information,

update.

71

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

4.4 Validation Process, Sentiment Analysis and NER extraction

Once the LDA model is finally generated, it can be used in two tasks: the Validation Process
and the Classification Process. The first one, as related in Section 3.2.3, uses a lexicon which
is directly extracted from the most common words that define a topic, in addition to other
processes discussed above. This process will allow to analyze only those texts which are
related to the topics and to reject those texts which do not add information or are not

talking about the extracted topics.

The results of the Validation Process over this domain is shown in Table 4.2.

Uber Reddit Data Breakdown
Subreddit Endpoint Text Type | Scraped Texts | Rejected Texts | Rejected Texts (%)
Comments Body 203,825 23,358 11.460
Body 22,850 10,932 47.607
r/uber Submissions
Title 22,963 2,464 10.730
Total - 249,638 36,754 12.833
Comments Body 877,013 102,575 11.700
Body 67,753 29,313 43.072
r/uberdrivers | Submissions
Title 68,056 8,185 12.027
Total - 1,012,822 140,073 13.830
1,262,460 176,827 14.007

Table 4.2: Analyzing Uber-Related Reddit Data

In relation to rejected texts, it can be seen that the different types of text have similar
relationships between the two subreddits. It highlights that comments and titles do not
reject so many texts, but submission texts are rejected much more frequently, reaching a
rejection rate of over 43% in both subreddits. This is due to there are so many submissions

which contain videos or multimedia content and also contain information only in their titles.

The validated texts amount to 1,085,633 texts, containing short and long texts, which
is fundamental in the LDA training phase and, above all, for extrapolating this information

to other media, as will be explained in Section 6.

To analyze the opinion of the users of these subreddits, texts have been passed through
the Sentiment Analysis and NER extraction Process. The results of this analysis are shown

in Figure 4.13.

72

4.4. VALIDATION PROCESS, SENTIMENT ANALYSIS AND NER EXTRACTION

o
w
&

o
w
o

Sentiments weight
o

Negative Neutral Positive
Sentiments

Figure 4.13: Sentiments distribution in r/uber and r/uberdrivers

As the Stanford CoreNLP annotates each sentence with a sentiment (with a value be-
tween 0 and 4), the sentiment analysis of the texts has been measured averaging the senti-
ment values of every sentence of each text. Thus, Table 4.3 shows how this average measure

has been taken into account in this project.

Averaged value | Sentiment

<2 Negative
2 Neutral
>2 Positive

Table 4.3: Averaged sentiment values

The sentiment analysis over the Reddit texts shows a clear negative distribution, ac-
counting for 51.680% of the total number of texts. Positive texts are the least frequent
(13.720%) and are surpassed by texts labeled as neutral (34.600%), which do not show a
specific sentiment and talk about general topics. The next step can be to analyze which kind

of posts have a larger contribution to a specific sentiment value, as shown in Figure 4.14.

73

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

0.70 s Negative Sentiments
i Neutral Sentiments
W Positive Sentiments

. 0.55
050
Woas
H

o 0.40
€ 035
<o
£ 0.30
T 025
@

wn 0.20

ons nts

issions ents e
wers submis rJuber comm drivers comm

itles ritles issi
uper t civers ubmis’
tl rjuberd rJuber S Juber

rluberd

Sentiments

Figure 4.14: Sentiments distribution in r/uber and r/uberdrivers by text type

In the figure above, the analysis shows that titles are mainly neutral posts, rising to
values of around 70% in both subreddits. Moreover, in both submission texts and comments,
the negative texts are the ones that appear most often, followed by neutral texts. One of
the most important results is that that positive texts are in the minority in all text types.
In addition, sentiments distribution follows the same pattern in both subreddits, as can be

seen also in Figure 4.15.

0.551 e Negative Sentiments

0 Neutral Sentiments
W Positive Sentiments

0.50+
0.451
=
= 0.40
Q
0.351
2
¥ 0.301
@
0.251
£
E 0.20
) 0.154
0.10
0.05 -

0.00- -
r/luber r/uberdrivers

Sentiments

Figure 4.15: Sentiments distribution in r/uber and r/uberdrivers by subreddit

Figure 4.14 and Figure 4.15 show that, although both subreddits have similar sentiment

values, the r/uber subreddit has a higher percentage of negative texts and fewer positive

74

4.4. VALIDATION PROCESS, SENTIMENT ANALYSIS AND NER EXTRACTION

texts, indicating that posts on this subreddit are more negative (all types) than on r/u-
berdrivers. This could indicate that, being a more generic subreddit, users write more

complaints than in r/uberdrivers.

On the other hand, entities that appear in some texts have also been annotated in the
texts. To reduce the number of tags and to be able to analyze them better, some of them
have been eliminated and others have been merged into one. For instance, URL and EMAIL
have been removed because in the Cleaning Process almost every URL and text strings such
as emails are removed from texts. In addition, COUNTRY, STATE_OR_PROVINCE, CITY
and LOCATION have been merged into a tag called LOCATIONS_AND_PLACES. Also
NUMBER and ORDINAL have been merged into NUMBERS. The distribution of these

entities is shown in Figure 4.16.

20.0%

rluber
rluberdrivers

15.0%

Tags weight
s
2

5.0%

0.0%

Figure 4.16: NER tags distribution in r/uber and r/uberdrivers

It can be appreciated that both subreddits have similar weights in every tag excepting
the TITLE entity. This entity comes out more in r/uber as one of the words that usually
identifies as this entity is “driver” (the tag TITLFE represents job or study positions, such as
driver, student, CEO and more). The most common entity in both subreddits is NUMBERS,
followed by DURATION, DATE, MONEY and ORGANIZATION, which is more common

in r/uber.

To analyze more this data, Figure 4.17 shows these results by subreddit and post type.

75

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

BN NATIONALTY

s RELIGION
rjuberdrivers comments . TITLE
W IDEOLOGY

CRIMINAL CHARGE
W CAUSE_OF_DEATH
SET

rfuberdrivers submission texts N PERSON
MONEY

. ORGANIZATION
HANDLE

. DATE
rfubardrivers tit'e DURATION
W PERCENT

TIME

. MISC

LOCATIONS AND PLACES

riuber comments NUMSERS
e s -- . | |
e - - - I |I

0% 10% 20% 30% 40% 50% B0% 70% a0% 90% 100%
Tags waight {%]

Figure 4.17: NER tags distribution in r/uber and r/uberdrivers by subreddit

According to these data, the entities weights are similar between the same post types
even if they are from different subreddits. In titles, it highlights that ORGANIZATION en-
tities are dominants. Then, in r/uberdrivers titles DATE and LOCATIONS-AND_PLACES
are very representative, while in r/uber titles TITLE and MONEY are more important.
Submission texts are similar in both subreddits. The most important tags are DATE, NUM-
BERS, DURATION and MONEY, with similar contributions in both subreddits. Finally,
comments are similar too and the most important entities in both subreddits are NUMBERS
and DURATION.

In conclusion, it seems that both subreddits are similar and different text types are sim-
ilar between them too. It highlights that in r/uber, the TITLE entity appears with a high
frequency. This is because in this subreddits users talk about drivers while talking about

their travel experiences. In addition, there are several entities with lower contributions.

4.5 Classification Model

As the developed system is intended to operate in real time, new unseen data will be col-
lected every day. This new data should be classified into the different topics that have been
extracted. For this purpose, by making use of the Machine Learning techniques explained in
Section 3.4, several classifiers have been built to achieve this objective in the most efficient
way possible.

The algorithms were fed with features extracted from the text information of each post.
This feature extraction was carried out in different ways, with the aim of obtaining the best

possible scores. As related in Section 3.4.2, the final models were trained choosing Tf-idf

76

4.5. CLASSIFICATION MODEL

and Word Embeddings features, extracted in two different ways using the FastText and the
Word2Vec approaches.

To improve the models as much as possible, different feature representations have been
done. In particular, Word2Vec and FastText models have been generated expecting vectors
of 100, 300, and 500 dimensions. These models must be trained with as much data as
possible.

As the objective of this project is to receive data from several sources and to be able
to analyze them jointly, these models have been trained on data collected from other social
media. Specifically, texts from Twitter and Google Play related to the Ride-Hailing domain
have been added. For this use case, we are simply going to explain the performance of
the embeddings trained on this set of texts in terms of Reddit text classification. The
application of the proposed architecture to different data sources is explained in Section 6
(Transfer Learning).

The collected texts for training the embeddings models and their source is shown in
Table 4.4.

Word Embeddings Data Collection
Social Media Source Data Source Language | Scraped Texts
r/uber English 249,638
r/uberdrivers English 1,012,822
Reddit r/Lyft English 267,235
r/lyftdrivers English 373,904
Total Posts - 1,903,599
Uber English 6,223,730
Lyft English 1,699,520
Twitter
Cabify Spanish 325,546
Total Tweets - 8,248,796
com.ubercab English 970,778
com.ubercab Spanish 551,415
com.ubercab.driver English 264,010
com.ubercab.driver Spanish 121,297
Google Play me.lyft.android English 74,342
com.lyft.android.driver English 27,139
com.cabify.rider Spanish 57,882
com.cabify.driver Spanish 21,039
Total Reviews - 2,087,902
12,240,297

Table 4.4: Multi-Platform Collected Data

7

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

As it can be seen, different data sources have been collected within their respective
social media sources. Firstly, in addition to the Uber related subreddits (r/uber and r/u-
berdrivers), which are the main analyzed data in this use case, data has been collected from
two subreddits of the Lyft company, r/Lyft and r/lyftdrivers, which are analogous to those
collected from Uber. As for Twitter, tweets discussing Uber, Lyft, and Cabify have been
collected. The latter have been collected in Spanish since Cabify is a Spanish company.
The parameters specified for the collection of tweets are based on hashtags and usernames,

as shown in the following list.
e Uber search keywords: #uber, Quber and @uber_support.

o Lyft search keywords: #lyft, Qlyft and @Qasklyft.

e Cabify search keywords: #cabify and @cabify_espana.

Lastly, some reviews of different Ride-Hailing applications for both riders and drivers
have been collected too. Moreover, some of them are written in Spanish, such as the Cabify
and Uber applications. Before training the models, these texts must be translated using
the MarianMT transformer.

Figure 4.18 shows more information about the collected data, in particular, the dates in
which each retrieved post was posted. As it can be seen, data is mainly retrieved between
2014 and 2020 and has a more or less regular variation over time. This figure can be seen

in detail in the Appendix A.

120000
lyft rider google
lyft_driver_google
100000 uber_rider_en_google

uber_driver_en_google
cabify rider google
cabify _driver_google
uber_rider_es_google
uber_driver_es_google
uber twitter
lyft_twitter
cabify_twitter
uber_reddit
uberdrivers_reddit
lyft_reddit
lyftdrivers_reddit

80000

60000

40000 1

Number of retrieved posts

20000

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Data collection date

Figure 4.18: Total data retrieved per date

78

4.5. CLASSIFICATION MODEL

Once texts are collected and cleaned (every text has been passed through the Cleaning
Process before training), the different versions of the Word Embeddings models are trained.
To see the performance and get a first impression of the models, the 30 more similar words
of the 10 most representative words of each topic are obtained for every model. The repre-
sentation of these words in a two-dimensional space is achieved plotting a PCA (Principal
Component Analysis) representation, which reduces multidimensional variables into a two
or three dimensional space for observation tasks.

The representations of the Word2Vec and the FastText 100-dimensional models are
shown in Figure 4.19 and Figure 4.20, respectively. The representations of the other models

can be found in Appendix A, as well as the lexicon used for these representations.

FastText 100 ¢imension

,5 T

;ﬂ s * .
J o.:.gc" > P)i o

) -~ ¥ al:} -~

L o e g BT

.: Oﬁ' & - :‘. *

. ",,,3.. .

Figure 4.19: FastText 100-dimensional model PCA representation

Word2Vec 100 dimension

Figure 4.20: Word2Vec 100-dimensional model PCA representation

79

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

In the figures above, each color represents each topic, and each point is one of the 30
most similar words for each of the 10 most representative words of each topic. It can be
seen that, in both models, the most similar words for each word are very close to the others
belonging to the same topic and they form clusters, so it can be deduced that the words
of each topic are distributed in the space in an orderly manner according to the topic to
which they belong..

It is important to appreciate that, in the FastText model, the represented clusters are
smaller and more concentrated than in the case of the Word2Vec model. This may mean
that the Word2Vec model has more similarity between its different words and words are
more scattered, although the clusters for each topic are perfectly visible. Even so, it is
not possible to say at a glance which model is better, since the figures above represent the
projection of 100-dimensional matrices onto only 2. Therefore, both models and others with
a higher number of dimensions will be used in the classification process and compared.

As explained before, the Word Embeddings features were modeled with the arithmetic
mean function of the embeddings of each word of a document and with SIMON. The SIMON
approach needs a domain lexicon with the aim of relating document vectors to the specific
words of the lexicon. As the classification task intends to classify documents into their
respective topics, the lexicon must be composed by the most related words for each topic.
These words were extracted based on their weight on each topic, easily accessible through
the Gensim API and through the visualization of the LDA model, setting the A parameter
to lower values.

The main problem was that the more words were introduced into the lexicon, the higher
the rate of increase of the classification performance. It is important to say that these words
were words with essential weights in the topics, so that the performance continued to rise
as more words were added.

SIMON adds a feature for each word in the lexicon. The value of this feature in each
document will be the similarity of this word with the document. This implies that the more
words in the lexicon, the more dimensions the training matrix will have. Having very large
arrays in both dimensions implies high computational requirements. This means that the
application of SIMON for this particular type of classification becomes unfeasible because
of the enormous number of features that must be added to achieve valid results.

Table 4.5 shows the obtained results from the application of SIMON, depending on the
number of words. The Word Embeddings model chosen for these tests was generated using
the Word2Vec version, as well as the classification algorithm was the Logistic Regression.
It should be noted that no further results are shown because from the last one shown in the
table, the computational capacity and execution time of the algorithms became so enormous

that it was practically impossible to make progress in this regard.

80

4.5. CLASSIFICATION MODEL

Lexicon size | Accuracy | Precision | Recall | F-Score
110 58.762 60.636 58.762 59.315
330 64.675 66.267 64.675 65.172
‘Word2Vec 100 dim
573 66.318 67.849 66.318 66.773
747 66.858 68.413 66.858 | 67.319

Table 4.5: SIMON results

As it can be seen, the performance of the classification task using SIMON increases with
the lexicon size. It can also be seen that the more the number of words in the lexicon, the
slower the performance grows. It could be possible to achieve better results if the lexicon
was bigger, but this implies a very large computational effort, so the use of SIMON has
been rejected as a feature extractor.

Thus, the averaged vectors and the n-grams extraction have been used as feature extrac-
tors. These features have been used with two different algorithms, the Logistic Regression
and a Gradient Boosting algorithm. Different generated models were trained using a K-fold
cross-validation approach, in which models were trained on 50,000 texts for each of the 11
topics. The validation set was composed by the rest of the texts.

The number of folds in each of the training processes varied, as well as the type of
optimization. All models generated with Logistic Regression used 10 folds and a Grid
Search process for optimization, except for the Tf-idf based model, which used 5 folds and
the Halving Grid Search process due to its high computational load.

On the other hand, only the 100-dimensional models were optimized in the Gradient
Boosting approach because of their extremely high computational cost. These models were
tried to be optimized in different ways, concluding that the most efficient in terms of time
and capacity was to use a genetic algorithm. To ensure convergence of the algorithm or
at least completion at better optimized values, a population of 20 individuals containing
different optimization parameters was used. These individuals mutated their parameters
over 10 generations concluding with the calculation of the fitness function, which in this
case was the calculation of the F-Score, for each individual. The results of this process can
be seen in Appendix A.

When the same method was tested for models with 300 or 500 dimensions, the pro-
cess was extremely time consuming and totally unfeasible. Therefore, models with more
dimensions were calculated using the parameters extracted from the optimization of the
100-dimensional models. This process was also adjusted for the calculation of the Tf-idf
model. In addition, the results of the Gradient Boosting models have been achieved using

5 folds in the training phase.

81

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

The results of the generated models applied to the r/uber and r/uberdrivers data are
shown in Table 4.6 and Table 4.7.

Accuracy | Precision | Recall | F-Score

Word2Vec 100 dim 73.229 74.500 73.229 73.627
Word2Vec 300 dim 77.415 78.399 77.415 77.699
Word2Vec 500 dim 79.462 80.322 79.462 79.704
FastText 100 dim 71.791 73.068 71.791 72.190
FastText 300 dim 75.884 76.966 75.884 76.199
FastText 500 dim 78.192 79.092 78.192 78.444
Bigrams - Tf-idf 89.719 89.744 89.719 89.651

Table 4.6: Logistic Regression Results in the Ride-Hailing Domain

Accuracy | Precision | Recall | F-Score

‘Word2Vec 100 dim 75.522 76.431 75.522 75.807
Word2Vec 300 dim 77.670 78.496 77.670 77.917
‘Word2Vec 500 dim 78.347 79.167 78.347 | 78.610
FastText 100 dim 73.891 74.870 73.891 74.205
FastText 300 dim 75.700 76.604 75.700 75.983
FastText 500 dim 76.484 77.378 76.484 76.757
Bigrams - Tf-idf 75.119 76.159 75.119 75.316

Table 4.7: Gradient Boosting Results in the Ride-Hailing Domain

Firstly, one of the most important results is that, for the same number of dimensions,
the FastText approaches are always worse than Word2Vec approaches. In addition, it can
be appreciated the effects of the hyperparameter optimization. This effect implies that, in
the models with 100 dimensions, the Gradient Boosting versions are superior to the Logistic
Regression ones, while in the models with more dimensions, these models lower the score,
being surpassed in some cases by the Logistic Regression models. In addition, the same is
true in both Tf-idf approaches. However, just because they were not optimized does not
mean that the results are bad. If it had been possible, it would have been impossible to
reproduce these models because the computational time and capacity needed to train a
model is an important factor and a direct cause of rejection prior to training, although in
this case we wanted to show its consequences.

As for the best model, Logistic Regression with the Tf-idf representation stands out
above all others. This result was to be expected, since LDA is based on words and their
weights in the different documents that make up the corpus, without taking into account

the semantic relationship between the different words. Still, the second model is logistic

82

4.6. RESULTS

regression with the 100-dimension Word2Vec representation. The latter achieves an F-Score
above 78%, which is a quite acceptable result. In any case, it would be necessary to see the
result of the application of these models with different texts coming from other sources or
that had not been used for the generation of the LDA model. All this will be discussed and

analyzed in Section 6.

4.6 Results

Once the classification procedure is done and implemented, the data can be labeled with
the topic to which they belong. In this use case, the Logistic Regression with the Tf-idf
representation has been used to model the data and the results shown here have been
extracted from the predictions of this model.

Firstly, the distribution of topics in both subreddits can be analyzed. Figure 4.21 shows

this distribution for the case of r/uber.

30.0% 1w Submssions

. Titles
e Comments

25.0%

20.0%

15.0%

Weight (%)

10.0%

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic & Topic9 Topcl0 Topic 11

Figure 4.21: Prediction of topics in r/uber

The first thing that stands out is the bar corresponding to the submissions that belong
to Topic 11, Application / Communications / Support, which clearly stands out above the
rest. Moreover, the topic with the highest proportion of titles and comments is Topic 11.
For this, it can be said that in r/uber, which is a general-purpose subreddit, the most
discussed topic is Topic 11.

In r/uber, the rest of the topics are discussed in similar proportions. The least discussed
topics are topic 7, Job conditions and topic 8, Legal coverage / Employment / Unemploy-
ment, although the first one is more represented in the comments.

On the other hand, Figure 4.22 shows the results of the same analysis on r/uberdrivers.

83

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

W Submissions
. Titles
N Comments

17.5%

15.0%

12.5%

Weight [%]
=
=]
Ed

~
w
3

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic & Topic 7 Topic 8 Topic®@ TopclO0 Topicll

Figure 4.22: Prediction of topics in r/uberdrivers

Firstly, Figure 4.22 shows that Topic 11 has also a high representation on this subreddit,
but not as much as in r/uber. It can be appreciated that Topic 4, Time-related / Differences
in the time of the day / Concrete areas, has also a high representation. The rest of the topics
are discussed in a similar way, except for Topic 6, Travelling / Cancellations / Taking a
car / GPS and Navigation Tools, which in the case of submissions has quite a lot of weight.
These topics are more related to the job of drivers, and it is a result in keeping with the
fact that r/uberdrivers is a subreddit more focused on Uber drivers.

With the aim of comparing both subreddits more accurately, Figure 4.23 shows both

subreddits topic representations.

30.0%1 mem Uber Submissions

mm Uberdrivers Submissions
e Uber Titles

25.0%{ EEE Uberdrivers Titles

s Uber Comments

Bl Uberdrivers Comments

20.0%

15.0%

Weight (%)

10.0%

5.0%

0.0%

Topic 1 Topic 2 Topic 3 Topic 4 Tapic 5 Topic 6 Topc 7 Topic 8 Topic9 Topic 10 Topic 11

Figure 4.23: Comparison in predictions between r/ubers and r/uberdrivers

The above figure shows that, for each topic, for all text types (titles, submissions, and

84

4.6. RESULTS

comments), the ratio between r/uber and r/uberdrivers is the same. That is, in virtually
all topics, if one text type is superior in a subreddit, all text types are superior in that
subreddit. This is, the predominant topics in r/uber are Topic 1, Topic 3, Topic 5, Topic
10, and Topic 11, which are strongly related to prices, money, and the app, this last one
having an extremely importance in this subreddit. On the other hand, the predominant
topics in r/uberdrivers are Topic 2, Topic 4, Topic 6, Topic 7, Topic 8, and Topic 9, which are
more related with job conditions, legal terms or time-related situations. The latter comes
from Topic 4, which, as it can be appreciated, carries a lot of weight in this subreddit. In
addition, it seems that social media-related language is most used in r/uberdrivers because
Topic 7 has more weight in this subreddit.

These results show that r/uberdrivers talks much more about issues that concern drivers,
while r/uber talks more about situations or complaints from riders. Finally, Figure 4.24
shows in an aggregated way which are the most common topics in these subreddits. It can
be seen that Topic 11, Topic 7, and Topic 6 are the most common topics, while Topic 1 and

Topic 5 are the least.

120000

110000

100000

90000

B00D0OD

70000

60000

50000
Tapic 1 Topic 2 Topic 3 Topic 4 Topic 5 Tapic 6 Topic 7 Tapic 8 Topic 9 Topic 10 Topic 11

Figure 4.24: Aggregated topic prediction in Reddit

As for entity extraction, Figure 4.25 and Figure 4.26 show the relationship between
topics and entities depending on the subreddit. The results are very similar between both
subreddits as well as being closely related to the topics. Thus, in Topic 5 and Topic 8, which
are related with prices and job conditions, the predominant entity is MONEY. Also Topic
3, which includes tipping-related texts, has a lot of MONEY entities. Another important
observation is that in Topic 4, related to time, entities related to time stand out, such as
DURATION and DATE.

On the other hand, it can be appreciated that many more TITLE entities appear in the

85

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

r/uber subreddit. This is because this subreddit talks more about situations with drivers,
while in r/uberdrivers are these drivers who talk about situations. Also, it can be seen that,
in both subreddits, the NUMBERS, DURATION and DATE are the main entities in both
subreddits. For more information about the NER analysis, some figures showing NER for

each kind of text in each subreddit are available in Appendix A.

BN ORGANIZATION
 MISC
N NATIONALITY
W IDEDLOGY
Topic 11 N E W nl
. MONEY
Topc 10 [I]
W CAUSE_OF_DEATH
SET
Topic 9 - _ l I wu PERSON
HANDLE
e T
CRIMINAL CHARGE
TITLE
. DURATION
Topic & _ - I LOCATIONS AND PLACES
NUMBERS
Topc s . [|
Topic 4 [m N
Topic 3 I I T |
I Ol |
Topic 1 I I E O
0% 10% 20% 30% a0% 50% 60% 70% BO% 90% 100%
Tags weight (%)
Figure 4.25: NER tags in r/uber by topic
W ORGANIZATION
e MISC
W NATIONALITY
e IDEOLOGY
m— MONEY
I | | = o
WEN CAUSE_OF_DEATH
SET
Topic 9 - _ I” W PERSON
HANDLE
e I
CRIMINAL CHARGE
BN BN R | |-
TITLE
. DURATION
Topic 6 I 8 I LOCATIONS AND PLACES
NUMBERS
Topc s . [E— EE W

I H N
Topic 3 L BN 0]
Topic 2 I T m
Topic 1 I EE EEm

50% 60% 70% B0% 30% 100%
Tags welght (%)

Topic 4

0% 10% 20% 30% 40%

Figure 4.26: NER tags in r/uberdrivers

86

4.6. RESULTS

Finally, although it is already known that both subreddits have negative connotations
in general, it remains to be known which of these topics are more negative and, therefore, to
be able to discover complaints in the posts. Figure 4.27 and Figure 4.28 show the sentiment

analysis per topic in both subreddits.

60% Neutral

50%

o
=]
Ed

£
E‘HD%
=
20%
10%
o Topc 1 Topic 2 Topic 3 Topic 4 Tapic 5 Tapic 6 Topc 7 Topic 8 Topic 9 Topic 10 Topic 11
Figure 4.27: Sentiments per topic in r/uber
BO% _— Negat
Neutral
- Fost
50%
a0%
g
%30%
H

10%

0% 4

Topc 1 Topic 2 Topic 3 Topic 4 Topic 5 Topc b Topc 7 Topic 8 Topic9 Topic 10 Topic 11

Figure 4.28: Sentiments per topic in r/uberdrivers

As it can be seen, the distribution of sentiments for each topic is highly similar in both
subreddits. There are a few differences between the two subreddits. One of them can be
seen in Topic 2, related to deliveries, tips, or services such as UberEats, which in r/uber
has more negative connotations. On the other hand, Topic 10, related to ratings, is more

negative in r/uber than in r/uberdrivers, which could indicate that users complain more

87

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

about the application than the drivers themselves. Still, as both analyses are very similar,

the distribution of sentiments in both subreddits is shown in Figure 4.29.

40%

Weight (%]
w
]
#

20%

0%

Topc 1 Topic 2 Topic 3 Topic 4 Tapic 5 Tapc 6 Topec 7 Topic 8 Topic 9 Topic 10 Topic 11

Figure 4.29: Sentiments per topic in both subreddits

Each of the topics has very negative connotations and in none of them do the neutral
or positive texts outnumber the negative ones. In addition, positive texts never outperform
neutral texts. The most positive posts are related with Topic 3 and Topic 7, while the most
negative posts are related with Topic 6, Topic 9 and Topic 10. These results show that
riders and drivers complaints are mainly based on travelling (Topic 6) and legal successes
(Topic 9), and these complaints have relation with the performance of the application or

the experience with the drivers (Topic 10).

4.7 Conclusions

The developed system has demonstrated its capabilities when analyzing this domain. In
addition, the above results have shown that the classification process is useful and works
well, so that the system would function correctly once it was put into production and
collected data every 24 hours. The results of the analysis of the Ride-Hailing domain on
Reddit have shown that users talk about different topics of which we have been able to
identify 11 different topics. These topics are mainly complaints and they can be modelled
with a NER-based analysis, in addition to the topics extraction.

Because of this, we have found that most of the posts from Reddit users are complaints
or messages with negative connotations, especially regarding legal issues, pick-up times, and
travelling. Therefore, we have developed a tool that allows the analysis of at least Uber

users on Reddit, which means that companies can improve based on the feedback of users

88

4.7. CONCLUSIONS

and easily address the main complaints.
The use of this system in other social media and with other companies will be discussed

in Section 6.

89

CHAPTER 4. USE CASE - THE RIDE-HAILING DOMAIN

90

CHAPTER

Use Case - The Radicalization Domain

5.1 Introduction

This use case has been implemented using parameters and searches provided by the PAR-
TICIPATION project!.

This use case consists of the analysis of the radicalization domain in social media through
the developed system. This application will be based on Twitter data, instead of Reddit
data as the previous use case. The used data contains tweets with an anti-Islam and an
Islam-related language. The objective of this use case will be to analyze the language used
on social media when users talk about radical content.

This application of the developed system can be useful for institutions or governments
which are fighting against radical actions, such as extreme ideologies, terrorism, or any other
form of radicalism. Moreover, this use case intends to confirm the multidomain application

of the system and to observe how the system works with another kind of data.

5.2 Collecting and Inspecting Data

For this use case, several data sets were collected to train the models. The first one was

collected in the same way that in the Ride-Hailing use case, using the Twint library for

"https://participation-in.eu/

91

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

searching for tweets. These tweets were collected between early 2018 to mid-2021 and the
searched hashtags were the following:

o Hiraq, #syria, #muslims, #alleyesonisis, #BanMuslims #islam, #is, #brotherhood,
#Nolslam, #Nolslamization, #afro-Muslims, #StopMuslims, #Bansharia, #banis-
lam, #Islamization, #nomosques, #khilafarestored, #stopislam, #islamicstate,
#rapefugees and #FEuropastan.

These hashtags represent both general terms, which can be expressed in either a radical
or non-radical context, and terms with a clear radical content, either pro-Islam or anti-Islam.
The main problem of these hashtags is that, due to the Twitter policy, when someone posts
a tweet expressing radical content, Twitter removes these tweets from its timeline and they
can not be collected. Figure 5.1 and Figure 5.2 show how many tweets were retrieved for

each hashtag and the dates in which they were retrieved.

25 0%
20.0%
w
I
=
@15 0%
W
2
10 0%
5.0%
00% :""""'e'*"
w » -
§ & f P EEFEN §F £ &85 5§ 8 &5 F 8 s
¥ @ 5 & ¥ & £ & 5 5 5 £ F F & £ 5 F 9o &
O3 5 @ % g 5 N F 3 g g N & F a v g &
g g F & F £ fF F 5 5 F & g & F §F 8
¥ oo §rY g8 s g F FoegFEN F S
= gy S I -0
£ ow & 4 - R
L) #
Hashtags

Figure 5.1: Hashtag weights within tweets

100000

80000

60000

40000

Number of retrieved tweets

20000

TTTTTTTTTTTTTTTTTTTI
PINVIFPFPEN RS DI G PP
&

FTTrTrT T T T T T T T T T T T T T T T T
&*

o
e
%
2
oV

&Z"

s
s
%
%

o

%QQ&G%Qb%’S’%&Q’Q‘\%&%Qqﬁ&U\\%NQ 990 9 .9 R I e B B S T A A T A A
S T Y o oY oYt oY oY oY o aY oY o oY oy oy oY oY oy oy oY U U U U O U O U U U UG OO O]
B A S A L P APt

Dates

Figure 5.2: Radical tweets collected with Twint over the time

92

5.2. COLLECTING AND INSPECTING DATA

It can be seen that those tweets which contain radical content have practically no pres-
ence in the corpus. Overall, 2,876,260 tweets were collected. To solve the problem of the

absence of radical tweets, models have been trained using other data sets.

The first one is the Pro-Neu [17] data set. This dataset is composed of two different data
sets, the first containing 17,350 tweets extracted from 112 Twitter accounts which have a
pro-ISIS context, and the second composed of 197,743 tweets extracted from around 95,000

different accounts which contain ISIS-related texts, both pro-ISIS or neutral.

The second one is called the Pro-Anti [42] data set, which is formed by tweets re-
trieved from 1,132 different Twitter accounts and which contains 602,511 pro-ISIS tweets
and 1,368,827 anti-ISIS tweets. The criteria by which the tweets were collected, both from

Pro-Neu and Pro-Anti, is explained in [3].

Figure 5.3 shows the amount of tweets within these data sets as well as the dates in

which they were retrieved.

175000 Pro-Anti: Pro-Islam
s Pro-Anti: Anti-lslam
mes Pro-Neu: Neutral

150000 wmmss Pro-Neu: Pro-Islam

125000

100000

75000

50000

Number of retrieved tweets

25000

Figure 5.3: Radical tweets from other data sets over the time

As it can be seen, this data fills the gap that was missing in the other dataset, where
there were practically no tweets with a clear radical context. In this case, the number of
tweets with radical content is very high, unlike the data with neutral content. On the other
hand, these data sets are formed by tweets that were collected between 2009 and 2018,

being between 2014 and 2016 when more data were obtained.

To get a clearer picture of what these tweets look like, Figure 5.4 shows the 30 most

common hashtags in tweets.

93

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

16.0%

14.0%

12.0%

10.0%

8.0%

Weights

6.0%

4.0%

2.0%

0.0%"

Hashtags

Figure 5.4: Hashtags weights within alternative data sets

It can be appreciated that some of the most common hashtags, such as #syria or
#iraq, among others, also appear within the main data set. In addition, other Islam-related
hashtags appear in these additional data sets, so the data is now more complete. Table 5.1

shows the similarities and differences between the different data sets.

Pro-Neu Pro-Anti
Statistic Original Dataset Total
Pro Neu Pro Anti
Total no. of tweets 2,876,260 17,350 | 197,743 1,397,549 831,844 5,320,746
Total no. of words 85,353,752 313,770 | 3,670,477 | 26,596,093 | 15,932,109 | 131,866,201

Avg. no. of words per tweet 29.675 18.085 18.562 19.031 19.153 24.783
Total no. of different words 3,144,657 35,527 268,737 1,368,391 1,048,333 5,295,111

Avg. no. of different words per tweet 1.093 2.048 1.359 0.979 1.260 0.995

Table 5.1: Statistics of the used data sets

The original data set has some different characteristics with Pro-Neu and Pro-Anti data
sets, which are similar between them. The main difference is that it seems that tweets are
larger in the original data set, but the average number of different words per tweet is similar
in all data sets, except in the Pro-Neu data set. This is because this data set has much less
tweets and it will be easier to find new words in these tweets.

Therefore, among all the data sets, there are 3,074,003 neutral tweets (joining the orig-
inal data set with the Pro-Neu: Neu data set) and 2,246,743 radical tweets, which are

divided into pro-Islamists and anti-Islamists. This data will be used in the following steps

94

5.3. TOPIC MODELING

to create the models that will be later integrated into the final system.

5.3 Topic Modeling

Before training the models, the Cleaning Process is passed through every tweet. After this
process, the same procedure that was carried out in the Ride-Hailing domain (which is
explained step by step in Section 3.4.1) has been used in the processing of the texts in this
domain. As the amount of available texts is very large, it was decided to use 1,000,000
texts for the LDA modeling, leaving the rest of the tweets for future processes, such as the
generation of Word Embeddings models or the training of classification algorithms. The
criterion used for this data partitioning was to use the same amount of radical and neutral
texts, that is, 500,000 radical tweets and 500,000 neutral tweets, chosen in a random way.
The same tweets were used in every topic modeling process.

It is important to note that, firstly, a baseline LDA model was generated as well as in
the Ride-Hailing domain. This first model was used to try to increase the performance of
the models, adding, removing, or changing the different processes that modify the texts.

The Coherence Score values of this baseline model are shown in Figure 5.5.

Coherence Score / Number of Topics (Radicalization Domain)

== DA baseline

SOOCCECO00000000000000000000000000000080

Coherence Score (C v)
;—-HHHHHH»—‘»—'H\JNNMNMNNMNWNMNNL&WWWW&-hbéb&h&hh

OHMNW AN~ EOO-NUANO~—OOO-NWAND N ROO=NU AN ~ED

2345678 91011121314151617 181920212223 24252627 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Topics

Figure 5.5: Baseline Model - Coherence Score through the Radicalization domain

The optimal number of topics seems to be 16 topics, for which the maximum coherence
value is obtained (around 42%). The coherence rises up to the same value of k, from which

it falls steadily. As in the Ride-Hailing domain, the goal of LDA optimization will be to

95

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

improve the coherence values by trying to find the best possible model. The procedure
carried out in this domain was the same as in the other use case and 8 different text
preprocessing types were used for the creation of the dictionary and the corpus on which
the LDA is trained. The number of different preprocessing approaches is lower than the
same number in the Ride-Hailing domain. This is because in the Ride-Hailing use case,
virtually every new model improved the previous one, whereas in this use case it has cost
much more to improve the models. Because of this, the baseline model is one of the best
of all those attempted. The result of the Coherence Score for all these models is shown in

Figure 5.6.

Coherence Score / Number of Topics (Radicalization Domain)

= LDA_baselne
e LDA2
= LDA3
— LDA4
3 e LDAS
........... LT CR R LR T L Py O By T PP P Ty DOy DL PEY PSSR PSP LDAB

— | DA7

Coherence Score (C v)
COO000000E0000000000000000000000000000080
i et et e e e R R R R R A R R NN WW W W WWW NN WS R R AR R B s
OENWAMINEOOHENWANOINECOHENWANONREUOHNWAN DWW

23 45 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849
Topics

Figure 5.6: Coherence Score through the Radicalization domain

There are several differences with the results in the Ride-Hailing use case. Firstly, the
maximum coherence values are lower than in the Ride-Hailing domain, being the maximum
being reached with the LDA4 in the 6 topics model. In addition, it can be seen that the
maximum values are not so dependent on a specific type of text preprocessing as in the other
use case, but that there are several models with values close to the maximum. Finally, the
results show a much less marked and flatter curve, where it is not obvious that there is a
better number of topics than others, although it is clear that low numbers are better than
very high numbers of topics. The latter can also be observed in the Perplexity curve, shown

in Figure 5.7.

96

5.3. TOPIC MODELING

Perplexity / Number of Topics (Radicalization Domain)

—100+4

—12 51

=150+

I
-
w

Perplexity
|
s
o

-2254

=250+

=275

—— LDA_baselne
——— LDA2
= LDA3
—— LDA4
—— LDAS
LDAS

Topics

Figure 5.7: Perplexity through the Radicalization domain

As in the Ride-Hailing domain, the more the number of topics increases, the lower the

value of perplexity and, therefore, the less surprised the model will be when obtaining new

data. Moreover, in this use case, the results of this metric behave more chaotically from

topic 9 onwards, after which the values start to drop sharply. This may indicate that a

number of topics much higher than 9 may generate a model that is not viable.

For these reasons, and, especially, the coherence values, different models with different

text preprocessing types have been optimized. Specifically, the 4 best models have been

optimized (in the same way as in the Ride-Hailing use case, except that in that case it was

done with the same preprocessing procedure), which are the LDA4 with 6 topics, the LDA7
with 8 topics, the LDA baseline with 16 topics and the LDA7 with 10 topics. The results
of this optimization are shown in Table 5.2, Figure 5.8 and Figure 5.9.

Topics C.v «@ Ié]
6 45.327% | 0.61 | 0.61
8 48.700% | 0.9 | 0.61
10 48.548% | 0.9 | 0.9
16 46.544% | 0.9 | 0.61

Table 5.2: Optimizing LDA Hyperparameters (Radicalization Domain)

97

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

Optimizing LDA Hyperparameters (Ride-Hailing Domain)

048 {
A
046 /\
> 044
o
e
5 D4z
L=
wn
3 040
c
u
=
a
£ 038
=]
9]
036
wmmm Topics = 16
0 34 wees Topics =6
e Topics = 8
w— Topcs = 10

[‘l ;; 1'0 1'5 2‘0 2‘5 3’0
Steps

Figure 5.8: Optimizing LDA Hyperparameters (Radicalization Domain)

Marginal topic distribution Marginal topic distribution

(a) Optimal 6 Topics (b) Optimal 8 Topics

(c) Optimal 10 Topics (d) Optimal 16 Topics

Figure 5.9: Visualization of the best models in the Radicalization domain

98

5.3. TOPIC MODELING

As it can be seen, both models with 10 and 16 topics have several related topics that
share space in the set of topics. Moreover, the coherence result of the model with 16 topics
is one of the lowest, so it is discarded. On the other hand, the model with 10 topics has
a good coherence value compared with the others results. Therefore, it will be necessary
to analyze whether the information of each topic is good and better than that of the other
models, although the independence of the topics must be taken into account. The maximum
independence between topics occurs in the model with 8 topics and in the model with 6
topics. Moreover, the model with 8 topics has the best coherence of all the generated
models, so this will be the first choice.

As stated before, the election of the final model is strongly based on the Coherence
Score - Number of topics - Human observation commitment. The human observation, in
addition to the analysis of the correlation of the topics, is given by the analysis of each
topic. In this use case, the analysis of the topics of the different models led to the choice of
the 8-topic model as the final model, since its topics are easier to interpret than in the other
models, where they were slightly overlapping and poorly explained. Thus, the classifiers to

be designed later will have to classify tweets into 8 different classes, which are as follows:

e Topic 1: Middle East situation. A generic topic in which are included those
tweets which talk about Middle East countries, in addition to the actions of the
United States in this area. This topic includes words such as #syria, #israel, #us,

#yemen, #trump, #lybia, #turkey, #usa, #afghanistan, #palestin, #saudiarabia.

e Topic 2: Israeli-Palestinian conflict and religion-related. Tweets related with
the Israeli-Palestinian conflict and with a religious content, with words like israel,
american, christian, palestinian, gaza, jewish, racist, #alllivesmatter, migrant, nazi,

netanyahu.

e Topic 3: Family-related. It contains family-related words and generic neutral
words such as #brotherhood, day, today, guy, girl, daughter, friend. It seems that is
strongly-related with the #brotherhood hashtag, so it is possible that this hashtag is

very generic and not solely focused on radicalism.

e Topic 4: Generic / Social and politics. This topic includes tweets with a generic
social and politics content, with words like public, program, social, job, country, state,

nation, politics, power.

e Topic 5: Syria-related. Tweets with a Syria-related content, with words like

#syria, syria, syrian, #russia, child, war, bomb, #assad.

99

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

e Topic 6: ISIS attacks. Related with terrorist attacks and specifically ISIS attacks.

It contains words such as kill, attack, #isis, report, force, isis, #turkey, terrorist, fight.

e Topic 7: Iraq and Iran situation. Tweets mainly talking about the situation in

Iran and Iraq, with words like #iraq, iraq, iran, govern, protest, iraqi, region.

e Topic 8: Islam-related. Topic mainly related with the Islam in a generic way and
without terrorism connotations, with words like #islam, #muslim, muslim, islam,

allah, #quran, religion, peace, god, believe.

As it can be appreciated, some of the extracted topics in this domain have important
differences with the rest of the topics. Specifically, Topic 3, which is related to family
relationships, seems to be mainly extracted from tweets with the keyword #brotherhood.
Tweets extracted with this hashtag seem to be outside of the radicalization domain, but
some of them could be inside of it.

In any case, the topics seem to be quite distinct from each other, although the coherence
is lower than in the case of Ride-Hailing (in the radicalization domain the best model has
a 48.700% of coherence versus the 72.82% of the Ride-Hailing domain). Because of this,
it seems that the topic separation of the corpus can be a good approximation to train the

classification models, which will be explained later.

5.4 Validation Process, Sentiment Analysis and NER extraction

Once the LDA model is performed, a lexicon with the most important words of each topic is
created. This lexicon will be useful to reject texts that do not belong to the domain under
study and that may be wrongly included in the data. Every text of the total data set must
pass through the Validation Process before the training step. It is important to note that
every text is cleaned (Cleaning Process) before the Validation Process.

The Validation Process for this domain has some changes with respect to the other
use case. First, no checks are performed on the account posting the tweet, because it is
understood that in this domain it is neither necessary nor convenient to do so. On the
other hand, the lexicon of words used to check which words each tweet must contain to be
added to the data set consists of 714 different words and has been extracted with the same
procedure as in the other use case.

The results of the Validation Process were that 137,877 texts were rejected, which implies
a 13.877% of rejected texts and, therefore, 862,123 validated texts. Table 5.3 shows these

results.

100

5.4. VALIDATION PROCESS, SENTIMENT ANALYSIS AND NER EXTRACTION

Radical Data Validation Process

Source Rejected Texts | Rejected Texts (%)

Twint Scraped Dataset 80,721 16.144

Pro-Anti and Pro-Neu 57,156 11.431

Total 137,877 13.877

Table 5.3: Validation Process with the Radicalization domain data

It can be appreciated that those tweets which have been collected in this project have a
higher rejection rate than the other data sets. This is to be expected, since the other data
sets have been cleaned before and have been used in other projects.

Now, some NLP functions will be applied to the validated texts. Firstly, Figure 5.10

shows the aggregated sentiment analysis for this corpus.

0.50

Sentiments weight
[=] o o [=} o o [=] o
5 kNN W ow B B
(=] w o w (=] w (=] w

o
(=3
wn

e
o
o

Negative Neutral Positive
Sentiments

Figure 5.10: Sentiments distribution in the Radicalization domain

The results show that neutral tweets are predominant in all the analyzed texts. In
addition, negative tweets are greater than positive tweets. This indicates that there is a
clear tendency to write tweets with more negative content about this domain. Figure 5.11
shows the sentiment analysis as a function of tweet content type.

Figure 5.11 shows some interesting results. Firstly, neutral tweets are greater than
negative tweets and these are greater than positive tweets in both tweet types. However,
several differences can be noted. First, tweets with a neutral content are more negatively
trending than radical tweets. Additionally, the corpus of neutral tweets contains more
positive tweets than that of radical tweets. Therefore, neutral tweets have fewer tweets
that do not express sentiment (neutral sentiment) than radical tweets. The explanation for

this fact is given in that those tweets that are radical, although obviously more negative

101

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

I Negative Sentiments
0 Neutral Sentiments
m Positive Sentiments

055
0.50
o 045
=
Do.40
U
2035
2
€ 0.30
E 0251
‘€ 0.201
[}
v 015
0.10

0.05

0.00
Radical tweets Neutral tweets

Sentiments

Figure 5.11: Sentiments distribution in the Radicalization domain per ideology

than positive, do not tend to express a marked sentiment beyond their own ideology, which
contains clear negative aspects. However, tweets belonging to the corpus of neutral tweets
do tend to express more sentiment. This sentiment, being more negative than positive, tends
to express rejection or to speak negatively of radicalism, without either the authors or the
tweets themselves expressing radical ideas. It is worth remembering that neutral tweets
need not express neutral sentiment, but only that they are not radical. These aspects found
here can be essential when studying this type of content and give an overview of how these
tweets are written, for what purpose they are written, and what are the differences between
the two data sets.

Finally, Figure 5.12 shows the results of the NER analysis as a function of the data set.

30.0%1 s Radical tweets

W Neutral tweets

25.0%

20.0%

15.0%

Tags weight

10.0%

5.0%

0.0% -

&
3

& >
g £
&

& 7

Figure 5.12: NER tags distribution in the Radicalization domain

102

5.5. CLASSIFICATION MODEL

It can be appreciated that both data sets are similar in terms of labeled entities. HAN-
DLE entities stand out, which are usually words such as hashtags or usernames. As the
corpus is composed of tweets, this is the predominant entity in both sets. Also, entities
such as PERSON, DATE, ORGANIZATION, LOCATIONS_AND_PLACES or NUMBERS
have a lot of influence too. Excepting HANDLE, almost every entity has a bigger weight in
neutral tweets highlighting DATE.

5.5 Classification Model

As well as in the Ride-Hailing use case, new unseen data will be retrieved each day. This
data, to be classified, needs to be represented in such a way that it can be introduced as
an input into a classification model. As SIMON was discarded in the Ride-Hailing case,
representations in the form of Tf-idf and the Word Embeddings, including the Word2Vec

and FastText variants, have been realized exactly as in the Ride-Hailing use case.

Word Embeddings were trained using the whole collected corpus before the Validation
Process, to train the models with as many texts as possible. Table 5.1 shows that 5,320,746
texts were collected, being 2,876,260 texts collected by Twint and 2,444,486 texts provided
by the other data sets. Models were trained using the same parameters that in the Ride-
Hailing use case, alternating with 100, 300, and 500 dimensions. The PCA representation
of the 100-dimensional models is shown in Figure 5.13 and Figure 5.14. Other images
representing the higher-dimensional models, as well as the lexicon used to create the figures,

are available in the Appendix B.

Figure 5.13: FastText 100-dimensional model PCA representation - Radicalization domain

103

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

100

4
§gFdds
EEEs234
RRRARRT
o

ereee e

©

-100 -50 50 100

Figure 5.14: Word2Vec 100-dimensional model PCA representation - Radicalization domain

As in the Ride-Hailing domain, cluster formation can be seen in both models. Again,
the FastText representations show more scattered clusters, although the similarity between
words belonging to the same topic is perfectly visible. On the other hand, the Word2Vec
representations show an accumulation of clusters in which the closeness between topics can
be perfectly appreciated. These representations, although it cannot be seen a priori which
model will perform better, offer a first image that demonstrates the feasibility of this type of
representation in terms of training classification models with features extracted from these

models.
The training procedure in this domain follows the same procedure that in the Ride-
Hailing use case. Firstly, the validated data is labelled with the LDA results, assigning a

topic to each tweet. The results of this assignment of topics are shown in Figure 5.15.

120000

100000

HouIL

H00OD

Samples per tapic

40090

20000

wpic 4 Topic 5
Topics

Figure 5.15: Samples per topic in the radical training dataset

104

5.5. CLASSIFICATION MODEL

As it can be appreciated, Topic 1 has around 60,000 samples, while Topic 1 has over
120,000 samples. For this reason, and to balancing data, the training data sets were limited
to 50,000 samples for each topic. The rest of the samples were used as validation data to
test models and procedures such as cross-validation processes. This 50,000 samples for each
topic were selected randomly and, after this, the training data set was formed by 400,000

samples.

The classification models for this domain followed the same approach that in the Ride-
Hailing domain, training models with Tf-idf and Word Embeddings features, but only using
the Logistic Regression algorithm. This decision was taken because when the Ride-Hailing
domain was analyzed, the Gradient Boosting modeling requires enormous time to arrive at
concrete solutions. Due to this, mainly generated by the limitations both in computational
capacity and in the time needed for the optimization and development of the models, Gra-
dient Boosting has not been analyzed in this use case. As for model optimization, it was
based on a K-fold cross validation, usually with £ = 10 and optimized with the Grid Search
and the Halving Grid Search procedures, carried out in the same way that in the other

domain. The results of the final models are shown in Table 5.4.

Accuracy | Precision | Recall | F-Score

‘Word2Vec 100 dim 77.287 77.935 77.287 77.442
‘Word2Vec 300 dim 79.094 79.691 79.094 79.235
Word2Vec 500 dim 80.012 80.597 80.012 80.153
FastText 100 dim 75.070 75.852 75.070 75.256
FastText 300 dim 77.026 77.723 77.026 77.192
FastText 500 dim 77.990 78.669 77.990 78.153
Bigrams - Tf-idf 83.197 84.123 83.197 | 83.463

Table 5.4: Logistic Regression Results in the Radicalization Domain

The results have some similarities with the Ride-Hailing domain results. First of all,
the model trained with the features extracted from the Tf-idf is the best of all due to the
classification of texts based on the topics generated from the LDA. Secondly, all Word2Vec
models are better than FastText models with the same dimensions. Moreover, the results

are all good, with even the 500-dimensional Word2Vec model exceeding 80% F-Score.

Therefore, as in the case of Ride-Hailing, it is demonstrated that the system works
correctly when classifying topics in this domain and therefore it is confirmed that the system
is valid for the analysis of topics and opinions in different domains. This system could be
useful in identifying hate speech or radical speech, as well as in tasks of prevention of

radicalism that can be carried out by police or intelligence agencies around the world.

105

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

5.6 Results

When the final model is performed, the model can predict the topic of each text of the
corpus. In this section, the Tf-idf approach will be used to classify texts in their corre-
sponding topics. The election of the Tf-idf is due to its F-Score, which is the highest of all
the generated models. However, it is important to note that embeddings models are likely
to be better as soon as new data is introduced, that the models have not seen or data that
comes from other sources. This will be discussed for the Ride-Hailing domain in Section 6.

Firstly, the distribution of topics around the corpus and by the type of the tweet (radical
or neutral) when they are predicted with the Tf-idf model is shown in Figure 5.16 and
Figure 5.17.

Topics' weight by tweet sample (Neutral tweets)

mnos
10w
) I I I I I

Midd /e East @l Paestinan Fami y related Generic / Soci. Syria-related SIS attacks Iraq and Iran s tuatian clmrr
situation onflict and and polit W
re gmn related

— Neutrs twests

Weight %]}

Figure 5.16: Prediction of topics in the neutral tweets corpus

Toples' welght by tweet sample (Radical tweets)

30w
noe
RLE
ﬂ‘ I
nawd

Midd e East srael Palestinian Family related Generic | Socia Syria related SIS attacks Iraqg and Iran stuatian Islam re sted
situation conflict and and politics
reigian-relzted

Rt Al taeats

Weght (%]

Figure 5.17: Prediction of topics in the radical tweets corpus

106

5.6. RESULTS

It can be seen that Topic 1, Topic 2, and Topic 3 are the dominant topics in both corpus.
However, Topic 4 appears more frequently in neutral tweets. On the other hand, Topic 5,
Topic 6, Topic 7, and Topic 8 are the least frequent in both corpora, but appear more in
neutral tweets. To facilitate the analysis, Figure 5.18 shows the two corpora in the same

figure.

Toplcs' welght by tweet sample

- Radical tweets

:::::

.....

Weight (%)

Midle East srae Palestinian Famiy relsted Generic | Sacial Syria relsted SIS attacks Irag and Iran s tuation Islem related
s tuatian canfl ct and nd paliti
religian related

Figure 5.18: Prediction of topics in the whole tweets corpus

As it can be appreciated, Topic 1, Topic 3, Topic 4 and Topic 8 are more common in
the radical corpus. On the other hand, Topic 5, Topic 6, and Topic 7 appear with a higher
frequency in neutral tweets. In addition, Topic 2 appears approximately with the same

weight in both corpus.

With these results, it seems that radical texts talk with a higher frequency about general
Middle East countries, family, Islam and society or politics. On the other hand, neutral
tweets seem to talk more about the Syria situation, the ISIS, and countries such as Iraq and
Iran. Moreover, it is interesting that the Israeli-Palestinian conflict appears with practically

the same frequency in both corpora.

These results show that neutral tweets, which are written by people who are not ex-
tremists, talk with a higher frequency about terrorism-related topics such as the situation
in Syria, in Iraq or the attacks of ISIS. On the other hand, radical people talk about topics

which do not talk about radicalism in a direct way.

Another analysis that has been done is the NER analysis, which is shown below in
Figure 5.19 and Figure 5.20.

107

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

NER tags by topic (Radical tweets))

W ORGAN ZATION
NATIONALITY
- TME
5 am-related Enmal
NUME
CAUSE DF DES
DURATION
rag and lran situation e
SET
- OCATION
MOREY
m— COUNTRY
ISIS attacks - DATE
m— FERSON
STATE O PRO
- MISC
- DEOLOGY
Syrla-related CRIMINAL CHA
— PERCENT
URL
- iy
Generlc / Soclal RELIGION
ana politics ORDNAL
- HANDIE
Family-re‘ated
sraeli-Palestinian
ronflict and
religion related
Middle East
situation
0% 10% 20% 30% 40% 50% 60% 0% BO% 0% 100%

Tags weight (%)

Figure 5.19: NER tags in radical tweets

NER tags by topic (Neutral tweets))

N ORGAN ZATION
NATIONALITY
- TIVF
s'am-related EMAIL
NUMBER
DURATION
rag and Iran situation - :"L"
. LDCATION
MOKEY
. COUNTRY
1SIS attacks - DATE
- PERSON
STATE_OA RO
- MisC
) - DEQLOGY
Syria-related CRIMINAL CHA
—
-
Generic { Social RELIGION
and politics ORDINAL
- HANDLE
Famly-re/ated
sraeliPelestinian
confiict and
relig on-related
Middle Fast
situation
0% 10% 20% 0% an% 60% 70% BO0% 90% 100%

50%
Tags weight (%)

Figure 5.20: NER tags in neutral tweets

108

5.6. RESULTS

As texts are tweets, in almost every topic the dominant entity is HANDLE. After this,
the PERSON entity seems to appear in both corpus with high weights, but more in radical
tweets, while in neutral tweets, in some topics, the DATE entity outperforms PERSON. It
seems that both corpus are similar in terms of the entities that appear in the texts of each
topic.

Furthermore, it can be seen that some topics have some thematic entities, such as the
ORGANIZATION entity in the ISIS-related topic, the COUNTRY entity in the Middle
East-related topic or the RELIGION entity in the Islam-related topic. This happens in
both corpus, although these entities can have more presence in one of them. Finally, it
should be noted that these entities make a lot of sense in the respective topics in which they
appear.

The last performed analysis were the sentiment analysis. The results of this analysis for

each corpus are shown in Figure 5.21 and Figure 5.22.

Sentiment Distribution by topic (Radical tweets)

e
Nout

We ght 1%

Figure 5.21: Sentiments per topic in the radical tweets corpus

by topic (tweets)

- Negatun
Keutral
- s tive

Weight (%)

Figure 5.22: Sentiments per topic in the neutral tweets corpus

109

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

These figures show very interesting results. First, it can be appreciated that neutral
tweets are, by far, much more negative than radical tweets in every topic. An explanation
of this fact is that radical tweets, which are extremist tweets, do not talk bad about extremist
actions. For instance, a radical Islamist will speak well of an attack, while a non-extremist
will speak disparagingly or badly about it. Because of this, neutral tweets are much more
negative than radical ones. This is also important, since if there are non-extremist people
writing tweets with a lot of negativity, it can lead to these people becoming extremist people

as well.

It is important to see that in neutral tweets, these tweets are also more positive than in
the radical corpus. Because of this, it can be said that neutral tweets are more polarized

than radical tweets, which neutral sentiments are dominant in every topic.

In addition, in radical tweets the more negative topics are Topic 4 (Social and politics)
and Topic 5 (Syria-related), while in neutral tweets the more negative topics are Topic
1 (Israel and Palestine) and Topic 4 (Social and politics). On the other hand, the more
positive topics in radical tweets are Topic 3 (Family-related) and Topic 8 (Islam-related),
while in neutral tweets the more positive topics are Topic 3 (Family-related) and Topic 4
(Social and politics). Therefore, it can be seen that Topic 3 in both corpora has positive
connotations, while Topic 4 has more negative connotations. It is also extracted that both
corpora speak well of Islam in general terms. Some of these observations and others can
be done analyzing Figure 5.23, where the aggregated sentiment analysis in both corpus is

shown.

Sentiment Distribution by topic (Neutral and Radical tweets)

Midgle East Israeli-Palestinian Family-related Generc { Social Syria-related SIS attecks Irag and iran situation Islam re ated
situaton canflict and and politics

We ght (%)

religion-re ated

Figure 5.23: Sentiments per topic in radical a neutral tweets corpus

110

5.7. CONCLUSIONS

5.7 Conclusions

As well as in the Ride-Hailing domain, the system and the processes that make up the
system and its operation have also been shown to be effective when radical content tweets
are introduced to the system. The analysis of this domain, in addition to the Ride-Hailing
domain, has proven that the developed system can be used to analyze any type of domain.
Additionally, it has been demonstrated that the system can be fed by different kinds of
texts (in this use case have been tweets) and operate in a correct way.

The results shown here also demonstrate that it is possible to use the system to analyze
radicalism and extremism in social networks. It has been shown how these tweets, both of
radical and neutral content, can be classified into at least 8 topics. Each of these topics
shows a different reality and ranges from religious and family topics to topics of conflicts
between different territories or directly terrorist topics.

In addition, entity analysis and sentiment analysis have shown different realities of these
topics, such as neutral tweets being more polarized than radical ones. This type of analysis
can be fundamental in the study of radicalism prevention.

For all these reasons, it has been demonstrated that the developed system works perfectly
in this domain, and therefore the premise of developing a multi-platform and multi-domain

tool has been fulfilled.

111

CHAPTER 5. USE CASE - THE RADICALIZATION DOMAIN

112

CHAPTER

Cross-Source Validation: Transfer Learning

6.1 Introduction

One of the main objectives of the developed system is to analyze and compare the language
and opinion of users on different platforms. Social media sites stand out, among other
things, for using different ways of writing depending on the social media, some being more

informal than others and having a particular language.

Up to this moment, Twitter, Reddit and Google Play Store data have been collected and
treated as the same data type, that is, texts, for instance, when creating the embeddings
models. However, the way in which these texts are written highly depends on the social
media source. For providing context, Twitter posts contain a lot of misspelled words in
addition to hashtags (words starting by the ”#” character which work as keywords), user-
names (starting by the ”@” character) and since 2017 they are limited to 280 characters per
tweet (previously 140). On the other hand, Reddit posts, both submissions and comments,
and Google Play reviews are not limited by the number of characters and they do not have
special keywords beyond the jargon used in these networks [16].

In addition to what has been mentioned and explained throughout this work, where
it is clear that the main objective of the developed system is the analysis of language
and opinion, it remains to be seen whether this analysis can also be transferred to other

sources. This is because, although it is true that certain models have been fed with Word

113

CHAPTER 6. CROSS-SOURCE VALIDATION: TRANSFER LEARNING

Embeddings models that have been generated from data coming from all these sources, the
categories in which the texts are classified have been extracted only from Reddit. In the
field of machine learning, this type of classification, where a task is learned on certain data
and is intended to be taken to another type of task without retraining the models, is called

Transfer Learning [49].

To perform this analysis, the first step was to collect the data, which are the same as
those used for the embeddings. Subsequently, a small set of texts has been manually labeled
to evaluate this methodology. Finally, using the classifiers developed for the Ride-Hailing
domain, the topic of each labeled text was predicted and the reliability of this method for

this particular domain was evaluated.

This chapter will therefore explore this possibility and explain how this analysis has
been done and if indeed learning can be transferred to other data sources, at least in the

domain of study.

6.2 Inspecting Data

As stated before, the collected data was the same as the Word Embeddings training data
set and it has been described in Table 4.4 and in Figure 4.18.

First of all, the data obtained must go through the corresponding Cleaning and Vali-
dation Processes before being classified, since these processes directly reject texts that do
not comply with the requirements of the system and they must not be annotated before the

validation. Table 6.1 shows the results of the Validation Process.

It is important to note that Reddit rejected texts are calculated averaging its rejected
titles, submissions, and comments. This is because each type of text on Reddit has been
considered an independent element. The breakdown of these calculations can be seen in the

Appendix C.

As it can be seen in Table 6.1, the average of all rejected texts was around 13.4%. The
most rejected posts were from the Google Play Store, while the least rejected posts were
from Twitter. This makes sense, since, in the case of Google Play, many of the reviews are
very short, many of them consisting of only one word, with reviews such as ” Great!” or
” Terrible.”. In the case of Twitter, as the search keywords are very specific, the retrieved

posts are more in line with the topics extracted from Reddit.

On the other hand, the rejection rate of Reddit posts is almost constant and similar to
the total rejection rate. It also highlights that on Twitter non-Uber tweets are the most

rejected, while on Google Play the most rejected texts are those about Uber apps.

114

6.3.

EVALUATION

Cleaning and Validation Processes

Social Media Source Data Source Language | Scraped Texts | Rejected Texts | Rejected Texts (%)

r/uber English 249,638 36,754 12.833

r/uberdrivers English 1,012,822 140,073 13.830

Reddit r/Lyft English 267,235 33,895 12.684
r/lyftdrivers English 373,904 51,527 13.781

Total Posts - 1,903,599 262,249 13.776

Uber English 6,223,730 571,831 9.188

Lyft English 1,699,520 193,504 11.386

Twitter

Cabify Spanish 325,546 50,407 15.484

Total Tweets - 8,248,796 815,742 9.890

com.ubercab English 970,778 290,462 29.921

com.ubercab Spanish 551,415 108,872 19.744

com.ubercab.driver English 264,010 103,799 39.316
com.ubercab.driver Spanish 121,297 29,683 24.471

Google Play

me.lyft.android English 74,342 10,510 14.137
com.lyft.android.driver | English 27,139 5,758 21.217
com.cabify.rider Spanish 57,882 8,809 15.219

com.cabify.driver Spanish 21,039 4,976 23.651
Total Reviews - 2,087,902 562,869 23.959
12,240,297 1,640,860 13.405

Table 6.1: Scraping, Cleaning and Validation Processes Results: The Ride-Hailing Domain

Finally, there is not too much difference between posts written in English and those

written in Spanish, although on Twitter it is true that the most rejected tweets are those

from Cabify, written in Spanish.

6.3 Evaluation

Once the data are validated, to evaluate transfer learning, it is necessary to annotate some

texts according to the topic to which they belong. As the process of annotation is difficult

and requires large amounts of time, a small sample of all texts was taken. This sample con-

tains equal sets of texts from all sources. The annotation process was carried out among a

group of 6 people with domain knowledge, including the author of this work. Subsequently,

115

CHAPTER 6. CROSS-SOURCE VALIDATION: TRANSFER LEARNING

the annotations were checked to avoid having large errors. Before constructing the evalua-
tion data set, the texts were cleaned and, as mentioned above, validated. It is important to
note that the Spanish texts were labeled directly in Spanish, avoiding possible confusions
with the language and to annotate the texts as faithfully as possible to the original text.
The mother tongue of all the people who participated in the annotation process is Spanish.

As the LDA algorithm gives a weighted probability of belonging to each of the topics (in
this case there are 11), the process of annotation becomes difficult because it is mandatory
to choose only one topic for each text. This problem could be solved by building a multilabel
classifier with multiclass classification, but this type of classifiers are more complicated, and
because of this, in this project the built classifiers are multiclass classifiers with one label
per entry. For these reasons, there may be some errors in the annotations, although they
have been checked to avoid them.

The texts to be annotated were chosen randomly, selecting 100 random texts from
each platform. Those texts that, after several revisions, were not able to reach a concrete
conclusion as to which topic they belonged to, either because of the difficulty of annotating
them or because the text was too generic, were discarded.

Thus, 1,158 texts were labeled, belonging to all the sets of texts collected. Figure 6.1

shows the distribution of topics in these texts according to what has been annotated.

Topic 1 Topc 2 Topec 3 Topic 4 Topc 5 Topc & Topic 7 Topic 8 Topic 9 Topc 10 Topic 11
Topics

Figure 6.1: Annotated samples per topic

In the above figure highlights that Topic 3 has the lowest number of entries, while Topic
11 has the highest number. Topic 1 and Topic 2 have more than Topic 3 and the other

116

6.3. EVALUATION

topics have about the same contributions. In addition, Table 6.2 shows the source of the

annotated data and the language in which they are written.

Spanish | English | Total

Reddit 0 437 437
Google Play 256 267 523
Twitter 73 125 198

Table 6.2: Distribution of the annotated data over Source and Language

The evaluation of this transfer learning task consists on analyzing the performance of
the Ride-Hailing domain trained models, which were trained on data collected from the
subreddits r/uber and r/uberdrivers, when these models predict the topic of new unseen

data which can be obtained from other sources.

6.3.1 General Evaluation

The general evaluation consisted of seeing the performance of the models when predicting
the topic label for each document on the evaluation data set, without making any distinction
by source or language. The performance has been measured using the Precision, the Recall
and the F-Score metrics, as well as observing the confusion matrices of every model. The
results can be seen in Table 6.3, and a further breakdown of these can be found in the
Appendix C.

These results show that there are many differences with the results shown in Table 4.6
and Table 4.7, where the same models were tested with r/uber and r/uberdrivers data and
the global performance seemed to be better. These models are trained with data from these
subreddits and labeled with the results of the Topic Modeling process, which also used data
from these subreddits. Nevertheless, the results shown in Table 6.3 have been obtained
testing these models with new unseen data, collected from different platforms, which some
of them talk about other companies and which some of them are written in Spanish.

The main difference of these results is that embeddings approaches are much better than
Tf-idf approaches, in contrast to Section 4 , where the models based on Tf-idf representations
were much better. These results are to be expected since the Tf-idf representation takes
into account only the distribution of the n-grams in the different documents, while the
embeddings also take into account the semantic similarity of the different words.

It also can be appreciated the importance of the optimization processes in the Gradient
Boosting approaches. The Word2Vec 100-dimensional and the FastText 100-dimensional

versions are better than the same versions trained with the Logistic Regression algorithm.

117

CHAPTER 6. CROSS-SOURCE VALIDATION: TRANSFER LEARNING

Accuracy | Precission | Recall | F-Score
Word2Vec 100 dim | 63.990 64.857 63.990 | 64.063
Word2Vec 300 dim | 62.953 64.140 62.953 | 63.223
Word2Vec 500 dim | 65.199 66.578 | 65.199 | 65.384
Logistic Regression | FastText 100 dim 61.226 62.005 61.226 | 61.274
FastText 300 dim 61.572 63.163 61.572 | 62.020
FastText 500 dim 60.449 61.506 60.449 | 60.654
Bigrams - Tf-idf 55.699 58.185 55.699 | 56.444
Word2Vec 100 dim | 64.335 65.614 64.335 | 64.583
Word2Vec 300 dim | 61.399 62.768 61.399 | 61.785
Word2Vec 500 dim | 62.781 64.593 62.781 | 63.265
Gradient Boosting | FastText 100 dim 61.313 62.661 61.313 | 61.591
FastText 300 dim 60.708 62.389 60.708 | 61.168
FastText 500 dim 61.054 62.435 61.054 | 61.355
Bigrams - Tf-idf 54.922 57.372 54.922 | 55.362

Table 6.3: Transfer Learning General Evaluation Results

However, this changes when the number of dimensions is increased, where the only Gradient
Boosting model that outperforms its same version in Logistic Regression is the FastText
500-dimensional model. However, as stated before, the optimization of these models is not
feasible either in time or computational capacity, so these models are simply not good even

if they could be optimized.

On the other hand, if the confusion matrices and the results over each topic are taken
into account, it can be seen that in every model Topic 3 (Topic 2 in the results shown in the
Appendix C because it starts counting from zero), which is strongly related with UberEats,
the results are very bad. This happens in all the models, and it shows that this topic is
extremely related with the Uber domain and the learning on this topic is hardly transferable
to other platforms and companies. In addition, Topic 7 (Topic 6 in Appendix C has also a
very high relation with the language used in Reddit. Because of this, models do not predict
correctly in other platforms. Nevertheless, Topic 11 and Topic 6 have the higher results in
almost every model, and the rest of the topics are classified with acceptable results. This
shows that both Topic 3 and Topic 7 are two topics closely related to the original training
data and it costs more to adapt them to other sources, but all the other topics, which are

more general, are classified in a correct way.

Because of this, the best model is the Logistic Regression Word2Vec 500-dimensional

118

6.3. EVALUATION

model, with a F-Score of 65.384%, followed by the Gradient Boosting Word2Vec 100-
dimensional model, with a F-Score of 64.583%. It can be seen that the Word2Vec versions
outperform of their FastText versions in all the models, as was already the case with the
results obtained with r/uber and r/uberdrivers.

Thus, it has been proved that, in this domain and with the techniques performed in
this project, it is possible to transfer the learning to other platforms, because although the
results of the models are lower, the results are acceptable and the performance of the models
is correct. It should be noted that there may be errors in the annotations or that the texts
have not been chosen as correctly as possible, since only about a thousand texts have been
taken for the evaluation. All in all, and although the results could even improve depending
on the choice of the evaluation corpus, the results are good and the Transfer Learning in
this domain has been proved.

Next, the impact of the language and the different platforms on the Transfer Learning

analysis will be analyzed.

6.3.2 Cross-Platform Evaluation

As it can be seen in Table 6.2, there are 437 texts from Reddit, 523 from Google Play,
and 198 from Twitter. Google Play and Twitter data contain texts from every application
and tweet (hashtags and usernames from the Uber, Lyft, or Cabify domains) collected, but
the Reddit data of the annotated corpus has been collected from r/Lyft and r/lyftdrivers,
being these texts titles, submissions and comments. To facilitate the understanding of the
results, the distribution of the topics of these annotated texts for each platform can be seen

in Figure 6.2.

Google Play
Reddit
Twitter

200

175

-
o
Q

125

Number of documents
=
~ o
w =3

w
=

n~
wn

=]

Topc 1 Topic 2 Topic 3 Topic 4 Topic 5 Tapic 6 Topc 7 Topic 8 Topic 9 Topic 10 Topic 11

Figure 6.2: Annotated documents per topic and per source

119

CHAPTER 6. CROSS-SOURCE VALIDATION: TRANSFER LEARNING

It can be seen that Google Play data set has a lot of texts belonging to Topic 10 and
Topic 11, while Reddit data set has more distributed values. In addition, Twitter data set
is also distributed, but with less annotated texts.

Table 6.4 shows the results of the Cross-Platform evaluation for each model when the

topic of each text of the annotated data set is predicted.

Google Play | Twitter | Reddit

Word2Vec 100dim 68.628 59.028 | 62.996

Word2Vec 300dim 68.506 58.633 | 61.233

Word2Vec 500dim 70.944 61.598 | 62.603

Logistic Regression | FastText 100dim 68.002 54.478 | 58.717
FastText 300dim 68.687 53.154 | 59.664

FastText 500dim 68.036 51.137 | 58.301

Bigrams - Tf-idf 61.819 50.722 | 55.530

Word2Vec 100dim 69.506 59.809 | 63.048

Word2Vec 300dim 66.445 55.331 | 61.250

Word2Vec 500dim 66.795 62.213 | 61.844

Gradient Boosting | FastText 100dim 65.439 58.217 | 60.534
FastText 300dim 64.832 56.483 | 60.698

FastText 500dim 67.284 53.360 | 60.166

Bigrams - Tf-idf 61.445 46.229 | 55.655

Table 6.4: F-Score results in every platform data set

The above table shows some interesting results. First of all, Google Play data has the
best results in terms of classification. In addition, Twitter data has the worst results. On
the other hand, Reddit texts remain above 60% for almost all models but without reaching
the very good values of the Google Play review rankings.

The good results of the reviews come from the fact that most of the texts talk about
topics related to the application, such as Topic 10 and Topic 11. If we look at the confusion
matrices and the performance tables of each of the models developed in this work, available
in Appendix C, we see that Topic 11 is one of the topics with the best results in all the
models, reaching 80% F-Score in some cases. Therefore, the good results of the Google
Play texts are not only a matter of the texts that have been chosen to annotate, but in
Google Play, being a mobile app store, topics 10 and 11 will tend to be more assiduously
talked about. Therefore, with the developed models, the knowledge learned in Reddit with
posts related to Ride-Hailing can be transferred to Google Play texts with good results in

120

6.3. EVALUATION

general.

In Twitter data, the only models in which F-Score exceeds 60% is in the Word2Vec
500-dimensional versions in both algorithms. Although Twitter results are not very good

results, they are similar to the Reddit results.

These results imply that the application of the developed Machine Learning models to
other sources is not overly good, but it is applicable and can classify posts reasonably well.
However, the results are strongly related to the topics, so those sources that talk more about

those topics will tend to get a more efficient knowledge transfer.

In addition, the results show that Tf-idf-based models are worse than the embeddings
approach used in this project. This is of course to be expected due to the computation of
word similarity in the case of embeddings. Moreover, the FastText approaches have proved
to be worse than those of Word2Vec throughout this project, at least for the performance

and approach of the developed system.

Furthermore, it is clear that, in addition to the relationship between the social network
theme and the ranking performance, posts that are more similar to the originals will perform
better. For example, in this case, as Google Play reviews are written more similarly to

Reddit posts than tweets, the latter will perform worse.

6.3.3 Cross-Language Evaluation

Google Play | Twitter
Word2Vec 100dim 65.392 63.032
Word2Vec 300dim 64.202 59.334
Word2Vec 500dim 66.997 61.830
Logistic Regression | FastText 100dim 66.733 51.670
FastText 300dim 66.337 51.960
FastText 500dim 64.951 54.092
Bigrams - Tf-idf 55.511 44.314
Word2Vec 100dim 64.585 61.536
Word2Vec 300dim 62.010 57.457
Word2Vec 500dim 61.448 59.930
Gradient Boosting FastText 100dim 62.072 61.181
FastText 300dim 61.975 49.718
FastText 500dim 64.143 54.829
Bigrams - Tf-idf 57.996 41.927

Table 6.5: F-Score results in every platform data set with translated Spanish posts

121

CHAPTER 6. CROSS-SOURCE VALIDATION: TRANSFER LEARNING

In this case, the analyzed posts have been translated before the predictions, but, as stated
before, these posts were annotated before this translation process by native Spanish people.
The results are so similar to those explained in the above section, showing that Google Play

predictions are better than Twitter predictions because of the reasons explained before.

There are even models that work better on Twitter for the Spanish texts than for the
predictions of all of them, although this claim can not be properly justified since there are

not enough texts.

Even so, what this section does show is that the automatic translation of texts from
different social media from Spanish to English does not deliberately influence the classifica-
tion process based on embeddings. Therefore, machine translation is a process that, if used
correctly, allows transferring the knowledge learned on English data to other Spanish data

without losing relevant information.

6.4 Results

After all the experiments and evaluations, it was decided to implement the Word2Vec 500-
dimensional classification model in the overall system architecture for post classification and
analysis. To show how the results would look like, some images of some results obtained
from the visualization interface of the system will be put here. The analyzed data were

collected over 15 days, specifically from May 24, 2021 to June 9, 2021.

« C @ O D localhost:8080 w =

Ride-Hailing Dashboard Overview

Reddit posts € Sources of posts

13.8k

Total: 56.4k
@ uber
@ r/uberdrivers

oyt
Tweets @ com.uberca...
28.2k @ com.uberca...

—————————————————————————— @ riyfdrivers

Total: 56.4k @ com.uberca...

@ rluber

”7v

Google Play reviews
14.4k
Total: 56.4k Remove Filters |

Figure 6.3: General Analysis: Weight of the sources

122

6.4. RESULTS

»* Distribution of posts in time

2,000

1,500

1,000

500

24- 25- 26- 27- 28- 29- 30- 31- 1-06- 2-06- 3-06- 4-06- 5-06- 6-06- 7-06- 8-06- 9-06-
05- 05- 05- 05- 05- 05- 05- 05- 2021 2021 2021 2021 2021 2021 2021 2021 2021
2021 2021 2021 2021 2021 2021 2021 2021

——— uber ——Iyft -~ com.ubercab_es - r/uberdrivers —— com.ubercab_en - r/uber 13 p

Remove Filters [

Figure 6.4: General Analysis: Number of posts collected by date and source

¢} Sentiments distribution Q Topic distribution

Application /
Communications / Support
inside the car / Riding / Prices / Different
Requests / Safety-related 1657 Pde-sharing senvices /
" charges / Tolls / Payments
30,000

Job conditions Ratings.
£ 20,000
&
s
2
E Vehicles / Peaple Travelling / Cancelations
2 10000 and requests / Taking a car
1GPS and Navigation tools
0 Delivery service / Tipping / Social media related /
Negative Neutral Positive Cash money Racism / Explicit content

Time related / Differences Legal Coverage /
inthe time of the day /| Employment /
. Concrete areas Unemployment .
Remove Filters [Remove Filters |

Figure 6.5: General Analysis: Topics and Sentiment Analysis Representation

During these 15 days, posts have been collected from the 3 social networks that have
been studied during this project. It can be seen that Twitter has published the most related
posts and that tweets of Uber have been the most collected, followed by r/uberdrivers and
the tweets of Lyft.

On the other hand, there are no excessively large peaks in terms of data collected during
these days, so it does not seem that there has been a particularly interesting event during
this time. Most of the posts are negative, as expected. Furthermore, you can see that most
of the posts have to do with the application or support or are related to pricing.

These results are to be expected and are consistent with what has been studied so far.
Now, the results of the sentiment analysis and the topics for each source will be shown to

try to make a more exhaustive analysis.

123

CHAPTER 6. CROSS-SOURCE VALIDATION: TRANSFER LEARNING

Number of posts

8,000

6,000

4,000

2,000

Negative

Neutral

€3> Sentiments distribution 9 Topic distribution

Time related / Differences.
in the time of the day /
Concrete areas Travelling / Cancelations.
517 and requests / Taking a car
1GPS and Navigation tools

Ratings

inside the car / Riding / Social media related /
Requests / Safety-related Racism / Explicit content
Delivery service / Tipping /| Application /
Cash money Communications / Support
Prices / Different Legal Coverage /
fide-sharing services / Employment /
Charges | Tolls / Payments Unemployment
Job conditions Vehicles / Peaple

Remove Filters i Remove Filters i

Figure 6.6: Reddit Analysis: Topics and Sentiment Analysis Representation

€> Sentiments distribution Q Topic distribution

Negative Neutral Positive

Apphication /
Communications / Support
Job conditions Prices / Different
403 Pde-sharing ;Ium./
15,000 Charges / Tolls / Payments
Inside the car / Riding / Legal Coverage /
Requests / Safety-related Employment /
Unemployment
2 10,000
&
s
g L— g
€ Time related / Differénces " Traveliing / Cancelatons
E 5,000 in the time of the day / and requests / Taking a car
Concrete areas. 1GPS and Navigation tools
0 Ratings ‘Social media related /
Negative Neutral Positive Racism / Explicit content
Vehicles / People Delivery service / Tipping /
Cash money
Remove Filters i Remove Filters i
Figure 6.7: Twitter Analysis: Topics and Sentiment Analysis Representation
€} Sentiments distribution 9 Topic distribution
Ratings
Vehicles / People Application /
g Communications | Support
7,000
Time related / Differences Travelling / Cancelations

6,000 in the time of the day / and requests / Taking a car
q Concrete areas #GPS and Navigation tools
2
g v,
§ 5,000 y
§ Legal Coverage 7 Social media related /
E Employment / Racism / Explicit content

4,000 Jnemployment

3,000 Inside the car / Riding / Prices / Different

Requests / Safety-related tide-sharing services /

Charges / Tolls / Payments
Delivery service / Tipping | Job conditions
Cash money

Remove Filters [Remove Filters

124

Figure 6.8: Google Play Analysis: Topics and Sentiment Analysis Representation

6.4. RESULTS

Firstly, sentiment analysis shows different features for each source. In Reddit and Twit-
ter data, negative posts predominate, while on Google Play it is the positive ones that
predominate. Likewise, on Twitter there are more neutral posts than on Reddit. In terms
of topics, Reddit is dominated by the time-related topic, the travelling-related topic, and
the social media-related topic, while the Ratings topic is the one that appears the least.
It is noteworthy that most of the topics seem to have similar contributions. Twitter is
clearly dominated by the application-related topic and also posts about the topic related to
prices, among others that have lower contributions. Finally, Google Play reviews are clearly
dominated by the Rating topic and the application-related topic, as it is a social network
for mobile application reviews.

From all this, it can be seen that the system works correctly and shows the expected
results according to each type of source. Even so, more exhaustive analysis can be done,
searching by specific words, by entities, identifying other topics within each topic and more.
All this can be done with the real-time system and the dynamic visualization system im-

plemented in this project.

125

CHAPTER 6. CROSS-SOURCE VALIDATION: TRANSFER LEARNING

126

CHAPTER

Conclusions and Future Work

This chapter will describe the achieved goals done by the master thesis, as well as the

problems encountered and what is left for future work.

7.1 Conclusions

In this project, an opinion mining system has been developed. This system, as it has been
demonstrated throughout the entire work, is a multidomain and multiplatform system,
which its performance does not depend on the content of the texts or even the source
from which they originate, although this of course means that, for the system to function
correctly, it is necessary to design a series of specific models for it.

To prove this, texts from the Ride-Hailing domain and the Radicalization domain and
from different sources have been used to feed the system. The analysis of these domains
before and after the processing of the texts shows the feasibility and usefulness of applying
the developed system to domains such as these. Of course, it has been shown the utilities
and benefits that this system can have both in the business world and in more social issues.

Therefore, this system could be useful to Cabify, which can use the system to monitor in
a certain way the interactions in social networks related to its application or services, being
able to improve its services based on what their users want or analyzing the complaints and

opinions of users of competing companies.

127

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Achieved Goals

The achieved goals for this project are the following ones:

e Develop of the whole system: The whole system has been developed, including

every process and virtualized module.

Develop of the visualization module: An interactive visualization module web-
based has been developed. This module will be the most useful part of the system,

because users will be able to interact directly with it to extract customized analyses.

Multi-domain nature of the system: The multidomain nature of the system has
been demonstrated, analyzing both the Ride-Hailing and the Radicalization domains,

obtaining good results.

Multi-platform nature of the system: It has been proven and explained how this

system can work with different social media sources at the same time.

Cross-Platform and Cross-Language system: It has been studied how is the
performance of the system when is fed with texts from a specific source and in a
specific language and then used with texts from other sources or written in different

languages.

Analysis of the Ride-Hailing and the Radicalization domain using the de-
veloped system: The analysis of these domains has been done using the processes
implemented in the system. It has been seen the differences between both domains
and the opinion of users, what they talk about, and how they talk about the different

topics extracted from each domain.

7.3 Problems Encountered

Several problems have appeared during the development of the project. The most important

problems are explained below.

128

e Limited computing capacity: The generation of the models designed in this

project is time-consuming and computationally intensive. The amount of texts used
to train the models, over 1,000,000 in many cases, increases the difficult of the training
task. However, although these parts of the project have been executed on a dedicated
machine with large capacity, the required time of some processes was totally unac-
ceptable, so the decision was made to limit the number of models and not to generate

all the models that were originally going to be generated.

7.4. FUTURE WORK

e Large amounts of data: The performance of the system is based on the training
with large amounts of data and the collection of large amounts too. This can be
difficult to work with this data and leads to certain decisions, such as limiting this
data or splitting it up to work with it separately and then merging it back together
again. In addition, the dataset cleaning processes have been exhaustive, both with
the texts as well as checking that there are no duplicated or invalid elements, to have

the necessary amount of texts and no more.

e Different sources of data: As this project has been centered in NLP techniques,
the source of data is essential to process it. As in this project different sources of data
have been analyzed at the same time and each one needs a specific preprocessing and
treatment, some difficulties have arisen and some processes have had to be redesigned
or variations have had to be implemented depending on the source or language of the

data.

e Situations arising from the COVID-19 crisis: Teleworking, the difficulty of
being able to go to the School and above all the impossibility of communicating with
department colleagues or professors without a telematic meeting has complicated the

development of the project.

7.4 Future Work

The development of the project has covered many topics, achieving all the objectives initially
set. However, some new branches of research and development have been emerging during
the development of the project, for which it was complicated to develop for this project and

which is proposed as a continuation of the project.

e Multi-class and Multi-label classification: The machine learning models devel-
oped in this project have the function of classifying among numerous classes, 11 or
8 classes depending on the domain, which are the topics extracted from the LDA. It
is difficult to annotate these texts with only one of these topics, since the output of
the LDA is the weight of the text in each of the topics. Therefore, it is proposed to
extend the system so that the classification algorithms classify each text, instead of
only in one class, in several. Therefore, multiclass (all the topics that can exist) and

multilabel (all the topics to which a text can belong) models would be developed.

e Training models using different algorithms: Two classification algorithms have

been used in this project: Logistic Regression and Gradient Boosting. It is proposed

129

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

130

to use others, such as Random Forest or other more modern ensembles, such as Ad-

aBoost.

Extend the system to other domains: Two domains have been studied in this
project: the Ride-Hailing and the Radicalization domain. It is proposed to extend
these domains to others such as technological companies, economics, or more social

issues such as bullying prevention or mistreatment in social media.

Adding more processes, such as Emotion Analysis: The system could analyze
more features and thus be more robust. One of these new features could be the

Emotion Analysis.

Adding more features to the classification models: The results of the Senti-
ment Analysis or NER extraction could be introduced as features in the classification
algorithms because it has already been seen that, especially the NER, is closely related

to the extraction of topics and could improve the results.

Extend the system to other languages and other platforms: Other languages,
such as French or Germany, could be introduced to the system and translated with
another translation model. In addition, different social media platforms could be used,

such as Facebook or the Apple Store.

APPENDIX

Ride-Hailing use case Appendix

In this appendix, some figures and explanations of the Ride-Hailing use case that did not

fit in the original body of this document will be shown here.

e 1. Data retrieved per date and per source.

uber_reddit
uberdrivers_reddit
lyft_reddit
lyftdrivers_reddit

25000 1

20000 A

150001

100001

Number of retrieved posts

5000 1

04

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Data collection date

Figure A.1: Total Reddit data retrieved per date

APPENDIX A. RIDE-HAILING USE CASE APPENDIX

120000

100000 A

80000

60000 -

40000

Number of retrieved posts

20000

= uber_twitter
—— |yft_twitter
= cabify twitter

BRSNS S SN

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Data collection date

Figure A.2: Total Twitter data retrieved per date

25000

20000

15000 4

10000 4

Number of retrieved posts

5000

lyft_rider_google

lyft driver google
uber_rider_en_google
uber_driver_en_google
cabify_rider_google
cabify driver google
uber_rider_es_google
uber_driver_es_google

II

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Data collection date

Figure A.3: Total Google Play data retrieved per date

e 2. Word Embeddings representations with 300 and 500 dimensions.

Waord2Vec 300 d mension

oo

200

100

-100

-200

200

100

—100

—200

Figure A.4: Word2Vec 300-dimensional model PCA representation

11111111111
rrrrrrrrrrrr

4

o

fo gt
R ARTS]

7

30

23

—-25

-0

=100

Figure A.5: FastText 300-dimensional model PCA representation

111

APPENDIX A. RIDE-HAILING USE CASE APPENDIX

.w LR L 30 B B L
2)
) 3
]
2 s
= 4
2 o ” ‘
; 3 L] I)
< ra
C .
_ el
=3 —
[}
3
o
g
» ﬂm ¢
S 4 $ O
- &
=
0
_, S ty
i >
(]
o
—
=
<
[}
—
8 =]
. i o0
o=
M~

7%

25

=50

Figure A.7: FastText 500-dimensional model PCA representation

=100

-100

v

e 3. Used lexicon on the PCA Word Embeddings representation.

— Topic 1: pool, ride, convers, passeng , prefer, music, talk, xl, declin, radio
— Topic 2: fuck, drunk, clean, dude, kid, girl, seat, woman, cop, smell
— Topic 3: tip, yeah, eat, cash, food, deliveri, restaur, appreci, awesom, yep

— Topic 4: hour, week, day, weekend, morn, quest, saturday, friday-saturday,

summer, vega
— Topic 5: fare, market, price, cab, increas, nyc, uberz, promot, incent, adjust
— Topic 6: minut, wait, ping, pickup, min, drop, locat, street, arriv, block
— Topic 7: lol, post, sub, reddit, idiot, troll, wow, dumb, sound, news
— Topic 8: money, expens, tax, gas, buy, deduct, profit, incom, spend, full_time
— Topic 9: state, employe, polici, law, legal, Tule, accid, compani, coverag, contract
— Topic 10: rate, star, low, shitti, poor, entiti, bad, improv, give, deserv
— Topic 11: phone, account, email, support, updat, contact, info, card, link,

messag

e 4. Genetic Algorithm for Gradient Boosting optimization (100-dimensional

models).

F-Score

Generation 0 . 5 5 0.6693 0.6966

Generation 1 0.7085 0.6968 0.7046 0.7085 06968 0.7046 0.7085 06968 0.7046

Generation 2

Generation 3

Generation 4

Generation 5

Generation &

Genearation 7

Generation B

Generation 9

Generation 10

T] -] 1 ® Q o .\
o ?3‘2“‘ \’3‘2“‘ Qa‘e"‘" va(e“‘ Qb‘e"‘ o ot P 0

) 1
} R P A G
9" @‘2 93

o
™ ™ @ @ @ ® ©

o
o o
@ ® ® g o o oo

Figure A.8: Genetic Algorithm for XGBoost optimization: Word2Vec - 100-dim

APPENDIX A. RIDE-HAILING USE CASE APPENDIX

F-Score

Generation 0 .| . . o 0.6571 0.6837

Generation 1 06774 06964 0.6969 06774 06964 06969 0.6774 06964 06969

Generation 2

Generation 3

Generation 4

Generation §

Generation &

Generation 7

Generation B

Geanaration 9

Generation 10

o T k] 3 3 © B a o N] © 1 %]
* 3 X x & * 3 3 x x A 3 v 3 v 3
@ @ e e e @ e et et e o o o o o o o
o o2t 9t L L o 22 9t 92t 9 T T a @ T o 72 ¥ ™

Figure A.9: Genetic Algorithm for XGBoost optimization: FastText - 100-dim

e 5. NER Analysis per type of text and per subreddit

ORGANIZATION
MISC
NATIONALITY
IDEOLOGY
DATE

m MONEY

e D |

Topic 11

Topic 10

CAUSE_OF_DEATH
SET

PERSON

HANDLE

PERCENT
CRIMINAL CHARGE
RELIGION

TITLE

= DURATION
LOCATIONS AND PLACES
NUMBERS

Topic 9

E—
—

Topic T

Topc B

-
E— . N
=

Topic 2

0% 10% 20% 30% 40% 50% 60% 70% BO% 90% 100%
Tags weight (%)

Figure A.10: NER tags in r/uber titles

VI

B ORGANIZATION
e MIsC
E NATIONALITY
e IDEOLOGY
. MONEY
W CAUSE_OF_DEATH
SET
Topic 9 I Il o= PERsoN
HANDLF
I | = e
CRIMINAL_CHARGE
TITLE
N DURATION
Topic & _ LOCATIONS AND PLACES
NUMBERS
Topic 5 I [
Topic & I [[
Topic 3 | Il N
— e
0% 10% 20% 30% 40% 50% 60% T0% BO% 90% 100%
Tags welght (%)
Figure A.11: NER tags in r/uber post texts
W ORCANIZATION
. MISC
B NATIONALITY
Lo IDEDLOGY
Topic 11 I I Bl 0 o
- MONEY
I
W CAUSE_OF_DEATH
SET
Topic 9 | [B DR
HANDLE
B -
CRIMINAL CHARGE
TITLE
-

DURATION
Topic & _ .I LOCATIONS AND PLACES
NUMBERS
Topic 5 L .
Topic 4 L H N
] — N
I 1’
L I

60% 70% BO% 0% 100%

0% 10% 20% 30% 40% 50%
Tags welght (%)

Figure A.12: NER tags in r/uber comments

VII

APPENDIX A. RIDE-HAILING USE CASE APPENDIX

Topic 11

Topic 10

Topie 7

Topic &

Topc 5

Topic &

Topc B
Topc 8

Topic 2 1 Il |
Topic 1 I . [D |
0% 10% 20% 30% 40% 60% T0% BO% 90% 100%
Tags weight (%)
Figure A.13: NER tags in r/uberdrivers titles
_—
-
|
Topic 11 [I | =
s ..
|
I E— — | -
Topic 7 | I T m -
|

Topic 4 - .I

. mm =

[R—— m o

= |
0% 10% 20% 0% A% 50% 0% B0% 0%

VIII

Topc B
Topc 5

50%
Tags welght (%)

Figure A.14: NER tags in r/uberdrivers post texts

ORGANIZATION
MISC

NATIONALITY

IDEOLOGY

DATE

MONEY

TIME

CAUSE_OF_DEATH

SET

PERSON

HANDLE

PERCENT
CRIMINAL_CHARGE
RELIGION

TITLE

DURATION

LOCATIONS AND PLACES
NUMBERS

ORGANIZATION
MISC

NATIONALITY

IDEOLOGY

DATE

MONEY

TIME

CAUSE_OF_DEATH

SET

PERSON

HANDLE

PERCENT

CRIMINAL CHARGE
RELIGION

TITLE

DURATION

LOCATIONS AND PLACES
NUMBERS

Topic 11

Topc 10

Topic B

Topc 8

Topie 7

Topic &

Topc 5

Topic &

Topc 3

Topic 2

Topic 1

0%

40% 50% 60% 70% B80% 90% 100%

Tags welght (%)

Figure A.15: NER tags in r/uberdrivers comments

ORGANIZATION
MISC

NATIONALITY

IDEOLOGY

DATE

MONEY

TIME

CAUSE_OF_DEATH

SET

PERSON

HANDLE

PERCENT
CRIMINAL_CHARGE
RELIGION

TITLE

DURATION

LOCATIONS AND PLACES
NUMBERS

IX

APPENDIX A. RIDE-HAILING USE CASE APPENDIX

APPENDIX

Radicalization use case Appendix

In this appendix, some figures and explanations of the Radicalization use case that did not

fit in the original body of this document will be shown here.

e 1. Word Embeddings representations with 300 and 500 dimensions.

eeeece oo

=100

-150 -100 -50 Q S0 100 150 o0

Figure B.1: Word2Vec 300-dimensional model PCA representation - Radicalization domain

XI

APPENDIX B. RADICALIZATION USE CASE APPENDIX

® Topicl
. ¢« - * s
. . Toes
- e ¢ | @ s
50 - - e TopcE
»
[-
. ® o | - C e
. >
o ‘:P e,‘V-rm' . & he
- Padi L L -
. w e W
2 - . . -
o n SN
5 » p‘g’ «*
-5 .

Figure B.2: FastText 300-dimensional model PCA representation - Radicalization domain

Figure B.3: Word2Vec 500-dimensional model PCA representation - Radicalization domain

XII

) o =
" -B, =, L
q.ﬂ » ‘ <%
24 - o2 ”~ e -
o , "

| - . e "; T 3] sz

v
s » W7 ;‘ ~ ¢ T -«
2% ' f ‘
* e w >
50 ‘
- .. . Ay
% .
-

—100 =75 =50 -25 o 25 50 75 100

Figure B.4: FastText 500-dimensional model PCA representation - Radicalization domain

e 2. Used lexicon on the PCA Word Embeddings representation.
— Topic 1: #libya, #usa, #yemen, afghanistan, #lebanon, #iran, #middleeast,
@realdonaldtrump, #saudiarabia, #europ

— Topic 2: obama, palestinian, israel, gaza, jewish, racist, palestin, #alllivesmatt,
#berniesand-#itsoktobewhit, #femin_#cnn

— Topic 3: #brotherhood, game, guy, boy, son, mother, miss, father, fuck, old

— Topic 4: public, research, program, busi, social, job, econom, challeng, polit,

leadership

— Topic 5: #idlib, assad, russia, #assad, idlib, russian, syrian, suffer, as-

sad-regim, #damascus

— Topic 6: islam_state, isi, fighter, turkish, milit, near, #sdf, soldier, captur,

explos

— Topic T7: #kurdistan, muse-#iraq, deal, minist, review, author, kurdistan,

demonstr, prime-minist, iraq

— Topic 8: #islam, #muslim, islam, allah, #quran, religion, #ramadan, #chris-
tian, #allah, god

XIII

APPENDIX B. RADICALIZATION USE CASE APPENDIX

X1V

APPENDIX

Transfer Learning Appendix

In this Appendix Section the results of the Transfer Learning approach are shown. These
results corresponds to the confusion matrices of the algorithms with the different models,

as well as the breakdown of the metrics for each of the topics.

e 1. Breakdown of Reddit data.

Complete Reddit Data Breakdown
Subreddit Endpoint Text Type | Scraped Texts | Rejected Texts | Rejected Texts (%)
Comments Body 203,825 23,358 11.460
Body 22 850 10,932 17.607
r/uber
Title 22,963 2,464 10.730
Total - 249,638 36,754 12.833
Comments Body 877,013 102,575 11.700
Body 67,753 29,313 13.072
r/uberdrivers
Title 68,056 8,185 12.027
Total - 1,012,822 140,073 13.830
Comments Body 226,757 24,349 10.738
Body 20,239 7,313 36.133
r/Lyft
Title 20,239 2,233 11.033
Total - 267,235 33,895 12.684
Comments Body 339,002 11,067 12.114
Body 17,451 8,055 16.158
r/lyftdrivers
Title 17,451 2,405 13.781
Total - 373,904 51,527 13.781
1,903,599 262,249 13.776

Table C.1: The Validation Process in all Reddit data

XV

APPENDIX C. TRANSFER LEARNING APPENDIX

e 2. Model results: Classification metrics and Confussion matrices

Topic | Accuracy | Precision | Recall | F-Score | Support
o - 51.613 64.000 57.143 50 32 4 2 2 0 3 2 1 0 1 3
1 - 63.014 63.014 63.014 73 92 46 2 1 1 5 1 3 3 2 7
2 - 22917 17.826 30.986 23 0 0 11 3 1 0 0 1 1 3 3
3 - 62.037 67.000 64.423 100 92 1 0 67 8 8 2 3 1 3 5
a - 67.089 51.456 | 58.242 103 2 3 0 5 53 3 5 13 3 6 10
5 - 71.311 84.466 77.333 103 4 1 1 3 1 87 1 0 0 3 2 (C]_)
6 - 14.872 38.889 11.667 920 5 15 8 5 1 2 35, 6 3 6 4
P - 51.546 53.763 52.632 03 31 6 8 4 1 1 50 2 13 4
s - 73.333 61111 66.667 108 31 2 3 2 2 6 9 66 4 10
o - 59.055 52.448 | 55.556 143 2 1 12 8 5 4 14 9 6 75 7
10 - 79.927 80.515 80.220 272 7 0 4 3 3 7 11 2 5 11 219

Total | 63.990 64.857 | 63.990 | 64.063 1158

Table C.2: Logistic Regression with Word2Vec-100dim model results

Topic | Accuracy | Precision | Recall | F-Score | Support
[- 51.562 66.000 57.895 50 33 3 3 1 0 4 2 1 0 1 D)
1 - 60.000 57.534 58.741 73 4 42 2 2 0 5 1 0 7 4 6
2 - 22.642 52.174 31.579 23 0 0 12 1 1 0 0 2 1 4 D)
3 - 60.185 65.000 62.500 100 3 1 165 9 8 0 1 3 4 5
4 - 62.195 19.515 55.135 103 4 3 0 5 5 5 6 11 4 8 6
5 - 70.085 79.612 74.545 103 31 2 4 1 8 0 0 2 3 5 (C2)
S - = =0 = 4 1211 6 2 2 32 6 5 4 6
Gl N W 2.3 5 9 5 1 249 3 11 3
8 - 64.286 58.333 61.165 108 01 3 4 3 1 5 13 63 3 12
9 - 55.000 16.154 50.190 143 1 0 11 8 8 3 19 12 5 66 10
10 - 78.967 78.676 78.821 272 0 4 3 3 2 6 9 4 5 12 214

Total 61.226 62.005 | 61.274 | 61.272 1158

Table C.3: Logistic Regression with FastText-100dim model results

XVI

(9%
N=)

LW WO D U O

[=
= O NN o OO 5

—_ —_
oRvu—Rro oD ow

LD Lo~ W0 PN —

== o d ot o

—
o

RO~ oo o o

Gradient Boosting with Word2Vec-100dim

w
(3]

ST O OOl W OO

—w e o RN

—
=

W= w o

Lo T 00 DD = T W

—_
[SEISN

WD O W e T

ok~ T oo —

=R, Rwos oo w

S S e R

—_ DD
_ =

— —
WO WO oY= o

DWW oW OO

w

- —
Dw T oo O
(S —_

12

model results

Gradient Boosting with FastText-100dim model

Topic | Accuracy | Precision | Recall | F-Score | Support
(o] - 55.714 78.000 65.000 50
1 - 60.759 65.753 63.158 73
2 - 21.154 17.826 29.333 23
3 - 68.000 68.000 68.000 100
a4 - 60.638 55.340 57.868 103
5 - 75.862 85.437 80.365 103
6 - 13.182 12.222 12.697 90
7 - 53.261 52.688 52.973 93
8 - 75.904 58.333 65 108
9 - 58.824 18.951 53.435 143
10 - 80.755 TR.6TC 79.702 272

Total 64.335 65.614 64.335 64.583 1158

Table C.4:

Topic | Accuracy | Precision | Recall | F-Score | Support
(o] - 51.471 70.000 59.322 50
1 - 61.644 61.644 61.644 73
2 - 22.034 56.522 31.707 23
3 - 64.286 63.000 63.636 100
4 - 57.447 52.427 54.822 103
5 - 71.681 78.641 75.000 103
6 - 10.000 12.222 11.081 90
7 - 51.648 50.538 51.087 93
8 - 71.591 58.333 64.286 108
9 - 53.153 11.259 16.457 143
10 - 79.104 77.941 78.519 272

Total 61.313 62.661 61.313 61.591 1158

Table C.5:

Topic | Accuracy | Precision | Recall | F-Score | Support
0 - 53.125 68.000 59.649 50
1 - 59.155 57.534 58.333 73
2 - 21.429 52.174 30.380 23
3 - 60.952 64.000 62.1439 100
a - 60.674 52.427 56.250 103
5 - 71.304 79.612 75.229 103
6 - 16.053 38.889 12.169 90
d - 54.839 1.839 54.839 93
8 - 74.713 60.18 66.667 108
9 - 56.391 52.448 1.348 143
10 - 79.926 79.044 79.482 272

Total 62.953 64.140 62.953 63.223 1158

w
e~

TTERD OO WUt WO =

—_ N S O O S

Lo ST O N e e

—_
w o

v oawoe o

Taur—oo

DD O DO = W W

N N N e B S BT)

voo TR oBE RO

AP W RO WD

3

<t — —
AN e O N .
NS ST 00 N DN

11 212

results

NE IR O OO

= O = O = W 1w

— =1 —
STt L TTW SO W W
=

<t

(5]

Table C.6: Logistic Regression with Word2Vec-300dim model results

(C.4)

(C.5)

XVII

APPENDIX C. TRANSFER LEARNING APPENDIX

Topic | Accuracy | Precision | Recall | F-Score | Support
o - 50.000 68.000 57.627 50 M 1 4 1 1 1 3 0 0 2 3
1 - 58.904 58.904 58.904 73 3 43 3 1 0 6 2 2 5 2 6
2 - 19.048 52.174 27.907 23 0 0 12 2 1 0 1 1 0 3 3
3 - 64.356 65.000 64.677 100 3 1 2 65 9 5 2 4 1 5 3
4 - 60.215 54.369 | 57.143 103 6 3 0 3 56 3 6 9 4 6 7
5 - 73.148 76.699 74.882 103 3 2 4 3 2 791 0 1 5 3 (06)
6 - 11.975 37.778 39.766 90 4 15 11 5 2 2 34 4 1 4 8
v - 51.042 52.688 51.852 93 3 3 5 9 5 0 3 49 4 10 2
8 - 67.045 54.630 60.204 108 0 3 3 3 5 1 6 13 59 3 12
o - 58.678 19.650 | 53.788 143 2 0 11 8 10 4 14 9 6 71 8
10 - 79.323 77.574 | 78.439 272 0 2 8 1 2 7 9 5 7 10 211

Total | 61.572 63.163 | 61.572 | 62.020 1158

Table C.7: Logistic Regression with FastText-300dim model results

Topic | Accuracy | Precision | Recall | F-Score | Support

o - 52.381 66.000 58.407 50 33 2 2 2 1 1 3 1 0 0 5

1 - 57.143 60.274 | 58.667 73 3 4 1 3 0 6 0 3 4 3 7

2 - 17.857 13.478 | 25.316 23 0O 0 100 2 2 0 1 2 0 2 4

3 - 62.626 62.000 62.312 100 4 3 2 62 8 7 2 2 1 4)

4 - 54.167 50.485 52.261 103 5 3 0 3 52 5 4 10 5 9 7

5 - 73.043 81.553 77.064 103 4 1 3 3 0 84 2 0 0 4 2 (C?)

6 - 13.182 12,222 12.697 90 6 15 9 5 2 1 38 3 1 4 6

s - 52.747 51.613 | 52.174 93 2 1 4 9 6 1 3 48 2 12 5

s - 56.481 | 63.212 108 0 3 3 2 5 3 3 12 61 4 12

° - 18.951 52.830 143 1 1 15 3 12 1 21 8 7 70 4

10 - 78.571 76.838 77.695 272 5 4 7 5 8 7 11 2 4 10 209
Total 61.399 62.768 | 61.399 | 61.785 1158

Table C.8: Gradient Boosting with Word2Vec-300dim model results

Topic | Accuracy | Precision | Recall | F-Score | Support

o - 50.704 72.000 59.504 50 6 1 3 1 0 1 3 0 0 2 3

1 - 61.672 60.274 | 61.111 73 4 4 1 2 0 5 1 3 4 2 7

2 - 18.966 17.826 | 27.160 23 1 0 11 1 3 0 1 2 0 2 2

3 - 70.455 62.000 65.957 100 3 1 3 62 9 6 2 3 2 3 6

4 - 57.895 53.308 | 55.556 103 5 4 0 2 55 3 5 10 4 8 7T

5 - 71.429 77.670 | 74.419 103 31 2 2 28 2 0 1 4 6 (C8)

6 - 36.458 3s.880 | 37.634 90 7 14 7 3 2 3 35 4 3 6 6

7 - 19.485 51.613 | 50.526 93 2 1 5 8 4 1 5 48 6 11 2

s - 69.663 57.407 | 62.944 108 0 1 4 4 4 3 5 12 62 3 10

o - 53.913 13.357 18.062 143 3 1 16 3 10 2 25 9 3 62 9

10 - 78.195 76.471 77.323 272 7 3 6 0 6 8 12 6 4 12 208
Total | 60.708 62.389 | 60.708 | 61.168 1158

Table C.9: Gradient Boosting with FastText-300dim model results

XVIIT

=
=~

CO W= — D = DO Ot Ut O W=

W W o oo BN

DD WwWwWwOowR WG o

oD wws oo

ot
STo~roo

D 00 DO = =

mosw»—os&olos\]oc:o

0T wwEos wek o

= = ot —
WoolmWwo ow v o

W PR m W OO

| —
DA wWE o w-Twwr—o

W =1 O e Lo =T O

[
LA RN

213

Logistic Regression with Word2Vec-500dim model results

—— W O W WO w R

—_
—_

MR wwiowo ol

—_ —_
T g e w

v D owo ot

W0 WS Wk TN

D wowoII S~ o~

Creww o~ w B w10 ot —

R e wBoon e~ w

— e —
TR wo Do —

ot O

SR wo s oot

= O =1 W =1 Tt W oo

— =
= =

o
— —
SPZNR T wWS

Logistic Regression with FastText-500dim model results

Topic | Accuracy | Precision | Recall | F-Score | Support
(o] - 55.696 88.000 68.217 50
1 - 60.526 63.014 61.745 73
2 - 23.077 52.174 32.000 23
3 - 62.500 65.000 63.725 100
a4 - 65.476 53.398 58.824 103
5 - 74.359 841.1466 79.091 103
6 - 18.7T18 12.222 15.238 90
7 - 54.167 | 55. 914 55.026 93
8 - 79.070 62.963 70.103 108
9 - 60.976 52.448 56.391 143
10 - 80.989 78.309 79.626 272

Total 65.199 66.578 65.199 65.384 1158

Table C.10:

Topic | Accuracy | Precision | Recall | F-Score | Support
(o] - 50.000 70.000 58.333 50
1 - 60.870 57.534 59.155 73
2 - 21.053 52.174 30.000 23
3 - 60.000 63.000 61.1463 100
a - 56.180 18.544 52.083 103
5 - T2.727 T7.670 75.117 103
6 - 12.667 35.556 38.788 90
7 - 51.613 51.613 51.613 93
8 - 67.033 56.481 61.307 108
9 - 54.615 19.650 52.015 143
10 - 76.580 75.73. 76.155 272

Total 60.449 61.506 60.449 60.654 1158

Table C.11:

Topic | Accuracy | Precision | Recall | F-Score | Support
0 - 50.667 76.000 60.800 50
1 - 64.384 64.384 64.384 73
2 - 17.742 17.826 25.882 23
3 - 64.078 66.000 65.025 100
a - 61.458 57.282 59.296 103
5 - 73.451 80.583 76.852 103
6 - 3 42.222 12.697 90
7 - 51.613 53.631 93
8 - 61.111 66.332 108
9 - . 15.455 50.781 143
10 - 79.84 75.735 T7.736 272

Total 62.781 64.593 62.781 63.265 1158

Table C.12:

(%]
oo

O = OO WU = — W

S
S

—
T owwo

W o O

WO WO N D W

—
o5

JAO“DOOOJAOTJAgb—-b—-[\D

cnwarRr I aw oo

Do w = RO e

—_ DN o
STREmE R~ wo— o

vMaS B wo Bl wh wo

o w e o wo

) —
S T~ W Ot Ot 0D
>

Gradient Boosting with Word2Vec-500dim model results

(C.10)

(C.11)

XIX

APPENDIX C.

TRANSFER LEARNING APPENDIX

— o — =) —
SRoRoo o~ otw 0 P U WO W NN

— —_
= o 0 DS OOt O N

Topic | Accuracy | Precision | Recall | F-Score | Support
o - 17.945 70.000 56.911 50 35 1 4 1 1 1 2 0 0
1 - 59.722 58.904 59.310 73 2 43 1 2 0 6 3 2 5
2 - 22.222 52.174 31.169 23 2 0 12 0 2 0 1 2 0
3 - 70.968 66.000 68.394 100 5 2 0 66 10 6 1 1 1
4 - 56.863 56.311 56.585 103 5 4 0 2 58 2 5 10 3
5 - 71.296 T4.757 72.986 103 5 1 2 4 2 77 2 0 2
6 - 35.417 37.778 36.559 90 7 13 8 2 3 2 34 3 3
7 - 52.874 19.462 51.111 93 3 2 5 8 7 1 4 46 4
8 - 67.857 52.778 59.375 108 0 1 3 4 3 3 7 13 57
9 - 55.652 14.755 19.612 143 0 1 14 3 12 3 24 8 5
10 - 78.467 79.044 TR.T55 272 9 4 5 1 4 7 13 2 4
Total 61.054 62.435 61.054 61.355 1158
Table C.13: Gradient Boosting FastText-500dim model results
Topic | Accuracy | Precision | Recall | F-Score | Support
o - 12.683 70.000 53.030 50 35 3 3 1 1 1 2 0 0
1 - 52.308 16.575 19.275 73 6 34 4 1 0 6 2 3 4
2 - 16.216 52.174 24.742 23 1 0 12 1 2 0 1 2 0
3 - 65.306 64.000 64.646 100 3 3 1 64 7 6 0 3 2
4 - 52.000 50.485 51.232 103 7 3 3 2 52 5 3 10 4
5 - 70.874 70.874 70.874 103 4 1 4 5 3 73 3 0 2
6 - 35.443 31.111 33.136 90 9 14 11 5 3 1 28 4 1
7 - 13.617 14.086 13.850 93 4 1 8 7 6 1 5 41 2
8 - 62.195 17.222 53.684 108 1 2 4 5 8 2 3 11 51
9 - 16.667 14.056 15.324 143 3 2 15 4 12 1 21 9 10
10 - 78.049 T0.588 74.131 272 9 2 9 3 6 7 12 10 6
Total 55.699 58.185 55.699 56.444 1158
Table C.14: Logistic Regression with Tf-idf model results
Topic | Accuracy | Precision | Recall | F-Score | Support
o - 37.931 66.000 18.175 50 33 2 1 2 1 1 3 0 2
1 - 18.148 53.425 50.649 73 4 39 3 1 0 7 0 3 4
2 - 20.635 56.522 30.233 23 3 0 13 2 0 0 0 2 0
3 - 51.515 51.000 51.256 100 7 4 1 51 ? 6 3 2 1
4 - 58.537 16.602 51.892 103 9 3 1 5 48 5 2 14 3
5 - 68.421 75.728 71.889 103 4 O 4 4 1 78 1 0 0
6 - 35.106 36.667 35.870 90 8 16 9 5 2 2 33 3 1
7T - 50.000 50.538 50.267 93 3 1 5 10 6 1 5 47 0
8 - 67.188 39.815 50.000 108 2 4 4 6 9 4 5 10 43
9 - 16.825 11.259 13.866 143 2 9 14 5 5 _1 26 6 7
10 - 75.591 70.588 73.004 272 12 3 8 8 3 6 16 7 3
Total 54.922 57.372 54.922 55.362 1158

XX

Table C.15:

Gradient Boosting with Tf-idf model results

,_ .) —
© W D 00 1S W 0o e L SR = IS S I CRER Ot
5% Ut

= — —
803w41~4:~®oo©>—-o>—-

(C.12)

(C.13)

(C.14)

APPENDIX

Impact of this Project

D.1 Introduction

Social media are used daily by millions of users around the world and account for a large
part of the messages circulating on the Internet. Having a system which can monitor these
messages and interactions can greatly facilitate the analysis of users and the exchanged
messages, as well as provide a competitive advantage. Knowing what is being talked about,
how it is being talked about, and in what way makes it possible to identify and observe
situations that would otherwise not be possible.

In this section, the impact of the developed system will be discussed.

D.2 Social Impact

The system is based on the content of posts written in different social media platforms. It
can be used to analyze different domains, and in this project the Ride-Hailing domain and
the Radicalization domain have been analyzed. In the Radicalization domain, it has to be
seen that the system could act as a radicalism identifier, observing people which are talking
about these topics and analyzing how they are talking about it. This can be very useful to
discover new extremist lines or even to detect radicalization in individuals before a serious

situation can occur.

XXI

APPENDIX D. IMPACT OF THIS PROJECT

In the specific case of Islamist radicalism, the developed tool can be used to identify
possible hate speeches towards or from certain groups and thus prevent messages of a
terrorist nature or that can influence society, to prevent some individuals from becoming

extremists.

D.3 Economic Impact

Regarding the economic impact, in this project, one of the studied domains was the Ride-
Hailing domain. Ride-Hailing companies live in a strongly competitive world, where gaining
a foothold in the market can be difficult due to the large number of companies and their
strength. But the developed system could be a good tool to analyze the market and the
opinion of the users, both its users and those of other companies.

In the case of Cabify, as its main competitors in Spain are Uber and Taxis, the system
can give a real-time insight into what its users are complaining about or what users on other

platforms like, so it can grow by satisfying its users and gaining new ones.

D.4 Environmental Impact

The development of the system needs large computational requirements. This can cause
the system consumption when creating the models to be large. In addition, once the system
is brought into production, additional equipment may be needed to back up the data or to
mount the system in RAIDs to ensure data persistence and control over possible failures
that may occur.

Because of this, it is necessary to carry out an energy transition that uses less polluting
energy and more renewable energy sources. On the other hand, it is also necessary to use
green computing techniques to reduce the pollution produced by the use and generation of

energy, not only with this project, but with so many others.

D.5 Ethical Implications

The ethical implications of this project are largely related to user privacy. As the system
uses social media messages, it is mandatory to obtain the consent of the users once the
system is put into production. The reasons for this are that the system developed analyzes
the opinion of users and the way they speak, so that if it were to be misused, specific users
could be individually analyzed for purposes for which this system has not been developed.
Therefore, it is always necessary to obtain the consent of the users before performing any

kind of analysis.

XXII

D.5. ETHICAL IMPLICATIONS

In addition, in the event that the system is used by a public organization and a web
address is provided to access the platform, users should also be asked for their consent to

publish their data on that website.

XXIII

APPENDIX D. IMPACT OF THIS PROJECT

XXIV

APPENDIX

Cost of the System

E.1 Introduction

In this section, all project costs, both human and economical, as well as the resources used

during development, will be discussed.

E.2 Physical Resources

Two machines have been used to develop the system. Firstly, a personal computer (desktop

computer) with the next characteristics has been used:
e CPU: Intel Core 15-3350P 3.10GHz, x86-64 architecture.

e RAM: 16 GB.

Disk: 500 GB - HDD.

Operative System: Ubuntu 20.04 LTS.

Price: At the moment of the develop of the project, the approximated cost of this

computer would be around 400 €.

On the other hand, the second machine was provided by the GSI and consists of a cluster

of machines with the next specifications:

XXV

APPENDIX E. COST OF THE SYSTEM

CPU: Intel Xeon Silver 4210 CPU 2.20GHz, x86_64 architecture.

RAM: 125 GB.

Disk: 27 TB (only a small part available for the development of this project).

Operative System: Ubuntu 18.04 LTS.

Price: At the moment of the develop of the project, the approximated cost of this

machine would be around 1500 €.

The first machine has been used in the deployment of the application and in almost all
the development, while the second one has been used in the training and data processing

phase.

E.3 Human Resources

This project has been developed within the Cabify Chair (Cdtedra Cabify) with an hourly
net salary of 6.5 €. This project, framed within the Master’s Thesis, which in the Mas-
ter’s Degree in Telecommunications Engineering (MUIT) of the ETSIT-UPM consists of 30
ECTS. Being 1 ECTS 30 hours of work, the Master’s thesis requires at least a total of 900

hours. The associated cost to one person is 5,850 €.

E.4 Licenses

Every component, library or package used in this project follows an open source philosophy.

For this reason, the project has been developed without acquiring any type of license fee.

E.5 Total Costs

With the information explained above, the total economic cost of the project amounts to

approximately 7,750 €.

XXVI

Bibliography

[1]

[5]

[6]

[11]

Shakeel Ahmad, Muhammad Zubair Asghar, Fahad M Alotaibi, and Irfanullah Awan. De-
tection and classification of social media-based extremist affiliations using sentiment analysis

techniques. Human-centric Computing and Information Sciences, 9(1):24, 2019.

Rubayyi Alghamdi and Khalid Alfalgi. A survey of topic modeling in text mining. Int. J. Adv.
Comput. Sci. Appl.(IJACSA), 6(1), 2015.

Oscar Araque and Carlos A Iglesias. An approach for radicalization detection based on emotion
signals and semantic similarity. IEEE Access, 8:17877-17891, 2020.

Oscar Araque, Ganggao Zhu, Manuel Garcia-Amado, and Carlos A Iglesias. Mining the opinion-
ated web: classification and detection of aspect contexts for aspect based sentiment analysis. In
2016 IEEFE 16th international conference on data mining workshops (ICDMW), pages 900-907.
IEEE, 2016.

Oscar Araque, Ganggao Zhu, and Carlos A Iglesias. A semantic similarity-based perspective of

affect lexicons for sentiment analysis. Knowledge-Based Systems, 165:346-359, 2019.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic

language model. The journal of machine learning research, 3:1137-1155, 2003.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993-1022, 2003.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics,
5:135-146, 2017.

John G Breslin, Stefan Decker, Andreas Harth, and Uldis Bojars. Sioc: an approach to connect
web-based communities. International Journal of Web Based Communities, 2(2):133-142, 2006.

William B Cavnar, John M Trenkle, et al. N-gram-based text categorization. In Proceedings
of SDAIR-94, 3rd annual symposium on document analysis and information retrieval, volume
161175. Citeseer, 1994.

Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David M Blei. Reading
tea leaves: How humans interpret topic models. In Neural information processing systems,
volume 22, pages 288-296. Citeseer, 2009.

Glen Coppersmith, Ryan Leary, Patrick Crutchley, and Alex Fine. Natural language
processing of social media as screening for suicide risk. Biomedical informatics insights,
10:1178222618792860, 2018.

XXVII

BIBLIOGRAPHY

[13]

[17]

[18]

[22]

[25]

[26]

[27]

[28]

Biraj Dahal, Sathish AP Kumar, and Zhenlong Li. Topic modeling and sentiment analysis of
global climate change tweets. Social Network Analysis and Mining, 9(1):1-20, 2019.

Alvaro de Pablo, Oscar Araque, and Carlos Angel Iglesias. Radical text detection based on
stylometry.

Mark Dredze. How social media will change public health. IEEE Intelligent Systems, 27(4):81—
84, 2012.

Tracie Farrell, Oscar Araque, Miriam Fernandez, and Harith Alani. On the use of jargon
and word embeddings to explore subculture within the reddit’s manosphere. In 12th ACM
Conference on Web Science, pages 221-230, 2020.

Miriam Fernandez, Moizzah Asif, and Harith Alani. Understanding the roots of radicalisation

on twitter. In Proceedings of the 10th acm conference on web science, pages 1-10, 2018.

Christian Fiirber. Semantic technologies. In Data Quality Management with Semantic Tech-

nologies, pages 56-68. Springer, 2016.

Liangjie Hong and Brian D Davison. Empirical study of topic modeling in twitter. In Proceedings

of the first workshop on social media analytics, pages 80-88, 2010.

Tan Horrocks, Peter F Patel-Schneider, and Frank Van Harmelen. From shiq and rdf to owl:

The making of a web ontology language. Journal of web semantics, 1(1):7-26, 2003.
Derek Howard, Marta M Maslej, Justin Lee, Jacob Ritchie, Geoffrey Woollard, and Leon French.

Transfer learning for risk classification of social media posts: Model evaluation study. Journal
of medical Internet research, 22(5):e15371, 2020.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth
Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoy-
chev, et al. Marian: Fast neural machine translation in c++. arXiw preprint arXiv:1804.00344,
2018.

Ora Lassila, Ralph R Swick, et al. Resource description framework (rdf) model and syntax

specification. 1998.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons
learned from word embeddings. Transactions of the Association for Computational Linguistics,
3:211-225, 2015.

Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on human language tech-
nologies, 5(1):1-167, 2012.
Bing Liu et al. Sentiment analysis and subjectivity. Handbook of natural language processing,

2(2010):627-666, 2010.

Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv preprint cs/0205028,
2002.

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated

corpus of english: The penn treebank. 1993.

XXVIII

BIBLIOGRAPHY

[29]

[30]

[34]

[35]

Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linux journal, 2014(239):2, 2014.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed rep-
resentations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546,
2013.

Seyedali Mirjalili. Genetic algorithm. In Ewvolutionary algorithms and neural networks, pages
43-55. Springer, 2019.

Ahmed Abdul Moiz, Pinaki Pal, Daniel Probst, Yuanjiang Pei, Yu Zhang, Sibendu Som, and
Janardhan Kodavasal. A machine learning-genetic algorithm (ml-ga) approach for rapid opti-
mization using high-performance computing. SAE International Journal of Commercial Vehi-
cles, 11(2018-01-0190):291-306, 2018.

Stephen Nabareseh, Eric Afful-Dadzie, and Petr Klimek. Leveraging fine-grained sentiment
analysis for competitivity. Journal of Information & Knowledge Management, 17(02):1850018,
2018.

Thien Hai Nguyen and Kiyoaki Shirai. Topic modeling based sentiment analysis on social media
for stock market prediction. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1354-1364, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

David Ramamonjisoa. Topic modeling on users’s comments. In 2014 Third ICT International
Student Project Conference (ICT-ISPC), pages 177-180. IEEE, 2014.

Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In Proceedings
of the first instructional conference on machine learning, volume 242, pages 29-48. Citeseer,
2003.

Radim Rehurek and Petr Sojka. Gensim—python framework for vector space modelling. NLP
Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2), 2011.

Marian-Andrei Rizoiu, Tianyu Wang, Gabriela Ferraro, and Hanna Suominen. Transfer learning

for hate speech detection in social media. arXiv preprint arXiv:1906.05829, 2019.

Michael Roder, Andreas Both, and Alexander Hinneburg. Exploring the space of topic coherence
measures. In Proceedings of the eighth ACM international conference on Web search and data
mining, pages 399-408, 2015.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The author-topic
model for authors and documents. arXiv preprint arXiv:1207.4169, 2012.

XXIX

BIBLIOGRAPHY

[42] Matthew Rowe and Hassan Saif. Mining pro-isis radicalisation signals from social media users.
In Proceedings of the International AAAI Conference on Web and Social Media, volume 10,
2016.

[43] Anna Schmidt and Michael Wiegand. A survey on hate speech detection using natural language
processing. In Proceedings of the fifth international workshop on natural language processing

for social media, pages 1-10, 2017.

[44] Ainhoa Serna, Jon Kepa Gerrikagoitia, Unai Bernabé, and Tomés Ruiz. Sustainability analysis
on urban mobility based on social media content. Transportation Research Procedia, 24:1-8,
2017.

[45] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a senti-
ment treebank. In Proceedings of the 2013 conference on empirical methods in natural language

processing, pages 1631-1642, 2013.

[46] Robyn Speer, Joshua Chin, Andrew Lin, Sara Jewett, and Lance Nathan. Luminosoinsight/-
wordfreq: v2.2, October 2018.

[47] Shaheen Syed and Marco Spruit. Full-text or abstract? examining topic coherence scores using
latent dirichlet allocation. In 2017 IEEE International conference on data science and advanced
analytics (DSAA), pages 165-174. IEEE, 2017.

[48] Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The penn treebank: an overview. Tree-
banks, pages 5-22, 2003.

[49] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine learning

applications and trends: algorithms, methods, and techniques, pages 242-264. IGI global, 2010.

[50] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-rich
part-of-speech tagging with a cyclic dependency network. In Proceedings of the 2003 Human
Language Technology Conference of the North American Chapter of the Association for Com-
putational Linguistics, pages 252-259, 2003.

[61] Erik Tromp and Mykola Pechenizkiy. Graph-based n-gram language identification on short
texts. In Proc. 20th Machine Learning conference of Belgium and The Netherlands, pages
27-34, 2011.

[52] Walter JB Van Heuven, Pawel Mandera, Emmanuel Keuleers, and Marc Brysbaert. Subtlex-
uk: A new and improved word frequency database for british english. Quarterly journal of
experimental psychology, 67(6):1176-1190, 2014.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

[54] Hongwei Wang, Song Gao, Pei Yin, and James Nga-Kwok Liu. Competitiveness analysis

through comparative relation mining. Industrial Management € Data Systems, 2017.

XXX

BIBLIOGRAPHY

[55] Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. Dublin core metadata for resource
discovery. Internet Engineering Task Force RFC, 2413(222):132, 1998.

[56] Adam Westerski, Carlos Angel Iglesias, and Fernando Tapia Rico. Linked opinions: Describing
sentiments on the structured web of data. In SDoW@ ISWC, 2011.

[57] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-

ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[58] Ming Yan, Jitao Sang, Tao Mei, and Changsheng Xu. Friend transfer: Cold-start friend rec-
ommendation with cross-platform transfer learning of social knowledge. In 2013 IEEE Inter-
national Conference on Multimedia and Ezpo (ICME), pages 1-6. IEEE, 2013.

XXXI

