
MÁSTER UNIVERSITARIO EN INGENIERIA DE

REDES Y SERVICIOS TELEMÁTICOS

TRABAJO FIN DE MÁSTER

Design and implementation of a monitoring framework for a
DevOps life-cycle based on semantic techniques and the

OSLC standard

VÍCTOR ÁLVAREZ PROVENCIO
2022

TRABAJO DE FIN DE MASTER

T́ıtulo: Diseño e implementación de un framework de monitorización

para el ciclo de vida DevOps basado en técnicas semánticas

y en el estándar OSLC

T́ıtulo (inglés): Design and implementation of a monitoring framework for

a DevOps life-cycle based on semantic techniques and the

OSLC standard

Autor: Vı́ctor Álvarez Provencio

Tutor: Álvaro Carrera Barroso

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR .

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE MÁSTER

Design and implementation of a monitoring framework for a
DevOps life-cycle based on semantic techniques and the OSLC

standard

2022

Resumen

El uso de la metodoloǵıa DevOps ha tenido un importante incremento en empresas del

ámbito tecnológico. Esto se debe a la agilidad que proporciona al ciclo de vida de un pro-

ducto software aśı como la facilidad de integración entre dos de los campos mas importantes

en las empresas tecnológicas: desarrollo y operaciones. Por un lado, una relación mas fluida

entre los componentes de estos dos campos supone una mayor rapidez de gestión ante cam-

bios inesperados, aśı como permite la automatización de despliegues o procesos que pueden

ser de vital importancia para responder ante una subida de demanda de servicios por parte

de los usuarios.

En la arquitectura tecnológica de estas empresas suelen utilizarse mas de una her-

ramienta DevOps, cada una para la fase del ciclo de vida para la que sea útil. Esto supone

la necesidad de tener estas herramientas interrelacionadas entre śı de manera interoperable

y sencilla de gestionar. Esto no siempre resulta posible ya que cada herramienta puede

tener sus propias configuraciones e independientes del resto de herramientas. Por otro lado,

tener correctamente monitorizadas estas herramientas para poder responder ante cambios

anómalos o ante cambios en otras herramientas de la arquitectura, se convierte en uno de

los pilares fundamentales de estas empresas.

Bajo este contexto, este trabajo plantea una solución al problema de integración de las

diferentes herramientas DevOps mediante el uso del estandar abierto OSLC y los principios

de la web semántica. Por otro lado, este trabajo plantea un framework de monitorización

de métricas software de la herramienta Stackstorm, aśı como de métricas sociales mediante

la extracción y análisis de datos procedente de fuentes sociales como Twitter. Este trabajo

forma parte del proyecto SmartDevOps1 cuya función es integrar herramientas de DevOps

con tecnoloǵıas semánticas y enfoque Big Data y este trabajo pretende servir de ejemplo

para un caso de uso concreto del mismo.

Palabras clave: OSLC, DevOps, Stackstorm, SmartDevOps, Linked Data,

Web Semántica

1https://smartdevops.gsi.upm.es

VII

https://smartdevops.gsi.upm.es

Abstract

The adoption of the DevOps method has increased considerably in technology companies.

This is due to the agility it provides to the life cycle of a software product, as well as

the ease of integration between two of the most important fields in technology companies:

development and operations. On the one hand, a more fluid relationship between the

components of these two fields means faster management of unexpected changes, as well

as allowing the automation of deployments or processes that can be of vital importance to

respond to an increase in demand for services by the IT company demand for services from

users.

In the technological architecture of these companies, more than one DevOps tool is

usually used, each for the lifecycle phase for which it is useful. This implies the need to

have these tools interrelated with each other in a way that is interoperable and easy to

manage. This is not always possible, since each tool can have its own configurations and

be independent of the rest of the tools. On the other hand, having these tools correctly

monitored to be able to respond to anomalous changes or changes in other tools of the

architecture becomes one of the fundamental pillars of these companies.

In this context, this work proposes a solution to the problem of integration of different

DevOps tools through the use of the open standard OSLC and the principles of the semantic

web. On the other hand, this work proposes a framework for monitoring software metrics of

the Stackstorm tool, as well as social metrics by extracting and analyzing data from social

sources such as Twitter. This work is part of the SmartDevOps project whose function is to

integrate DevOps tools with semantic technologies and Big Data approach, and this work

is intended to serve as an example for a specific use case.

Keywords: OSLC, DevOps, Stackstorm, SmartDevOps, Linked Data, Se-

mantic Web

IX

Agradecimientos

A mis padres.

Agradecer también al personal del Grupo de Sistemas Inteligentes, en especial a Álvaro

Carrera Barroso, por la ayuda todo este tiempo y a Jorge y a Guillermo por hacer el trabajo

mas ameno.

A los trabajadores y trabajadoras de la Universidad Politécnica de Madrid.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

Listings XIX

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 3

1.3 Project goals . 4

1.4 Structure of this document . 5

2 Enabling Technologies 7

2.1 Development and Operations (DevOps) . 8

2.1.1 StackStorm . 10

2.1.2 Airflow . 11

XIII

2.1.3 MongoDB . 13

2.1.4 Apache Kafka . 14

2.1.5 The Elastic Stack . 16

2.1.5.1 Elasticsearch . 16

2.1.5.2 Kibana . 18

2.1.5.3 Logstash . 18

2.2 Semantic Web . 19

2.2.1 Linked Data . 21

2.2.2 RDF (Resource Definition Framework) 22

2.2.3 Protégé . 24

2.2.4 Social metrics and sentiment analysis 25

2.2.4.1 GSICrawler . 26

2.2.4.2 Senpy . 27

2.2.5 Apache Jena Fuseki . 29

3 Semantic models 31

3.1 Social Models . 31

3.1.1 Extracting data with GSICrawler . 32

3.1.2 Sentiment analysis with Senpy . 33

3.1.2.1 Senpy Annotations . 34

3.1.2.2 SLIWC - LIWC dimensions represented as a SKOS taxonomy 35

3.1.2.3 Morality - MFT concepts represented as a SKOS taxonomy 38

3.1.2.4 Onyx Ontology . 39

3.2 Software Models . 40

3.2.1 OSLC Core . 40

3.2.1.1 Service Provider . 45

3.2.1.2 OSLC Resources . 46

3.2.2 OSLC Automation Specification . 47

3.2.3 OSLC Events and Actions . 49

3.2.4 Tracked Resource Set Specification 52

3.2.5 Stackstorm-OSLC semantic model 53

4 Architecture 57

4.1 Overview of the Architecture . 58

4.2 Architecture of StackStorm OSLC Adapter 62

4.3 Architecture of Social Monitoring . 64

5 Prototype implementation 67

5.1 Scenario deployment . 68

5.2 Stackstorm OSLC Adapter Case Study . 72

5.2.1 Monitoring module . 74

5.2.2 Graph Manager . 75

5.2.3 Kafka instance . 80

5.3 Social metrics Case Study . 81

5.3.1 Airflow . 81

5.3.2 GSICrawler . 82

5.3.3 Preprocessing . 84

5.3.4 Senpy . 85

5.3.5 Data Storage and Visualization . 86

6 Conclusions and Future Work 89

6.1 Conclusions . 89

6.2 Achieved Goals . 90

6.3 Future Work . 91

A Project Impact 93

A.1 Introduction . 93

A.2 Social Impact . 93

A.3 Economic Impact . 94

A.4 Environmental Impact . 94

A.5 Ethical Implications . 94

B Project Budget 97

B.1 Introduction . 97

B.2 Human Resources . 97

B.3 Physical Resources . 98

B.4 Total Costs . 99

C Stackstorm ontology 101

Bibliography 105

List of Figures

2.1 Example of DevOps lifecycle . 8

2.2 Stackstorm Architecture . 10

2.3 Apache Airflow Arquitecture . 12

2.4 Apache Airflow label management example 12

2.5 MongoDB Architecture . 13

2.6 Example Apache Kafka event diagram . 15

2.7 Partitions in Kafka topics . 16

2.8 Elasticsearch Architecture Example . 17

2.9 Elastic Stack Architecture . 18

2.10 Logstash Architecture Example . 19

2.11 Linked Data principles . 22

2.12 RDF Structure Description . 23

2.13 RDF Graph Example . 23

2.14 Protégé interface example . 25

2.15 GSICrawler Web Interface . 26

2.16 Senpy Architecture . 27

2.17 Senpy Web Interface . 28

2.18 Apache Jena Diagram . 29

XVII

3.1 Senpy Annotations Ontology Diagram . 35

3.2 SLIWC Ontology Diagram . 37

3.3 Morality Ontology Diagram . 38

3.4 Onyx Ontology Diagram . 39

3.5 OSLC integration diagram . 41

3.6 OSLC domains diagram example . 42

3.7 OSLC Core Concepts and Relationships . 44

3.8 Relationships between Automation Resources 48

3.9 OSLC Actions domain . 51

3.10 OSLC Events domain . 51

3.11 Stackstorm-OSLC model . 54

3.12 Stackstorm Rule Semantic Model . 55

3.13 Stackstorm Actions - OSLC Semantic Model 56

4.1 SmartDevOps platform general architecture diagram 58

4.2 SmartDevOps OSLC Layer . 59

4.3 Stackstorm-OSLC General Diagram . 60

4.4 Stackstorm OSLC Specific Adapter Diagram 63

4.5 Social Metrics Pipeline . 64

5.1 Stackstorm MongoDB Architecture . 68

5.2 Stackstorm OSLC adapter modules . 72

5.3 Stackstorm-OSLC endpoints . 73

5.4 Monitoring module diagram . 74

5.5 Graph Manager Stackstorm-OSLC . 76

5.6 Graph Manager interaction with Kafka . 78

5.7 Graph Manager ST2Logs endpoint . 79

5.8 Kafka Producer/Consumer Diagram . 80

5.9 Pipeline Flowchart . 82

5.10 GSICrawler input-output example . 83

5.11 Data Preprocessing Example . 84

5.12 Output example with Senpy and LIWC, MFT plugins 86

5.13 Kibana Dashboard with number of tuits and timeline for hashtags 87

5.14 Kibana Dashboard with popular hashtags 87

5.15 Kibana Dashboard with Sentiment Analysis 88

5.16 Kibana Dashboard with Data Location . 88

5.17 SPARQL Endpoint . 88

Listings

2.1 N3 Representation Example . 24

3.1 Code for mapping tuits into schema ontology 33

3.2 Example of OSLC Service Provider representation in N3 46

3.3 Example of OSLC Resources List by make a HTTP GET into a queryBase 46

3.4 Example of OSLC Automation Result representation in N3 notation 49

3.5 Example of a changeLog in TRS in N3 . 53

5.1 Part of code from the DockerCompose file for MongoDB ReplicaSet deployment. 69

5.2 Script for the creation of a Replica Set of MongoDB. 70

5.3 Part of code from the DockerCompose file for KAFKA deployment. 71

5.4 Example of an update rule log from the Stackstorm MongoDB 74

5.5 Stackstorm representation as a OSLC Service Provider 76

5.6 Stackstorm rules representation as a OSLC Resources 77

5.7 OSLC Action representation in N3 for updating a Stackstorm rule 78

5.8 SPARQL Query for extracting the OSLC Action type 79

5.9 DAG code example for a daily execution . 81

XXI

CHAPTER1
Introduction

In this section, the context, objectives of the project and an introduction to the devel-

oped system will be related.

1.1 Context

In recent years, technology companies, due to the increased demand for features and services

by users, have invested much of their activity in improving communication between their

two main areas: development and operation. Therefore, in order to maintain the quality

of service, the use of DevOps methodology is increasing. These methodologies or sets of

practices consist of the use of certain tools that are capable of automatically and easily

interconnecting all parts of the life cycle of a software product [1]. Therefore, DevOps tools

are becoming a fundamental pillar of the activity of these technological companies. This

increase brings as a consequence a set of challenges for these technology companies, which

can range from achieving interoperability of these tools to maintaining proper monitoring

of them to avoid catastrophes or unexpected results.

1

CHAPTER 1. INTRODUCTION

On the one hand, one of the main challenges that a company may face when intercon-

necting different DevOps tools is that each of them may have their own characteristics that

make compatibility with the others difficult, either because they are from different man-

ufacturers or because they have incompatible configurations. Therefore, the use of open

standards that allow their interoperability, regardless of the manufacturer or the configura-

tions they have, could be an important step forward. This project proposes the use of OSLC

(Open Services for Lifecycle Collaboration) as an open standard based on the semantic web

and Linked Data principles as a common vocabulary for these tools. This will allow to

set aside the limitations mentioned above, as well as establish a way to be able to include

other DevOps tools in the future without the need for detrimental adjustments to system

configurations. Therefore, this project will propose an architecture based on the use of the

OSLC standard and the semantic web for the interoperability of DevOps tools.

On the other hand, a bad monitoring of these tools could lead to an incorrect reaction to

unexpected events. This could have unpredictable consequences in terms of both security

and system performance. For this reason, it is necessary to create a monitoring framework

capable of reacting to unexpected events. Therefore, this project will propose the design and

development of a monitoring framework based on OSLC events and actions that will be able

to export different types of metrics. Firstly, the monitoring of software metrics will consist

of the design and development of an OSLC adapter for the DevOps Stackstorm tool whose

function will be, under the principles of Linked Data, to monitor all the events produced in

this tool. On the other hand, this framework will also be able to extract and analyze social

metrics through social networks such as Twitter. This will be done by deploying a pipeline

that will extract from Twitter information related to certain software, apply sentiment and

emotion analysis algorithms, as well as other types of operations and expose it to the user

through a Dashboard. The advantage of the framework being able to export both types

of metrics will give a more global vision of the system’s tools. On the one hand, it will

be possible to monitor the events of the tool and on the other hand, it will be possible to

complete this information with the feedback of the users with respect to a certain service

or functionality. a given service or functionality.

In conclusion, this project proposes a way to develop a monitoring framework based on

the OSLC standard and the advantages of Linked Data that responds to the new challenges

arising from the increased use of DevOps methodologies, through the ability to export social

metrics and software metrics of a given DevOps tool.

2

1.2. MOTIVATION

1.2 Motivation

This project is part of the SmartDevOps1 project, a collaboration between the Intelligent

Systems Group (UPM) and Taiger2 for the integration of DevOps tools with semantic

technologies.

Modern methodologies in technology companies require the use of tools and practices

that automate the entire software development process. The objective of these methodolo-

gies is usually to cover the updates and evolution of the technological infrastructure. It is

in this context that the use of DevOps tools (acronyms for ”Development” and ”Opera-

tions”) becomes one of the most used methodologies to pursue the effective production of

high-quality software systems. These tools are very useful, especially in Big Data systems,

because of their ability to unite the two fields of development and operations needed to

deal with large amounts of data. This is why most Big Data systems today are based on

a type of DevOps methodology. Despite the increase in their use, these types of system

have certain limitations when each of the tools used has its configurations, which are not

always fully compatible with each other. Therefore, the use of an open standard such as

OSLC (Open Services for Lifecycle Collaboration) that is common to all of them can free

the system from this limitation based on the benefits of Linked Data.

On the one hand, adding a monitoring layer to the whole process is very beneficial for

several reasons. This monitoring framework will be comprehensive and will have several

benefits. On the one hand, the main one is that it allows us to react much faster to unex-

pected changes and allows administrators to manage these changes by collecting software

metrics. These metrics consist of all the events that occur in the different DevOps tools

that make up the system, to have a complete view of the events that occur in the system.

On the other hand, this monitoring framework will be able to extract, analyze social metrics

through social networks (mainly Twitter), and expose them through a dashboard easy to

understand by users or developers.

In conclusion, the main motivation of this project will be to design and develop a mon-

itoring framework based on the semantic web and the OSLC standard to allow integration

of DevOps tools through the use of a common vocabulary. This framework will be able to

monitor software metrics of the DevOps environment by monitoring all events produced by

a DevOps tool and it will be able to monitor social metrics through Twitter.

1https://smartdevops.gsi.upm.es
2https://taiger.com

3

https://smartdevops.gsi.upm.es
https://taiger.com

CHAPTER 1. INTRODUCTION

1.3 Project goals

On the one hand, the OSLC adapter must be able to provide a monitoring layer to manage

the events that occur in Stackstorm, as well as to detect unexpected changes in its operation.

To do so, it must be able to obtain software metrics through monitoring based on OSLC

actions and events.

On the other hand, this framework will be able to obtain social metrics by extracting real

data from Twitter, related to a certain software or service. These metrics will be received

by the analysis layer, which will be in charge of applying sentiment and emotion analysis

algorithms, using semantic ontologies, to show in detail the user feedback to that software

or service. A visualization layer will be added through which the user can see the result of

all the operations performed on these social metrics. All this will be carried out through a

pipeline formed by a set of software services that will allow the automatic and sequential

execution of each of the tasks related to the extraction, analysis and visualization of social

metrics.

In addition, the project will aim to enable the integration of different DevOps tools

through the use of an open and common standard. In this case, OSLC (Open Services for

Lifecycle Collaboration) will be used to overcome the limitations[2] that each DevOps tool

that is part of the system may have, either because it comes from a different manufacturer

or because it has specific configurations that make it incompatible with the others.

In conclusion, the main objective of the project can be summarized in the following

points:

• Design and development of a Stackstorm-OSLC adapter that allows the monitoring of

all the events produced in it. In this project the events will consist of the modification

(activation/deactivation), deletion or creation of Stackstorm rules.

• Design of an ontology to semantically model the Stackstorm rules to adapt it to OSLC

concepts.

• Design and development of a module for the extraction and analysis of social metrics

through Twitter.

• Design of an architecture that allows the integration of tools in a DevOps environment

in the future, under the use of the OSLC standard and distributed communication

through Kafka.

4

1.4. STRUCTURE OF THIS DOCUMENT

1.4 Structure of this document

The remainder of this document is structured as follows.

Chapter 2: Enabling Technologies. This chapter will explain the context on which

this project is based, by explaining the most important technologies and tools used in the

development of the system.

Chapter 3: Semantic Model. This chapter explains the entire semantic layer that

is part of the project. On the one hand, all the ontologies used for the development of the

social metrics extraction and analysis pipeline will be explained, as well as the software

models such as OSLC with its different domains and classes, and the model created to

semantically define the Stackstorm rules.

Chapter 4: Architecture. This chapter will explain the entire architecture of the

project. All the modules involved in the Stackstorm-OSLC adapter and its monitoring

framework, as well as all the software used for the social metrics pipeline and its intercon-

nection, will be explained.

Chapter 5: Prototype implementation. This chapter will explain all the details

of the technical implementation of the different modules for monitoring both the software

metrics and the social metrics. This chapter does not intend to describe all the code used,

but to explain to the reader the methodology used and the development carried out for each

part of the system.

Chapter 6: Conclusions This chapter will explain all conclusions and future ideas

to extend and improve this work in the future.

Appendixes Here we will document the semantic model to define the Stackstorm rules

according to the principles of the Semantic Web and Linked Data. Here, different impacts

of the project, such as ethical or environmental impact, will be explained.

5

CHAPTER 1. INTRODUCTION

6

CHAPTER2
Enabling Technologies

This section will explain the main concepts necessary to understand the development of the

project, as well as the specific tools and services used for the project. First, the general

technologies necessary to understand the project will be described. These general technolo-

gies can be separated into two; DevOps and Semantic Web. These general technologies

will have as a subsection the respective services and technologies that will be used in the

project and that can be encompassed within them. Of the tools discussed in the following,

not all will have the same function. That is, some of them will be part of the pipeline

that will allow the project to extract social metrics for subsequent analysis, indexing, and

visualization. Others, such as StackStorm, will be a major part of the OSLC standard and

its integration with other tools through the use of Linked Data.

Before we begin to describe the DevOps technologies used in the project, it is necessary

to frame this project within the framework of DevOps practices and methodologies. This

overview will serve to understand not only the purpose of the project but also the usefulness

of using the specific services that will be described. It is also necessary to explain the

importance of Linked Data and how its benefits form an important part of the usefulness

of the project, as well as its own development.

7

CHAPTER 2. ENABLING TECHNOLOGIES

2.1 Development and Operations (DevOps)

The DevOps concept will be vital for understanding the project. DevOps tools have become

a mainstay of technology companies. The use of these tools leads to more fluid ongoing

communication, collaboration, integration, visibility, and transparency between the two

main camps in these companies; development teams (Dev) and their counterparts in tech-

nology operations (Ops). This seamless communication between the two domains brings

many benefits to the user, who can receive the service in significantly less time. With the

increase in user demand for new services and functionalities, this benefit becomes one of

the key benefits in today’s technology companies’ lifecycle. DevOps concept corresponds

to the combination of the words ”Development” and ”Operations” and refers to a set of

practices whose objective is to streamline processes so that they move more smoothly from

the creation of a functionality or software improvement (development) to the deployment

in a production environment (operation) so that it can be used by the user. Therefore, the

seamless relationship between the two fields enables faster delivery of value to the user.

DevOps methodology includes several phases of the software product lifecycle, and each

of them will have several characteristic tools with specific functionalities. [3]

Figure 2.1: Example of DevOps lifecycle

DevOps methodology can be applied to very different delivery models but must be

adapted to the environment and the product architecture[4]. This requires a fairly high

integration capability of the different tools that address specific functionalities at each stage.

For example, in the case of highly secure cloud-based delivery, these delivery models need

specific architecture and hardware changes.

8

2.1. DEVELOPMENT AND OPERATIONS (DEVOPS)

There are several methodologies involved in DevOps such as Infrastructure as Code,

Continuous Integration, and Continuous Deployment (CI/CD), Cloud-Native DevOps, Mi-

croservices with DevOps, and DevSecOps. It is an evolving field that uses various open

source and enterprise tools. With the growing popularity of cloud and SaaS services, De-

vOps methodologies are available as a managed service from the cloud provider. These

DevOps methodologies cover all phases of the lifecycle of a software project, which will

be important to introduce to understand the need for this project and the advantage of

integrating a DevOps tool with the semantic web. These phases are: [5]

1. Project Tasks Planning: This mainly involves the project management aspects of

the software life cycle.

2. Development: This includes the development of the code, as well as the collaboration

of the development team in it.

3. Building the Code: Consists of transforming the code into an executable and de-

ployable element.

4. Deploy the Code: The deployment in the test or production server, which is the

project or software execution environment.

5. Test the Deployed Resources: Testing for the quality assurance of the code de-

ployed on the test servers.

6. Package the artifacts: There may be a phase involved that packages deployable

artifacts ready for production that can be shared through various channels.

7. Version-Release Cycle: This includes the lifecycle of enhancements and new re-

leases.

8. Scaling and Upgrading: This involves performance optimization and infrastructure

scaling for load balancing of deployable artifacts or services.

9. Support and Maintenance of the Services: This involves production support

and monitoring, problem escalation, problem fixing, and resolutions for services or

applications.

As mentioned above, each phase of a product life cycle will have different tools or services

with functionalities specific to that phase. In this project, event-based task automation

tools, such as StackStorm or ELK-based tools, will be used for information visualization or

indexing (Elasticsearch and Kibana).

9

CHAPTER 2. ENABLING TECHNOLOGIES

2.1.1 StackStorm

StackStorm is a platform for the integration and automation of services and tools[6]. Is

event-driven automation framed within Infrastructure as Code (IaC). This means that it

can deal with infrastructure management and provision through code rather than manual

processes[7]. That is, all parts of StackStorm can be programmed and configurable through

programming languages such as Python or through.YAML files. Stackstorm has a modular

architecture that allows its components to communicate via the message bus. The main

architecture of this tool can be seen in the figure below.

Figure 2.2: Stackstorm Architecture

The complete architecture consists of other components, such as triggers, workflows,

packs, actions, rules and audit trail. The components of interest for the project will

be explained below[6]:

• Triggers: StackStorm representations of external events. These triggers can be a

consequence of generic events, such as webhooks or timers, or triggers associated with

external tools. Custom triggers can also be defined through the Python development

of the plugin for a given sensor.

10

2.1. DEVELOPMENT AND OPERATIONS (DEVOPS)

• Actions: StackStorm outbound integrations. These actions can be generic (REST

calls, ssh, etc.), integrations with other tools (OpenStack, Docker, etc.), or custom

actions. These actions can be invoked manually by the user via the CLI or API, or

used and called part of rules.

• Rules: They associate triggers with actions by applying matching criteria. When a

trigger occurs as a result of an event (external or internal), a certain action is triggered.

• Audit trail: Stackstorm’s architecture has a way of recording and storing the details

of what the tool produces. This log output allows auditing by a client or an external

administrator to prevent anomalous behavior. This audit trail allows integration with

other visualization tools such as Logstash, which will be very useful for the project.

Stackstorm will have fundamental relevance in the project since it will be the DevOps tool

whose events will be monitored by the monitoring framework.

2.1.2 Airflow

Airflow is an Apache platform to create, schedule, and monitor workflows on a schedule

basis. It is a way to automate the execution of workflows in a scalable, dynamic, and

extensible way. It is fully written in Python and one of its main features is the integrations

it has with other tools with Microsoft Azure or Amazon Web Services.

As it is an open source platform, it can be perfectly adapted to the needs or charac-

teristics of the architecture [8]. Airflow creates workflows as directed acyclic networks

(DAGs) of tasks, and the scheduler is responsible for executing the tasks on multiple work-

ers following the specified dependencies. A DAG (Directed Acyclic Graph) is a data circuit

defined in Python code. Each DAG represents a sequence of tasks to be executed organized

to indicate the relationships between tasks in the Airflow user interface. These DAGs can

be as complex as the administrator wants. Airflow can be used for any batch data circuit,

so its use cases are as diverse as they are diverse.

Due to its extensibility, this platform is particularly well suited for organizing tasks with

complex dependencies on multiple external systems. By writing circuits in code and using

the various available plugins, Airflow can be integrated into any dependent system from a

unified platform for management and monitoring[9]

11

CHAPTER 2. ENABLING TECHNOLOGIES

An Airflow installation generally consists of the following components: [10]

• Scheduler: Handles both triggering scheduled workflows, and submitting Tasks to

the executor to run.

• Executor: Handles running tasks. Most production-suitable executors push the

execution of tasks out to workers.

• Web Server: User interface to inspect, trigger, and debug the behavior of DAGs

and tasks.

• Metadata Database: Used by the scheduler, executor, and web server to store the

state.

Figure 2.3: Apache Airflow Arquitecture

Figure 2.4: Apache Airflow label management example

In the case of this project, Apache Airflow will be in charge of defining tasks and produc-

ing their continuous execution depending on the context. When workflows are defined as

code, they become more maintainable, versionable, testable, and collaborative. In the case

of this project, it will be in charge of interrelating the social metrics gathering task, the pre-

processing task, the sentiment analysis task, the indexing task, and finally the visualization

task.

12

2.1. DEVELOPMENT AND OPERATIONS (DEVOPS)

2.1.3 MongoDB

MongoDB is a document database, distributed at its core and free to use, offering an

advanced query and indexing model. It offers drivers for more than 10 languages, of which

we will be interested in its development in Python. The MongoDB document model offers

greater scalability and flexibility, which is an advantage for processing large amounts of data.

Documents stored in MongoDB are similar to JSON, as fields can vary between documents,

and the data structure can be changed over time to suit each use case. Queries, indexing,

and real-time aggregation offer several advantages when working with these data.[11]

MongoDB allows for horizontal scaling. This means that the information can be spread

across several servers so that each server has a part of the complete data set. This process

is called sharding. The set of servers that contains the entire data set is called a sharded

cluster. To ensure high availability of the cluster, each shard is configured as a replicated

cluster. This ensures the fault tolerance of each shard separately, regardless of which shard

stores a particular piece of data. When a query is made on a fragmented set, it must go

through a routing process that indicates where to look for the data within the set. [12]

Therefore an example of the basic architecture of MongoDB in the project could be:

Figure 2.5: MongoDB Architecture

The main advantages of MongoDB are: [13]

• Availability: Replication capacity in the face of errors and self-healing recovery.

• Scalability: This allows horizontal scalability to increase the number of nodes de-

13

CHAPTER 2. ENABLING TECHNOLOGIES

pending on the data load demanded by the user or application.

• Workload isolation: Ability to run operational and analytical workloads in the

same cluster.

• Locality: Ability to place data on specific devices and in specific geographies for

governance, class of service, and low-latency access.

Another interesting aspect that will be used in this project will be the ability of Mon-

goDB to perform replication. Replication allows MongoDB to store the same data in dif-

ferent instances, so that if one of the nodes becomes corrupted, the system will be able to

access any of the other nodes. In this project, a replica set will be managed to obtain this

decentralization. The importance of this database in the project lies in the fact that, as

previously mentioned, the logs of the events and actions produced by/in Stackstorm are

stored in MongoDB. Therefore, it will be useful to understand how this works, as well as

the development in Python of an active monitoring layer of MongoDB, since in this way we

will be able to actively monitor Stackstorm.

2.1.4 Apache Kafka

Apache Kafka is an open-source distributed event streaming platform used for high-performance

data pipelines, streaming analytics, data integration, and mission-critical applications.[14].

Is a distributed system consisting of servers and clients communicating over a high-

performance TCP network protocol[15].

• Servers: Kafka runs as a cluster of one or more servers that may span multiple data

centres or cloud regions. Some of these servers form the storage layer, called brokers.

Other servers run Kafka Connect to continuously import and export data as event

streams to integrate Kafka with their existing systems, such as relational databases,

as well as with other Kafka clusters. It is highly scalable and faults tolerant: if any

of your servers fail, the other servers will take over their work to ensure continuous

operations without any data loss.

• Clients: Enable you to write distributed applications and microservices that read,

write and process event streams in parallel, at scale and in a fault-tolerant manner,

even in the event of network problems or machine failures. Kafka comes with some

of these clients included, which are augmented by dozens of clients provided by the

Kafka community.

14

2.1. DEVELOPMENT AND OPERATIONS (DEVOPS)

An event records the fact that ”something happened”. It is also called a record or

message in documentation. When data is read or written in Kafka, it is done in the form

of events. Conceptually, an event has a key, a value, a timestamp and optional metadata

headers. Producers are those client applications that publish (write) events to Kafka, and

consumers are those that subscribe to (read and process) these events. In Kafka, producers

and consumers are completely decoupled from each other, which is key to achieving the

high scalability for which it is known.

Events are durably organized and stored in topics. Very simplistically, a topic is similar

to a folder in a file system, and events are the files in that folder. Topics in Kafka are always

multi-producer and multi-subscriber: a topic can have zero, one, or many producers writing

events to it, as well as zero, one, or many consumers subscribing to these events. Events

in a topic can be read as many times as necessary; unlike traditional messaging systems,

events are not deleted after consumption.

Topics are partitioned, meaning that a topic is spread across a number of ”buckets”

located in different Kafka brokers. This distributed placement of data is very important for

scalability, as it allows client applications to read and write data to/from many brokers at

the same time. When a new event is published to a topic, it is actually added to one of

the topic partitions. Events with the same event key are written to the same partition, and

Kafka guarantees that any consumer of a given topic partition will always read events from

that partition in exactly the same order in which they were written.

Figure 2.6: Example Apache Kafka event diagram

For the project it will be of vital importance since it will be the tool in charge of receiving

OSLC Events from the adapter, as well as producing OSLC Actions to all those DevOps

tools that are subscribed to a certain topic.

15

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.7: Partitions in Kafka topics

2.1.5 The Elastic Stack

Elastic Stack is an Open Source solution commonly used for data analysis. Elastic Stack

is an Open Source solution commonly used for data analysis. It consists of a series of

software solutions that reliably and securely takes data in any format and, after searching

and analyzing them, allows visualization of the data in real time. It is also known as ELK

for its main solutions: Elasticsearch, Logstash and Kibana[16]. These solutions will be of

vital importance in the data ingestion and processing pipeline that is part of the project.

2.1.5.1 Elasticsearch

It is the core of the Elastic Stack. Elasticsearch is a distributed RESTful search and ana-

lytics engine that stores data centrally. The way Elasticsearch works starts with ingesting

data from a variety of sources, including logs, system metrics, and web applications.[17]

Data ingestion is the process by which these data are analyzed, normalized, and enriched

before being indexed in Elasticsearch. Once indexed in Elasticsearch, users can perform

complex queries on their data using aggregation to retrieve complex summaries of their

data. Elasticsearch aggregations allow you to get a more general view of exploring trends

and patterns in your data, using custom HTTP queries to navigate between indexes.

Elasticsearch allows you to perform and combine structured, unstructured, geographic,

metric, and other searches. Elasticsearch works through the use of clusters and nodes.

Elasticsearch is deployed in a cluster that must have at least 1 node. A node is a physical

16

2.1. DEVELOPMENT AND OPERATIONS (DEVOPS)

or virtual server on which an instance of the Elasticsearch service is running and that is

part of the cluster[12] The data stored in Elasticsearch are divided among the nodes of a

cluster, thus distributing the load. As the data are divided among the nodes, when we

query Elasticsearch for some data, the query is executed in parallel on all nodes.

Figure 2.8: Elasticsearch Architecture Example

Therefore, a cluster is nothing more than a group of nodes among which all data or the

cluster is divided[18]. These nodes, apart from storing data in a distributed manner, will

have different roles/tasks. In an Elasticsearch cluster, some of the different nodes can be

found:

• Data nodes: Used to store data and perform data-related operations, such as search

queries, etc.

• Master nodes: Responsible for managing the entire cluster and configuration ac-

tions, such as adding and deleting nodes.

• Ingest nodes: In charge of first receiving incoming data, where we can preprocess

the documents before indexing them.

These data, indexed and distributed among the different nodes that form the Elasticsearch

cluster, can be obtained and visualized by Kibana (another ELK solution), explained below.

17

CHAPTER 2. ENABLING TECHNOLOGIES

2.1.5.2 Kibana

Kibana is an open user interface that allows you to visualize Elasticsearch data in multiple

ways and navigate between the different solutions in the Elastic Stack, such as Logstash.[19]

One of the main features of Kibana is the ability to build dashboards in an intuitive and

user-friendly way, as well as the ability to represent the data stored in Elasticsearch in

multiple ways.

Figure 2.9: Elastic Stack Architecture

In this project we have chosen to develop the social metrics visualization layer with

Kibana because of its simplicity of management and its integration with Elasticsearch.

Kibana allows the creation of different graphs, which can range from simple data visualiza-

tions to complex visualizations that mix different data.

2.1.5.3 Logstash

Logstash is an open server-side data processing pipeline that ingests data from a multitude

of sources, transforms them, and sends them out. Generally, data often come in different

formats and from different sources. A great advantage of Logstash is that it supports a

wide variety of inputs to extract events from different sources at the same time. Once data

are received from a given source, Logstash parses each event, identifies the fields, and sends

them in a structured form based on the system’s interests. This is very useful for managing

18

2.2. SEMANTIC WEB

logs in a common, and therefore more efficient way. Likewise, it allows sending the data

received to different databases or indexing engines[20] as shown in the following diagram:

(a) (b)

Figure 2.10: Logstash Architecture Example

2.2 Semantic Web

A key part of the project is the Semantic Web and Linked Data. In this case, the Linked

Data principles will be used to design and develop a StackStorm adapter to the open

standard OSLC (Open Services for Lifecycle Collaboration). Before explaining this standard

in detail, it is necessary to explain the fundamentals and main concepts of the Semantic

Web, as well as the working principles defined by Linked Data.

The Semantic Web is an extension of the Web created by Tim Berners-Lee whose

main objective is the creation of technologies that make it possible to publish data readable

by computer applications (machines, in the terminology of the semantic Web)[21]. It is also

known as Web of Data instead of Web of Document. It consists of adding semantic metadata

to the World Wide Web that provides additional information about the content, meaning,

and relationship between these data. These metadata in the Semantic Web are data about

data that are capable of bringing meaning to data. It could be said that just as the basis

of the Web is data, the basis of the Semantic Web is metadata. These metadata must be

provided formally so that they are easily readable by machines. It is precisely this advantage

that facilitates inter-operability between such machines, since adding this metadata to web

data allows one to assign a particular machine-readable meaning, independent of their

19

CHAPTER 2. ENABLING TECHNOLOGIES

configurations. These machines use ”intelligent agents” to do this. Intelligent agents are

programs that search for information and process it.In this way, computers can interpret

the meaning of web data similarly to humans. In short, it is about adding meaning to the

data on the Web so that they can be readable and understandable by the machine without

the need for human interaction.

The way the Semantic Web defines concepts, to give meaning to data on the Web, is

throughOntologies. An ontology in the semantic web is a way of describing an entity. This

entity can be any entity; a person, a place, a book, etc. These ontologies are developed

using OWL (W3C Web Ontology Language). OWL is a Semantic Web language

designed to represent complex knowledge about things, groups of things, and relationships

between things. It is based on computational logic, so it can be exploited by computer

programs[22]. To understand the power of OWL, it is necessary to understand the concept

of class, subclass, and property defined by the Resource Definition Framework Schema

(RDFS). The most important concepts are explained below:[23]

• Class: A class defines a group of individuals who belong to the same class because

they share some properties.

• rdfs:subClassOf: Class hierarchies must be created by giving one or more indications

that one class is a subclass of another.

• rdfs:Property: Properties can be used to establish relationships between individuals

or from individuals to data values.

• rdfs:subPropertyOf: Property hierarchies can be created by giving one or more

indications that a property is itself a subproperty of one or more other properties.

• rdfs:domain: A property domain narrows the individuals to whom the property can

be applied.

• rdfs:range: The rank of a property reduces the number of individuals that a property

can have as its value.

These developed ontologies can be published on the World Wide Web and can be ref-

erenced or referred to other ontologies to interconnect all this knowledge. These ontologies

must be previously agreed upon since one of the advantages of the Semantic Web is the

interoperability between machines, thanks to the use of a common vocabulary. Both RDF

and its main bases will be explained in later sections.

20

2.2. SEMANTIC WEB

Note that the elements mentioned above are part of a much larger catalog of features

that make up OWL. The description of these terms will serve as the basis for the subsequent

description of the semantic model developed in the project.

2.2.1 Linked Data

Linked Data is one of the core pillars of the Semantic Web. It presents a method for

publishing interlinked structured data. It can also be understood as a set of best prac-

tices for publishing and connecting structured data on the Web of Data[24] The following

technologies can be defined as fundamental pillars of Linked Data:

• URIs: Generic mechanism to identify resources and concepts. Its main advantage is

that they are global and unique.

• HTTP: Protocol for managing the URIs of these resources. These resources can be

managed, through their URIS, with HTTP requests (GET, PUT, CREATE, DELETE).

• RDF Data Model: It is a way of describing the relationship between one or more

resources using triples.

On the basis of these technologies, a series of principles were defined that establish the

requirements to be met. These principles are as follows.

1. Use URIs as names for things (resources)

2. Use HTTP URIs so that people can look up those names (open data)

3. When someone looks up a URI, provide useful RDF information about the

resource

4. Include RDF statements that link to other URIs so that they can discover

related things

21

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.11: Linked Data principles

Following these basic principles, it is possible to obtain a complex network of resources

identified with an unequivocal URI, interconnected via HTTP, and accessible through other

resources. In this way, the semantic web or web of data is embodied, since each resource

or object is represented by RDF/XML and can link or be linked by another resource in an

interoperable and open way for machines without the need for human intervention.

2.2.2 RDF (Resource Definition Framework)

The representation of this information is carried out through RDF (Resource Definition

Framework). RDF is part of the W3C Semantic Web technology stack, which includes

OWL, RDFS, SPARQL, etc. RDF is a data interchange standard that is used to represent

interconnected data. How each RDF resource statement is structured is through triples

(three positional statements)[25].

These triples consist of a subject, a predicate (or verb), and an object.

• Subject: What is described.

• Predicate: Property or relationship between resources. It is also called verb.

• Object: The value of the property marked by the predicate.

22

2.2. SEMANTIC WEB

Figure 2.12: RDF Structure Description

In this way, complex and interrelated resource relationships can be built using URIs and

ontologies. An example could be:

Figure 2.13: RDF Graph Example

This example shows what the description of a resource would be like through its different

properties and values. As can be seen, each resource has its own URI that references the

resource for more information about it.

In the example shown, visualization through graphs is used, but because Turtle/N3 is a

way of representing information about resources, it allows for representation in an N3-based

syntax

23

CHAPTER 2. ENABLING TECHNOLOGIES

Listing 2.1: N3 Representation Example

@prefix con: <http://www.w3.org/2000/10/swap/pim/contact#> .

<http://www.w3.org/People/EM/contact#me> a con:Person ;

con:fullName "Eric Miller" ;

con:mailbox <mailto:em@w3.org> ;

con:personalTitle "Dr." .

This RDF/XML representation is another way to represent the example in Figure 2.7.

Having explained how data are shared on the semantic web and how semantic web resources

are described, it is necessary to understand how to interlink resources using Linked Data.

2.2.3 Protégé

For the definition of semantic models, Protégé will be used.

Protégé is a collaborative open source ontology development environment developed

by the Center for Biomedical Informatics Research at the Stanford University School of

Medicine with the following characteristics[26]:

• Support for OWL ontology editing

• A simple default editing interface, providing access to the most commonly used OWL

constructs

• Customizable user interface

• Multiple formats for uploading and downloading ontologies (supported formats:

RDF/XML, Turtle, OWL/XML, OBO, etc.).

Allows the creation of a customized ontology model through an interface. In the case of

the project, it will be the software used to model the Stackstorm rules, a model that will

be explained in detail later in this document. Protégé is based on semantic web concepts

like classes, subclasses, etc. In this way, a customized model is developed for your use case,

by using other models (with their URIs) using in this way the best practices proposed by

the Linked Data principles.

24

2.2. SEMANTIC WEB

The Protégé interface allows for the visualization of the ontology in the form of a graph,

which greatly simplifies the development process, as well as the relationship between classes

and subclasses.

(a) (b)

Figure 2.14: Protégé interface example

The idea of using Protégé is to import both the OSLC Core and other domains to

implement a semantic model of the Stackstorm rules.

2.2.4 Social metrics and sentiment analysis

As mentioned above, this project will export software metrics (through DevOps tools and

their semantic adaptations to OSLC) and social metrics. In the latter case, the following

technologies will be included.

Social metrics are understood as those metrics obtained through social sources such

as Twitter, Reddit, etc. Once these metrics are obtained, a series of operations will be

performed through algorithms and libraries to perform sentiment and emotion analysis of

the data obtained. The project will use technologies from the Intelligent Systems Group

of the Universidad Politécnica de Madrid. These technologies are included in the Semantic

Web section, since they are based on the use of ontologies and semantic models.

25

CHAPTER 2. ENABLING TECHNOLOGIES

2.2.4.1 GSICrawler

GSI Crawler is an innovative and useful framework that aims to extract information from

web pages by enriching them using semantic approaches.[27] Of all possible social sources,

for this project, we will be particularly interested in Twitter. The user interacts with the

tool through a Web interface, selecting the type of analysis to be performed and the platform

to be examined 1. It is developed in Python, which allows the integration of new crawlers

Figure 2.15: GSICrawler Web Interface

or the adaptation of these to a specific use case. The user can interact with them through

the endpoint shown in the figure. Web scraping is a technique used by software programs

to extract information from websites or to obtain data through the web service API. These

software programs are called crawlers.

The GSI Crawler environment can be defined from a high-level point of view as follows:

• Data ingestion: This is the main function of GSI Crawler, which consists of ex-

tracting data according to the requests sent to it. It works thanks to the use of web

crawlers. In this project snscrape2 will be used as a Twitter crawler.

• Semantic representation: Before storage, the data will be enriched according to

semantic paradigms to allow for a more powerful analysis later on.

1https://crawler.gsi.upm.es/
2https://github.com/JustAnotherArchivist/snscrape

26

https://crawler.gsi.upm.es/
https://github.com/JustAnotherArchivist/snscrape

2.2. SEMANTIC WEB

• Data storage: After the acquisition and enrichment of the data, the storage process

takes place. This storage can be done through Elasticsearch, for later visualization

through Kibana or others or Fuseki. The latter will store the RDF triples, which can

be consulted through SPARQL.

In this way, different social metrics will be extracted from a given software through Twitter,

processed for semantic modeling, sentiment and emotion analysis will be performed with

Senpy, and stored in Elasticsearch and Fuseki.

2.2.4.2 Senpy

Senpy is a framework for developing, evaluating and publishing web services for sentiment

and emotion analysis in text. The framework is aimed at developers and users. For develop-

ers, it is a means of evaluating their classifiers and easily publishing them as web services.

For users, it is a way to consume sentiment analysis from different vendors through the

same interface. This is achieved through a combination of an API aligned with the use of

semantic formats and a set of well-established vocabularies. The framework is open source

and has been used extensively in several projects. [28]

Figure 2.16: Senpy Architecture

All services built with Senpy share a common interface. This allows users to use them

interchangeably, with the same API and tools, simply by pointing to a different URL or

changing a parameter. The common scheme also makes it easier to evaluate the performance

of different algorithms and services. Senpy has a built-in evaluation API that can be used

to compare results with different algorithms.[29]

27

CHAPTER 2. ENABLING TECHNOLOGIES

Services can also use the common interface to communicate with each other. In addition,

higher-level features, such as automatic result fusion, emotion model conversion, and service

discovery, can be built on top of these services.

To achieve this goal, Senpy uses an approach based on Linked Data principles, based on

the NIF (NLP Interchange Format) specification, and open vocabularies such as Marl and

Onyx. Senpy uses Python-developed plugins that produce one result or another, depending

on the dictionaries and algorithms used. Therefore, it allows the user to add the plugins

that suit his use case. It has a Web interface that facilitates user operations. The user

enters a text, chooses the plugin that he/she wants to apply (depending on the output

he/she wants to obtain) and obtains the result of the desired analysis.3

Figure 2.17: Senpy Web Interface

It can be observed that in Senpy’s semantic modeling, use is made of other ontologies

such as Marl, Onyx, or nif. All ontologies used for the project will be explained in detail in

Section 3.

3https://senpy.gsi.upm.es

28

https://senpy.gsi.upm.es

2.2. SEMANTIC WEB

2.2.5 Apache Jena Fuseki

Another data storage component of this project will be Apache Jena Fuseki4. Fuseki is an

SPARQL server[30] that allows the user to perform complex SPARQL searches, through an

SPARQL endpoint accessible over HTTP by REST-style interaction with RDF data. Fuseki

can be run in the background by an application as an embedded server. The application

can safely work with the dataset directly from java while having Fuseki provide SPARQL

access over HTTP.

It is part of Apache Jena, which is a free and open source Java framework for building

applications of the Semantic Web and Linked Data.[30]

Figure 2.18: Apache Jena Diagram

Its usefulness in the project lies in the fact that the data extracted through GSICrawler

and analyzed and semantically enriched through Senpy will also be stored in a Fuseki

deployed specifically for this purpose, where a dataset with the extracted data will be

stored and will allow the user to perform complex queries through a SPARQL endpoint.

4https://github.com/apache/jena/tree/main/jena-fuseki2

29

https://github.com/apache/jena/tree/main/jena-fuseki2

CHAPTER 2. ENABLING TECHNOLOGIES

30

CHAPTER3
Semantic models

In this section, the semantic enrichment used for the different metrics obtained will be

explained in detail. As mentioned above, the project consists of two types of metrics:

software metrics and social metrics. It will be divided into two subsections where the

different tools used and the ontologies used by each of them for semantic modeling will be

explained. For social metrics, two services of the Intelligent Systems Group will be used,

based on the collection and analysis of data from social sources, with semantic enrichment.

On the other hand, for software metrics, the OSLC standard will be used, as well as the

extension of several of its domains, to adapt it to the use case of the project, which is the

semantic enrichment of Stackstorm. Therefore, this block will explain the development of

this semantic model through Protègè of the main Stackstorm components.

3.1 Social Models

In this project, social metrics are understood as all data obtained from social sources such

as Twitter. In this project, we will mainly obtain data from Twitter, through hashtags

from certain software of interest, such as Visual Studio Code, and others. In this way, we

31

CHAPTER 3. SEMANTIC MODELS

propose an additional way to obtain information about some software of interest and to be

able to audit the opinion or feelings of the users about it. For example, it will be possible

to see in general terms whether users have received new functionality. For the process of

obtaining and analyzing social metrics, the two services mentioned above, GSICrawler and

Senpy, will be used. Each service does its semantic enrichment of the data obtained and,

when used together, can give very relevant information.

3.1.1 Extracting data with GSICrawler

GSI Crawler is an innovative and useful framework that aims to extract information from

web pages by enriching them following semantic approaches[31] As mentioned above, infor-

mation extraction is performed using snscrape, which has been integrated for the project

into GSICrawler. This part will be explained in more detail in later sections. The data

extracted by the snscrape scraper are mainly modeled using the Schema ontology.

Schema is a structured data vocabulary founded by Google, Microsoft, Yahoo, and Yan-

dex that defines entities, actions, and relationships on the Internet[32]. These vocabularies

cover entities, relationships between entities, and actions and can be easily extended through

a well-documented extension model. Schema provides many concepts related to blogging

that can be related to the fields obtained from Twitter.

The data model used by Schema is very generic and is derived from the RDF Schema.

It is based on a set of types which form a multiple inheritance hierarchy where each type

can be a subclass of multiple types.

On the other hand, it is based on a set of properties where each property can have one

or more types as its domains. The property can be used for instances of any of these types.

In the development of GSICrawler, the results obtained with the snscrape Python client

are mapped to the schema ontology for all tuits, as follows:

32

3.1. SOCIAL MODELS

Listing 3.1: Code for mapping tuits into schema ontology

for tweet in scraper.get_items():

mytweet = {}

mytweet["@type"] = ["schema:BlogPosting",]

mytweet["@id"] = tweet.id

mytweet["schema:about"] = query

mytweet["schema:search"] = query

mytweet["schema:articleBody"] = tweet.content

mytweet["schema:headline"] = tweet.content

mytweet["schema:creator"] = tweet.user.username

mytweet["schema:author"] = ’twitter’

mytweet["schema:inLanguage"] = tweet.lang

mytweet["schema:keywords"] = tweet.hashtags

mytweet["schema:datePublished"] = tweet.date.strftime(’%Y-%m-%

dT%H:%M:%SZ’)

if tweet.place:

mytweet["schema:locationCreated"] = tweet.place.fullName

if tweet.coordinates:

mytweet[’location’] = {

’lat’: tweet.coordinates.latitude,

’lon’: tweet.coordinates.longitude

}

#...

In this way, these semantically enriched data are passed as input to Senpy, which will

be the software in charge of performing the sentiment and emotion analysis. The entire

relationship between the different services that make up the pipeline will be explained in

detail in Section 4.

3.1.2 Sentiment analysis with Senpy

Senpy is a framework for developing, evaluating and publishing web services for sentiment

and emotion analysis in text[33].

33

CHAPTER 3. SEMANTIC MODELS

Provides functionalities for:

• Developing sentiment and emotion classifier and expose them as an HTTP service

• Requesting sentiment and emotion analysis from different providers (ie, Vader, Sen-

timet140, etc.) using the same interface (API and vocabularies). In this way, appli-

cations do not depend on the API offered for these services.

• Combining services that use different sentiment models (e.g., polarity between [-1, 1]

or [0,1] or emotion models (e.g., Ekkman or VAD)

• Evaluating sentiment algorithms with well-known datasets

It is used for the creation of NLP services based on the NIF, Marl, and Onyx vocabularies

and the Turtle/n-triples, JSON-LD, and eXtensible Markup Language (XML)-RDF for-

mats. The use of a common semantic model for results and annotations means that other

modules of the system, especially the visualization module, need not rely on schemas or

formats specific to each service or type of service.This independence is exploited in other

modules of the toolkit. For example, more than one type of data store can be used as

storage modules, each with its own formats. An ElasticSearch database (JSON-based) can

co-exist with a Fuseki data store (RDF-based), provided that the annotations are correct

and appropriate conversion mechanisms are in place. Therefore, a proprietary ontology is

proposed for Senpy that allows any service to use the same concepts when annotating texts

with different sentiment analysis tools. The text analyzes performed in Senpy extract emo-

tional, psychological, and moral information from the text. To extract these annotations,

we used the LIWC dictionary and the Moral Fundamentals Dictionary (MFD). This mod-

ule implements these processes using Senpy plugins, which are modular software additions

that can be inserted into the system to enhance its functionality. As mentioned above, a

fundamental part of Senpy is its semantic layer. For this purpose, the different ontologies

and vocabularies used for sentiment and emotion analysis will be explained.

3.1.2.1 Senpy Annotations

This is the main and indispensable ontology of Senpy, since it semantically defines the an-

notations. There are many techniques for annotating texts with information from sentiment

and emotion analysis. Some of them use scores based on categories (such as the dimensions

provided by LIWC). Senpy ontology1 aims to define the general terms necessary to make

1http://gsi.upm.es/ontologies/participation/senpy/ns

34

http://gsi.upm.es/ontologies/participation/senpy/ns

3.1. SOCIAL MODELS

these types of annotations. This ontology has the following classes and properties:

• Classes: Annotation , Thing2, Category

• Object properties: hasAnnotation, hasCategory

• Data properties: count, ratio

Figure 3.1: Senpy Annotations Ontology Diagram

In conclusion, the purpose of this ontology is to provide a model for the data returned by

Senpy, allowing the service to use the same concepts when annotating texts using different

sentiment analysis tools. Having explained the Senpy ontology for annotations, it should

be said that depending on the plugin used by the framework for the analysis of the received

text, one ontology or another will be used.

In this project, priority is given to three, all of them developed by the UPM Inteligent

Systems Group. SLIWC, Morality, and Onyx.

3.1.2.2 SLIWC - LIWC dimensions represented as a SKOS taxonomy

Simple Knowledge Organization System (SKOS) provides a model to represent the basic

structure and content of concept schemes such as thesaurus, classification schemes, subject

heading lists, taxonomies, folksonomies, and similar controlled vocabularies. As an RDF

(Resource Description Framework) application, SKOS allows the creation and publication

of concepts on the Web, as well as linking them to data on the Web and even integrating

them into other concept schemas.This representation of the LIWC dimensions as a SKOS

taxonomy is known as SLIWC3.

2https://www.w3.org/2002/07/owl#Thing
3https://gsi.upm.es/ontologies/participation/sliwc/ns/doc/index-en.html

35

https://www.w3.org/2002/07/owl#Thing
https://gsi.upm.es/ontologies/participation/sliwc/ns/doc/index-en.html

CHAPTER 3. SEMANTIC MODELS

For the sentiment analysis part, the software used is the Linguistic Inquiry and Word

Count (LIWC) standard. Linguistic Inquiry and Word Count (LIWC) is the gold standard

in software to analyze word usage. It can be used to study a single individual, groups of

people over time, or all social networks. In this case, it will be used to study tweets collected

and semantically enriched with GSICrawler[34]

LIWC reads a given text and counts the percentage of words that reflect different emo-

tions, thinking styles, social concerns, and even parts of speech. The importance and

popularity of LIWC has led other researchers to adopt its annotation conventions and to

use the same format to produce dictionaries compatible with LIWC programs. This project

uses LIWC dictionaries for English, Spanish, and Italian.

The LIWC algorithm counts words that reflect emotions, psychological meanings, or

social concerns in a text. Thus, the process leverages a dictionary that compiles a wide list

of words and their possible inflections, classifying them into a predefined set of categories

(e.g., anxiety, anger, family, religion). Consequently, each category present in the text is

given a score that corresponds to the number of words found that belong to that category.

As an example, if a sentence contains the word ’father’, which is classified by the dictionary

as ’family’ and ’male reference’, then both of these categories will have a resulting score of

one. Alternatively, if the word ’cousin’, which is also a reference to ’family’, appears also in

the text, then the category ’family’ would obtain a score of two.

The categories measured by LIWC are grouped into sets depending on the psychological

process they describe. Four of them are taken into account for this analysis: drives, affective,

personal concerns, and social. The set ’Drives’ gives insight into the motivations of the

person behind the text. Measure five parameters, which are affiliation, achievement, power,

reward, and risk. Feelings like anxiety, anger, sadness, or positive and negative emotions

are part of the set of the ’Affective process.’ The ’Personal concerns’ set measures how

concerned the person behind the text is about different life issues such as work, leisure,

home, money, religion, and death. Drives, affective, and personal concerns are considered

the three main psychological variables and have been used as a reference to analyze radical

discourses (Buckingham & Alali, 2020). The set of ’social processes’ is also included to

provide more information on references to family, friends, female, and male figures.

Once LIWC has been introduced, it should be noted that the project has made use of

the semantic version developed by the Intelligent Systems Group, a version of the LIWC

annotation scheme. It consists of two parts. First, we have an ontology representing the

general concepts used in LIWC annotation (e.g., dimensions, categories, word-level dimen-

36

3.1. SOCIAL MODELS

sions, document-level dimensions, etc.). The second part uses these concepts to provide

specific elements of LIWC dictionaries, such as specific categories and their hierarchical

relationship to each other. These categories have been modeled both in the form of ontol-

ogy (i.e., classes) and SKOS taxonomy, so that the hierarchical structure can be exploited

independently of the ontological relationships.

• Classes: Category4, Concept5

• Important named individuals: Anger,Anxiety,Core Drives and Needs,Emotional

Tones,Family,Morality, etc.

Figure 3.2: SLIWC Ontology Diagram

Attempts have been made to interrelate both ontologies more efficiently, eliminating the

classes, objects, and data properties of Senpy in SLIWC. That is, a new Senpy Annotation

ontology has been created with some of the previously existing SLIWC properties and classes

for this purpose.

• Deleted classes: Agent6, Annotation

• Deleted object properties: hasAnnotation, hasCategory

• Deleted data properties: count, ratio

4http://www.gsi.upm.es:9080/ontologies/participation/senpy/ns/doc/index-en.

html#Category
5https://www.w3.org/2009/08/skos-reference/skos.html#Concept
6http://purl.org/dc/terms/#Agent

37

http://www.gsi.upm.es:9080/ontologies/participation/senpy/ns/doc/index-en.html#Category
http://www.gsi.upm.es:9080/ontologies/participation/senpy/ns/doc/index-en.html#Category
https://www.w3.org/2009/08/skos-reference/skos.html#Concept
http://purl.org/dc/terms/#Agent

CHAPTER 3. SEMANTIC MODELS

All the information about SLIWC and its different properties is referenced in footnote 3

since the objective of this Section is to explain the developments and changes made for this

use case. These are the changes and adaptations required for it. The total properties of

SLIWC are very numerous and can be obtained from the link mentioned above.

3.1.2.3 Morality - MFT concepts represented as a SKOS taxonomy

Moral foundation theory[35] was created by a group of social and cultural psychologists to

understand why morality varies so much between cultures, yet still shows so many simi-

larities and recurring themes. In summary, the theory proposes that several innate and

universally available psychological systems are the foundations of ’intuitive ethics.’ Each

culture then constructs virtues, narratives, and institutions on top of these foundations,

thereby creating the unique moralities we see around the world and conflicting within na-

tions, too.

This ontology7 is a SKOS taxonomy that aims to represent the main concepts of MFT

and has the following classes and properties.

• Classes: Foundation

• Object Properties: hasMorality

Figure 3.3: Morality Ontology Diagram

7http://gsi.upm.es:9080/ontologies/participation/morality/ns/doc/index-en.html

38

http://gsi.upm.es:9080/ontologies/participation/morality/ns/doc/index-en.html

3.1. SOCIAL MODELS

3.1.2.4 Onyx Ontology

Onyx8 is a standardized ontology designed to annotate and describe emotions expressed

by user-generated content on the Web or in certain information systems. The goals of the

Onyx ontology to achieve as an ontology are the following:

• Enable the publication of raw emotion data in user-generated content.

• Provide a schema to compare emotions from different systems (polarity, themes, char-

acteristics)

• Interconnect emotions by linking them to contextual information expressed with con-

cepts from other popular ontologies or specialized domains.

It is made up of the following classes and the most important properties:

• Classes: AggregatedEmotion, AggregatedEmotionSet, Emotion, EmotionCategory, etc.

• Object Properties: ActionTendency, source, hasEmotionSet, hasEmotionCategory,

etc

Figure 3.4: Onyx Ontology Diagram

With these ontologies, the semantic layer used for the collection and analysis of social

metrics is explained. As mentioned above, depending on the plugin used by Senpy, the result

of the analysis will be one or another, but always using Senpy’s annotation vocabulary.

8https://www.gsi.upm.es/ontologies/onyx/

39

https://www.gsi.upm.es/ontologies/onyx/

CHAPTER 3. SEMANTIC MODELS

The results of the analysis, as well as the output data in Turtle/N3 representation, will be

discussed in detail in later sections.

3.2 Software Models

Another fundamental part of the project, since it includes all the software monitoring parts

and the advantages of using the OSLC standard in DevOps tools such as Stackstorm, is the

semantic layer developed in the project for this tool.

First, the OSLC CORE specification will be explained, which will be the main basis,

since the requirements set there will have to be respected by all OSLC domains. Within

this, several domains and concepts will be explained, such as OSLC Actions, Events, and

Automation, which will be necessary to explain the semantic model developed for Stack-

storm.

Finally, the semantic model proposed to adapt Stackstorm and OSLC will be explained,

which will be the backbone of the adapter, which will be explained in later sections.

3.2.1 OSLC Core

Open Services for Lifecycle Collaboration (OSLC) is a community whose goal is to de-

velop specifications for the integration of tools. These specifications allow independent

software and product lifecycle tools to integrate their workflows to support end-to-end life-

cycle processes. This is because, using the benefits of Linked Data, the tools use a common,

open language to integrate their data. This will be the basis for this project. Within

the main lifecycle tools, we can highlight defect tracking tools, requirements management

tools, and test management tools. There are many more examples in software and product

development.[36]

The OSLC community is organized into working groups that address integration sce-

narios for individual topics such as change management, test management, requirements

management, and configuration management. These topics that have OSLC working groups

and specifications are called ”domains” in OSLC. Each working group explores integration

scenarios for a given lifecycle topic and specifies a common vocabulary for the lifecycle

artifacts needed to support the scenarios. To ensure consistency and integration between

these domains, each working group relies on the concepts and rules defined in the OSLC

40

3.2. SOFTWARE MODELS

Core specification, which is produced by the Core working group. These specifications will

be the basis for the rest of the OSLC domains. In this way, the domains can be integrated

with each other, facilitating the integration of different tools.

Figure 3.5: OSLC integration diagram

The OSLC core specifies the main integration techniques for integrating lifecycle tools.

It consists mainly of standard rules and patterns for the use of HTTP and RDF that all

working groups in the domain must adopt in their specifications. The core specification

is not intended to be used by itself. Since there is no generic lifecycle tool, each tool is

specialized in one or more domains such as requirements, defect tracking, testing, etc. The

core specification, along with one or more of the OSLC domain specifications, describes

the OSLC protocols offered by a domain tool. OSLC does not attempt to standardize

the behavior or capability of any tool or class of tool in a generic way. OSLC specifies a

minimum number of protocols and a small number of resource types that must be met to

allow two of these tools to work seamlessly.

These domains (or working groups in OSLC) are as follows[37]:

• OSLC Core: Central concepts and the relationship between them. These concepts

must be respected by all domains.

• OSLC Query: Defines a simple, implementation-independent selection and projec-

tion query capability

• Quality Management: Define the OSLC services and vocabulary for the Quality

Management domain.

• Requirement Management: Define the OSLC services and vocabulary for the

Requirements Management domain

41

CHAPTER 3. SEMANTIC MODELS

• Change Management: Define the OSLC services and vocabulary for the Change

Management domain

• Tracked Resource Set: Allows servers to expose a set of resources whose state can

be tracked by clients.

• Arquitecture Management: Define the OSLC services and vocabulary for the

Architecture Management domain.

• Automation: Define the OSLC services and vocabulary for the domain that supports

the automation of sequences of actions on OSLC resources. It will be important for

the project and will be explained in depth in later sections.

• Actions and Events: In this case the Actions domain extension and the creation

of the Events domain, developed by the Intelligent Systems Group, will be used and,

as of today, pending review by the OSLC community. The idea of these domains is

to provide more concepts to the Automation domain.

Domains are called phases of the lifecycle, and special properties are defined for tools

that belong to these phases. Within a resource specified by an OSLC domain, the goal is

to define the minimum properties that are valuable for integration, not all the properties

that might be present in a particular tool’s resources.

Figure 3.6: OSLC domains diagram example

In this project, an ontological model will be created to define Stackstorm rules, extending

and using OSLC domains. OSLC’s relevance lies in its proposal to replace the current web of

documents with the web of data based on Linked Data principles. It seeks to transition from

a world of incompatible systems to a world of connected data through an open standard.

42

3.2. SOFTWARE MODELS

OSLC is based on W3C Linked Data and its principles. Therefore, OSLC offers two

main techniques for tool integration[38]:

1. Data binding via HTTP: OSLC specifies a common tool protocol for creating,

retrieving, updating, and deleting (CRUD) lifecycle data based on Internet standards

such as HTTP and RDF using the Linked Data model. Linking is achieved by em-

bedding the HTTP URL of one resource in the representation of another.

2. Linking Data via HTML User Interface: OSLC specifies a protocol that allows

a tool or other client to have a fragment of another tool’s web user interface displayed,

allowing a human user to link to a new or existing resource in the other tool or to

preview information about a resource in another tool. This allows a tool or other

client to exploit existing user interface and business logic in other tools by integrating

information and process steps. In some circumstances, this is more efficient and

offers more functionality to the user than implementing a new user interface and then

integrating it through an HTTP CRUD protocol.

In OSLC, each lifecycle artifact, e.g., a requirement, a defect, a test case, a source file

or a development plan, etc., is an HTTP resource that is manipulated using the standard

methods of the HTTP specification (GET, PUT, POST, DELETE). Each resource has an

RDF/XML representation, but may have representations in other formats, such as JSON

or HTML.

The OSLC Core specification9 defines a number of simple HTTP and RDF usage pat-

terns and a small number of resource types that help tools integrate and make the lifecycle

work. Many specifications have a ”closed model”, by which we mean that any reference to

a resource in the specification will necessarily identify a resource in the same specification

or in a referenced specification. UML is an example of a closed specification: Every UML

reference refers to another UML object. On the contrary, the HTML anchor tag can point

to any HTTP resource, not just other HTML resources. OSLC works more like HTML in

this sense. Here are some examples.

• Any HTTP resource can be contained in a ServiceProvider, not just the resources

defined in the OSLC specifications.

• A URL reference in an OSLC resource can, in general, point to any HTTP resource,

9https://docs.oasis-open-projects.org/oslc-op/core/v3.0/oslc-core.html

43

https://docs.oasis-open-projects.org/oslc-op/core/v3.0/oslc-core.html

CHAPTER 3. SEMANTIC MODELS

not just an OSLC resource. OSLC specifications generally do not restrict the value

of a property in one OSLC specification to be the URL of a resource in a different

OSLC specification (note 3), although it is common for a property defined in an OSLC

specification to restrict its value to be the URI reference of a resource in the same

specification.

Figure 3.7: OSLC Core Concepts and Relationships

OSLC specifications generally avoid restricting a reference to be a resource in another

specification. This independence allows OSLC specifications to evolve independently and

new ones to be added without changing existing ones, and also allows tools at different

version levels to interoperate.

In this project, it will be useful to understand the concept of an OSLC Service Provider

for the future implementation of a semantic model for Stackstorm rules. The diagram re-

flects the relationship between the different OSLC CORE concepts, which will be those that

any integration must comply with in order to meet the requirements of the standard. These

OSLC resources are defined in the Primer. The OSLC Primer defines the resources, de-

fined by the Core specifications, necessary for the development of any other domain. These

concepts will be fundamental to understanding the structural operation of any semantic

adaptation of any product to OSLC.

44

3.2. SOFTWARE MODELS

3.2.1.1 Service Provider

Almost all lifecycle tools have organizational concepts that divide the overall artifact space in

the tool into smaller containers. An example of such containers could be projects or modules,

databases, etc. . Each artifact created in the tool is created within one of these container-like

entities, and users can list existing artifacts within one. These container concepts are very

important for the use of tools: The container in which the artifacts are placed and in which

the artifacts are located is essential for the way of working and can reflect the project being

worked on or the product to which the artifacts belong. OSLC defines the ServiceProvider

concept to allow products to expose these containers or partitions for integration scenarios.

Service providers answer two basic questions, which are the following:

• To which URLs should I POST to create new resources?

• Where can I get a list of existing resources?

A ServiceProvider is intended to represent a ”container” of resources that is hosted by a

tool. In this way, OSLC Core generically defines a way to expose a resource container for

a particular tool. In the project, the Stackstorm instance itself will be used as the Service

Provider, since it will be the container for rules and actions. As discussed previously, OSLC

makes use of the benefits of Linked Data and its principles. Therefore, this Service Provider,

as well as the rest of the concepts, will have its URI assigned to perform HTTP requests to

create, obtain, update, or delete resources. In the case of the Service Provider, unlike what

you might think from the definition above, if you make an HTTP GET, you will not get

a list of the existing resources in that container. You will get the general properties of the

Service Provider as well as metadata about it, including URLs that can be used to find or

create resources. Two fundamental properties of a Service Provider are

• oslc:creation: URL of a resource that you can POST to create new resources.

• oslc:queryBase: URL of a resource that you can GET to get a list of existing resources

in the ServiceProvider. This URL is called the ”queryBase URL”, and the resource

identified by this URL is called queryBase.

45

CHAPTER 3. SEMANTIC MODELS

An example of the simplest response that could be obtained, in Turtle notation, to an

HTTP GET request to a Service Provider URL might be:

Listing 3.2: Example of OSLC Service Provider representation in N3

@prefix oslc: <http://open-service.net/ns/core#>.

<http://acme.com/toolA/container1>.

to oslc:ServiceProvider;

oslc:creation <http://acme.com/toolA/container1/contents>;

oslc:queryBase <http://acme.com/toolA/container1/contents>.

In the simplest case, the creation URI and the queryBase URI will, in fact, be the same

URL. By means of an HTTP POST request whose body is the RDF notation definition of

a resource, it can be created.

OSLC Core supports more complex options for Service Providers, including the abil-

ity to have more than one creation URI and more than one queryBase URI, the ability

to attach properties to each creation and each queryBase URI, and the ability to attach

properties to each creation and each queryBase URI. The queryBase resource identified by

a queryBase URI of a ServiceProvider is an RDF Container resource that lists resources in

the ServiceProvider. An example of a queryBase response could be:

Listing 3.3: Example of OSLC Resources List by make a HTTP GET into a queryBase

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

<http://acme.com/oslc/container/1>

<rdfs:member> <http://acme.com/oslc/resource/000000000>;

999999998 more triples here

<rdfs:member> <http://acme.com/oslc/resource/999999999>.

In this way, all data for a resource can be obtained by HTTP GET from the URIs defined

in the example as rdfs:member. In the case of the project, as will be explained later in more

detail, this OSLC Service Provider concept will be used to define the Stackstorm instance.

3.2.1.2 OSLC Resources

As mentioned above, the concept of Service Provider in OSLC could be understood as a

container of OSLC resources. In this project the Stackstorm instance will be modeled as

an OSLC Service Provider while Stackstorm rules will be modeled as OSLC resources.

46

3.2. SOFTWARE MODELS

According to the OSLC Primer, any HTTP resource with any representation can be

found within a ServiceProvider. An OSLC resource is simply a resource whose type is

defined in some OSLC specification, usually one of the domain specifications created by one

of the OSLC domain working groups. These resources have a number of main characteristics:

• An RDF/XML representation of the resource can be requested. All OSLC resources

have their state defined by a set of RDF properties that may be required or optional.

• OSLC protocols use standard media types. The goal is for any standards-based RDF

or Linked Data client to be able to read and write OSLC data, and defining new

media types would preclude this in most cases. This will be of vital importance when

integrating different DevOps tools by using this standard to define their own OSLC

adapters.

OSLC resources use common property names for common concepts. In the current state

of lifecycle tools, each tool defines its own properties for common concepts such as tag,

description, creator, last modification time, priority, etc. In many cases, an administrator

can define these properties locally for an installation, so tool vendors cannot control the

vocabulary. This makes it much more difficult for organizations to subsequently integrate

tools into an end-to-end lifecycle. OSLC solves this by requiring all tools to expose these

common concepts using a common vocabulary for properties, which you will recall are

identified by URIs in RDF. Tools may choose to additionally expose the same values under

their own private property names on the same resources.

3.2.2 OSLC Automation Specification

Having described the main concepts and specifications of OSLC Core, the Automation

domain10 must be described. Within this domain, we will find OSLC Actions and Events

that will be useful to understand the advantage of using an OSLC-Stackstorm adapter for

semantic adaptation of DevOps tools.[39]

This domain defines the specifications needed to define the resources and operations

supported by an Open Services Automation for Collaboration Lifecycle (OSLC) provider.

Automation resources define the automation plans, automation requests, and automation

10https://archive.open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.

1/

47

https://archive.open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.1/
https://archive.open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.1/

CHAPTER 3. SEMANTIC MODELS

results of the software development, test, deployment, and operation lifecycle. They repre-

sent individual resources as well as their relationships with other automation resources and

other linked resources outside the automation domain. The purpose of this specification

is to define the set of HTTP-based RESTful interfaces in terms of HTTP methods. GET,

POST, PUT and DELETE, HTTP response codes, MIME type handling, and resource

formats.

The key terminology to understand the domain can be summarized in the following.

• Service Provider: An implementation of the OSLC Automation specification as a

server. OSLC Automation clients consume these services

• Automation Resource: A resource managed by the Automation service provider.

The types of resource defined by this specification are the Automation Plan, the

Automation Request, and the Automation Result.

• Automation Plan: Defines the unit of automation which is available for execution.

• Automation Request: Defines the submission of the information required to execute

an Automation Plan and indicates the desired execution state.

• Automation Result: Defines the intermediate and final execution status of an Au-

tomation Request, along with contributions to the result.

Figure 3.8: Relationships between Automation Resources

48

3.2. SOFTWARE MODELS

An Turle/N3 representation of an Automation Result could be:

Listing 3.4: Example of OSLC Automation Result representation in N3 notation

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc_auto: <http://open-services.net/ns/auto#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://example.org/#link1> a rdf:Statement ;

dcterms:title """Build Definition 123: Pet Shop App production build

""";

rdf:object <http://example.com/plans/123> ;

rdf:predicate oslc_auto:reportsOnAutomationPlan ;

rdf:subject <http://example.com/results/4321> .

<http://example.com/results/4321> a oslc_auto:AutomationResult ;

oslc_auto:reportsOnAutomationPlan <http://example.com/plans/123> .

In this way, the automation resources and the relationship between these resources are

described with respect to the OSLC core requirements. It will be useful to understand

this concept since Stackstorm is an automation tool, and for its semantic layer, part of the

concepts mentioned above will be used for this domain.

3.2.3 OSLC Events and Actions

Having explained the Automation domain, it is important to describe other types of OSLC

resources that will be important to understand the purpose of the project. On the one

hand, the OSLC Automation domain provides the semantic layer necessary to describe

an automation server. As discussed in Section 1, this work is part of the SmartDevOps

project11 to integrate DevOps tools with semantic technologies and the Big Data approach.

In this perspective, it was detected that the OSLC Actions domain was outdated, so two

semantic models were developed to model actions and events. The definition of these two

models will be very useful since the Stackstorm-OSLC adapter developed in the project will

receive a series of actions (HTTP Request, manual activation of a rule, etc.) and generate

events (modification of a rule, etc.) that will be listened to by an external server. In the

case of SmartDevOps, it will be a Kafka server in charge of listening to events generated

by different DevOps tool adapters with OSLC, but this will be left out of this project and

will be explained in more detail in Section 4.

11https://smartdevops.gsi.upm.es

49

https://smartdevops.gsi.upm.es

CHAPTER 3. SEMANTIC MODELS

Therefore, in this context, the proposal of Guillermo Garćıa Grao and Alvaro Carrera

Barroso[40] from the Intelligent Systems Group will be used to provide a semantic model

of OSLC events and actions that extends the OSLC Automation domain.

In the case of the project, the adapter will receive RDF graphs of OSLC Action resources

that will imply an action on Stackstorm and will be able to generate OSLC Event type

resources to perform what is needed. These two concepts will be key to the monitoring

framework, as a listing of events and actions (other than OSLC TRS server logs) performed

by/for the adapter to another server or DevOps tool is required. In this case, it will be

formed by two servers in parallel; on one side, the StackStorm-OSLC adapter and another

server that will be listening for actions and will generate events to the adapter, but this

space could be used in the future by another DevOps tool (that has developed its respective

adapter) so that both could be connected in a standardized and interoperable way using

events and actions.

It is important to understand that the concept of actions and events in OSLC is not

equivalent to the concept of actions and events in Stackstorm. On the one hand, we are

talking about OSLC resources and, on the other hand, actions performed by the tool itself.

The Stackstorm-OSLC adapter will be able to listen for OSLC actions (internal or hypo-

thetically from another DevOps tool) and generate OSLC events to a messaging channel

such as Kafka or others.

All of this architecture will be explained in detail in Section 4, but it is worth introducing

it in this section to understand the usefulness of the extension of the OSLC Automation

domain through OSLC Actions and OSLC Events.

On the one hand, the proposed OSLC Actions domain makes use of several Automation

domain classes such as AutomationPlan, as well as other Core classes such as ResourceShape.

This OSLC Actions domain consists of:

• Prefix: oslc actions

• Classes: ActionDispatcher, Action

• Properties: executedBy, futureAction, availableAction, executesOn

50

3.2. SOFTWARE MODELS

Figure 3.9: OSLC Actions domain

On the other hand, the OSLC Event domain will use classes and properties from the

Automation domain as well as from the CORE domain since, as mentioned before, the

idea of generating both models is to extend the Automation model by including events and

actions, orienting it towards the DevOps approach.

• Prefix: oslc events

• Classes: Event

• Properties: generatedBy

Figure 3.10: OSLC Events domain

51

CHAPTER 3. SEMANTIC MODELS

3.2.4 Tracked Resource Set Specification

The tracked resource set protocol (TRS) allows a server to expose a set of resources so that

clients can discover that set of resources, track additions and deletions from the set, and

track changes in the state of resources in the set. It is used to handle sets that contain

a large number of resources, as well as very active resource sets that undergo continuous

changes. Performs the function of a kind of log server on a set of resources. In this way, if

an action is performed that interacts with any of the resources, it is recorded at the TRS

endpoint and can be accessed via HTTP GET. It is based on HTTP and follows RESTful

principles.[41]

The following key concepts could be distinguished to explain this type of resource:

• Tracked Resource Set (TRS): Describes a resource that defines a finite and enu-

merable collection of Tracked Resources expressed as a Base and a Change Log.

• Tracked Resource: A resource identified by a URI that is a member of one or more

Tracked Resource Sets.

• Base: The portion of a Tracked Resource Set representation that lists tracked re-

sources at some point in time.

• Change Log: The portion of a Tracked Resource Set representation detailing a series

of Change Events for Tracked Resources, where those changes are relative to the Base.

• Change Event: Identifies an addition, removal, or state change of a Tracked Resource

in a Tracked Resource Set. These events are represented using the three RDF classes

trs:Creation, trs:Modification, and trs:Deletion.

• TRS Server: An application or application component that provides one or more

Tracked Resource Sets.

In the project, it will be used to have a constant monitoring of all the events that occur

in Stackstorm. When a rule is activated/deactivated, deleted, or created, an event of type

OSLC Event will be created and stored in the TRS to have a complete view of the events

produced in the system.

52

3.2. SOFTWARE MODELS

The following example illustrates the contents of a changeLog in the notation n3.

Listing 3.5: Example of a changeLog in TRS in N3

Resource: http://cm1.example.com/trackedResourceSet

@prefix trs: <http://open-services.net/ns/core/trs#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://cm1.example.com/trackedResourceSet>

a trs:TrackedResourceSet ;

trs:base <http://cm1.example.com/baseResources> ;

trs:changeLog [

a trs:ChangeLog ;

trs:change <#2>, <#1>.

] .

<#2>

a trs:Modification ;

trs:changed <http://cm1.example.com/bugs/22> ;

trs:order "102"ˆˆxsd:integer .

<#1>

a trs:Deletion ;

trs:changed <http://cm1.example.com/bugs/21> ;

trs:order "101"ˆˆxsd:integer .

This concept serves to understand the concept of log server with OSLC, since one of the

fundamental parts of the project will be to provide a semantic layer capable of receiving

actions and generating events in a fully monitored way.

3.2.5 Stackstorm-OSLC semantic model

As mentioned above, a Stackstorm semantic layer will be proposed that includes its core

components, such as actions or rules. It will be based on the OSLC core, as well as other

domains such as OSLC automation and OSLC actions. The idea of developing our own

vocabulary, using classes and properties of OSLC domains, is to allow the integration of

this with other DevOps tools in the future, as long as they have their own OSLC adapter,

with the advantages and benefits that give us the use of the semantic web and Linked Data.

The development of this adapter will be the backbone of the project and will be explained

in detail in later sections. The project will focus on semantically defining the Stackstorm

rules, as they will be the ones that receive the actions (HTTP GET, POST, or PUT) to be

updated, created, or deleted. These actions can be performed by an external user through

53

CHAPTER 3. SEMANTIC MODELS

HTTP requests to the adapter or from the Stackstorm interface itself. Protégé, explained

in Section 2, has been used for the development of the model.

First, the main OSLC CORE classes have been imported, as they will be the specifi-

cations to be met by the adapter. Before starting with the explanation of the proposed

model, it should be noted that the project has made a complete adaptation of one of the

main components of Stackstorm, but not all of them. That is, the proposed model tries

to semantically model the Stackstorm rules, as well as some parameters that give relevant

information about them, such as the action to be performed by the rule when the trigger is

activated, and the trigger itself. The proposed model does not include the Stackstorm tool

in its entirety and is intended to serve as a guide for possible future semantic models.

The semantic model proposed in the project for Stackstorm with OSLC is based on

the assumption that, as a resource container, the Stackstorm instance itself will be the

OSLC Service Provider. As mentioned above, the OSLC Service Provider acts as a resource

container, so it has been decided to define the Stackstorm instance as a Service Provider and

the rules as Resources contained by that Service Provider. As for the rules, they have been

defined as subclasses of the AutomationPlan resource, explained in previous points, since it

has been considered that a rule is not an ordinary resource (as it could be a Github Issue

or a Bugzilla Bug), but it is part of an Automation environment, so it will be interesting

to adapt it to the OSLC Automation domain.

First, as mentioned above, the StackStorm tool itself has been considered for the project

as an OSLC Service Provider so its Data Properties will be inherited from the Service

Provider:

Figure 3.11: Stackstorm-OSLC model

54

3.2. SOFTWARE MODELS

As discussed above, a Stackstorm rule could be considered a subclass of the ActionPlan

class in the Automation domain. This, in turn, will have the following Data Properties,

which define it.

• Classes: StackstormRule

• Data Properties: ruleAction, ruleId, rulePack, ruleTitle, ruleTrigger, ruleStatus,

ruleRef

• Data Properties for Staclstorm actions and Triggers: actionRef, triggerType,

triggerRef

The overview of the model adopted by the Stackstorm rule, inherited from Automation-

Plan with all its Data Properties, can be seen in the following diagram:

Figure 3.12: Stackstorm Rule Semantic Model

Another important part included in the model is the Stackstorm actions. It should be

said that Stackstorm actions do not refer to the same concept as OSLC actions. The former

refers to the interaction between the adapter and the Stackstorm API itself to create, delete,

or update a rule, while the latter refers to resources of the OSLC Action domain, explained

above.

Therefore, it is convenient to relate both concepts semantically, and Stackstorm actions

are considered to inherit from the OSLC Action domain mentioned above. Thus, the 3

actions that the adapter developed in the project will receive will be the creation, deletion,

and activation or deactivation of a rule.

55

CHAPTER 3. SEMANTIC MODELS

Figure 3.13: Stackstorm Actions - OSLC Semantic Model

This is how the Stackstorm and OSLC semantic model proposal is defined. As mentioned

above, this proposal is not intended to cover all Stackstorm components, but rather to serve

as a guide for future implementations or extensions that could be made. In the project, the

rules, as a fundamental part of Stackstorm, are modeled by means of a Stackstorm-OSLC

adapter in such a way that it will act as a receiver of OSLC actions and a generator of

OSLC events.

In conclusion, this block has described the different ontologies used for the extraction

and analysis of social metrics through Twitter, as well as the OSLC domains used to describe

the model that will be used in the Stackstorm-OSLC adapter. The semantic layer occupies

an important part of the project, as it provides interoperability, thanks to the benefits of

Linked Data and the use of the OSLC standard, as well as thanks to the tools developed by

the Intelligent Systems Group to extract data from social sources and perform sentiment

and emotion analysis using semantics.

56

CHAPTER4
Architecture

This section will describe the architecture of the project. First of all, the complete archi-

tecture of the SmartDevOps project will be described, since this work is part of this project

and it is necessary to understand the general architecture of the project in order to under-

stand the specific architecture of the work. As for the specific architecture of the project,

it will be divided into two.

On the one hand, the proposed architecture for the extraction and analysis of social

metrics will be described, by means of a pipeline that links the different software used for

this purpose, mentioned in previous points. On the other hand, the architecture proposed

for the Stackstorm-OSLC adapter and its monitoring framework, based on actions and

events, will be described.

It will also be explained how to include in the monitoring framework other DevOps tools

based on semantic technologies and OSLC, as proposed in the SmartDevOps project.

57

CHAPTER 4. ARCHITECTURE

4.1 Overview of the Architecture

As mentioned above, this project is part of a larger project called SmartDevOps1. This

project seeks to simplify and automate the process of integrating tools into Big Data projects

by combining the flexibility of OSLC semantic standards with the power of an event-driven

rule engine.The complete SmartDevOps architecture considers the integration of more De-

vOps tools, as well as other modules such as the rule-based automation module that will

not be considered for this work. Knowing the general architecture of the SmartDevOps

project will be important to know in a more detailed way the architecture proposed for this

work.

The general architecture of SmartDevOps is shown in the following diagram:

Figure 4.1: SmartDevOps platform general architecture diagram

1https://smartdevops.gsi.upm.es/

58

https://smartdevops.gsi.upm.es/

4.1. OVERVIEW OF THE ARCHITECTURE

In this diagram you can see the different parts involved in this work, which have been

mentioned in previous sections, from the OSLC adaptation layer to the social metrics

pipeline.

One of the main characteristics of the SmartDevOps architecture is that it seeks the

interoperability of different DevOps tools, under the use of semantic technologies and the

OSLC standard. Therefore, there are several modules or layers that will not be covered in

this work, due to their breadth and complexity. Of all the layers proposed in the general

architecture, the OSLC adaptation layer, the OSLC monitoring framework, the DevOps

environment and everything related to the extraction, analysis and visualization of social

metrics will be of special interest for this work.

Figure 4.2: SmartDevOps OSLC Layer

This work focuses on the development of an architecture that poses a specific use case

for the general SmartDevOps architecture. That is, this work focuses on the development of

action and event-based monitoring framework for the proposed Stackstorm-OSLC adapter

and a specific architecture for collecting and analyzing social metrics through Twitter, to

59

CHAPTER 4. ARCHITECTURE

measure user feedback for a given software.

Therefore, it can be said that the OSLC adaptation layer will be in charge of providing

the DevOps tool (Stackstorm in the case of the project) with the ability to receive actions

and generate OSLC events. These events will be sent to Kafka through the use of Topics.

These events will be processed by Kafka and sent in the form of OSLC Actions to all those

other DevOps tools that are subscribed to this Topic, thus achieving the interconnection

between them through semantic technologies and the use of the common and open OSLC

standard. Everything related to the incorporation of new DevOps tools is not contemplated

in this work except in the future lines, as it is contemplated in the SmartDevOps project.

The general architecture of this OSLC layer can be seen in the following diagram:

Figure 4.3: Stackstorm-OSLC General Diagram

60

4.1. OVERVIEW OF THE ARCHITECTURE

The following modules should be highlighted:

• Stackstorm:An instance that will be deployed and will perform actions such as con-

sulting, activating, deleting, or creating a rule.

• Graph Manager: It will be in charge of developing all the semantic parts of OSLC,

as well as the one in charge of adding logs of everything that happens in the tool, in

the TRS. It will be the module in charge of interacting with the distributed messaging

server such as Kafka or, failing that, interacting with another server that will act as

an event server. It will convert the actions performed by Stackstorm into RDF/XML

graphs, using the basic OSLC concepts explained in Section 3 to convert them into

semantic graphs in the form of action or event. This module will send events of type

OSLC Events to Kafka and receive graphs of type OSLC Actions from Kafka, alerting

of new changes in other DevOps tools. This completes the action and event-based

monitoring framework and the OSLC standard. As mentioned above, this work will

evaluate the architecture needed for a specific use case (Stackstorm) and therefore

the graph manager will be able to send and receive OSLC Actions and OSLC Events

without including any other DevOps tool.

• OSLC TRS: It can be understood as another server parallel to the adapter where the

logs, in OSLC format, of all the events produced by the adapter, will be stored. In the

architecture, it is located outside the adapter module itself, since it is not a database

as such, but it should be understood as another server that interacts with the Graph

Manager through HTTP Requests and that can be consulted at any time both by the

adapter and by users who want to have an overall view of what has happened in the

DevOps environment.

• Kafka: Through a Producer and a Consumer, it can be understood as the interme-

diary between DevOps tools. On the one hand, it will receive OSLC Events from

the adapter and will be able to generate OSLC Actions to all those adapters that are

subscribed to a certain Topic. The creation and deployment of these Kafka instances

will be explained in detail in the case study section.

Once the general architecture of the work has been described, as well as the general ar-

chitecture of the project that frames it, the architecture implemented for the work will be

explained in detail, both for the monitoring framework and for the extraction and analysis

of social metrics.

61

CHAPTER 4. ARCHITECTURE

4.2 Architecture of StackStorm OSLC Adapter

As mentioned above, this work will focus on a specific use case of the general SmartDevOps

architecture explained above. In this case, the importance of the architecture will fall on

the Stackstorm-OSLC adapter, as well as the different modules that form it.

On the one hand, an instance of Stackstorm will be deployed with its architecture,

as explained in section 2. Stackstorm allows storing a log with the events that occur in

Stackstorm, which in the case of the project refers to the events that are made to the rules

(HTTP CRUD). For the project, the initial architecture of Stackstorm has been slightly

modified, so that a MongoDB ReplicaSet cluster has been chosen, consisting of a primary

node and two secondary nodes. In this way, active monitoring can be carried out more

efficiently.

This monitoring module consists of actively listening to any new record that appears

in the ReplicaSet cluster. That is, it has avoided the use of passive monitoring based on

periodic HTTP requests to Stackstorm to know the status of its local database, and to check

if there has been any change or not. This method has been concluded that could overload

the system, so active monitoring has been chosen. Active monitoring is understood as the

process by which Stackstorm itself notifies the monitoring module of any new record stored

in its local database, thus avoiding system overload.

On the other hand, the Stackstorm-OSLC adaptation layer will have a Graph Manager

whose functions will be those described in the previous section. On the one hand, it will be

in charge of receiving information from the monitoring module about what type of event

and at what time it has occurred. Once it receives this information, it will be in charge of

generating a graph of the OSLC Event type, which will be sent to the Kafka instance. On the

contrary, it will also be the module in charge of receiving OSLC Action from Kafka. When

it receives this OSLC Action, it will interact directly with Stackstorm to update, create,

query or delete a rule, depending on the type of action it receives. On the other hand, the

Graph Manager will be in charge of recording in the OSLC TRS all the events produced by

and in the adapter. This OSLC TRS will have an endpoint that can be consulted to obtain

a global view of all the events occurring in the adapter.

In this way, it is possible to have monitoring based on Stackstorm OSLC actions and

events.

62

4.2. ARCHITECTURE OF STACKSTORM OSLC ADAPTER

The architecture of Stackstorm OSLC adapter can be seen in the following diagram:

Figure 4.4: Stackstorm OSLC Specific Adapter Diagram

Two scenarios are considered in this diagram:

1. The action is performed directly on the Stackstorm interface. That is, an instance

of Stackstorm will be displayed in the scenario and the user will be able to modify,

create or delete a rule. This action will be picked up by the monitoring module.

2. An HTTP POST can be sent to the endpoint with the type of action to be performed,

which will also be received by the monitoring module.

The idea of the two scenarios is: On the one hand to demonstrate that any manual

change in the Stackstorm instance generates an event that will be received by the monitoring

module and, on the other hand, to demonstrate that this module will also be able to receive

a network of the OSLC Action type and execute this action on Stackstorm. The second

scenario can be understood as a simulation of what the full environment (the smartDevOps

architecture describes) will look like if a OSLC action is received from another DevOps

environment that requires an action on Stackstorm. This allows you to simulate it.

63

CHAPTER 4. ARCHITECTURE

4.3 Architecture of Social Monitoring

In the same way that the Stackstorm-OSLC adapter provides action- and event-based mon-

itoring OSLC, this part of the social monitoring intends to provide new relevant information

about the feedback that a given software can have from the users. To this end, a pipeline has

been developed that connects the various software used for this entire process, automated

by means of a task automator such as Airflow.

Figure 4.5: Social Metrics Pipeline

Where the software involved in the pipeline and its functions would be:

• Data ingestion: The module for extracting social data from the Twitter platform,

by using GSICrawler for searching by hashtag. It uses snscrape[42] for this. Once the

information is extracted, it enriches it semantically with the Schema ontology.

• Preprocessing: This module performs the necessary normalization and adaptation

operations on the captured data. Its main objective is to adapt the ingested data to a

common format for subsequent analysis. For this purpose, it performs two main pro-

cesses: NLP preprocessing and geolocation of social network messages. In this case,

the GSITK[43] library is used for NLP preprocessing, which, among other things,

eliminates stop-words. The location data for each entry is represented in a standard-

ized format so that mapping tools can use it. In the case of Twitter as a data source,

to translate the location information to its geographic coordinates, a request is made

to the Google API.

64

4.3. ARCHITECTURE OF SOCIAL MONITORING

• Data Analysis: The analysis of the extracted textual data to enrich it, obtain more

information and discover patterns is a key feature of the presented intelligent system.

The data analysis module performs such analysis, adding value to the data. Senpy

is a framework for developing, integrating and evaluating web services for sentiment

and emotion analysis and, in general, for text analysis. The text analyses performed

in this module extract emotional, psychological and moral information from the text.

To extract these annotations, we use the LIWC dictionary and Moral Foundations

Dictionary (MFD).

• Storage and search engines: The role of the ElasticSearch database is to serve

as a central storage for all processed data, allowing its accessibility and visualization.

Therefore, once the data is indexed, Kibana is used for the visualization of the results

due to its native integration with ElasticSearch. As an additional storage submodule,

we use Apache Jena Fuseki. As an endpoint of SPARQL, Fuseki can be understood

and accessed by humans and machines using semantic queries. The returned data

can be exported in JSON and Comma Separated Value (CSV) formats. In this way,

all this data will be stored and analyzed in Fuseki to allow semantic searches and in

Elasticsearch to allow its visualization through Kibana.

• Visualization: The objective of this module is to provide a control panel for users

based on components that can be used for customized and interactive data visual-

izations. For this project Kibana is used, which will communicate with the data

indexed in Elasticsearch. By interacting with these components, the user can mod-

ify the filters, and the component communicates the filter change to the rest of the

visualization. These Kibana Dashboards can be as complex as you want them to be,

depending on the data stored and displayed.

• Task orchestrator: This module is responsible for orchestrating all services through

the use of pipelines, which are a series of interdependent tasks that are executed in

order. Each task is defined by its input (its dependencies), its computation and its

output. For this purpose, Airflow is used to orchestrate the different tasks between

modules. Each task communicates with the external service that performs actions

on the data and transmits them in the pipeline. It ensures that there are no failures

when sequencing the tasks.

In this way, the complete collection and processing of metrics from different sources is

achieved. On the one hand, an architecture based on actions and events has been developed

for Stackstorm monitoring using the OSLC standard. On the other hand, an architecture

65

CHAPTER 4. ARCHITECTURE

based on a task orchestrator such as Airflow has been developed to facilitate, through the

use of a pipeline, the extraction and analysis of social metrics through Twitter. In this way,

a much broader view of the feedback that a given software may have from users is achieved.

The development of each part involved in this pipeline will be defined in detail in the

following section.

66

CHAPTER5
Prototype implementation

This section will explain the methodology and development carried out for each of the

parties involved in the project. The objective of this section is not to analyze in depth the

developed code but to explain the different parts that compose the architecture and the

steps followed for the development. The whole adapter is programmed in Python and will

be available in Gitlab1.

On the one hand, as mentioned above, a monitoring framework based on actions and

events has been developed using semantic technologies and the OSLC standard.For this

purpose, the deployment of the scenario and all the parts involved will be explained, as

well as the programming languages or external software used for the development of the

Stackstorm-OSLC adapter.

On the other hand, a pipeline based on the Airflow task orchestrator has been developed

to implement the whole process of extracting and analyzing social metrics, using tools from

the Intelligent Systems Group. For this part, we will also explain everything necessary

for its local deployment and all the technical aspects that have been implemented on this

software to adapt it to the use case of the project.

1https://lab.gsi.upm.es/valvarez/stackstorm-oslc-adapter/

67

https://lab.gsi.upm.es/valvarez/stackstorm-oslc-adapter/

CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.1 Scenario deployment

In this project, there are several tools that are part of the architecture, so several aspects of

the deployment have had to be modified to make it centralized and simple for the developer.

On the one hand, as mentioned above, an instance of Stackstorm will be raised with its

specific architecture. In this case, the Docker version will be used2. For the Stackstorm de-

ployment, several parts of docker-compose.yml have been modified to convert its MongoDB

database, formed by a single node, into a ReplicaSet cluster, formed by two secondary nodes

and a primary node. In this way, it is intended that the Stackstorm changelog is stored in

a distributed and more efficient way, as well as having the cluster correctly monitored by

Python functions, which will be explained later.

Figure 5.1: Stackstorm MongoDB Architecture

2https://github.com/StackStorm/st2-docker

68

https://github.com/StackStorm/st2-docker

5.1. SCENARIO DEPLOYMENT

From the previous diagram, we will be interested in modifying the way in which the logs

are distributed in MongoDB. Specifically, two new MongoDB containers have been created

with a predefined hostname. As a relevant technical aspect, it is worth mentioning that

a script has been created that automates the whole process; from the deployment of the

containers to the creation of the ReplicaSet cluster, as well as deploying the rest of the

containers that form the architecture of the Stackstorm architecture.

Listing 5.1: Part of code from the DockerCompose file for MongoDB ReplicaSet deploy-

ment.

mongo0:

image: mongo:4.2

restart: on-failure

hostname: "fd6bd9c7f88c"

networks:

- private

volumes:

- stackstorm-mongodb:/data/db

- ./mongo/rs-init.sh:/scripts/rs-init.sh

entrypoint: ["/usr/bin/mongod", "--replSet", "rs", "--bind_ip_all"]

mongo1:

image: mongo:4.2

restart: on-failure

hostname: "9c27972b5baa"

networks:

- private

volumes:

- stackstorm-mongodb1:/data/db

entrypoint: ["/usr/bin/mongod", "--replSet", "rs", "--bind_ip_all"]

ports:

- 27018:27018

mongo2:

image: mongo:4.2

restart: on-failure

hostname: "04fe511d95d3"

networks:

- private

volumes:

- stackstorm-mongodb2:/data/db

entrypoint: ["/usr/bin/mongod", "--replSet", "rs", "--bind_ip_all"]

ports:

- 27019:27019

69

CHAPTER 5. PROTOTYPE IMPLEMENTATION

The following Bash code has been developed for the creation of the cluster (rs-init.sh).

This script is executed on the primary node:

Listing 5.2: Script for the creation of a Replica Set of MongoDB.

#!/bin/bash

mongo <<EOF

rs.initiate({
"_id": "rs",

"version": 1,

"members": [

{
"_id": 0,

"host": "some_hostname:27017",

"priority": 3

},
{

"_id": 1,

"host": "some_hostname:27017",

"priority": 2

},
{

"_id": 2,

"host": "some_hostname:27017",

"priority": 2

}
]

})

rs.status();

EOF

On the other hand, to create everything on the same stage, the deployment of Zookeeper

and Kafka has been included in the Stackstorm deployment. This Kafka container will

connect to the primary node of the MongoDB cluster to communicate and include the

topics.

In this way, the entire scenario is intended to be accessed, including the Stackstorm and

Kafka instance, using a simple command line.

70

5.1. SCENARIO DEPLOYMENT

Listing 5.3: Part of code from the DockerCompose file for KAFKA deployment.

st2_zookeeper:

image: confluentinc/cp-zookeeper:latest

environment:

ZOOKEEPER_CLIENT_PORT: 2181

ports:

- 22181:2181

st2_kafka:

image: confluentinc/cp-kafka:latest

depends_on:

- zookeeper

ports:

- 29092:29092

environment:

KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181

KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092,PLAINTEXT_HOST://

localhost:29092

Stackstorm-OSLC adapter will be explained in detail in the following section, but it

is worth mentioning by way of introduction that it is based on the Python Flask library,

so different endpoints will be created for the different OSLC resources to be consulted by

means of HTTP requests. This adapter is fully developed in Python, and Docker Compose

will also be used for its deployment. The Kafka instance has been developed using its

Python client3 and communicates with the adapter through HTTP requests

Finally, the deployment of the sentiment extraction and analysis pipeline consists of

several virtualized services hosted on different servers of the Intelligent Systems Group

(ETSIT-UPM), as well as all the changes required for this use case. That is, the changes

that have been made to the software that makes up the pipeline will be explained, as well

as where they are deployed in production and how to deploy them locally.

In conclusion, the idea of the project is to be easily deployable using Docker Compose

and Python. The monitoring module requires a parallel process, but a script has been

created to automate this process. For the rest of the services, such as the analysis of social

metrics, different tools already deployed on the servers of the Intelligent Systems Group

have been used and will be explained in detail in the following points.

3https://pypi.org/project/kafka-python/

71

https://pypi.org/project/kafka-python/

CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.2 Stackstorm OSLC Adapter Case Study

In this section, we will describe the technical aspects of the development of the Stackstorm-

OSLC adapter as well as all its components.

The backbone of the adapter has been developed using Flask and Cookiecutter.

On the one hand, Flask is a Python framework for creating web servers in the MVC

pattern[44]. With its use, it is intended to deploy a set of endpoints to which HTTP requests

can be made, as part of the Linked Data principles. This is necessary for the adapter since

the OSLC standard, as explained in previous sections, requires URIs to identify the different

OSLC resources such as the Service Provider or the URIs for creating or querying resources

(Stackstorm rules). For communication of the adapter with the Stackstorm instance, use is

made of the Stackstorm API itself, as well as its Python client.

On the other hand, Cookiecutter is an open source library for building coding project

templates[45]. In this case, it has been used to create the entire structure that will support

the project4.

Figure 5.2: Stackstorm OSLC adapter modules

The adapter as a whole will consist of three processes that are started when the adapter

is deployed. On the one hand the process controller refers to the docker-compose with which

the scenario is raised, as well as all the listening processes of each module.

4https://github.com/cookiecutter-flask/cookiecutter-flask

72

https://github.com/cookiecutter-flask/cookiecutter-flask

5.2. STACKSTORM OSLC ADAPTER CASE STUDY

This controller will raise three modules: the monitoring module that will be listening

for events in Stackstorm, the Graph manager that will be in charge of managing the RDF

graphs with RDFLib among others and the Kafka instance that will be used to receive and

send actions and events of the OSLC type.

As mentioned above, Flask is used to create the adapter as a web server that has

numerous endpoints to handle HTTP requests. These endpoints are necessary to maintain

the Linked Data philosophy of exchanging data using URIs and HTTP. Each of them will

be associated with a Python function developed to process incoming HTTP requests. The

base URI will be http://localhost:5000/service/.. and it will be necessary to build the rest

of the endpoints.

The following diagram reflects the most important endpoints of the project, as well as

the relationship with external tools such as Kafka or Stackstorm and the response obtained

when a query is made. For example, to obtain a complete list of the list of resources, an

HTTP GET must be made to the endpoint baseURI/serviceProvider/1/changeRequests.

Figure 5.3: Stackstorm-OSLC endpoints

These endpoints are associated with a series of HTTP requests (GET, POST, PUT)

via the Python function . When an HTTP request arrives at one of these endpoints, the

function is called, and the request processes. These functions will be explained in detail in

the Graph Manager.

73

CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.2.1 Monitoring module

The MongoDB change stream was used for the development of the monitoring module. As

mentioned above, the changes that occur in Stackstorm are stored in an internal MongoDB

database, to which two other secondary nodes have been added for the creation of a Repli-

caSet. Change streams allow you to listen for changes to your MongoDB database. This

functionality allows you to build applications that can respond immediately to changes in

data in real time[46].

The objectives of this module are:

• Listen to Stackstorm events by actively listening by listening for new records in its

local database.

• Send these logs to the ST2 endpoint for processing.

Figure 5.4: Monitoring module diagram

For example, when a rule is updated, created, or deleted, logs of this type will be stored

in a local collection from its MongoDB database:

Listing 5.4: Example of an update rule log from the Stackstorm MongoDB

{"_id": {"_data": "<some_int>"}, "operationType": "update", "clusterTime":

{"$timestamp": {"t": 1650549724, "i": 2}}, "ns": {"db": "st2", "coll":

"rule_d_b"}, "documentKey": {"_id": {"$oid": "<some_rule_oid>"}}, "

updateDescription": {"updatedFields": {"context": {"user": "st2admin"},
"enabled": false}, "removedFields": ["tags"]}}

74

5.2. STACKSTORM OSLC ADAPTER CASE STUDY

These logs are sent to a new adapter endpoint where these logs will be processed to

discover the type of operation that has occurred in Stackstorm.

That is, the ’operationType’ field and rule id is obtained and, depending on the type

of operation, an OSLC event or another will be created and sent by the adapter to Kafka.

In this way, the changes that occur in the Stackstorm rules are monitored in real time

and in a simple and intuitive way.

These changes are processed and send into the Graph Manager for trigger the production

of OSLC Events depending on the type of operation produced. This part of the adapter will

be explained in detail in the graph manager, since this function called in the adapter when

HTTP requests arrive at the ST2Logs endpoint is an important part for the conversion of

these logs into OSLC Events to be sent to the Kafka instance.

5.2.2 Graph Manager

It is the central part of the adapter, so in this section we will have to go into the code in

more depth to explain how it works. One aspect to note before going into detail on the

graph manager implementation is that there is a clear difference for development purposes

between the OSLC resources and the Stackstorm rules themselves.

On the one hand, the OSLC resources will be the graphs that define the rules and will

be stored in the so-called store. On the other hand, the rules as such will be Stackstorm’s

answers to a query. In conclusion, the graph manager will be formed by everything related

to the semantic world, OSLC resources, RDF/XML graphs, etc. and on the other hand

with everything related to its interaction with the Stackstorm API.

The Graph Manager module refers to the module that is in charge of:

• Receiving the Stackstorm logs from the monitoring module.

• Defining Stackstorm as OSLC resources.

• Managing the RDF graph with SPARQL queries.

• Interact with the Stackstorm instance via the HTTP request when a OSLC Action is

delivered.

• Sending OSLC Events to Kafka instance when a change in Stackstorm has been made.

75

CHAPTER 5. PROTOTYPE IMPLEMENTATION

• Store the ChangeLog in the OSLC TRS.

The purpose of this section is to explain the whole design and development process,

without going into the code in depth. The basis of the Graph Manager resides in the

endpoints that have been deployed using Flask, indicated in the previous point. HTTP

requests sent to each of these endpoints will be processed in one way or another. Not all

endpoints support all types of HTTP requests.

Figure 5.5: Graph Manager Stackstorm-OSLC

For example, the OSLC Service Provider can be queried by means of an HTTP GET to

the endpoint defined for this purpose. This request will be processed by a Python function

that will perform the semantic adaptation to the OSLC Service Provider, using RDFLib.

RDFLib is a pure Python package to work with RDF[47].

With this function it is possible to obtain a representation of the semantic graph in n3

of the OSLC Service Provider, with the resources indicated in the OSLC CORE such as the

QueryCapability or the CreationFactory, in the form:

Listing 5.5: Stackstorm representation as a OSLC Service Provider

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix ns1: <http://open-services.net/ns/core#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://localhost:5000/service/serviceProviders/1> a ns1:ServiceProvider ;

ns1:details "http://localhost/api" ;

ns1:service [a ns1:Service ;

ns1:creationFactory [a ns1:CreationFactory ;

ns1:creation <http://localhost:5000/service/

serviceProviders/1/changeRequests> ;

76

5.2. STACKSTORM OSLC ADAPTER CASE STUDY

ns1:label "Creation Factory" ;

ns1:resourceType <http://open-services.net/ns/cm#

ChangeRequest>] ;

ns1:domain <http://open-services.net/ns/cm#> ;

ns1:queryCapability [a ns1:QueryCapability ;

ns1:label "Query Capability" ;

ns1:queryBase <http://localhost:5000/service/

serviceProviders/1/changeRequests> ;

ns1:resourceType <http://open-services.net/ns/cm#

ChangeRequest>]] ;

dcterms:created "2022-05-20T18:47:14.137525"ˆˆxsd:dateTime ;

dcterms:description "OSLC Stackstorm adapter" ;

dcterms:identifier 1 ;

dcterms:title "OSLC Stackstorm adapter" .

Similarly, the resource listing can be obtained via an HTTP GET to the endpoint

indicated by the Query Capability (as indicated in the OSLC CORE specifications). The

following representation shows a rule, semantically modeled with their own ontology, using

OSLC.

Listing 5.6: Stackstorm rules representation as a OSLC Resources

@prefix ns1: <http://localhost:5001/ns/st2_oslc#> .

@prefix ns2: <http://open-services.net/ns/core#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://localhost:5000/service/serviceProviders/1/changeRequests/1> a <http

://open-services.net/ns/cm#ChangeRequest> ;

ns1:actionRef "chatops.post_result" ;

ns1:ruleId "6287c5e09880031168707668"ˆˆrdf:XMLLiteral ;

ns1:rulePack "chatops" ;

ns1:ruleRef "chatops.notify" ;

ns1:ruleStatus true ;

ns1:ruleTitle "notify"ˆˆrdf:XMLLiteral ;

ns1:triggerRef "core.st2.generic.notifytrigger" ;

ns1:triggerType "core.st2.generic.notifytrigger" ;

ns2:serviceProvider <http://localhost:5000/service/serviceProviders/1>

.

In this way, the fundamental concepts of OSLC have been developed in order to associate

it with the main concepts of Stackstorm.

77

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Another important part of the Graph Manager will be its ability to interact with Stack-

storm, once it receives an action. When Kafka receives certain OSLC Events will be regis-

tered under a topic, a network of the type OSLC Action with the action to be performed

will be sent to all the tools subscribed to that topic.

Figure 5.6: Graph Manager interaction with Kafka

This part of the architecture is outside the project frameworks, since no new tools will

be included, but an endpoint has been deployed to simulate it. In this case, the Graph

Manager will be able to receive a graph of the OSLC Action type similar to the one it

would receive from Kafka and will be able to act directly against the Stackstorm API to

perform the appropriate action.

For example, let us say the adapter receives an N3 graph to update a rule, of the form:

Listing 5.7: OSLC Action representation in N3 for updating a Stackstorm rule

@prefix ns2: <http://localhost:5001/ns/st2_oslc#> .

@prefix ns23: <http://localhost:5002/ns/oslc_actions#> .

[] a <http://localhost:5000/service/UpdateRuleAction>,

ns23:Action ;

ns2:ruleId "62761dfae8668ff90c4bec74" .

This graph will be processed by the Python function associated with the action endpoint.

This function will extract the type of action to which it refers, by means of a SPARQL

query:

78

5.2. STACKSTORM OSLC ADAPTER CASE STUDY

Listing 5.8: SPARQL Query for extracting the OSLC Action type

query_action = """

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX oslc_actions: <http://open-services.net/ns/actions#>

SELECT ?type

WHERE {

?s rdf:type ?type .

} """

In this case, as it is an action of the Update type, which refers to when a rule is acti-

vated/deactivated, the function in charge of updating the rules in the deployed Stackstorm

instance will be called. This function extracts from the graph the id of the rule with another

SPARQL query and interacts with the Stackstorm API to send an HTTP PUT with the id

of the rule to be activated/deactivated.

The same procedure will be used for actions of the CreateRule or DeleteRule type also

developed in this project. In the general framework, the adapter must be able to receive

OSLC Actions and act against any DevOps tool, and at the same time it must be able to

update the list of OSLC resources stored in its store.

Finally, the graph manager must be able to receive events from the monitoring module

and translate them into OSLC Events to send them to the Kafka instance, which will be

explained in the next section. As seen in the description of the monitoring module, with each

new change the log is sent to the ST2Logs endpoint where it is processed and everything

mentioned above is done.

Figure 5.7: Graph Manager ST2Logs endpoint

79

CHAPTER 5. PROTOTYPE IMPLEMENTATION

This log that is sent from the monitoring module, when an event occurs in Stackstorm,

to the ST2Logs endpoint is processed to extract what type of action has occurred.

In the same way, this event is stored in the OSLC TRS so that the user or developer can

consult via HTTP GET all the log of events that have occurred in the adapter. Whenever

a change occurs, the resource listing will have to be updated, so that it reflects the actual

Stackstorm situation and not a previous state.

5.2.3 Kafka instance

Another important part of the adapter will be the Kafka instance. As mentioned above,

once the Graph Manager processes the logs coming from the monitoring module, the Kafka

module comes into play. Kafka consists of a Producer and a Consumer. The Producer is

the one that receives from the Graph Manager the semantic data related to OSLC Events

and stores them under a certain topic, for example ’st2event’. Once this is done, the topic

is stored in different sections called ’partitions’ that will be consulted by the Consumer.

The idea of this implementation is that different DevOps tools subscribe to the ’st2event’

topic and that, when a new information flow is added, a message is sent to all of them

alarming them of new changes in Stackstorm. For this, semantic networks of the OSLC

Action type will be generated, which will be received by all the other adapters.

Figure 5.8: Kafka Producer/Consumer Diagram

At the development level, this is done in the function in charge of handling HTTP

requests arriving at the ST2Logs endpoint, as shown in the diagrams in this section.

80

5.3. SOCIAL METRICS CASE STUDY

That is, when an event occurs in Stackstorm, an HTTP request is sent to the ST2Logs

endpoint with the log, the type of event produced is extracted (activation/deactivation of

a rule, deletion or creation of a rule) and an OSLC Event of that type is generated, to be

sent by the Kafka Producer under the topic ’st2event’.

5.3 Social metrics Case Study

In this section, we will explain the more technical aspects of the development of the pipeline

for the extraction and analysis of social metrics through Twitter. It is not intended to go

in-depth into the code of the software itself, since it has been developed by the Intelligent

Systems Group, outside this project. However, we will explain all the technical aspects that

have been modified or added to this software to adapt it to the specific use case of this

project. There will be a subsection for each part of the pipeline.

5.3.1 Airflow

Airflow will be responsible for orchestrating all tasks through the pipeline, so that they are

performed in an automated and related manner. The Python airflow library has been used

for its development. All of these tasks will be described in detail in the following sections.

For this project, we have reused the code of Óscar Araque5, from the Intelligent Systems

Group, adapting it to this use case.

The execution of the pipeline is handled by the Airflow DAG, which is responsible for

setting the main parameters as follows.

Listing 5.9: DAG code example for a daily execution

@dag(

start_date=pendulum.datetime(2022, 2, 15, 5, tz="UTC"),

tags=["smartdevops"],

catchup=True,

schedule_interval="@daily",

max_active_runs=1,

)

5https://gsi.upm.es/es/about-us/people?view=member&task=show&id=137

81

https://gsi.upm.es/es/about-us/people?view=member&task=show&id=137

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.9: Pipeline Flowchart

Therefore, Airflow takes care of the execution of each task in the order indicated in the

diagram. If an error occurs in any of them, the pipeline stops, but caches the result of

those that have been successfully completed. In this way, if the pipeline is executed again,

it will start from the task that failed in the first place. This pipeline and each of its tasks,

is entirely developed in Python.

5.3.2 GSICrawler

As mentioned in previous sections, for the extraction of social metrics from Twitter, GSI-

Crawler6 was used. In the initial development of GSICrawler, the library twint7 was used,

which had certain limitations, so for this project, we have chosen to use snscrape8. Snscrape

is an open source that provides scrapers for different social sources such as Facebook or

Mastodon. In this case, we were only interested in using it for Twitter.

6https://crawler.gsi.upm.es
7https://github.com/twintproject/twint
8https://github.com/JustAnotherArchivist/snscrape

82

https://crawler.gsi.upm.es
https://github.com/twintproject/twint
https://github.com/JustAnotherArchivist/snscrape

5.3. SOCIAL METRICS CASE STUDY

GSICrawler is deployed on one of the servers of the Intelligent Systems Group, as a

Docker container, and is accessible at the previous endpoint. The changes required to

implement snscrape in GSICrawler have been to map the results obtained by the library to

the schema ontology, used to describe blogs or web pages.

The idea of the project is to obtain all tweets that contain hashtags for a certain software.

In this case and for the project demo, tweets containing the hashtag #VisualStudioCode

will be extracted.

Figure 5.10: GSICrawler input-output example

83

CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.3.3 Preprocessing

These data obtained through GSICrawler are pre-processed using natural language with

NLTK and GSITK9.

This task is developed in Python like all the others, and this idea consists of the following:

• Remove punctuaction

• Tokenize words with the NLTK library

• Removing tweets in languages other than English or Spanish

• Removing stopwords such as ”hastag”, ”url”, ”user”, etc. with GSITK

• Obtaining the tuit location by using Google Geocode API

Figure 5.11: Data Preprocessing Example

9https://github.com/gsi-upm/gsitk

84

https://github.com/gsi-upm/gsitk

5.3. SOCIAL METRICS CASE STUDY

5.3.4 Senpy

As mentioned above, sentiment analysis that provides a semantic layer is performed using

Senpy10. Senpy is a framework developed by Intelligent Systems Group that allows for

the creation of sentiment analysis web services easily, quickly, and using a well-known

API. Senpy services use semantic vocabularies (e.g., NIF, Marl, Onyx) and formats (turtle,

JSON-LD,RDF/XML).

LIWC and MFD dictionaries were used for the project. In this case, only the LIWC

dictionary in Spanish and English was needed, since these are the languages chosen for the

demonstration of this work. For this purpose, both plugins have been created for Senpy, as

indicated in the documentation11.

The LIWC dictionary is made up of 2,290 words and word stems (Tausczik & Pen-

nebaker, 2010). Each word or word stem defines one or more word categories or subdic-

tionaries. LIWC categories are hierarchically ordered. For example, all anger words, by

definition, will be classified as negative emotions and general emotion words. The result

obtained enriches and contextualizes the textual data input, providing a detailed analysis

that includes emotions, thinking styles, social concerns, and personal drivers.

In terms of MFD, it is used with the LIWC program, facilitating its implementation.

The MFD was developed to operationalize moral values in text. This dictionary provides

information on the proportions of virtue words and vice words for each moral foundation

in a text corpus (Graham et al., 2009). It is made up of 336 words and word stems that

are classified into the five moral dimensions: care / harm, justice / cheating, loyalty /

betrayal, authority / subversion, and sanctity / degradation. All moral dimensions are

measured in the text, and their results are aggregated to form a unified view of the data. It

is not intended to go in depth into the developed code, so the documentation and Github

repository are left as a reference for any reader who wants to dig into the creation and

deployment of Senpy plugins. An example of Senpy can be found in the endpoint described

in the footer12.

An example of the output of both plugins for the tweet used in the above example could

be:

10https://github.com/gsi-upm/senpy
11https://senpy.readthedocs.io/en/latest/
12https://senpy.gsi.upm.es

85

https://github.com/gsi-upm/senpy
https://senpy.readthedocs.io/en/latest/
https://senpy.gsi.upm.es

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.12: Output example with Senpy and LIWC, MFT plugins

5.3.5 Data Storage and Visualization

Once these social metrics are extracted with GSICrawler, pre-processed with NLTK and

GSITK and analyzed and semantically enriched with Senpy, they are stored in several

endpoints that will have different functions. On the one hand, these data are stored in

an instance of Elasticsearch, under the SmartDevOps index, and can be visualized with

Kibana.

This Kibana-developed project dashboard is accessible to any user at the endpoint

indicated in the footer13. Several important aspects of the dashboard are worth noting. On

the one hand, the number of tweets obtained, after passing through the filters mentioned

above, containing the hashtag #VisualStudioCode, as well as a graph indicating the time

of publication of the tweets containing this hashtag, and the most used. The user will also

be able to filter these data with the different filters at the top.

13https://dashboard-smartdevops.gsi.upm.es

86

https://dashboard-smartdevops.gsi.upm.es

5.3. SOCIAL METRICS CASE STUDY

Figure 5.13: Kibana Dashboard with number of tuits and timeline for hashtags

Other interesting data have been added, such as the most used hashtags and the number

of times they have been used.

Figure 5.14: Kibana Dashboard with popular hashtags

The next thing displayed will be the results obtained from the Senpy sentiment analysis.

This visualization will be done using pie charts whose intention is to divide the results into

user-understandable categories.

• Affect words: It refers to the identification of the message as positive or negative,

which could give an interesting overview of, e.g. a new functionality or release added

by a certain software.

• Social words: Refers to information content of a social nature, such as references to

gender-segregated referents such as friends, relatives, etc.

• Personal concerns: Refers to the identified personal use that users give, in this case,

to Visual Studio Code. From work use (majority) to leisure use, as well as sectarian

(extremist) use. Economic uses could include commercial use or use in an advertising

tweet.

87

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.15: Kibana Dashboard with Sentiment Analysis

Finally, as mentioned in previous sections, with the preprocessing of the extracted data,

the location of the tweet is extracted through the Google API. Note that not all tweets have

location. This visualization is carried out using an interactive heat map.

Figure 5.16: Kibana Dashboard with Data Location

However, the data will be stored in a Fuseki deployed by the Intelligent Systems Group14.

The function of this Fuseki is to store all the semantic data, to be queried by the user through

an SPARQL endpoint.

Figure 5.17: SPARQL Endpoint

The idea of storing the data in both data storage is to allow the user to have a ba-

sic visualization through Kibana and to make more complex queries to Kafka by using a

SPARQL endpoint.

14https://fuseki.gsi.upm.es

88

https://fuseki.gsi.upm.es

CHAPTER6
Conclusions and Future Work

This chapter will describe the goals achieved by the master thesis, as well as what is left

for future work.

6.1 Conclusions

In this project, we have developed a monitoring framework based on actions and events

using the OSLC standard and the advantages of Linked Data and the semantic web. For

this purpose, we have designed our semantic model to define Stackstorm rules. In this

way, a functional prototype has been created that uses the benefits of the semantic web to

interrelate different DevOps tools under a common vocabulary and in an interoperable way.

On the one hand, a Stackstorm-OSLC adapter has been developed, capable of generating

OSLC Events when a change occurs in any Stackstorm rule, and send it into a Kafka

instance. For this purpose, it has been necessary to create a module for monitoring the

deployed Stackstorm instance, by actively monitoring its local database, looking for new

records that reflect any change, as well as the Graph Manager module where all the graphs

and everything related to the processing and exchange of semantic data will be managed.

89

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Finally, a Kafka cluster has been deployed and designed to receive from the Graph Manager

OSLC Events, when an event occurs in Stackstorm, and to produce OSLC Actions to the

rest of the tools subscribed to this topic. This last part is outside the scope of the project

since it is part of a larger project, as indicated in this report.

On the other hand, to complement the monitoring framework based on OSLC Events

and Actions, a pipeline has been developed and deployed to extract and analyze social

metrics through Twitter, to get an overview of the feedback from users regarding a given

software, in this case, Visual Studio Code. In this way, a global view is achieved and added

value is added to the framework, by analyzing sentiment data extracted from social sources.

This data is also semantically enriched, so the use of ontologies has been a key part of the

project, as explained.

6.2 Achieved Goals

The achieved goals for this project are the following:

• Interaction with Stackstorm via HTTP Requests: All the necessary functions

have been developed to interact with the deployed instance of Stackstorm, using its

own API.

• Development of a semantic model for Stackstorm rules: A semantic model has

been created to define Stackstorm rules, using OSLC Core classes and other domains

as well as attributes defined for the rule structure. This allows the management of

these rules by the Graph Manager.

• Development of a monitoring framework for Stackstorm’s internal database:

Taking advantage of the fact that any change produced in Stackstorm is stored in a

local MongoDB, an active monitoring module has been developed to listen to events

registered in this database. On the other hand, to increase its productivity, the num-

ber of MongoDB nodes has been increased from a single node to a ReplicaSet cluster

consisting of a primary node and two secondary nodes.

• Development of a Graph Manager for Stackstorm-OSLC adapter: All the

necessary functions have been developed for all the semantic enrichment of Stackstorm

rules, following the OSLC standard. On the one hand, the Python OSLC client and

RDFLIb have been used to work with RDF/XML graphs and allow the adapter to

90

6.3. FUTURE WORK

create its own OSLC Event or OSLC Action graphs depending on the action performed

in Stackstorm. This Graph Manager is in charge of interacting with Stackstorm,

modifying its rules, depending on the type of operation indicated in the OSLC Action

graph it receives, as well as creating OSLC Event type graphs and sending them to

Kafka when a manual change occurs in any of these rules.

• Deployment and development of a Kafka instance: A Kafka instance has been

deployed, consisting of a Kafka Producer and a Kafka Consumer. On the other hand,

the necessary functions have been developed, through the kafka-python library, to be

able to receive OSLC Events type graphs and generate OSLC Actions type graphs.

The part that other DevOps tools can receive these OSLC Actions by subscribing to

a certain Kafka topic is outside the scope of this project.

• Deployment and development of a pipeline for visualization of social met-

rics: It has been developed, using software already deployed and created by the

Intelligent Systems Group and adapting it to the use case of the project, a social met-

rics monitoring pipeline capable of extracting data from the Twitter social network

on a given hashtag, perform an analysis of feelings and emotions and be displayed on

a Kibana dashboard. In turn, a SPARQL endpoint has been deployed to allow the

user to perform complex searches taking advantage of semantic data enrichment.

6.3 Future Work

Having explained the conclusions, once the action- and event-based monitoring framework

has been designed and developed, it is worth mentioning the future work. Part of the future

work will be carried out under the SmartDevOps project, of which this work is a part. These

future points could be encompassed in the following:

• Extend the semantic model for Stackstorm: For this work, the Stackstorm rules

have been modeled semantically. Although rules are an important part of this tool,

they are not the only one. Within Stackstorm there are other components such as

actions, triggers, packs, which can be semantically modeled in the future in order to

realize a complete Stackstorm-OSLC adapter.

• Incorporation of new DevOps tools into the system: As described in the

SmartDevOps project definition, the future idea is to achieve interoperability between

DevOps tools. That is, having deployed for this work a Stackstorm-OSLC adapter

91

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

capable of generating OSLC events and receiving OSLC Actions, the idea will be

to incorporate into the complete architecture other OSLC adapters from other tools

that are capable of the same. Each adapter will have its own TRS, as well as its own

Graph Manager. The idea will be to connect a diverse set of tools through Kafka,

through subscriptions to topics, using a common vocabulary such as OSLC. Kafka

will generate OSLC Actions every time it receives OSLC Events from a certain tool,

under a certain topic, and will send it to those subscribed to that topic. The Graph

Manager of each adapter will be in charge of interacting with the tool to make the

necessary modifications.

• Implement automation: The process described in the previous section is intended

to achieve the automation of events and actions. For example, let’s say there is a

certain tool subscribed to the ”st2 topic” topic. If a rule is activated in Stackstorm,

an OSLC Event will be generated to Kafka under the topic ”st2 topic”. Kafka will

generate an OSLC Action to all the tools subscribed to the topic and will generate

their actions directly against their own APIs or Python clients or whatever is needed,

in an automated way, thanks to the OSLC standard.

• Deployment of the system in production environment: The entire system

will be deployed in production environments of the Intelligent Systems Group. This

environment will have a virtualized instance of Stackstorm, of Kafka, as well as the

OSLC adapter developed for the tools that require it.

92

APPENDIXA
Project Impact

This is the description of the appendix.

A.1 Introduction

DevOps methodologies are being used exponentially on a daily basis in most technology

companies. These methodologies consist of tools that are not always easily interoperable

due to their own configurations, so using a common standard so that they can communicate

in a fluid and interoperable way can be a great advantage. For this purpose, this system uses

OSLC and the advantages of Linked Data to create a framework for monitoring software

metrics or social metrics. This section will explain the impact of the developed system.

A.2 Social Impact

At the social level, the goal of the system is to provide an alternative to the interconnection

of DevOps tools through the use of the semantic web and Linked Data. Developing systems

93

APPENDIX A. PROJECT IMPACT

capable of communicating through a common vocabulary would allow systems to respond

more fluidly to changes in user demand, so that users can receive a higher quality of service.

On the other hand, the use of social networks such as Twitter has become a daily routine

for millions of users, so analyzing the information flowing in this network for a particular

software or update can bring considerable advantages to the developers of these softwares.

A.3 Economic Impact

In the field of economics, this system proposes changes that would be of great relevance at

the economic level. On the one hand, if automation of communication processes between

different DevOps tools is achieved for different life cycles, a much greater optimization would

be obtained in the complete life cycle of a software product. Companies would be able to

manage their infrastructures in a much simpler way, being able to manage periods of high

demand and placing themselves at the forefront of the rest of the companies in their sector.

A.4 Environmental Impact

The system itself does not require large computational requirements, but the idea of using

Kafka would be to create an instance in several systems to decentralize the sending of

messages. Therefore, depending on the volume of DevOps tools incorporated into the

system as well as the volume of data extracted from Twitter from the appropriate hashtags,

more computational capacity may be required. Storage servers such as NFS must also be

added to the system for persistence. Because of this, it is necessary to carry out an energy

transition that uses less polluting energy and more renewable energy sources. On the other

hand, it is also necessary to use green computing techniques to reduce pollution, not only

with this project, but with so many others.

A.5 Ethical Implications

The ethical implications refer in this case to user privacy in the deployment of the social

metrics extraction pipeline. In the case of the project, private user information is not

public. Certain data are only used for the visualization module, without an external user

being able to link sensitive data to identify a specific user. If this platform were to be used

94

A.5. ETHICAL IMPLICATIONS

by a private company and they wanted to publish all extracted data, users would have to

give their explicit consent.

95

APPENDIX A. PROJECT IMPACT

96

APPENDIXB
Project Budget

B.1 Introduction

In this section, all project costs, both human and economical, as well as the resources used

during development will be discussed

B.2 Human Resources

This project has been developed within the framework of the SmartDevOps research project,

for which the owner of this work is contracted as a lab technician in the Intelligent Systems

Group. This master’s thesis, which corresponds to the university master’s degree in net-

works and telematic services, corresponds to 12 ECTS, which would be 360 hours of work.

Taking into account that at 8 e each hour of work, it can be concluded that the cost per

person has been 2.880 e.

97

APPENDIX B. PROJECT BUDGET

B.3 Physical Resources

Servers from the Intelligent Systems Group have been used for this project. First, a desktop

computer with the following characteristics:

• CPU: Intel Core i5-10300H 2.50GHz

• RAM: 16 GB

• Disks: 500 GB - HDD

• Operative System: Ubuntu 21.04 LTS

• Price: 500e

On the other hand, other servers in the group have been used, such as a NAS server as

well as the production Kubernetes cluster. This cluster consists of a master node and two

secondary nodes. This NAS server has the following features:

• CPU: Intel Xeon E5-2603 1.70GHz

• RAM: 8 GB

• Disks: 27T (only a small part available for the development of this project)

• Operative System: Ubuntu 20.04 LTS

• Price: 10.000 e

On the other hand, the 3 nodes mentioned above have been used for the Kubernetes cluster

owned by GSI, if each computer has the following characteristics:

• CPU: Intel Xeon Silver 4210 CPU 2.20GHz, x86 64 architecture.

• RAM: 16 GB

• Disks: 500GB

• Operative System: Ubuntu 21.04 LTS

• Price: 400 e

98

B.4. TOTAL COSTS

B.4 Total Costs

Based on the above, the total project costs could be 15.080 e.

99

APPENDIX B. PROJECT BUDGET

100

APPENDIXC
Stackstorm ontology

For the creation of the Stackstorm model with OSLC, Protégé has been used as explained

in the previous sections. The purpose of this annex is to show all the classes and properties

that compose the model. The documentation has been done with Widoco1 and, at the

moment it is deployed on a local Apache server but it will be included in a web server to

make it accessible.

1https://dgarijo.github.io/Widoco/

101

https://dgarijo.github.io/Widoco/

APPENDIX C. STACKSTORM ONTOLOGY

102

103

APPENDIX C. STACKSTORM ONTOLOGY

The authors would like to thank Silvio Peroni for developing LODE, a Live OWL Doc-

umentation Environment, which is used for representing the Cross Referencing Section of

this document and Daniel Garijo for developing Widoco, the program used to create the

template used in this documentation.

104

Bibliography

[1] “Devops: A complete guide,” Jun. 2021. [Online]. Available in: https://www.ibm.com/cloud/

learn/devops-a-complete-guide. [Accessed: 2022-03-13]

[2] OSLC Primer, “Why OSLC?” publication Title: OSLC: Why OSLC? Type: OSLC: Why

OSLC? [Online]. Available in: https://open-services.net/why//. [Accessed: 2022-04-06]

[3] Javatpoint, “DevOps Lifecycle,” publication Title: DevOps Lifecycle Type: DevOps Lifecycle.

[Online]. Available in: https://www.javatpoint.com/devops-lifecycle. [Accessed: 2022-04-06]

[4] C. Ebert, G. Gallardo, J. Hernantes, y N. Serrano, “DevOps,” IEEE Software, vol. 33, no. 3,

pp. 94–100, May 2016.

[5] “DevOps Methodology | Stages of DevOps Methodology & Tools,” Jan. 2020. [Online].

Available in: https://www.educba.com/devops-methodology/. [Accessed: 2022-04-12]

[6] “StackStorm Overview — StackStorm 3.6.0 documentation.” [Online]. Available in:

https://docs.stackstorm.com/overview.html. [Accessed: 2022-04-06]

[7] Hewlett Packard Enterprise, “¿Qué es la infraestructura como código? \textbar Glosario.”

[Online]. Available in: https://www.hpe.com/es/es/what-is/infrastructure-as-code.html.

[Accessed: 2022-04-06]

[8] Airflow Documentation, “Apache Airflow Documentation — Airflow Documentation,”

publication Title: Apache Airflow Documentation Type: Apache Airflow Documentation.

[Online]. Available in: https://airflow.apache.org/docs/apache-airflow/stable/index.html.

[Accessed: 2022-04-06]

[9] “Apache Airflow,” Oct. 2021. [Online]. Available in: https://datascientest.com/es/

todo-sobre-apache-airflow. [Accessed: 2022-04-12]

[10] “Architecture Overview — Airflow Documentation.” [Online]. Available in: https:

//airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html. [Accessed: 2022-04-

12]

[11] “¿Qué Es MongoDB?” [Online]. Available in: https://www.mongodb.com/es/

what-is-mongodb. [Accessed: 2022-04-19]

[12] “¿Qué es el sharding en MongoDB? ¿Cómo funciona el sharding en MongoDB? |
ramoncarrasco.es.” [Online]. Available in: https://www.ramoncarrasco.es/es/content/es/kb/

141/que-es-el-sharding-en-mongodb-como-funciona-el-sharding-en-mongodb. [Accessed: 2022-

04-19]

105

https://www.ibm.com/cloud/learn/devops-a-complete-guide
https://www.ibm.com/cloud/learn/devops-a-complete-guide
https://open-services.net/why//
https://www.javatpoint.com/devops-lifecycle
https://www.educba.com/devops-methodology/
https://docs.stackstorm.com/overview.html
https://www.hpe.com/es/es/what-is/infrastructure-as-code.html
https://airflow.apache.org/docs/apache-airflow/stable/index.html
https://datascientest.com/es/todo-sobre-apache-airflow
https://datascientest.com/es/todo-sobre-apache-airflow
https://airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html
https://www.mongodb.com/es/what-is-mongodb
https://www.mongodb.com/es/what-is-mongodb
https://www.ramoncarrasco.es/es/content/es/kb/141/que-es-el-sharding-en-mongodb-como-funciona-el-sharding-en-mongodb
https://www.ramoncarrasco.es/es/content/es/kb/141/que-es-el-sharding-en-mongodb-como-funciona-el-sharding-en-mongodb

BIBLIOGRAPHY

[13] “MongoDB Architecture.” [Online]. Available in: https://www.mongodb.com/

mongodb-architecture. [Accessed: 2022-04-19]

[14] “Apache Kafka.” [Online]. Available in: https://kafka.apache.org/. [Accessed: 2022-05-17]

[15] “Apache Kafka.” [Online]. Available in: https://kafka.apache.org/documentation/. [Accessed:

2022-05-17]

[16] Elastic, “Búsqueda open source: los creadores de Elasticsearch, el ELK Stack y Kibana

\textbar Elastic.” [Online]. Available in: https://www.elastic.co/es/. [Accessed: 2022-04-06]

[17] ——, “¿Qué es Elasticsearch?” publication Title: Elastic. [Online]. Available in:

https://www.elastic.co/es/what-is/elasticsearch. [Accessed: 2022-04-06]

[18] Studytonight, “Understanding Elasticsearch Architecture - Studytonight.” [Online]. Available

in: https://www.studytonight.com/elasticsearch/understanding-elasticsearch-architecture.

[Accessed: 2022-04-06]

[19] Elastic, “Kibana: Explora, visualiza y descubre datos,” publication Title: Elastic. [Online].

Available in: https://www.elastic.co/es/kibana. [Accessed: 2022-04-06]

[20] Elastic, “Logstash: Recopila, parsea y transforma logs,” publication Title: Elastic. [Online].

Available in: https://www.elastic.co/es/logstash. [Accessed: 2022-04-06]

[21] DBPedia, “Semantic Web,” publication Title: DBPedia: Semantic Web Type: DBPedia:

Semantic Web. [Online]. Available in: https://dbpedia.org/page/Semantic Web. [Accessed:

2022-04-06]

[22] W3C, “OWL - Semantic Web Standards,” publication Title: OWL - Semantic Web Standards

Type: OWL - Semantic Web Standards. [Online]. Available in: https://www.w3.org/OWL/.

[Accessed: 2022-04-06]

[23] “Vista General del Lenguaje de Ontoloǵıas Web (OWL).” [Online]. Available in:

https://www.w3.org/2007/09/OWL-Overview-es.html#s3. [Accessed: 2022-04-12]

[24] “Linked data como modelo de datos | datos.gob.es.” [Online]. Available in: https:

//datos.gob.es/es/noticia/linked-data-como-modelo-de-datos. [Accessed: 2022-04-12]

[25] Ontotext, “What is RDF?” publication Title: Ontotext. [Online]. Available in:

https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/. [Accessed: 2022-04-06]

[26] “WebProtege - Protege Wiki.” [Online]. Available in: https://protegewiki.stanford.edu/wiki/

WebProtege. [Accessed: 2022-04-12]

[27] “What is GSI Crawler? — GSI Crawler 1.0 documentation.” [Online]. Available in:

https://gsicrawler.readthedocs.io/en/latest/gsicrawler.html. [Accessed: 2022-04-13]

[28] J. F. Sánchez-Rada, O. Araque, y C. A. Iglesias, “Senpy: A framework for semantic

sentiment and emotion analysis services,” Knowledge-Based Systems, vol. 190, p. 105193, Feb.

2020. [Online]. Available in: https://linkinghub.elsevier.com/retrieve/pii/S0950705119305313.

[Accessed: 2022-04-23]

106

https://www.mongodb.com/mongodb-architecture
https://www.mongodb.com/mongodb-architecture
https://kafka.apache.org/
https://kafka.apache.org/documentation/
https://www.elastic.co/es/
https://www.elastic.co/es/what-is/elasticsearch
https://www.studytonight.com/elasticsearch/understanding-elasticsearch-architecture
https://www.elastic.co/es/kibana
https://www.elastic.co/es/logstash
https://dbpedia.org/page/Semantic_Web
https://www.w3.org/OWL/
https://www.w3.org/2007/09/OWL-Overview-es.html#s3
https://datos.gob.es/es/noticia/linked-data-como-modelo-de-datos
https://datos.gob.es/es/noticia/linked-data-como-modelo-de-datos
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
https://protegewiki.stanford.edu/wiki/WebProtege
https://protegewiki.stanford.edu/wiki/WebProtege
https://gsicrawler.readthedocs.io/en/latest/gsicrawler.html
https://linkinghub.elsevier.com/retrieve/pii/S0950705119305313

BIBLIOGRAPHY

[29] “What is Senpy? — Senpy documentation.” [Online]. Available in: https://senpy.readthedocs.

io/en/latest/senpy.html. [Accessed: 2022-04-13]

[30] “Apache Jena - Apache Jena Fuseki.” [Online]. Available in: https://jena.apache.org/

documentation/fuseki2/index.html. [Accessed: 2022-05-16]

[31] “Software.” [Online]. Available in: https://gsi.upm.es/es/tecnologias/software. [Accessed:

2022-04-23]

[32] “Schema.org - Schema.org.” [Online]. Available in: https://schema.org/. [Accessed: 2022-04-23]

[33] J. F. Sánchez-Rada, O. Araque, y C. A. Iglesias, “Senpy: A framework for semantic

sentiment and emotion analysis services,” Knowledge-Based Systems, vol. 190, p. 105193, Feb.

2020. [Online]. Available in: https://linkinghub.elsevier.com/retrieve/pii/S0950705119305313.

[Accessed: 2022-04-23]

[34] “SLIWC: LIWC dimensions represented as a SKOS taxonomy.” [Online]. Available in: http://

gsi.upm.es:9080/ontologies/participation/sliwc/ns/doc/index-en.html#intro. [Accessed: 2022-

04-24]

[35] “Morality: MFT concepts represented as a SKOS taxonomy.” [Online]. Available in: http:

//gsi.upm.es:9080/ontologies/participation/morality/ns/doc/index-en.html. [Accessed: 2022-

04-26]

[36] “Get started with developing OSLC applications.” [Online]. Available in: https:

//oslc.github.io/developing-oslc-applications/. [Accessed: 2022-04-13]

[37] “Oslc specifications.” [Online]. Available in: https://open-services.net/specifications//.

[Accessed: 2022-04-13]

[38] “OSLC Primer.” [Online]. Available in: https://open-services.net/resources/oslc-primer//.

[Accessed: 2022-04-13]

[39] “OSLC Automation Specification Version 2.1 | Automation - Open Services for Lifecycle

Collaboration.” [Online]. Available in: https://archive.open-services.net/wiki/automation/

OSLC-Automation-Specification-Version-2.1/. [Accessed: 2022-05-04]

[40] G. Garćıa Grao y A. Carrera, “Towards an Architecture for Automation of Devops Based

on the Oslc Standard,” Social Science Research Network, Rochester, NY, SSRN Scholarly

Paper 4020632, Jan. 2022. [Online]. Available in: https://papers.ssrn.com/abstract=4020632.

[Accessed: 2022-05-05]

[41] “OSLC Tracked Resource Set Version 3.0. Part 1: Specification.” [Online]. Available in:

https://oslc-op.github.io/oslc-specs/specs/trs/tracked-resource-set.html. [Accessed: 2022-05-

03]

[42] JustAnotherArchivist, “snscrape,” May 2022, original-date: 2018-09-09T20:16:31Z. [Online].

Available in: https://github.com/JustAnotherArchivist/snscrape. [Accessed: 2022-05-10]

[43] “GSITK project,” Jan. 2022, original-date: 2015-11-12T13:51:10Z. [Online]. Available in:

https://github.com/gsi-upm/gsitk. [Accessed: 2022-05-10]

107

https://senpy.readthedocs.io/en/latest/senpy.html
https://senpy.readthedocs.io/en/latest/senpy.html
https://jena.apache.org/documentation/fuseki2/index.html
https://jena.apache.org/documentation/fuseki2/index.html
https://gsi.upm.es/es/tecnologias/software
https://schema.org/
https://linkinghub.elsevier.com/retrieve/pii/S0950705119305313
http://gsi.upm.es:9080/ontologies/participation/sliwc/ns/doc/index-en.html#intro
http://gsi.upm.es:9080/ontologies/participation/sliwc/ns/doc/index-en.html#intro
http://gsi.upm.es:9080/ontologies/participation/morality/ns/doc/index-en.html
http://gsi.upm.es:9080/ontologies/participation/morality/ns/doc/index-en.html
https://oslc.github.io/developing-oslc-applications/
https://oslc.github.io/developing-oslc-applications/
https://open-services.net/specifications//
https://open-services.net/resources/oslc-primer//
https://archive.open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.1/
https://archive.open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.1/
https://papers.ssrn.com/abstract=4020632
https://oslc-op.github.io/oslc-specs/specs/trs/tracked-resource-set.html
https://github.com/JustAnotherArchivist/snscrape
https://github.com/gsi-upm/gsitk

BIBLIOGRAPHY

[44] “Flask Documentation (2.1.x).” [Online]. Available in: https://flask.palletsprojects.com/en/2.

1.x/foreword/#what-does-micro-mean. [Accessed: 2022-05-13]

[45] “Cookiecutter.” [Online]. Available in: https://www.cookiecutter.io/. [Accessed: 2022-05-13]

[46] “MongoDB Change Streams with Python.” [Online]. Available in: https://www.mongodb.

com/developer/quickstart/python-change-streams/. [Accessed: 2022-05-14]

[47] “Rdflib 6.1.1 documentation.” [Online]. Available in: https://rdflib.readthedocs.io/en/stable/.

[Accessed: 2022-05-17]

[48] “TrackedResourceSet 2.0 | Core - Open Services for Lifecycle Collaboration.” [Online].

Available in: https://archive.open-services.net/wiki/core/TrackedResourceSet-2.0/revision/

3244/#Tracked-Resource-Set. [Accessed: 2022-05-03]

108

https://flask.palletsprojects.com/en/2.1.x/foreword/#what-does-micro-mean
https://flask.palletsprojects.com/en/2.1.x/foreword/#what-does-micro-mean
https://www.cookiecutter.io/
https://www.mongodb.com/developer/quickstart/python-change-streams/
https://www.mongodb.com/developer/quickstart/python-change-streams/
https://rdflib.readthedocs.io/en/stable/
https://archive.open-services.net/wiki/core/TrackedResourceSet-2.0/revision/3244/#Tracked-Resource-Set
https://archive.open-services.net/wiki/core/TrackedResourceSet-2.0/revision/3244/#Tracked-Resource-Set

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Listings
	Introduction
	Context
	Motivation
	Project goals
	Structure of this document

	Enabling Technologies
	Development and Operations (DevOps)
	StackStorm
	Airflow
	MongoDB
	Apache Kafka
	The Elastic Stack
	Elasticsearch
	Kibana
	Logstash

	Semantic Web
	Linked Data
	RDF (Resource Definition Framework)
	Protégé
	Social metrics and sentiment analysis
	GSICrawler
	Senpy

	Apache Jena Fuseki

	Semantic models
	Social Models
	Extracting data with GSICrawler
	Sentiment analysis with Senpy
	Senpy Annotations
	SLIWC - LIWC dimensions represented as a SKOS taxonomy
	Morality - MFT concepts represented as a SKOS taxonomy
	Onyx Ontology

	Software Models
	OSLC Core
	Service Provider
	OSLC Resources

	OSLC Automation Specification
	OSLC Events and Actions
	Tracked Resource Set Specification
	Stackstorm-OSLC semantic model

	Architecture
	Overview of the Architecture
	Architecture of StackStorm OSLC Adapter
	Architecture of Social Monitoring

	Prototype implementation
	Scenario deployment
	Stackstorm OSLC Adapter Case Study
	Monitoring module
	Graph Manager
	Kafka instance

	Social metrics Case Study
	Airflow
	GSICrawler
	Preprocessing
	Senpy
	Data Storage and Visualization

	Conclusions and Future Work
	Conclusions
	Achieved Goals
	Future Work

	Project Impact
	Introduction
	Social Impact
	Economic Impact
	Environmental Impact
	Ethical Implications

	Project Budget
	Introduction
	Human Resources
	Physical Resources
	Total Costs

	Stackstorm ontology
	Bibliography

