
MÁSTER UNIVERSITARIO EN

INGENIERÍA DE TELECOMUNICACIÓN

TRABAJO FIN DE MASTER

Definition of a Technical Debt Reduction Software
Engineering Methodology for SMEs

Zsolt Dargó
2019

TRABAJO DE FIN DE MASTER

T́ıtulo: Definición de una metodoloǵıa de ingenieŕıa de software para

la reducción de la deuda técnica de pymes

T́ıtulo (inglés): Definition of a Technical Debt Reduction Software Engineer-

ing Methodology for SMEs

Autor: Zsolt Dargó

Tutor: Carlos Ángel Iglesias Fernández

Ponente: -

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE MASTER

Definition of a Technical Debt Reduction Software
Engineering Methodology for SMEs

June 2019

Resumen

En las dos últimas décadas la metáfora de deuda técnica ha ganado una importancia signi-

ficativa en el campo de la ingenieŕıa software. En general, el término se usa para describir

escenarios en que en vez de proporcionar una solución adecuada a una tarea determinada,

se emplea una implementación subóptima para salir del paso, y obtener beneficios a corto

plazo. Desafortunadamente, este tipo de decisiones suelen provocar un incremento en los

costes de mantenimiento a largo plazo. En términos económicos, estos costes se consid-

eraŕıan como el interés que se paga por la cantidad de dinero originalmente prestada.

Con el tiempo, los desarrolladores de software han refinado este concepto y lo han

comenzado a aplicar a un gran abanico de ineficiencias en la ingenieŕıa del software, tales

como defectos de arquitectura, documentación inapropiada o baja cobertura de las pruebas.

Debido a la similitud con la deuda financiera, la analoǵıa ha sido utilizada como una her-

ramienta de comunicación en situaciones en que personas menos técnicas están participando

en discusiones.

Este trabajo fin de máster define una metodoloǵıa de reducción de deuda técnica que

pretende ayudar a las pymes a controlar la acumulación de deuda técnica. En otras palabras,

la metodoloǵıa propuesta puede pensarse como una serie de pasos y buenas prácticas que

facilitan la productividad y el beneficio a largo plazo de una pyme. Dado que este campo de

investigación es relativamente nuevo, es necesario realizar un trabajo de divulgación para

aumentar las publicaciones en el tema.

Palabras clave: ingenieŕıa software; deuda técnica; gestión de la deuda

técnica; metodoloǵıa

VII

Abstract

In the past two decades, the metaphor of technical debt has gained significant importance

in the field of software engineering. In general, the term is used to describe scenarios when

instead of providing a proper solution for a given task, a sub-optimal implementation is

used in order to gain short term benefits. Unfortunately, this kind of decisions can – and

most of the time do – result in increased maintenance costs in the long run. In monetary

terms, these costs would be considered as the interest that is paid for the originally borrowed

amount of money.

Over time, software practitioners further refined the initially source code-focused concept

and started to apply the metaphor for a much wider range of software engineering inefficien-

cies, such as architectural defects, inappropriate documentation or low test coverage. Due

to its similarity to financial debt, the analogy has also become a valuable communication

tool in situations when there are less technical people involved in discussions.

This master’s thesis defines a technical debt reduction methodology which can help

SMEs to control the accumulation of technical debt. In other words, the proposed method-

ology can be thought of as a set of steps and good practices that facilitate the long-lasting

productivity and profitability of any given SME. Since this field of research is relatively

new, the need for publications addressing the topic is still rather high.

Technical debt can not only corrupt efficient evolvability and maintainability of software

products, but it can also be directly converted into real-world monetary debt. Therefore, it is

crucial for companies to keep their debt levels as low as possible, which requires a systematic

way of managing technical debt. Besides providing such a methodology, the document also

intends to raise awareness about the nature and dangers of taking on unreasonable amounts

of debt by examining the most important characteristics of the phenomenon. Finally, the

thesis presents an industrial case study as well, which aims to showcase how some of the

most necessary steps can be taken in practice. This aforementioned case study was carried

out at a software development company that mainly works on a few innovation projects.

These projects are known to be particularly prone to accruing technical debt, which means

that they are a perfect match for testing the suggested methodology.

Keywords: software engineering; technical debt; technical debt management;

methodology

IX

Acknowledgments

I would like to express my gratitude towards both of my supervisors first. To start with,

I am thankful to prof. Carlos Ángel Iglesias Fernández for always helping me by steering

my master’s thesis project in the right direction. He was always ready to help me as my

academic supervisor and also shared very valuable feedback about my work on multiple

occasions.

Secondly, I would not have been able to complete my project without the contributions

of my supervisor at the case study company, David Muñoz Dı́az. I would like to thank

him for helping me define the project itself, for giving my project the highest priority at

all times, for sharing some extremely useful insights and for aiding my learning process in

general.

Furthermore, I am also grateful to EIT Digital Master School and my two universities

involved in the program, Aalto University (Finland) and Polytechnic University of Madrid

(Spain). I would not have had the chance to write about such an interesting topic after two

years of studying abroad, if it was not for the double-degree program organized by them.

Lastly, I truly appreciate all the support provided by my family, friends, colleagues

and everybody who encouraged me in some way during the writing process. Thank you

everyone!

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

1 Introduction 1

1.1 Context and Motivation . 2

1.2 Objectives . 3

1.3 Structure of this document . 4

2 State of the Art 5

2.1 Technical debt overview . 6

2.1.1 What is technical debt? . 6

2.1.2 What are the main attributes of technical debt? 8

2.1.3 When and how is technical debt paid back? 10

2.1.4 Why is technical debt dangerous? . 11

2.2 Properties of technical debt . 12

2.3 Technical debt categorization . 14

2.3.1 The technical debt quadrants . 14

2.3.2 Specific types of technical debt . 16

2.4 Sources of technical debt . 20

2.4.1 The technical debt landscape . 20

2.4.2 Most significant technical debt sources 23

2.4.3 Ranking of technical debt sources . 27

2.5 Effects of technical debt . 28

2.5.1 Types of the effects . 28

2.5.2 Size of the effects . 30

XIII

2.6 Technical debt management . 31

2.6.1 Overall technical debt management approach 31

2.6.2 Technical debt-related activities . 34

3 Methodology 35

3.1 Understand the environment . 37

3.2 Identify technical debt sources and instances 39

3.2.1 Code analysis . 40

3.2.1.1 Static Code Analysis . 40

3.2.1.2 Dynamic Code Analysis . 41

3.2.2 Dependency analysis . 41

3.2.3 Analyzing statistical data . 42

3.2.4 Identification by experts . 42

3.3 Measure technical debt . 43

3.3.1 Models . 43

3.3.1.1 SQALE model . 44

3.3.1.2 CAST model . 45

3.3.1.3 Counting the number of violations 46

3.3.2 Metrics . 47

3.3.2.1 Code duplication . 47

3.3.2.2 Overall coding best practice rules 48

3.3.2.3 General documentation . 48

3.3.2.4 Interface documentation . 49

3.3.2.5 Method complexity . 49

3.3.2.6 Test coverage . 50

3.3.3 Measurement by experts . 50

3.4 Monitor technical debt . 51

3.4.1 Monitored information . 51

3.4.2 Implementation of a monitoring process 51

3.4.3 Types of monitoring tools . 52

3.5 Prioritize technical debt and make decisions 54

3.5.1 Key factors to consider . 54

3.5.2 Prioritization approaches . 55

3.5.2.1 Cost-benefit analysis . 55

3.5.2.2 High remediation costs first 56

3.5.2.3 High interests first . 56

3.6 Repayment . 57

3.6.1 Continuous repayment . 57

3.6.2 Means of repayment . 57

3.7 Evaluate results and communicate technical debt 60

3.8 Take technical debt prevention measures . 61

3.8.1 People, culture and environment . 61

3.8.2 Architectural design and source code 62

3.8.3 Development practices . 62

3.8.4 The role of Agile development . 63

4 Case study 65

4.1 Understanding the company environment 66

4.2 Technical debt identification . 69

4.2.1 Static code analysis . 69

4.2.2 Dependency analysis . 73

4.2.3 Identification by experts . 74

4.3 Technical debt measurement . 75

4.4 Technical debt monitoring . 76

4.5 Technical debt prioritization . 79

4.6 Technical debt repayment . 80

4.6.1 Splitting the monolith . 80

4.6.2 Introducing abstraction levels . 80

4.6.3 Making logging centralized . 80

4.6.4 Automating processes . 81

4.6.5 Reengineering . 83

4.6.6 Documentation . 84

4.7 Technical debt evaluation and communication 85

4.8 Technical debt prevention . 86

5 Conclusions 87

5.1 Achieved goals and conclusions . 88

5.2 Future work . 89

Bibliography 90

List of Figures

2.1 Statistics of high-level technical debt definitions by Ernst et al. [12]. 8

2.2 Illustration of technical debt-related principal and interest 10

2.3 The technical debt quadrants proposed by Fowler [15] 14

2.4 The origins of technical debt by Holvitie et al. [19] 20

2.5 The technical debt landscape by Kruchten et al. [20] 21

2.6 Typical sources of technical debt by Ernst et al [12] 22

2.7 The project management triangle . 24

2.8 Technical debt source ranking by Ernst et al. [12] 27

2.9 Proportionality of technical debt instance size and their effects by Holvitie

et al. [19] . 30

2.10 Technical debt backlog organization by Kruchten et al. [20] 31

3.1 Overview of the methodology . 36

3.2 Ways of identifying technical debt by Ernst [12] 39

3.3 Visualization of the SQALE quality model by Letouzey [24] 44

3.4 Visualization of the SQALE analysis by Letouzey [24] 45

3.5 Cost-benefit analysis example by Seaman et al. [38] 56

4.1 Technical debt identification - SonarQube dashboard - Overview 71

4.2 Technical debt identification - Issues . 72

4.3 Technical debt measurement . 75

4.4 Technical debt monitoring - Issues . 76

4.5 Technical debt monitoring - Test coverage 77

4.6 Technical debt monitoring - Duplications 77

4.7 Technical debt repayment - Process v1 . 81

4.8 Technical debt repayment - Process v2 . 82

4.9 Technical debt repayment - Process v3 . 82

4.10 Technical debt repayment - Build tools . 83

XVII

CHAPTER1
Introduction

This chapter introduces the context of the master’s thesis project, including a brief overview

of all the different parts that are discussed in the document. It also lists a series of objectives

to be carried out during the realization of the project. Moreover, it presents the structure of

the document with an overview of each chapter.

1

CHAPTER 1. INTRODUCTION

1.1 Context and Motivation

The problem of technical debt affects a large number of small and medium-sized enterprises

(SMEs) in the field of software development. This term refers to those “quick and dirty”

solutions (e.g. shortcuts, workarounds) that are implemented to gain short term benefits

in exchange for productivity loss in the long term. Furthermore, this type of debt can also

easily get out of control, resulting in a so-called debt spiral. As the survey of Ernst et al.

[12] also indicated, most IT practitioners do not really understand the real weight of the

issue and they generally lack awareness about the topic as well. As a direct consequence,

many companies just silently suffer from the increasing number of negative effects caused by

the phenomenon, since they do not know how to escape from their troublesome situations.

This kind of scenarios usually arise in companies because they tend to surrender to

technical debt way too early, thinking that it is already too late to rectify their current

situations. However, they should make an effort to stop the spiral as soon as possible,

before it truly becomes uncontrollable. The main point is that the management of technical

debt can be started at any point in time and even small changes can make a considerable

difference. Given the importance of the issue and the high level of complexity of the already

existing approaches, the core of this master’s thesis is a user-friendly technical debt reduction

methodology that can aid software development SMEs in keeping their technical debt at a

satisfactory level.

We believe that the management process of the threat in question can be described

by a series of rather simple, yet powerful steps. However, we also acknowledge that —

without in-depth knowledge of the topic — addressing technical debt management might

seem rather overwhelming. Therefore, the presented methodology aims to serve as a good

basis for the implementation of a technical debt management strategy that can efficiently

reduce and control the amount of technical deficiencies. Besides that, the document also

presents a highly informative review of technical debt and a case study which we carried out

in an industrial environment. While the former part helps companies to better understand

the steps of the methodology, the latter part intends to show its real benefits and gives an

example of its usage.

2

1.2. OBJECTIVES

1.2 Objectives

In accordance with what has been mentioned in the previous section, the master’s thesis

has three main goals. These can be found in the list below in a logical order:

1. Spread awareness: As mentioned earlier, one of the primary problems is that people

in general do not know enough about the topic in order to truly understand the

implications of technical debt. Hence, this document tries to collect and summarize

information about related aspects in a systematic way.

2. Define the methodology: The definition of the technical debt reduction method-

ology is the principal goal of the document. However, since it greatly builds upon the

success of the first goal, it only occupies second place in this list. As stated earlier,

it is intended to be easy to use and cover every necessary aspect of technical debt

management.

3. Describe the case study: The document also describes an industrial case study to

showcase the usefulness and benefits of the methodology. It provides details about

the practical usage of every step and shares our most significant achievements as well.

3

CHAPTER 1. INTRODUCTION

1.3 Structure of this document

The remaining of this document is structured as follows:

Chapter 2 introduces the state of the art and serves as a thorough literature review.

To start with, it provides an overview about technical debt. Next, it introduces the relevant

properties, categories, sources and effects of technical debt. Finally, it also discusses the

topic of technical debt management.

Chapter 3 defines the technical debt reduction methodology. After explaining the

overall concept, it contains details about all the 7 plus 1 steps in logical order: understand-

ing the environment, identification, measurement, monitoring, prioritization, repayment

communication and preventive steps.

Chapter 4 contains the case study. Logically, it starts by introducing the environment

where it was carried out, followed by the discussion of the implementation and the results

of every step.

Chapter 5 reflects upon the work as a whole, draws conclusions and also addresses the

topic of future work.

4

CHAPTER2
State of the Art

The chapter provides a literature review about technical debt. It not only defines the metaphor

itself, but it also describes various aspects related to it.

5

CHAPTER 2. STATE OF THE ART

2.1 Technical debt overview

Ever since the notion of technical debt was born, there have been many different approaches

to define technical debt and explain the corresponding concepts and terminologies. This

section aims to address this issue by establishing a common understanding of the most

important technical debt-related definitions and terminologies. In order to do that, the fol-

lowing subsections present some of the most recurring ideas of the already existing scientific

literature.

2.1.1 What is technical debt?

The technical debt metaphor was introduced by Ward Cunningham [9] for the very first time

at one of the OOPSLA (Object-Oriented Programming, Systems, Languages & Applications)

research conferences in 1992. He mentioned this analogy with the goal of explaining the

trade-off between the fast delivery of low-quality software code, and thus resulting high

maintenance costs. His definition of technical debt was the following:

“Shipping first time code is like going into debt. A little debt speeds development

so long as it is paid back promptly with a rewrite. . . The danger occurs when the

debt is not repaid. Every minute spent on not-quite-right code counts as interest

on that debt. Entire engineering organizations can be brought to a stand-still under

the debt load of an unconsolidated implementation, object-oriented or otherwise.”

However, this is certainly not the only definition that has ever been published. During

the past two decades, many other scientific authors and software engineering experts —

especially members of the agile community — refined and broadened the original metaphor.

According to the research of Kruchten et al. [20], as time passed by, the concept was diluted

and applied for several other phenomena of the software development project life cycle as

well. In their opinion, IT professionals started to overuse the term for essentially any type

of issues that undermined the success of software development projects. Thus, as a direct

consequence, the analogy between monetary debt and technical debt also lost some of its

strength.

Furthermore, Fowler [14] also addressed the topic of technical debt, further elaborating

on the original concept. In his definition, he moved the focus away from the source code

and talked about features of a system in a more generic way:

“You have a piece of functionality that you need to add to your system. You

see two ways to do it, one is quick to do but is messy - you are sure that it will

6

2.1. TECHNICAL DEBT OVERVIEW

make further changes harder in the future. The other results in a cleaner design,

but will take longer to put in place.”

Fowler [14] also highlighted the importance of deciding whether creating technical debt

in a given situation is necessary or not. According to him, both approaches can have

reasonable explanations and technical debt is neither inherently good nor bad. On the

one hand, taking on technical debt is sometimes a good idea: just like when a business

borrows some capital to benefit from a market opportunity, going into technical debt can

help with making progress and delivering features faster. For instance, Allman [1] gives the

example of using a slow, but simple algorithm in a prototype where a much faster one will

be needed instead in the production environment. This decision creates technical debt, but

it is completely acceptable as long as it is tracked and developers know for a fact that a

better algorithm exists and can be implemented for the same task later on. However, on

the other hand, they both acknowledged that technical debt can become crippling in the

long run and even though it can provide an initial boost, it usually involves sacrificing some

– or a significant portion – of the future development progress.

Lim et al. [26] carried out an interview study, in which they found some rather interesting

facts about the practical use and common understanding of the metaphor. The study was

designed to determine how IT professionals perceived technical debt in their everyday work

lives. Although definitions given by IT practitioners agreed on the compromise between

“expedient short-term decisions” and “long-term costs”, the focus of the whole technical

debt concept was often different. As reported by them, technical debt can equally be

artifact-oriented (including, but not limited to source code) or task-oriented (considering

actions that should have been done in the past). Either way, definitions always place a

significant emphasis on some kind of “trade-off among quality, time, and cost”.

In the same paper, Lim et al. [26] also mentioned that technical debt is perceived in

two significantly different ways by software engineers and management people. While the

former group considers technical debt as a state that needs to be avoided by all means,

the latter group embraces its existence and thinks of it as yet another strategic tool. The

reason behind this difference in attitude is simple. On the one hand, programmers are the

ones who do the actual technical work, therefore, they experience the potentially negative

effects directly in their everyday work and they prefer to create “perfect software”. On the

other hand, management people are much more used to taking risks and meeting deadlines,

since those are things that business life demands anyway. Consequently, they understand

that there are times when the only way of making progress is borrowing some work effort

from the future.

Ernst et al. [12] also addressed the topic of technical debt definitions given by software

7

CHAPTER 2. STATE OF THE ART

practitioners in a survey-based paper, published in 2015. As it can be seen from their

visualization below (Figure 2.1), participants of the survey mostly agreed on high-level

aspects of the metaphor. The three percentages in each line stand for the proportions of

SD + D, N, A + SA answers respectively.

Figure 2.1: Statistics of high-level technical debt definitions by Ernst et al. [12].

One of the most compelling conclusions of the statistics is that software practitioners

think that awareness should be raised about the importance of technical debt. This is in

consonance with the findings of Lim et al. [26], since they found that 75% of the interview

participants were new to the technical debt term. Additionally, participants of the survey

agreed that technical debt includes principal and interest as well (which will be further

described later). Lastly, technical debt is perceived as a strategical tool and it is dependent

on future outcomes.

2.1.2 What are the main attributes of technical debt?

Just like in case of financial debt, a certain amount of interest is incurred in the majority of

cases, in accordance with what was stated by the original metaphor as well [9]. By creating

technical debt, organizations also create monetary debt for themselves and projects can

actually go bankrupt due to the technical debt they accumulate. Therefore, when addressing

the topic of technical debt, we can distinguish seven main attributes, which are described

below:

• Withdrawal: Generally speaking, the word refers to the action of taking money

out of an account. In technical debt terms, every withdrawal can be thought of as a

8

2.1. TECHNICAL DEBT OVERVIEW

decision that Fowler[14] mentioned in his blog post: choosing between doing a task

now or only later — or maybe even never. By choosing to postpone some work,

“money” is withdrawn using an imaginary credit card.

• Principal: In consonance with monetary terms, this part of a debt refers to the

originally borrowed amount of money. Analogously, the principal part of technical

debt represents the work that is not done well right away, but it is substituted by

a workaround, a shortcut or simply a poor solution with the goal of accelerating

development.

• Interest: In our everyday lives, this portion of a debt can be thought of as the cost

of borrowing money. The price we have to pay usually depends on the the principal,

because interest is normally defined as a percentage of that. In a very similar fashion,

technical debt also comes with a price in the form of extra work that has to be carried

out first, in order to “pay off” the principal part of the debt. In practice, this usually

means the re-implementation of features that were created after the debt itself had

been introduced, since they most likely built upon several characteristics of the sub-

optimal solution that has to be changed when the debt is paid off.

• Interest probability: In line with the description of Guo et al. [17], this attribute

is associated with the probability of having to actually pay an interest. This piece of

information can prove to be rather advantageous in making management decisions.

• Monetary cost: At the end of the day, technical debt boils down to actual monetary

debt as Tom et al. [39] also indicated in their article. Every time a developer has

to fix blocking factors (e.g., bugs, regressions, lack of necessary abstraction layers)

before starting the implementation of an actual feature, his or her time is wasted.

This directly translates to increased monetary costs for the organization, since the

time of developers is expensive.

• Amnesty: The concept of amnesty is also addressed by Tom et al. [39]. The main

point is that there are situations — such as developing a throwaway prototype or proof

of concept — when technical debt does not have to be repaid at any point (amnesty

is granted). She also emphasized the importance of thinking rationally and not using

amnesty as an excuse for recklessly accumulating technical debt.

• Bankruptcy: It is hard to define a point in time when one can declare that a project

went bankrupt due to technical debt, since this kind of debt cannot be easily measured

in an objective manner. However, as Hilton [18] described it in one of his blog posts,

the definition of the state of bankruptcy could be put the following way: when an

9

CHAPTER 2. STATE OF THE ART

organization can no longer do feature development and have to either pay down all

the technical debt at once or completely rewrite the software, the project has reached

the status of bankruptcy.

Figure 2.2 illustrates some characteristics of technical debt. As it can be seen, component

1 and 2 were not constructed properly, which resulted in a hole in the overall structure

(technical debt). Later on, as time passed by, components 3–6 were built upon the previous

two. If the need of fixing component 1 and 2 arises at some point during the life cycle of the

project, not only the two incomplete components need to be replaced (paying principal), but

it also requires deconstructing and rebuilding components 3–6 (paying interest). However, a

related point to consider is that technical debt can be left unpaid in some of the situations,

when its existence does not pose a real threat to the usability, maintainability and success

of a given system.

Figure 2.2: Illustration of technical debt-related principal and interest

2.1.3 When and how is technical debt paid back?

By default, the word “debt” implies the necessity of repayment. As already mentioned, the

most noteworthy difference between monetary and technical debt is that the latter one is

not necessarily paid back on any fixed schedule. Furthermore, it is close to impossible to

pay back technical debt completely, while that is an obligation when it comes to monetary

debt. In everyday life, debts are usually paid back with periodical (e.g., monthly) payments,

including interests. However, technical debt interest is paid every time a person is delayed

in their work, because of the lower quality of the components involved that have technical

debt.

Interestingly, the schedule is not the only difference here. While real life financial debts

usually have to be paid back by the person that takes them on, technical debt is often paid off

by other members of a given organization. Furthermore, the person who originally created

the debt, might not even work for the organization anymore at the time of repayment. This

means that many times there is no real incentive for people working for an organization to

10

2.1. TECHNICAL DEBT OVERVIEW

avoid technical debt.

2.1.4 Why is technical debt dangerous?

The term “debt spiral” (sometimes referred to as “vicious circle of debt”) is very well-known

in the world of finance. It stands for the phenomenon when paying back an existing debt

simply forces the person in debt to borrow more and more money, thus, increasing their

overall debt due to interest that they have to pay. Why is it called a spiral? Because it is

virtually never ending cycle that is extremely hard to stop once it gets out of control.

Unfortunately, the world of technical debt is not free of debt spirals either and they

can cause just as many issues as in case of monetary debts. Therefore, (technical) debt

management (discussed further in section 2.6 of the chapter) has a crucial role in everyday

life and software development as well.

11

CHAPTER 2. STATE OF THE ART

2.2 Properties of technical debt

Discussions about technical debt usually involve various properties of it. Hence, it is essen-

tial to understand what aspects of the phenomenon are relevant to them, especially with

respect to categorizing, prioritizing and managing technical debt in general. Some of the

most relevant ones discussed by Brown et al. [7] and Ramakrishnan [35] can be found below:

Property name Description

Visibility [7] Technical debt is often invisible, which can cause some serious

problems and surprising situations. For instance, if a developer

makes a shortcut in order to meet an important deadline, but

does not make the created technical debt visible to others, his

or her colleagues can possibly face some difficulties when trying

to do their own tasks. They would assume that things are

properly implemented (according to known best practices) and

try to build on top of the work done by the developer who

introduced invisible technical debt and they would most likely

find unexpected obstacles.

Value [7] In general, well-managed debt can be a strategic tool to cre-

ate value. For example, as the real life example of Brown et

al. [7] stated it, having a mortgage makes it possible to buy

a house even if we would not have enough money to pay for

the whole building without borrowed money. They also added

that the value can be thought of as the difference between the

current state of something and a desired, more ideal state of it.

Translating this into the field of software engineering, for in-

stance skipping the creation of tests before a deadline, creates

the value of saying that “the task was completed on time” (at

least the customer facing part of it). However, this also means

converting test writing into technical debt, since it still should

be done at some point in the future.

12

2.2. PROPERTIES OF TECHNICAL DEBT

Environment [7] Every software engineering project has a different context.

Therefore, it is of no surprise that technical debt is also rel-

ative to the context of the project in question. In other words,

perfectly good implementation details belonging to one environ-

ment can become technical debt in other, but otherwise similar

ones.

Origin of debt [7] Technical debt can be created in many ways in software devel-

opment. Identifying its source can be beneficial when it comes

to debt management and prioritization. Brown et al. [7] distin-

guished strategically and unintentionally created technical debt

as an example, however, this thesis will also introduce possible

origins in a later section.

Impact of debt [7] This property is related to the scope of technical debt. While

some types of technical debt have a more localized impact, oth-

ers can have an influence of a much wider range, effecting en-

tire systems. Clearly, when prioritizing pieces of technical debt,

those pieces have higher priority that belong to the latter cat-

egory.

Longevity of debt [35] Ramakrishnan [35] discussed another, rather important prop-

erty of technical debt which has to do with its intended du-

ration. In his article, he talked about short-term debt which

should be paid off as soon as possible (e.g., in the next release

cycle) and long-term debt which can be left unpaid for even a

few years. While the former type is intended for tactical mea-

sures, the latter type is more proactive and strategic.

13

CHAPTER 2. STATE OF THE ART

2.3 Technical debt categorization

Organizing and categorizing software development-related issues are beneficial when it

comes to solving them, since self-evidently, different categories of debt also require different

approaches in mitigating them. For this reason, this subsection presents two perspectives

of classifying technical debt. After the discussion of Fowler’s technical debt quadrants, it

also provides a set of a more specific categories that can be used during the identification,

reduction and avoidance of technical debt.

2.3.1 The technical debt quadrants

Martin Fowler [15] not only addressed the relevance of the technical debt metaphor, but also

discussed the topic of technical debt categorization. In his opinion, technical debt can fall

into one of the four categories depicted by his quadrants below. Unlike Robert C. Martin

[37], he did not think that “messy code” was to be excluded from technical debt. According

to Fowler, the real question was whether the metaphor was able to help in dealing with

issues and communicating them to less technical people. Reaching the conclusion that the

analogy was powerful enough to determine which technical inefficiencies are acceptable and

which are not, he introduced the following four categories: reckless–deliberate, reckless–

inadvertent, prudent–deliberate and prudent–inadvertent.

Figure 2.3: The technical debt quadrants proposed by Fowler [15]

In Fowler’s opinion, “the useful distinction isn’t between debt or non-debt, but between

prudent and reckless debt”. Following that logic, unprofessionally and carelessly written

code also counts as technical debt and falls into the reckless half of the figure, in contrast

14

2.3. TECHNICAL DEBT CATEGORIZATION

with what Uncle Bob stated [37].

The four segments can be explained more in detail the following way:

• Reckless–deliberate debt: This kind of debt is born due to the carelessness of

developers. In some cases, even though they know that they are creating debt, they

do not realize (or want to realize) what possibly crippling effects it might have. This

type of attitude could be explained by the already mentioned phenomenon: developers

do not have much incentive to avoid creating debt, as they might not even work at

the company anymore if and when the debt has to be paid back. As Fowler pointed

it out in his blog post, this does not necessarily have anything to do with the lack

of knowledge, skills of developers or awareness of design principles. These decisions

are usually made based on the “budget” of a given project; in a business-driven

development environment as Yli-Huumo [41] stated in his PhD thesis. The quote

appearing in the corresponding quadrant represents a very typical managerial sentence

when reckless–deliberate debt is accrued.

• Reckless–inadvertent debt: Reckless debt can be created inadvertently as well.

In this case, there is a lack of professional knowledge and awareness of software en-

gineering best practices. In a way, this might be the most dangerous type of debt,

since the development team is not aware of its existence, and thus, it can lead to

very unexpected, negative surprises during the development process. The only way of

avoiding this is employing developers who are competent enough at a given job and

make the minimum amount of mistakes. However, as a key takeaway of the interview

series that Lim et al. [26] carried out, they found that most of the technical debt was

born out of conscious decisions. As a matter of fact, only around one-fourth of the

cases involved the sloppiness of employees.

• Prudent–deliberate debt: This category includes debt which is created on purpose,

in order to reach a short-term goal. An important thing to mention here is that in this

case, potential long-term consequences are taken into consideration and are thoroughly

evaluated and this is what the quadrant quote demonstrates: “We must ship now and

deal with consequences”. Therefore, similarly to the other deliberate category and in

consonance with Ramakrishnan [35], this type of debt also serves as a strategic tool

to achieve business goals with compelling ROI ratios.

• Prudent–inadvertent debt: As the last category, prudent and at the same time

inadvertent debt is a bit harder to imagine at first. But the key aspect here is that this

class of debt can only be identified in retrospect as a result of evaluating the existing

solution and reflecting on the entire learning process, which usually characterizes any

15

CHAPTER 2. STATE OF THE ART

software development project. According to Fowler [15], “The point is that while

you’re programming, you are learning. It’s often the case that it can take a year of

programming on a project before you understand what the best design approach should

have been.”. He also made a reference to a concept introduced by Brooks Frederick

[6]. In their book, they proposed building “throw-away” projects first just for learning

purposes simply, before implementing an actual solution.

2.3.2 Specific types of technical debt

The field of technical debt management is still a very recent area of research which means

that creating ways of organizing information into data and knowledge is very much needed.

Alves et al. [2] identified the need for creating a technical debt ontology and define technical

debt types and wrote about the topic in 2014. Later on, they revisited the topic in 2016

[3] and among other things, further refined the set of technical debt types. However, they

were not the only one who made a contribution; Brown et al. [7], Morgenthaler et al. [30],

Bohnet & Döllner [4], Tom et al. [39], Ernst [11] and Greening [16] also addressed the

question. Some of the most relevant technical debt types and their characteristics can be

found in the table below:

Technical debt type Characteristics

Architecture debt Architecture debt — often called structural debt as well —

refers to debt resulting from sub-optimal solutions designed at

the highest level of a system. For instance, this type of debt

can be created when declaring software components (including

their roles) and defining relationships between each of them.

A more concrete example mentioned by Alves et al. [2] is the

lack of modularity. As it was pointed out by Brown et al.

[7], due to its structural nature, debt of this kind cannot be

paid down by simply changing a few lines of code, since the

entire system is influenced by the decisions made at the stage

of architectural design.

16

2.3. TECHNICAL DEBT CATEGORIZATION

Build debt Morgenthaler et al. [30] addressed issues related to build files

and the build process in general in their publication. These

files essentially define modules of code, source files, dependent

libraries and also contain build metadata. Hence, inefficiencies

of these artifacts make the build process harder and more time-

consuming and represent debt according to Alves et al. [2].

Moreover, Morgenthaler et al. [30] discussed the difficulties of

dependency management and also added that build files are

manually maintained, which further increases the probability

of having such debt.

Code debt It refers to internal quality issues related to the source code

of a system (discussed by Bohnet & Döllner [4]). This type

of debt is usually one of the most well-known by developers,

since several of them need to address code debt-related issues

during their daily work. However, it also means that it is

much less visible to stakeholders, which makes it harder to pay

down. Just like Alves et al. [2] mentioned, code debt makes

the source code harder to read, which consequently results in

increased maintenance costs. In other words — as Tom et al.

[39] indicated in their article — any part of the code base that

needs refactoring can be considered code debt.

Design debt As per the definition given by Alves et al. [2], design debt

refers to those defects of the source code, which go against for

instance object-oriented programming design principles. Luck-

ily, these can be identified by analyzing the code base by using

simple metrics, such as the coupling of classes or code com-

plexity.

17

CHAPTER 2. STATE OF THE ART

Documentation debt Tom et al. [39] shared the opinion of Alves: the lack of proper

knowledge distribution is also one type of technical debt. In

the words of Alves et al. [2], this can mean “missing, inade-

quate, or incomplete documentation of any type”. The role of

documentation is key to the successful maintenance and usage

of systems, as companies cannot rely on a constant set of em-

ployees. People come and go, therefore their knowledge about

specific projects should stay within the firm as well in the form

of some sort of documentation, even if they decide to go.

Environmental debt As reported by Tom et al. [39], this type of debt refers to inef-

ficiencies related to the environment of an application. Some

of the possible issues involve — but are not limited to —

processes, hardware, infrastructure and even supporting ap-

plications. As an example, they highlighted the exploitation

of harmful security vulnerabilities as a possible result of the

postponement of an infrastructure, which can easily accrue

technical debt in the form of brand damage.

People debt Refers to human resources-related issues that can easily hinder

efficient software development. In line with what Alves et al.

[2] stated, a good example of such problems is having technical

expertise concentrated in just a couple of people.

Process debt Alves et al. [2] defined this type of debt as the inefficiency

of processes. As an example, they mentioned processes that

become obsolete in time and are poorly maintained. Another

good example of process debt is having parts of the process

— that could be easily automated — done manually. Conse-

quently, a significant amount of time is wasted on repetitive

activities.

18

2.3. TECHNICAL DEBT CATEGORIZATION

Requirement debt As Alves et al. [2] explained in their paper, requirement debt

can be thought of as tradeoffs regarding the set of requirements

that developers have to implement. Furthermore, it also has

to do with the completeness of implementations. For instance,

requirements that are not fully implemented or do not take

non-functional requirements (e.g., security, performance) into

consideration exemplify requirement debt. In addition, in one

of his articles, Ernst [11] defined requirement debt as “the dis-

tance between the optimal solution to a requirements problem

and the actual solution, with respect to some decision space”.

Test automation debt This type of debt is closely related to testing done as part of

continuous integration. Previously implemented and working

features should stay functional at all time and this can be val-

idated by running the corresponding tests. However, doing all

that manually creates test automation debt. Therefore, tests

should be run by continuous integration systems automatically

to ensure that integrating new pieces of implementation into

the the existing code base does not break other, already exist-

ing parts of it.

Test debt Test debt refers to activities related to the creation of tests.

According to the explanation of Tom et al. [39], the most

common issue is low test coverage. As a rule of thumb, most

developers do not really like to write tests once a feature is im-

plemented. And the incentive is even lower once they no longer

remember the details of the implementation. Therefore, hav-

ing test debt is painful to pay off. Not surprisingly, this is one

of the key problems that test-driven development is supposed

to solve.

Versioning debt Alves et al. [3] described this kind of debt as one that is related

to the usage of version control system. As an example for the

same phenomenon, Greening [16] mentioned the problem of

code-forking (where the initially forked code copies are never

actually merged back together).

19

CHAPTER 2. STATE OF THE ART

2.4 Sources of technical debt

This section discusses the topic of technical debt sources. First, it addresses the high-level

origin of technical debt. Secondly, it introduces the technical debt landscape created by

Kruchten et al. [20]. Thirdly, it lists the most relevant sources and their characteristics.

Finally, it presents a ranking of more specific sources, created by IT practitioners.

According to Holvitie et al. [19], as a high-level way of categorization, technical debt

sources can be grouped into four groups as it can be seen in the figure. Not surprisingly,

a little bit more than half of the debt exists as a “legacy from an earlier team/individual

working on the same project/product”. In contrast, only around 8% of it comes in the form

of “legacy from outside the organization”. The four groups are displayed in the chart below:

Figure 2.4: The origins of technical debt by Holvitie et al. [19]

2.4.1 The technical debt landscape

In 2012, Kruchten et al. [20] published an article that addressed the technical debt metaphor

with the goal of transitioning the metaphor to theory and practice. In their article, they

described a landscape of technical debt, which aims to organize types of debt based on their

sources and visibility. The landscape can be found in Figure 2.5.

20

2.4. SOURCES OF TECHNICAL DEBT

Figure 2.5: The technical debt landscape by Kruchten et al. [20]

It is important to note that according to the creator of the landscape, the metaphor

should only cover invisible issues belonging to the inner part of the picture, having a blue

border. In this case, visibility is considered from the point of view of clients and not that

of software developers. As explained later on, including the rest of the problems would

excessively dilute the metaphor.

The landscape organizes debt sources into two groups: those types of debt that are re-

lated to the ease of adapting to changes (evolvability) are grouped on the left, while aspects

of keeping the product properly functioning and serving its intended purpose (maintainabil-

ity) can be found on the right. It is also noteworthy that the “technological gap” expression

on the left refers to poor choices of technology, since choosing the wrong technology for a

given purpose in the present can equally generate obstacles in the future. Unfortunately,

some of the software practitioners tend to focus on the right side of this landscape exclu-

sively, which can lead to serious complications in the long run.

One year after he published his first paper, Kruchten et al. [21] revisited the topic

of the technical debt landscape, presumably because he noticed that the confusion about

the metaphor and its usage was growing. As they explained, including some phenomena

of software development as source of technical debt might excessively dilute the metaphor,

thus making it lose some of its utility and power. Some of the most prevalent misconceptions

that he identified are:

• limiting possible sources of technical debt to bad source code quality,

• counting defects as technical debt,

• considering not yet implemented new features as technical debt.

First, with respect to bad code quality, he declared that technical debt is not only about

source code (as it can be seen in later parts of this document). It is not a surprise that

21

CHAPTER 2. STATE OF THE ART

program code is the first thing that comes to mind, when technical debt is mentioned, since

its issues are the easiest to be identified, owing to the existence of numerous static code

analysis tools. Even though this makes them more visible to developers, there are countless

other ways of how debt can be accrued during development. One good example is the kind

of debt that is usually linked to the structure, architecture or the set of technologies that

are used by a given system.

Secondly, as per defects and bugs, he emphasized that they belonged to external qualities

of the code and the metaphor was only intended for the internal ones. Furthermore, he also

underlined another important fact: technical debt exerts its effects only in the future.

Therefore, this serves as another reason why defects should not be treated as source of

debt, since their effect can be seen in the present already. In addition, defects are visible

not only to the developer team, but also to the clients of an organization, which serves as

another argument why defects should not be considered technical debt.

Finally, it is also important to note that while not yet implemented, new features do not

create technical debt, mistakes such as insufficient requirement analysis, poor requirement

prioritization and misunderstanding of requirements can lead to requirement debt.

Figure 2.6: Typical sources of technical debt by Ernst et al [12]

On a related note, findings and statistics of Ernst et al. [12] seem to support Kruchten’s

aforementioned views about common misconceptions. Based on the statistical data pre-

sented in Figure 2.6, 85% of the respondents agreed or strongly agreed that technical debt

is also architectural, therefore, it should not be limited to code quality. Additionally, only

24% of the interviewees considered unimplemented features as technical debt which also

22

2.4. SOURCES OF TECHNICAL DEBT

supports Kruchten’s opinions. However, the question whether defects should be counted as

technical debt or not proved to be a divisive topic, since 45% considered defects as technical

debt and 32% did not.

2.4.2 Most significant technical debt sources

The following subsections present the most relevant technical debt sources. The information

about each of them is supported by other authors who have also done extensive research on

the topic. Much of the literature cited below was written based on surveys, which means

that they represent debt sources that were identified in real life projects. In this section, the

intention of the author was to present main debt sources in a somewhat unpolished order

with respect to the importance, impact and prevalence of each of them. A more detailed

ranking of debt source types will be presented in the next section.

Pragmatism

The first two technical debt sources — pragmatism and prioritization — go hand in

hand. However, they are discussed separately in this thesis, just like Tom et al. [39] did it

in their publication. In consonance with the meaning of the word “pragmatism”, debt can

be created as a result of practical considerations.

In order to explain the importance of practical decisions, Brazier [5] gave the example

of a small company in a niche market. According to his example, their only chance of

succeeding as a company is entering the market with their product as first, so that they are

visible to potential customers as early as possible. Otherwise, competition can easily take

away the business opportunity. As pointed out by Brazier [5], considering the long-term

effects of short-term decisions is not very sensible in this kind of situations, since the “long

term” does not even exist without the short-term success of the organization.

Lim et al. [26] also discussed how pragmatism can result in technical debt. They also

confirmed that there are good marketing opportunities or shopping windows, when taking

on debt has to be done with the goal of not wasting those favorable circumstances. As two

examples of such opportunities they mentioned are the possibility of acquiring funding and

obtaining early customer feedback to better adjust features of a product according to the

real needs of customers. All the arguments of Lim et al. [26] emphasize that technical debt

is a balancing act between software quality and business reality, due to competing concerns.

Prioritization

Prioritization is often born out of pragmatism and it can also result in deliberate techni-

cal debt. Tom et al. [39] suggested that prioritization requires trade-offs in non-functional

aspects of a product, which creates into technical debt.

23

CHAPTER 2. STATE OF THE ART

Lim et al. [26] indicated that time constraints introduced by tight deadlines, contractual

obligations or the integration with a partner product can force managers to take prioritizing

measures, such as decreasing the time spent on not only code and design reviews, but also on

the creation of unit tests for instance. This is how companies end up with only “satisfactory”

features as the result of a deliberate prioritizing decision. These features still require some

work in the future, which by definition equals to technical debt and it should be avoided in

the vast majority of the cases.

This phenomenon also has to do with expectation management as Hilton [18] stated it.

Customers of a product can easily get used to an average pace of feature delivery. When

for some reason the natural pace of a development team slows down, they still expect the

pace that they got used to and living up to those expectations can only happen by cutting

corners.

Allman [1] mentioned the widely used project management triangle (see Figure 2.7

below) in his article to discuss why technical debt can be caused by prioritization. As per

the triangle, every project has three main constraints: scope (e.g., set of features to be

implemented), resources (e.g., budget, employees) and schedule (i.e., time). Additionally,

the quality of a project in question is represented by the area of the triangle itself. The main

message of the visualization is that even though the constraints can be decreased towards

the center of the triangle or increased in the other direction, managers should not forget

about the implications of changes with respect to quality. Naturally, in order to maintain

the quality of the project, if one of the constraints is increased, one or both of the other

ones have to be decreased. However, in real life, at least one of the constraints is fixed,

while the other ones can be moved freely and contribute to the adjustments made to the

quality.

Figure 2.7: The project management triangle

Allman [1] proposed including a fourth corner for technical debt, thus turning the vi-

sualization into a square (in an ideal scenario). In his opinion, many managers use this

24

2.4. SOURCES OF TECHNICAL DEBT

“forever” free fourth corner as the means of applying their own priorities without decreas-

ing the overall quality. In other words, technical debt is the constraint that can “take the

blame” for anything done to the other three constraints.

Tom et al. [39] in their article also described an extremely typical form of accruing

technical debt: proof of concept projects being transformed into production code. Proof of

concept implementations are meant to be thrown away by the very nature of their purpose,

but managers perceive it as throwing away already invested time, which is a scarce resource.

Proof of concept implementations exist to prove that achieving a certain goal is technolog-

ically possible, but nothing more. Therefore, they are usually written in a haphazard way,

not considering design best practices or the evolvability and maintainability of the solution

whatsoever. Consequently, building a whole system on top of them and deploying it in

production is a rather poor decision to make.

Customers

Customers themselves can also serve as a huge source of technical debt. Lim et al. [26]

also addressed this issue. Their conclusion was that unfortunately, many customers do not

really know what they want or need exactly. As a consequence, if software development

organizations do not make a big enough effort to find out every important requirement from

their clients, they often end up making assumptions. Similarly, the same thing can be said

about markets as well. In the same article, they gave two examples for typical scenarios

when customers cause technical debt:

• Last-minute requirements: This has to do with the fact that clients usually do not

know what they need. However, during the user acceptance testing process — when

they actually see a functioning version of the product — they often realize that some

of the features need to be changed or new ones added so that the product better fits

their requirements. Not surprisingly, if the current state of the implementation is very

far from the ideal state in some aspect(s), the difference takes the form of technical

debt.

• Extensive wish list: Sometimes customers have an extensive list of features, but at

the same time, they wish to have the software ready in an extremely short time. At

the development team level, this creates massive pressure, which triggers prioritizing

actions, thus resulting in technical debt.

Attitudes

Attitudes of individuals — that of managers and engineers equally — have a great

influence on technical debt creation. As Tom et al. [39] suggested, there is a general

25

CHAPTER 2. STATE OF THE ART

apathy present in the development team, which has to do with the already discussed lack

of incentives to avoid technical debt. As earlier mentioned, people might not even work at

the company when the debt has to be paid down.

Additionally, managers and technical people have a different attitude and especially

risk appetite. This view is also advocated by Lim et al. [26] who stated that managers are

generally used to taking risks, therefore, they are less uncomfortable with technical debt as

well.

Ignorance and oversight

In their paper, Tom et al. [39] also addressed the issue of ignorance and oversight. While

the former comes from the personality of individuals, the latter has more to do with the

skills, knowledge, personal life and mental well-being of employees.

Fortunately, the level of ignorance can be reduced by making people understand how

crippling technical debt can get. Even though it is not an easy thing to achieve. Similarly,

the frequency of oversight-based technical debt creation can be lowered by being methodical,

considering ramifications of decisions and taking into account what feature requests might

surface at some point in the future.

Processes

The way how recurring everyday tasks at work are handled can also influence the total

amount of technical debt that is accrued. In accordance with what Tom et al. [39] indicated,

poor communication collaboration practices can introduce some extra debt that would be

completely avoidable otherwise. In addition to that, repetitive, but not automated are also

prone to technical debt.

Good examples of such debt sources are not hard to find. For instance, not using the

right set of tools, such as means of communication tools (e.g., the usage of slow emails

instead of instant messaging applications for every type of communication), visualization

tools (e.g., charts) or the lack of code reviews both contribute to increased levels of technical

debt.

Software aging

As cited by Brown et al. [7], Parnas [33] described software aging as “the failure of the

product’s owners to modify it to meet changing needs”. This is in line with one of the laws

of Lehman & Bélády [23] saying that software solutions need to continuously adapt to the

changes of the environment. Failing to do so, makes the software lose some of its utility

and thus the debt of restoring that is created.

26

2.4. SOURCES OF TECHNICAL DEBT

On a related note, Ernst et al. [12] added that the drift caused by changing system use

is proportional with the age of a system in question. Similarly, bad architectural decisions

become more and more emphasized as time passes by and the system ages.

2.4.3 Ranking of technical debt sources

As mentioned before, this subsection provides a more detailed ranking of debt sources.

Ernst et al. [12] asked a large number of IT practitioners to choose the top three from a set

of sources with respect to their prevalence. The results of their survey can be seen bellow

in Figure 2.8. Hatches represent the percentage of time a certain source was picked first,

while being picked second is displayed using dashes and the third choices with dots.

Figure 2.8: Technical debt source ranking by Ernst et al. [12]

27

CHAPTER 2. STATE OF THE ART

2.5 Effects of technical debt

This section of the thesis examines the possible effects of technical debt on a software

development organization and it also reviews characteristics of the size of potential effects.

Being aware of these aspects can be a useful tool for communicating technical debt related

issues towards less technical stakeholders.

2.5.1 Types of the effects

The next few paragraphs collect important characteristics of four different effects of technical

debt. As it can be seen, technical debt can influence everyday activities of companies in

various different ways.

Effects on morale

According to Tom et al. [39], many developers think of technical debt management as

a “mundane task”. Therefore, engineers usually lack the motivation to spend time on it.

As they explained, on the one hand, technical debt has a positive effect on short-term

morale most of the time. This is rather understandable, since people in general prefer to

make continuous progress and have a tendency for choosing the easier solution for problems.

This view was supported by Laribee [22] as well, who said the following:

“It’s painful when I’m not productive and it’s pain that robs me of potential

productivity, the so-called “good days at work”.”

Hence, if a developer can save some time and effort by implementing a sub-optimal

solution, it certainly has a positive effect on their short-term morale. However, this also

depends on the individual and their personal preferences, since some of the engineers can

get really frustrated by being forced to do workarounds and other types of poor design.

On the other hand, as Tom et al. [39] pointed it out, one should not forget about the

real issue with technical debt. It becomes “painful” only in the long term, when it has to be

paid down for some reason. Therefore, its long-term effects on morale are crippling, since

instead of experiencing the short-term frustration of doing a task properly, extra annoyance

is added by the interest payments. In addition, the extra work has to be carried out working

on a rigid and chaotic code base.

Effects on productivity

Tom et al. [39] also examined the short-term and long-term effects of technical debt on

productivity. In accordance with their comments, taking on debt temporarily increases the

28

2.5. EFFECTS OF TECHNICAL DEBT

velocity of development, and thus the momentary productivity of the organization as well,

but at the same time, hinders having a good feature delivery rate in the future. This is due

to the similarities between high-interest loans and technical debt.

With respect to long-term effects, the existing code base becomes every time harder to

modify (i.e., poor evolvability) and — as the participants of the survey of Tom et al. [39]

also indicated — development generally slows down. Having brittle software components

also goes hand in hand with an increased number of regressions. Self-evidently, diagnosing

and fixing these issues consumes a lot of time, thus resulting in a decreased amount of time

that can be spent on actual feature development.

Another technical debt-related aspect is inadequate knowledge distribution. When peo-

ple have to spend an unnecessarily long time understanding and examining the system

before beginning implementation, the productivity suffers a decline. Participants of the

survey also suggested that if implementing a workaround takes a long time, sometimes

realizing the need for one requires even more.

Effects on quality

In consonance with the article of Tom et al. [39], technical debt effects software quality

on many different levels. One thing, however, is common for all of them: they can lead to

issues even in the short term. Later on, these effects get even worse due to the corresponding

interest payments.

They also emphasized that the main quality problems boil down to source code which is

hard to read and also understand because of its complexity. Quality issues not only create

new defects, but also contribute to existing defects staying hidden from developers.

Tom et al. [39] identified quality issues related to the following categories:

• Extensibility

• Scalability

• Maintainability

• Adaptability

• Performance

• Usability

• Testability

• Supportability

• Reliability

• Security

In addition to the previous categories, Lim et al. [26] also addressed the topic in their

publication. They also found that major effects of technical debt involve increased com-

plexity, poor performance, system instability and fragility. Therefore, it is of no surprise

that one of the participants of their survey described a typical situation as follows:

29

CHAPTER 2. STATE OF THE ART

“[...] you feared that any time you made a change, you were going to cause

something else to go wrong.”

Effects on risk

According to Tom et al. [39], technical debt potentially introduces a significant amount

of risk to any software development project. Effort estimation becomes extremely hard for

even the most experienced IT practitioners because of all the unknown factors and variables

that are inherently present due to the presence of technical debt. As a result of that, the

development process becomes less deterministic, which is a form of risk.

The researchers also pointed out that the visibility of technical debt in question also

has a considerably large influence on the difficulties it can cause. Self-evidently, in case of

known technical debt the only complication is caused by the need for estimating the extra

work (interest payments). However, in contrast, inadvertently accrued technical debt makes

the estimation process even harder, since not even the principal part is visible to employees.

This is considered risky, since nobody anticipates the appearance of related issues.

2.5.2 Size of the effects

Another important aspect to consider can be the size of the impact technical debt makes on

companies and projects. Holvitie et al. [19] investigated the question and found that in the

majority of cases, technical debt causes an effect that is somehow proportional to its own

size. Conversely, inverse proportionality between the two sizes was found to be the least

prevalent phenomenon. Their findings are displayed by the pie chart in Figure 2.9 below.

Figure 2.9: Proportionality of technical debt instance size and their effects by Holvitie et

al. [19]

30

2.6. TECHNICAL DEBT MANAGEMENT

2.6 Technical debt management

This section provides an overview of some of the most relevant technical debt management

aspects. Although these areas will be further discussed more in detail in the methodology,

mentioning them is beneficial when it comes to understanding the context better.

2.6.1 Overall technical debt management approach

According to Robert C. Martin [37], the basic management approach that should be applied

in case of technical debt is essentially the same as the one know from the field of monetary

debts, such as taking up a mortgage. More in detail, he talked about having an increased

discipline and paying a closer attention to one’s spending and accounting. The clean coder

also pointed out that the level of discipline should be proportional to the amount of technical

debt.

On a related note, Ramakrishnan [35] also emphasized the necessity for increased lev-

els of vigilance. Furthermore, he also identified some other key aspects to technical debt

management, such as not using shortcuts, trying not to over-engineer components and

refactoring not-quite-right pieces of code whenever it is needed and possible.

Kruchten et al. [20] highlighted the importance of technical debt identification and

explicit management. For instance, they proposed the usage of a technical debt backlog,

organized in the way that is presented by Figure 2.10.

Figure 2.10: Technical debt backlog organization by Kruchten et al. [20]

According to the views of the authors, it is to be considered bad practice that project

backlogs in general only contain positive-visible elements (i.e., new features and added

functionality) and positive-invisible ones (i.e., architectural, structural features), ignoring

defects and technical debt. Although, defects are usually stored somewhere else (e.g., defect

database), technical debt is most of the time completely forgotten. In their opinion, this

31

CHAPTER 2. STATE OF THE ART

kind of phenomena should not happen and a unified backlog needs to be maintained to

facilitate efficient project management.

Laribee [22] put the emphasis on system thinking in his article. In his opinion, the only

way of efficiently managing technical debt is to practice long-term, investment-oriented

thinking and understanding the difference between projects and products. As he explained,

most of the time, software development teams work on a product and not just a project.

Even though projects end at some point, successful products live long and maintaining,

modifying and extending them is the job of the same organization that developed them in

the first place. Therefore, it is of vital importance to think ahead and do development work

in the present accordingly. Additionally, every person associated somehow with a given

project or product should contribute to the efforts for improvements.

In order to provide some help with cultivating “buy-in” of stakeholders, Laribee [22] also

referenced a useful tool proposed by a blog post of Finley [13]. She suggested the usage of a

very simple sentence: “evidence DEFEATS doubt”, where the verb is used as an acronym

for the following good practices:

• Demonstrate the real impact on development.

• Give Examples of cases when technical debt had a negative effect on feature devel-

opment.

• Prove with Facts that software development is suffering from technical debt, such as

being unable to meet deadlines.

• Avoid the usage of jargon using Analogies to avoid losing the attention and under-

standing of less technical people.

• Use Testimonials — or anecdotes lacking the budget to hire someone — to show how

other companies benefited from implementing a proper technical debt management

strategy.

• Support every statement with up-to-date Statistics.

Bohnet & Döllner [4] — in consonance with Kruchten et al. [21] — described the manage-

ment of technical debt as finding the balance between internal and external qualities. They

defined internal qualities as aspects such as “conformance to architectural/design princi-

ples, modularity and clearly defined interfaces, and code complexity”, in other words all the

things that are only visible to developers. In contrast, external qualities can be perceived

by others as well, such as “post-delivery defects detected by customers or the number of

implemented features per iteration”.

32

2.6. TECHNICAL DEBT MANAGEMENT

It is also worth mentioning that the process of finding this balance is often very difficult,

which makes technical debt management rather complicated as well. As a rule of thumb,

external qualities are the ones used to measure the overall quality of a product, which

introduces a significant bias. In addition, what further complicates the situation is that

return on investment is immediate for these qualities, while that of internal ones take more

time. This is the reason why long-term quality often gets ignored for the sake of short term

gain, leading to increased pressure in the future.

In terms of difficulties, Power [34] identified a set of other obstacles that one can face

when trying to manage technical debt. These are summarized by the following table:

Challenge Description

Definition Since numerous different interpretations of the metaphor exist, it

is important to make sure that everybody has the same under-

standing about the term.

Quantification It is not always straightforward and easy to find the best way of

quantifying and measuring technical debt. Some of the examples

given by Power [34] were to measure team capacity or feature

development velocity.

Visualization Companies should use efficient visualization techniques to facili-

tate the communication of debt.

Tracking Once debt is detected, it also needs to be tracked somehow so that

it stays under control. Doing so also takes some extra effort.

Neglecting debt According to Power [34] — and in accordance with what was dis-

cussed earlier —, even though neglecting technical debt for one

release has no noticeable impact on productivity, as newer releases

come, the effect keeps becoming more and more significant.

Root cause ignored When bugs are detected, often just the most immediate causes are

fixed, which results in experiencing returning defects. Therefore,

it is important to always find the root cause, because it can easily

be technical debt.

Costs of delay Many companies have a hard time understanding the real costs

associated with technical debt. Possible re-work can equal to an

extremely high number of extra work hours.

33

CHAPTER 2. STATE OF THE ART

Finally, another technical debt management-related aspect concerns the set of tools avail-

able. As Ernst et al. [12] pointed out, there was still a need for good practices and tools

to handle technical debt and the situation has not changed much ever since they published

their article.

2.6.2 Technical debt-related activities

In order to create a methodology, it is beneficial to identify and define some technical

debt-related activities. Li et al. [25] introduced the following list of activities:

• Identification: Find existing technical debt of companies using a set of tools, such

as static code analysis or checklists.

• Measurement: Introduce techniques for quantifying the amount of already existent

or newly introduced technical debt.

• Prioritization: One of the most important activities of technical debt management,

since most of the time, there is a need for an ordered list of debt at some point during

the decision making process.

• Prevention: Its main purpose is to avoid incurring further debt on top of the already

accumulated amount, thus, facilitating the efficient reduction of overall technical debt.

• Monitoring: Once technical debt is identified, it is of crucial importance to keep

unpaid debt observed in order to avoid letting it get out of control. This activity aims

to monitor changes of existing debt.

• Repayment: Refers to the act of eliminating technical debt instances. This can be

done using various techniques, such as refactoring or re-engineering.

• Representation/documentation: Probably one of the most important activities

which usually does not get enough attention. It focuses on making technical debt well-

documented and visualized, so that every stakeholder can understand given situations

and the implications.

• Communication: This activity goes hand in hand with the previous one, as it also

serves the purpose of letting stakeholders know about difficulties related to technical

debt so that the necessary measures can be taken.

As it can be seen, all of the activities mentioned above are essential. Therefore, they

will be further discussed as part of the proposed methodology.

34

CHAPTER3
Methodology

This chapter forms the core of this thesis. It introduces a methodology for technical debt

reduction and management in eight steps. The methodology is designed to be practical and

easily applicable in an SME environment.

35

CHAPTER 3. METHODOLOGY

As it can be seen from Figure 3.1 below, the methodology is intended to be used in

an iterative way. In principle, it consists of 7 plus 1 activities. While preventive measures

need to be taken in a continuous way, the rest of the steps are to be executed sequentially,

since they build upon each other. However, since software projects continuously evolve and

change, the technical debt management strategy of SMEs also need to take these changes

into account and revisit each activity periodically, every once in a while.

Unlike in already existing methodologies, in this methodology, understanding the envi-

ronment, the communication of technical debt and prevention measures also have an im-

portant role. In the upcoming sections of the document, several alternatives are presented

for each of the actions depicted by Figure 3.1.

Figure 3.1: Overview of the methodology

36

3.1. UNDERSTAND THE ENVIRONMENT

3.1 Understand the environment

Any person that is given the task to reduce the technical debt of an SME, needs to start

the process by examining the overall profile of the company first. Even if the person in

question is not a new employee, in order to succeed, he or she has to understand how

different aspects of a company work. For instance, many developers have little knowledge

about communication practices between managers and clients, since it is not something

essential for their jobs. In a similar fashion, managers and clients tend to be less aware of

technical details, saying that they prefer to leave them for technical people. However, — as

Norberg [31] also pointed it out — a general understanding of business activities and the

technologies involved is very important to the success of software projects. Since a large

number of technical deficiencies tend to be of system-wide nature (affecting organizations

as a whole), technical debt management can also benefit from this kind of knowledge.

Consequently, as one of the first steps, it is worth to understand the profile of the

company more in detail. As part of the process, one should examine:

• What is the main offering of a company (e.g., a product, software as a service)?

• What are the main business activities of the SME in question?

• Which projects have the highest revenue? Knowing this piece of information can be

especially useful when prioritizing technical debt items.

• What are some limitations and dependencies (i.e., boundary conditions)?

The next relevant aspect that can influence a company’s relationship with technical

debt is whether they work on innovation projects or not. Not surprisingly, if they do, the

company is inherently more prone to accruing technical debt than others are. This is due to

the fact that it is particularly hard to see all the requirements at the beginning of a project

and the overall goals can also change in time.

Furthermore, reviewing the main stakeholders of projects is also a good idea. Discov-

ering the roles and hierarchy of stakeholders can help to establish efficient communication

practices for instance. In other words, it is of essential importance to discover who are the

people that need to understand the dangers of technical debt in the first place, in order to

facilitate the effective management and reduction of it.

On a related note, knowing what their backgrounds are also helps to communicate with

them in the most fitting manner. While some of them might have a managerial background,

others might be more focused on technical aspects of projects. Therefore, it is also beneficial

to learn about the skills and responsibilities of each of them. As earlier discussed in section

37

CHAPTER 3. METHODOLOGY

2.4, this difference can result in very different risk avoidance attitudes, which complicates

the management of technical debt even more.

Just like it is necessary to understand the network of people, it is also required to un-

derstand the technical structure of projects. In other words, the purpose of each component

should be identified, alongside with their relationships towards each other. Furthermore,

discovering the level of abstraction and modularity should also form part of the process,

since these aspects can easily serve as the source of technical debt.

Finally, collecting a list of the technologies involved can also contribute to the success

of identifying technical debt sources (see section 3.2). In order to understand what they

are used for, the documentation — if it exists — can contain useful insights. Naturally,

documentation can be useful throughout the entire first step of the methodology. Therefore,

this supports the idea that enforcing proper documentation practices should not be taken

lightly, since poor documentation can result in scenarios where new employees are forced

to “re-discover the wheel” over and over again, while trying to understand the system.

38

3.2. IDENTIFY TECHNICAL DEBT SOURCES AND INSTANCES

3.2 Identify technical debt sources and instances

A technical debt reduction methodology cannot exist without a step that is dedicated to

the identification of it. Since many sources of technical debt exist (as explained in Chapter

2), its identification is not necessarily a very straightforward process, even though there

exist some tools and approaches that can help with it.

Identification starts by raising awareness about technical debt, since many software

practitioners do not take related issues seriously enough. In most of the cases, this is

due to a lack of general knowledge and understanding. Additionally, there tend to be

competing opinions about the definition of technical debt among people. Thus, as a first

step, employees and stakeholders need to be educated about the phenomena, also reaching

a consensus about the definition of technical debt within a given SME.

Once everybody has the same understanding about technical debt, the next thing to do is

determine how related issues are identified. According to the findings of Ernst [12] presented

below in Figure 3.2, the most prevalent way of identifying technical debt is either by doing

so during retrospectives or by implicitly registering instances in the backlog. Conversely, a

rather low number of technical debt tools are used for identification. This can be explained

by the fact that tools only exist for identifying source code-related debt items.

Figure 3.2: Ways of identifying technical debt by Ernst [12]

As it can be seen from the chart, a significant percentage of IT practitioners follow the

“fail first, identify technical debt as a cause” approach, since the “Not identified/Other”

category is rather substantial as well. Naturally, this is not the recommended way of treating

the question of technical debt. Without doubt, the extra effort needed to eliminate the

accumulated technical debt can become crippling and completely paralyze feature delivery

as time passes by. It is good to bear in mind that interest payments do not only manifest

39

CHAPTER 3. METHODOLOGY

as defects, but also take the form of other difficulties as well. Therefore, it is beneficial to

identify and track technical debt as soon as possible, so that necessary measures can be

taken in case it becomes a threat to the organization.

Social cues can also indicate elevated technical debt levels of a company. For instance,

if developers try to avoid working on certain parts of the code base or people leave the

company due to low morale, one can be sure that the root cause is technical debt. Therefore,

it needs to be identified and properly managed. Furthermore, some other typical indicators

of technical debt is having god objects, dead parts of code, spaghetti code and frequent test

failures due to brittleness of the system.

On a related note, deliberate technical debt should be always self-admitted. As already

pointed out in section 2.1.1, technical debt is neither inherently bad or good, it is some-

times inevitable. However, keeping it hidden or neglected is to be considered bad practice.

Therefore, developers should be encouraged to be transparent about the technical debt that

they potentially take on deliberately, so that it remains under control.

However, not only deliberate debt exists and being aware of inadvertent debt is also key

in technical debt reduction. For instance, Tufano et al. [40] suggested that the majority of

code smells is introduced by the very first commit or as part of refactoring commits. This

implies that a huge amount of debt could be avoided just by double-checking the quality of

commits.

As the most basic approach, technical debt can be identified using simple checklists.

However, these lists can only provide some general guidelines and a set of clues for doing

so. Therefore, some additional approaches are discussed in the following subsections.

3.2.1 Code analysis

Li [25] proposed carrying out code analysis as means of identifying technical debt. Its main

goal is to find source-code related weaknesses of a software product that can potentially

turn into vulnerabilities or make the code base difficult to understand, manage and extend.

Furthermore, it is also important to emphasize that the process is intended to be completely

automated and it can possibly return code metrics as well. Code analysis can be equally

done in a static and a dynamic way as well.

3.2.1.1 Static Code Analysis

Static Code Analysis (SCA) focuses on verifying whether the source code is compliant with

a certain — predefined or customized — set of coding rules or not. This type of analysis is

carried out during the implementation phase of the software life cycle.

Nowadays, SCA also forms part of modern IDEs, as immediate feedback can help devel-

40

3.2. IDENTIFY TECHNICAL DEBT SOURCES AND INSTANCES

opers notice their mistakes at the moment of making them. A good example of this use-case

would be the usage of code linting tools. Additionally, when run separately, analysis tools

can yield different kinds of code metrics as well, which provide further insights into the

quality of the source code.

The publication of Marinescu [27], can help in understanding how SCA tools can identify

technical debt. For instance, the combined use of the most basic object-oriented metrics

— coupling, cohesion, complexity and encapsulation — can indicate the presence of a set

of object-oriented programming-related issues, such as god classes, data classes or methods

with intensive coupling.

3.2.1.2 Dynamic Code Analysis

Dynamic Code Analysis (DCA) is carried out during execution time of a program. There

are certain aspects (e.g., memory error detection) that can be only examined using this

dynamic approach. DCA is usually used during the testing phase of the software life cycle.

With respect to tools, it is very important to instrument the source code in such manner

that does not introduce noise or bias in the results of the analysis. Additionally, it is good

to remember that the code coverage of DCA depends on user interactions, which can easily

result in parts of the code being left unexamined.

3.2.2 Dependency analysis

Li [25] also suggested the usage of dependency analysis, as it has a vital role in escaping

the so-called “dependency hell”. Not managing dependencies appropriately can certainly

cause serious headaches to the development team, since resolving dependency-related issues

is not always evident. Therefore, it is not by mistake that these issues were given the

aforementioned name. Some of the most frequently encountered difficulties are:

• Unnecessarily large number of dependencies: There is no universally recom-

mended limit, as it greatly depends on the characteristics of the platform in question.

However, as a rule of thumb, it is safe to say that the number of dependencies should

be kept at a minimum level. For instance, iOS developers should ideally restrict them-

selves to using maximum six libraries. Furthermore, when the need for the usage of

a library arises, the order of preference should be: native libraries first, own imple-

mentation second and third-party implementations last. This is owing to the fact

that third-party packages come with inherent risks in terms of security, licensing and

performance.

• Conflicting versions: When two different versions of the same library are required

41

CHAPTER 3. METHODOLOGY

at the same time, developers might encounter a dependency conflict at the moment

of introducing the second one.

• Transitive dependencies: A transitive dependency refers to dependencies that exist

due to the mathematical transitiveness property. In other words, if component A

directly depends on B and B on C, A also depends on C implicitly, which is naturally

not an issue per se. However, since explicitly defined dependencies possibly depend

on other libraries as well, it is possible that when a given developer starts using

dependency D (which also depends on C), he/she might forget to define C as an

explicit dependency. If later on, dependency A is no longer needed and it is removed

(alongside with B and C), dependency D stops working all of a sudden, which makes

the project less deterministic.

3.2.3 Analyzing statistical data

Oftentimes statistical or metadata of projects can be a good indicator of the existence of

technical debt. Self-evidently, most of these approaches are unable to name the exact source

of technical inefficiencies, but detecting potential issues is always better than thinking that

everything is the way as it should be.

For instance, a burn down chart — well-known from Agile software development — can

be one of these indicators. If the number of unfinished tasks is high or has an increasing

tendency at the end of iterations (e.g., sprints), the project suffers from productivity loss,

which can easily happen due to technical debt. Among others, Li et al. [25] also introduced

a similar indicator called ANMCC (average number of modified components per commit),

which could be utilized to detect architectural technical debt. If this number is high, it

means that the separation of concerns principle was not applied properly. On a related

note, this concept could be extended to tasks instead of commits as well.

3.2.4 Identification by experts

Unfortunately, not every type of technical debt can be automatically identified. As already

mentioned before, most of the tools can only handle the identification of source code-related

issues.

Therefore, in many cases, identification has to be done manually by experts, such as

software architects or developers. Most of the time, they can only rely on their experience

and software engineering knowledge. Typically, this kind of debt identification does not

happen as a separate activity, but as a by-product of working on the code base instead.

42

3.3. MEASURE TECHNICAL DEBT

3.3 Measure technical debt

Devising ways of measuring technical debt is probably one of the most difficult tasks to do.

As detailed in the literature review part of the document (chapter 2), a significant number

of debt types exists which makes their measurement rather complicated, since every type

requires potentially different ways of quantifying them.

Debt can be measured both in an automated and a manual fashion:

• automatically: using different types of models, computed metrics and ordinal scales

of measurement

• manually: relying on estimates given by IT practitioners

Measurement efforts aim to convert technical debt into actionable information. Based

on different expectations, this can result in having a number or severity assigned to technical

debt. While the most commonly used numeric measurement types are monetary costs and

the number of man-hours that are required to eliminate technical debt, severity is usually

measured using ordinal scales (e.g., low, medium, high). Although both approaches can

result in somewhat inaccurate measurements, errors can be mitigated with the help of

historical data.

Depending on the intended usage of measurement data, it is important to evaluate which

types of technical debt should be measured and which can be simply excluded from the scope

of measurements. In addition, it is also noteworthy that the frequency of measurement

might vary for different types. For instance, the high-level architecture of a system tends

to change slower than other characteristics, and thus architectural debt can be measured

with a lower frequency.

There are three main measurement approaches recurring in the corresponding literature:

the usage of technical debt measurement models, calculating metrics and leaning on the

insights of software practitioners. Therefore, these three are described below.

3.3.1 Models

Models provide a systematic way of measuring technical debt. Therefore, this section in-

troduces the most well-known solutions. Technical debt measurement models can be cate-

gorized based on measuring only principal, only interests or both. While the interest-based

approach places the emphasis on the costs of recurring extra work (typically identified and

measured during retrospectives), the principal-based approach advocates the elimination of

both one-time and recurring work. Hence, it is of no surprise that the models introduced

in the following sections also address the task in the latter way.

43

CHAPTER 3. METHODOLOGY

3.3.1.1 SQALE model

The name of this model stands for “Software Quality Assessment based on Lifecycle Ex-

pectations”, therefore, it is used by many source code analysis tools. The SQALE method

utilizes both a quality model and an analysis model. Its quality model consists of three

hierarchical levels as shown in the Figure 3.3 borrowed from Letouzey [24]. These lev-

els are: characteristics, sub-characteristics and source code-related requirements. These

requirements need to be customized for software context and programming language.

Figure 3.3: Visualization of the SQALE quality model by Letouzey [24]

The SQALE method also ships with an analysis model that can be used to calculate

remediation indices for different artifacts, such as a module, a file or a class. Since the

method aims to measure technical deficiencies as the difference between the current state

and the quality target of the source code, remediation indices have a crucial role in the

analysis process.

Letouzey [24] also created a visualization of this analysis model (Figure 3.4). Based on

that, the process of calculating the aforementioned remediation indices can be broken down

into the following set of steps:

1. Validating the source code against the requirements that were earlier defined in the

third level of the quality model. Every violation is counted in a matrix, where each

column corresponds to an artifact and each row represents a source code quality

requirement.

2. A so-called remediation function is applied to the matrix, which makes sure that

violations of different requirements are properly normalized. This function needs to

44

3.3. MEASURE TECHNICAL DEBT

be defined in a customized way by the organization and it makes sure that non-

conformities of different types can be measured and compared with each other.

3. As a final step, remediation indices are aggregated either for every artifact separately

(e.g., separate files) or for the tree structure of the quality model (e.g., SQALE Testa-

bility Index, STI). These indices represent remediation costs and a global SQALE

quality index (SQI) is also calculated.

Figure 3.4: Visualization of the SQALE analysis by Letouzey [24]

3.3.1.2 CAST model

This model was developed by a leading software intelligence company called CAST and it

is used in their Application Inteligence Platform (AIP). Before the model can be applied,

the source code needs to be parsed and validated against a rule set. According to Curtis et

al. [10], the model evaluates over 1200 rules with the goal of detecting violations of good

architectural and coding practice. This model aims to measure the monetary costs of the

existing debt directly.

As explained by Curtis et al. [10], CAST focuses on the principal part of debt. According

to the model, this part of technical debt depends on the number of “must-fix” violations,

the time needed to fix them and the costs of doing so. Since not every issue has to be fixed,

the CAST model uses the following formula to calculate technical debt:

45

CHAPTER 3. METHODOLOGY

Principal =

(number of high-severity violations)∗

(percentage to be fixed) ∗ (average hours needed to fix) ∗ ($ per hour)+

(number of medium-severity violations)∗

(percentage to be fixed) ∗ (average hours needed to fix) ∗ ($ per hour)+

(number of low-severity violations)∗

(percentage to be fixed) ∗ (average hours needed to fix) ∗ ($ per hour)

As it can be seen, violations are grouped into three severity groups. As per the pub-

lication of Curtis et al. [10], “must-fix” percentages can be initially set to 50%, 25% and

10% in decreasing severity order. However, this and the hourly cost parameters need to

be tailor-made for different projects and organizations. Hourly costs in particular depend

on geographical location and the experience level of the person carrying out given rework.

With respect to the time component, it is good to keep in mind that it should involve

the time spent on the analysis of the problem, understanding the source code, finding the

solution, considering potential side-effects, implementing the solution, running tests and

releasing the fix.

3.3.1.3 Counting the number of violations

The most simple and most straightforward model that can be used is the one that simply

counts violations. Even though it is a very simple approach, this section provides some

recommendations to take into consideration. It is also worth mentioning that when it

comes to communicating technical debt towards non-technical people, it is probably better

to use an approach that results in more comparable measures, such as the actual monetary

costs of eliminating the existing debt.

Violations can be efficiently counted for instance by defining thresholds for certain met-

rics and grouping thus counted instances according to their types. However, one should not

forget that this model can only be used for obtaining rough estimates of the accumulated

technical debt levels. Additionally, as it has been already pointed out, since the resultant

numbers are not normalized or weighed in any way, they cannot be used as the means of

comparing technical debt items to one another in order to prioritize them for instance.

46

3.3. MEASURE TECHNICAL DEBT

3.3.2 Metrics

The usage of metrics is another efficient way of measuring technical debt. Utilizing the right

selection of tools, they can be calculated automatically and periodically, thus monitoring

the overall health of software projects.

The following list below aims to enumerate and describe the most important metrics

that can be used for technical debt measurement. Since it is a common approach to assign a

severity to each of them, initial recommendations are also included with respect to defining

the status thresholds (Normal (N), Warning (W) and Critical(C)). Unfortunately, it is

impossible to provide a universal configuration for severity thresholds, since they need to

be adjusted to the needs and technical debt management strategy of every organization.

The aforementioned metrics are explained below.

3.3.2.1 Code duplication

It measures what percentage of the total number of lines are “copy & pasted”. Code

duplication is known to cause technical debt, since the same lines of code are present in

more than one location, which means two things:

1. If the lines in question introduce a bug, the same defect is present in multiple parts

of the code base. Once one of them is discovered, often the other one(s) are left

unattended, since it might be a completely different developer that fixes the code,

which can lead to fixing the same mistake over and over again, just in different parts

of the code base.

2. If duplicated lines need to be changed as part of feature development work, the same

issues as before might arise, due to the need of applying the changes to every instance

of the duplicated logic.

In an ideal situation, these lines of code should be placed in a re-usable method the very

moment they are used for the second time. However, in real life, a “rule of three” can be

observed: the first time the code is implemented without introducing technical debt; then

the code is consciously duplicated and finally, when the need arises to duplicate code for

the third time, the common parts are extracted into methods. Unfortunately, this last step

requires some extra work (interest payments) in the form of refactoring and it should be

avoided by all means.

Threshold recommendations:

• Normal: less than 5%

47

CHAPTER 3. METHODOLOGY

• Warning: between 5% and 10%

• Critical: more than 10%

3.3.2.2 Overall coding best practice rules

This metric measures what percentage of the coding rules are being respected in the source

code. Due to the fact that these rules are based on best practices, the set of rules greatly

depends on the programming language used and the preferences of the development team.

Although, some more generic rules can be defined as well, for instance to ensure the com-

pliance with object-oriented best practices (e.g., by measuring the number of classes with

low cohesion).

For instance, some teams might prefer having very strict naming conventions, while

others do not place a huge emphasis on them. As a direct consequence, their ideal rule sets

are also different. Fortunately, most of the available tools come with predefined rule sets,

however, they also provide the freedom of disabling them separately and the possibility to

create custom rules.

Threshold recommendations:

• Normal: more than 80%

• Warning: between 60% and 80%

• Critical: less than 60%

3.3.2.3 General documentation

This metric measures to what extent the source code is documented, usually in the form of

source code comments. To many software practitioners this might sound as one of the most

debatable metrics, since it is hard to be measured in a meaningful way, it can not measure

the quality of documentation objectively and developers claim to produce self-documented

code anyway.

Writing comments can be a complicated task to do, since it is hard to estimate what

is worthy of mentioning. While too few lines of comments can make the source code hard

to understand for others, too many comments can also have the same effect. As a rule of

thumb, trivial steps should never be mentioned, but non-trivial algorithms should always

be explained in comments.

Threshold recommendations:

• Normal: more than 20%

48

3.3. MEASURE TECHNICAL DEBT

• Warning: between 15% and 20%

• Critical: less than 15%

3.3.2.4 Interface documentation

This metric measures what percentage of interfaces are properly commented. It is partic-

ularly important to document them, since they are elements that are used by many other

components in order to implement a given functionality. Naturally, when implementing a

new feature, it is expected to easily understand which interface can be used for a given

task and what sort of information needs to be passed to its methods (also defining the

characteristics of the arguments). Making these pieces of information explicitly available to

everyone can facilitate the work of others in a significant way.

Threshold recommendations:

• Normal: more than 90%

• Warning: between 75% and 90%

• Critical: less than 75%

3.3.2.5 Method complexity

The most typically used metric for this purpose is the cyclomatic complexity (CC) developed

by Thomas J. McCabe, Sr. [29]. This metric measures the number of linearly independent

execution paths in the source code of a program.

This metric is defined to show what percentage of methods have a CC larger than 10.

Methods with a high cyclomatic complexity require a larger effort from people that are

trying to work with them, therefore keeping the metric at a low level can facilitate more

efficient work in general.

There is a well-known notion related to complexity: the human brain is better at using

and understanding a complex system of simple things than a simple system of complex

components. Hence, this notion validates the usage of this metric.

Threshold recommendations:

• Normal: less than 5%

• Warning: between 5% and 10%

• Critical: more than 10%

49

CHAPTER 3. METHODOLOGY

3.3.2.6 Test coverage

Test coverage is one of the most important metrics nowadays. It describes the degree to

which the source code is exercised when running a certain set of tests (e.g., unit tests,

integration tests or regression tests).

More and more people realize the importance of software testing and adapt approaches

such as TDD (test-driven development) as they can help to detect deficiencies of our program

codes at an early stage, thus minimizing their negative effects. However, a significant

number of projects still suffer from painfully low levels of test coverage due to various project

constraints and human carelessness, such as time pressure or lack of sufficient budget.

Threshold recommendations:

• Normal: more than 80%

• Warning: between 60% and 80%

• Critical: less than 60%

3.3.3 Measurement by experts

As it has been introduced in case of technical debt identification, measuring the amount of

the accumulated technical debt can also be done relying on estimates of experts. It is also

worth emphasizing that in order to give accurate-enough estimates, these experts need to

have a deep understanding of both the technical and managerial aspects of projects.

For instance, even though one can introduce metrics for comment density, measuring

documentation debt can be most efficiently done by actual people, since comment density

is not able to point out the shortcomings of architectural documentation to start with.

Additionally, experts can also take into account the salaries of developers when creating an

estimation of monetary costs of technical debt.

50

3.4. MONITOR TECHNICAL DEBT

3.4 Monitor technical debt

This step cannot be missing from any good technical debt reduction strategy, since organi-

zations should not lose track of the already identified technical debt that they accrued. It

would be just as irresponsible as taking up loans in our everyday lives and just forgetting

that they ever existed. The more in detail debt can be monitored, the easier it becomes to

make decisions about its management.

3.4.1 Monitored information

Some general guidelines with respect to selecting the information that is worth monitoring

are detailed below:

• Technical debt items should be identifiable and it can also be beneficial to discover

relationship between certain items. This makes communication easier.

• To further facilitate communication, the exact conditions and characteristics of

technical debt should be described in a concise, yet clear way.

• Since the explicit type of technical debt has implications for its severity (and

therefore, for its priority as well), the technical debt type should also be tracked.

• Storing the actual and up-to-date status of technical debt items in some form can

be a good idea to better see the overall health of the project.

• Knowing the date of identifying a given debt item can also help to evaluate

overall trends (e.g., in order to showcase the benefits of managing technical debt).

• The impact of leaving an item unattended also contributes to the success of

prioritizing debt.

3.4.2 Implementation of a monitoring process

Martini et al. [28] addressed the topic of tracking technical debt in their article. As part of

their thorough study, they also identified some key elements to implementing a successful

and maintainable tracking process.

First of all, they indicated the necessity of having a “champion” of technical debt moni-

toring. This person should fulfill the role of raising awareness and advocating the adoption

of monitoring practices. The “champion” can be of multiple roles: an experienced developer,

a software architect or a manager, just to mention a few.

51

CHAPTER 3. METHODOLOGY

Secondly, workshops should be held, so that everybody understands the concept and

goals. Forcing people to register technical debt instances without them understanding the

benefits is not a viable option and it normally leads to haphazardly registered details.

Thirdly, as another resource, some time should be set aside to begin monitoring projects.

For example, tools need to be configured and the exact tracking information of interest has

to be specified. Although, the time spent on these steps cause a loss of productivity in the

short term, they are beneficial in the long term.

Fourthly, they also highlighted the importance of guaranteeing the availability of the

required budget. In order to do that, it is of crucial importance to involve management

people of the organization, making them understand the importance of the cause.

Lastly, the benefits of tracking debt need to be shown to the management. As it was

mentioned before, it requires money and extra effort, hence, it needs to be shown that

resources are not just wasted for nothing.

Li et al. [25] also addressed the topic of technical debt monitoring in their publication.

They identified the below listed five approaches:

• As already mentioned before, alerts can be configured for the event of measured

metrics reaching a certain threshold. When such an alarm is triggered, the nec-

essary technical debt reduction steps can be taken.

• Dependencies can be used to trace the propagation of the negative effects of tech-

nical debt.

• It is also a possibility to have planned checks and periodically carry out measure-

ments.

• Another approach relies on the fact that technical debt affects quality attributes

of software projects. Therefore, technical debt can be also monitored by periodically

evaluating attributes, such as stability, reliability or flexibility.

• Identifying trends can also be a form of monitoring technical debt. However, this

naturally requires having periodical measurements with a high-enough frequency, so

that it makes sense to plot the data.

3.4.3 Types of monitoring tools

Martini et al. [28] also discussed what tools the participants of their survey used for technical

debt monitoring. They obtained the following results, in order of prevalence:

1. Backlogs: As the most prevalent solution, participants reported the usage of back-

logs. Technical debt can be tracked mixed with the items of the feature backlog or it

52

3.4. MONITOR TECHNICAL DEBT

can also have a separate backlog, exclusively for this purpose.

2. Documentation: The second most popular way according to their studies was main-

taining text documents, spreadsheets or wiki pages.

3. Static analysis tools: These tools can automatically identify, measure and track

technical debt. Although, there are commercial or open-source tools available (e.g.,

SonarQube or the CAST AIP), as reported by Martini et al. [28], some companies

opt for implementing their own tools and customizing them for the metrics that they

really need.

4. Issue tracking system: Creating tickets for technical debt items, just like it is done

for bugs is also an option. Normally, in these cases, participants mentioned that they

assigned a low priority to these tickets, thus keeping them somewhat separated from

feature-related issues.

5. Comments: This option is clearly less effective than any other in the list. As stated

by Martini et al. [28], these comments usually take the form of “TODO” comments,

which are convenient for developers. However, they cannot possibly form the basis of

a good technical debt management strategy.

53

CHAPTER 3. METHODOLOGY

3.5 Prioritize technical debt and make decisions

Once the organization identified technical debt and also created means of measuring and

monitoring debt items, it is time to make decisions about them. Due to the existence of

the already discussed project constraints (scope, resources, schedule) it is impossible to pay

down every single bit of technical debt.

However, in accordance with what was explained in the literature review part of the

document (chapter 2) — unlike in case of monetary debt — repayment is not even necessary.

Therefore, technical debt instances need to be prioritized. This section introduces key

factors to consider before making a decision and it also presents a list of prioritization

approaches.

3.5.1 Key factors to consider

When creating the action plan of addressing technical debt, a whole series of technical

and business aspects need to be taken into consideration. To start with, it needs to be

determined to what extent the prioritization can be done objectively. Sometimes — due to

the lack of metrics and other measurements — prioritization needs to be done by experts as

well. In such cases, besides the earlier mentioned experience and technical know-how of the

experts, they can only rely on a hunch in those cases. Therefore, it is recommended to assure

that prioritization can be carried out based on strategically collected data. Otherwise, when

it is done by experts, employees from both the managerial side and the technical side need

to have their say in the decisions that are made.

Determining what factors should form the basis of prioritization is somewhat context-

dependent. However, Ribeiro et al. [36] in their publication shared some possible prioriti-

zation criteria . All of these were collected by mapping several studies concerning decision

criteria for technical debt repayment. As part of this document and partially based on their

results, the following prioritization-related criteria are recommended to be considered:

• Monetary costs (Which technical debt instances demand the highest and most fre-

quent interest payments?)

• Technical impact (Are there technical debt items that on their own or together with

others paralyze feature development?)

• Ease of repayment (Which debt instances can be eliminated the most easily?)

• Opportunity costs (What kind of improvement opportunities are blocked unless tech-

nical debt is payed down?)

54

3.5. PRIORITIZE TECHNICAL DEBT AND MAKE DECISIONS

• Expected usage (When will be the refactored part used according to current expec-

tations?)

• Impact on customers (What is the level of impact on the customer? Do they

experience any direct effects?)

• System age (How old is the system? Will the project be kept alive for a long time

still?)

• Type of debt (What is the source type of the debt?)

• Deliberateness (Were technical debt instance purposefully created or do they exist

inadvertently?)

3.5.2 Prioritization approaches

Selecting a prioritization approach is not an easy thing to do, even though many authors

and software architects described their own strategies before. However, many of them

introduced complex processes, some of which require a deep understanding of financial

concepts as well. Therefore, to better match the scope of the thesis and to keep the ease of

use of this methodology, only some of the simpler approaches are showcased.

3.5.2.1 Cost-benefit analysis

Both Li et al. [25] and Seaman et al. [38] mentioned this approach, since it is one of

the most simple ones. As its name suggests, it tries to prioritize technical debt items by

examining the relationship between the costs and benefits of repaying a given item.

As Seaman et al. [38] explained, in the first iteration of prioritization, it is enough to

use coarse estimations for both variables on a scale of 1 to 9 for instance, which can be later

on followed by finer-grade, real-world estimates (e.g., monetary costs and revenues). As it

can be seen from the example given by the authors (see Figure 3.5), technical debt items

can be organized into a simple coordinate system where the two axes correspond to costs

and benefits.

While the costs can be measured as the extra work effort, benefits can be thought of as

eliminating the impact of technical debt items (the higher the impact is, the more beneficial

the elimination of an item is). Therefore, the prioritized order of technical debt items can

be read from the coordinate system by reading them in order from the upper-left corner

towards the lower-right corner. In other words, starting with those technical debt instances

that have a high impact and are easily eliminated (GodClass7 and GodClass8) and finishing

with those that have a low impact and require a large effort (GodClass1).

55

CHAPTER 3. METHODOLOGY

Figure 3.5: Cost-benefit analysis example by Seaman et al. [38]

3.5.2.2 High remediation costs first

Li et al. [25] also mentioned an approach, which prioritizes technical debt items with respect

to their remediation costs. Remediation costs involve every cost that is related to the extra

work needed to eliminate a given technical debt instance.

High-remediation-cost technical debt items can be often categorized as architectural

technical debt. If teams start with items that have low remediation costs, they risk doing

low-level refactoring work on parts of the source code which might have to be completely

changed anyway, when the high-remediation-cost items are reached. Thus, the risk of

wasting time on fixing minor issues first is considerably high.

3.5.2.3 High interests first

Another simple and easily understandable way of prioritization was also mentioned by Li et

al. [25]. Unlike the other two approaches cited in this master’s thesis, instead of examining

the principal costs, it tries to give higher priority to those items that demand the highest

amount of interest payments.

It is a well-known fact that interest payments represent recurring costs. Hence, the

underlying principle of this approach is as follows: the sooner the re-occurrence of payments

is stopped, the less effort and money needs to be spent on them.

56

3.6. REPAYMENT

3.6 Repayment

After having presented some prioritization considerations and approaches in the previous

chapter, as the next step, it is time to address the topic of technical debt repayment. First

of all, this chapter discusses the importance of continuous repayment. Secondly, it also

provides a description of the various ways of retiring technical debt.

3.6.1 Continuous repayment

Just like monetary debt is not paid back all at once, technical debt should be paid back step

by step as well. In addition, it cannot be emphasized enough that some of the technical

debt does not even need to be paid back at all. Furthermore, as Buschmann [8] pointed it

out, paying down technical debt has its own risks as well. Given that many types of debt

repayment actions can affect software in production, value can be destroyed as well and not

just created. Therefore, it is essential to use minimally invasive solutions.

Development teams can do repayments at micro and macro levels as well. On the one

hand, micro level repayments should be continuously done by developers working on the

code base. Thus, repayment certainly results to be less burdensome to them. While on the

other hand, macro level technical debt (typically architectural debt) needs to be addressed

in recurring clean-up releases.

3.6.2 Means of repayment

Li et al. [25] also addressed the topic of technical debt repayment and alongside with many

other authors, also mentioned refactoring, rewriting, automation and fixing of regressions as

possible ways of paying technical debt down. However, since all of these are rather focused

on the already existing code base, this chapter introduces a few more approaches that can

address other types of debt as well, such as the creation of tests, skill management and the

revision of communication practices.

Refactoring

Refactoring is probably the most commonly known and applied way of technical debt

repayment. During the process, the already existing source code is changed in a way that

the functionality of the component remains completely intact. However, since the process

has no visible outcomes, managers tend to be rather reluctant to the idea of refactoring. It

is considered a waste of time, especially if it is carried out with the goal of avoiding future

problems that may or may not arise. As a consequence, most of the time people say: “If

it’s not broken, don’t fix it”

57

CHAPTER 3. METHODOLOGY

In general, senior developers are the ones who propose and advocate refactoring, since

they see it as an investment. In contrast, junior developers tend to lack the experience and

necessary vision to suggest changes of this type. However, regardless of experience level,

refactoring is always preferred to be carried out in a progressive fashion. In other words,

Uncle Bob’s boy scout rule needs to be the main driver of everyday work of developers:

“Always leave the code that you are editing better than you found it.”

Rewriting from the ground up

Sometimes the accumulated technical debt reaches extremely high levels in a project.

In these cases, instead of fixing all the issues, it is better to abandon the existing source

code and re-implement everything again from the ground up. Self-evidently, the fewer lines

the affected code contains, the more acceptable this approach is by less technical people as

well. On a related note, this repayment method requires rather precise estimates both for

fixing the existing technical debt and for the effort of re-implementation.

Automation

Manually done processes tend to be repetitive and therefore, incredibly error-prone.

Therefore, as discussed before in the section of technical debt categorization (section 2.3.2),

process debt can be partially remedied by automating processes. Some typical examples

would be the introduction of continuous integration (CI) and continuous delivery (CD)

solutions.

Fixing regressions

The need for this kind of repayment is the most visible to everybody, since it has to

do with broken functionality. Although Li et al. [25] mentioned resolving bugs in general

— including defects — as means of repayment, it is a statement that is difficult to agree

with in this methodology, since software defects are not considered to be technical debt.

However, unnoticed regressions, which are introduced when other bugs are fixed, do form a

relevant class of technical debt. Therefore, resolving those issues is also one of the ways of

reducing debt.

Writing tests

The earlier discussed testing debt (section 2.3.2) can only be paid back by writing tests.

Since software has various requirements, several different types of tests exist. Corresponding

to the type of requirements, tests can be divided into two groups: functional (e.g., unit,

integration, regression) testing and non-functional (e.g., performance, security, usability)

testing.

58

3.6. REPAYMENT

A good option to consider here is adopting test driven development (TDD) to eliminate

the problem of insufficient testing at its roots: during development time. As part of this

software development process, a set of tests are written before the actual code is imple-

mented, which quite self-evidently, initially have to fail. Therefore, the goal is to create an

implementation that enables the tests to pass. This helps to avoid the “I can see that my

code works, there is no need for tests. I know I wrote it well.” kind of thoughts that some

developers might have.

Educating people

As it was mentioned in the technical debt characterization segment of this document

(section 2.3.2), there is a type of debt that is related to human resources of projects. One

way to repay this debt is by recruiting professionals with just the right skills from the

beginning. However, due to different constraint (e.g., urgent need for a developer), this

is usually impossible to do in practice. The only viable options are either teaching the

necessary skills to employees or simply finding ways that facilitate their learning on their

own. In addition, it is also worth encouraging employees to broaden their professional

horizons and not to get stuck doing the same kind of work during years.

Revising communication practices

This repayment method aims to address the topic of process and requirement debt,

by checking whether the right communication practices are used. For instance, it might

be the case that the preferred way of communication is via emails, in order to make sure

that managers can monitor the flow of activities by receiving carbon copies of every email.

However, many times, more direct, instant messages are more powerful tools. Therefore, the

recommendation is to use live communication (e.g., face-to-face meetings, calls and instant

messages) for everyday activities and save more permanent means of information exchange

(e.g., emails) for making announcements and communicating important decisions. The next

chapter provides further details on the communication of technical debt itself.

59

CHAPTER 3. METHODOLOGY

3.7 Evaluate results and communicate technical debt

This step has a vital role in the overall process, since it helps to determine the success of

one technical debt management cycle and it also has the potential to validate the effort that

is spent on technical debt reduction and management. Unfortunately, due to the nature of

their work, managers tend to think that if projects do not show visible results, time and

resources are being wasted. Therefore, providing the stakeholders of projects with numbers

about the negative effects of technical debt and the gains of its management is one of the

most fundamental principles to be followed.

A good approach to evaluating results is by comparing how much time a certain change

required before and after eliminating the technical debt that was linked to it. Paying down

debt has the opposite effect on productivity as taking on debt: in the short term it leads to

a loss of productivity, but in the long term the organization benefits from it. All this can

be measured in terms of both time and money, as well as the change in morale, quality and

risks.

In terms of communicating technical debt, it is important to emphasize that choosing

the right tools can make a real difference with regards to the success of communication. Li

et al. [25] proposed the usage of dashboards, backlogs and visualizations for this purpose.

• Technical debt dashboards: These dashboards exist with the goal of informing

stakeholders about the current status of projects. Apart from a list of identified,

pending and remedied technical debt items, they can display metrics and visual ele-

ments (e.g., charts, graphs) depending on the measurement strategy that the company

applies.

• Backlogs: They provide a list of every identified debt instance. They serve the

purpose of collecting as many details about the accumulated debt as possible.

• Visualizations: Powerful visualizations can be created to communicate issues related

to architecture and dependencies, to facilitate the comparison of code metrics and to

analyze the propagation of effects of technical debt items.

60

3.8. TAKE TECHNICAL DEBT PREVENTION MEASURES

3.8 Take technical debt prevention measures

This section discusses some general guidelines for keeping technical debt levels as low as

possible and under control. The goal is to have a technical debt-friendly culture and environ-

ment that fosters efficient software development, reducing the need for going into technical

debt. This can only be done by leaving the “comfort zone” of the company and adopting

new technologies and approaches as well (naturally, assessing them properly beforehand).

3.8.1 People, culture and environment

In order to implement a good technical debt management strategy, the most important

thing with respect to people, culture and environment is to spread awareness about the

phenomenon. As statistics showed — introduced in section 2.1.1 — the lack of awareness

is a significant issue. People experience the effects of technical debt in their everyday

work life, yet they know little about the root cause itself. However, given that proper

management of these deficiencies is also in their best interest, this should be otherwise.

Software development projects with low amount of technical debt have a higher potential of

giving the sense of accomplishment to its stakeholders, which is considered to be desirable.

Clients — as the main stakeholders of projects — also need to learn about the dangers

of technical debt and providing them with proper educational material is clearly not an

easy task to do. However, at the end of the day, they are the ones who have the final

say whether resources are dedicated to technical debt reduction activities or not. If they

understand the real implications behind technical debt, their deadline-oriented attitude can

be altered towards a more quality-focused one. Additionally, it is also important to make

sure that domain experts understand the main technical details of the system and technical

experts understand the key aspects of business as well. For instance, sometimes product

owners do not understand the technical implications of their newly introduced requirements,

since they do not even understand the high-level architecture of the system, thus putting a

huge pressure on the development team. Ideally, this kind of situations should be avoided

by explaining them the most important technical details of the project (just like developers

need to have a basic understanding of the business domain).

Another people-related aspect is the management of skills. As already mentioned, this

can be done by systematically hiring people with the right set of competencies or by training

existing employees. It is also worth considering the concept of continuous learning, which in

the field of software development has a critical role owing to the speed at which technologies

are constantly evolving.

In addition, the notion of T-shaped employees is also noteworthy. In project manage-

ment, this term refers to those people, who have in-depth knowledge in the field of their

61

CHAPTER 3. METHODOLOGY

specializations (the vertical component of the letter T), but also possess cross-domain skills

and abilities (the horizontal component of the letter T). The metaphor is used to describe

what are the ideal proportions of the two kinds of skills.

3.8.2 Architectural design and source code

Architectural design can be one of the most painful sources of technical debt. Therefore,

paying attention to the creation of proper architecture is also a key step in prevention. In

order to keep the structure easily modifiable and maintainable, modularity of the architec-

ture needs to be guaranteed. A widely-used approach for that is to implement the so-called

microservice architectural pattern that makes sure that the separation of concerns principle

is applied. This is done by creating the network of loosely-coupled services, each of which

serves a specific purpose. This pattern can be effectively used to replace brittle, monolithic

applications that are hard to maintain.

Similarly, another architectural aspect is the management of dependencies. The most

important goal is to have every dependency explicitly declared and keep the number of

dependencies as limited as possible. The thesis provides a few more details about this in

the description of the second step of the methodology (section 3.2.2).

Furthermore, design patterns should be used everywhere in the source code as well in or-

der to avoid the most common mistakes by design. The usage of these patterns increases the

internal quality of code. Furthermore, related to software quality in general, another impor-

tant aspect is to have reliable testing practices that can validate the software against various

different quality concerns, such as bugs, regressions and non-functional requirements.

Another thought to consider is that one should consciously dedicate enough time to

the non-functional requirements of software products as well (e.g., their security or proper

auditability), since these aspects tend to be taken less seriously due to the pressure of

feature development. Depending on the application type, the requirement of security can

be addressed by complying with well-known good practices, such as those proposed by the

OWASP organization. Concerning auditability, logging has to form an elemental part of

software products. However, in case of microservices, it also comes with an extra difficulty:

it has to be done in a centralized fashion. Fortunately, this issue can be overcome by using

dedicated tools, such as the widespread ELK stack (Elasticsearch, Logstash and Kibana).

3.8.3 Development practices

Everyday practices during software development can have an effect on the success of tech-

nical debt reduction and management as well. Essentially, the two most important aspects

in terms of practices have to do with technical debt monitoring, repayment and communi-

62

3.8. TAKE TECHNICAL DEBT PREVENTION MEASURES

cation.

As per monitoring, the main recommendation is to track every potential or already

identified technical debt item. In order to do that effectively, software practitioners —

especially developers — need to change their mindsets. Naturally, adding every bit of

technical debt to a tracking system manually is often seen as an extra burden, but using a

continuous technical debt identification mindset can make it less burdensome. A good way of

detecting technical debt at the earliest possible point in time is by doing pair programming

and creating pull requests, thus making sure that freshly written source code undergoes

some type of code review. It is also important that developers are completely open about

their deliberately caused technical debt. However, this is difficult to achieve, since technical

debt is often seen in a bad light.

With regard to technical debt repayment, an interesting question is how new technologies

are applied at a given company. Is there a knowledgeable senior for every major technology

or most of the technologies are learned by searching the web for tutorials and explanations?

Self-evidently, a person with actual experience can better point out all the fundamental

principles and best practices of a technology used than just a few Internet searches can.

With reference to communication, clients need to be kept involved in the development

loop. Therefore, the usage of issue and project trackers — such as Jira — is highly recom-

mended. But these tools are not the only possible solutions for the problem; for instance,

shared Trello boards can also be beneficial in this regard.

3.8.4 The role of Agile development

Adopting the Agile methodology not only comes with its well-known benefits, but it can

also help us in devising and implementing better technical debt management strategies as

well. Since technical debt in essence refers to the lack of satisfactory quality of any kind of

development work, Agile methodologies are the perfect match for its management. Agile

focuses on keeping quality at a constantly high level, for instance by making sure that the

master branch of a project repository only contains source code which is release-ready at

all times.

In pursuance of that, Agile methodologies ship with their own ways and best practices.

The list below contains a few of these:

• Definition of “done”: Although, this definition needs to be refined and redefined

according to the needs of the teams in question, in general, work on a backlog item

is completed only when the change is ready to be released. Project managers need to

take this requirement seriously and keep items from being “done”, until they actually

meet the criteria.

63

CHAPTER 3. METHODOLOGY

• Constant communication: Due to frequent meetings (e.g., daily stand-up, sprint

planning, sprint retrospective) and the usage of visualization tools (e.g., burndown

charts), Agile makes sure that the work progress is constantly communicated towards

all the relevant stakeholders, thus increasing transparency and the chances of detecting

deficiencies early on.

• Built-in prioritization: As part of planning meetings, prioritization of tasks is done

based on effort estimates before the actual iteration (i.e., sprint) even begins. This

helps to address the most urgent tasks first and also make sure that — in an ideal

situation — nobody experiences extra workloads all of a sudden, which would force

them to start using sub-optimal solutions here and there, thus introducing technical

debt. However, on a related note, Nord et al. [32] indicated that story points usually

do not include the time required for addressing potential technical debt while working

on a task. Therefore, estimates sometimes do not capture the real impact of technical

debt and this also needs to be taken into account during the planning process.

• Short feedback cycles: Due to efficient communication practices and short itera-

tions, software development teams get customer feedback early on, which keeps the

amount of requirement debt under control.

Although, Agile is a powerful methodology, sometimes it is impossible to adopt it on

account of various possible reasons. One such obstacle can be the reluctance of clients to

cooperate in an Agile way. Luckily, it does not mean that Agile is of no help in these cases:

some Agile tools and concepts can be still utilized (e.g., peer programming, peer reviews,

internal meetings), but clearly with a reduced level of efficiency.

64

CHAPTER4
Case study

This chapter describes how some elements of the presented methodology can be used in

practice, at a software development company.

65

CHAPTER 4. CASE STUDY

During my internship at a small software development company, I had the opportunity

to run a simple case study in order to test the practical usage of the proposed methodology.

However, due to the short duration of the internship, we only had the opportunity to

examine one iteration of the technical debt reduction methodology.

To put the case study in context, it is worth mentioning that the company was founded

slightly more than two decades ago and it currently has about 20 employees. Its main vision

is to create solutions that can be used for the extraction of actionable data from various types

of unstructured data sources via text analytics. These activities — among others — consist

of social media analytics, customer feedback analytics and employee feedback analysis. As

an additional activity, the company also does data analytics on already extracted data.

For this case study in particular, we decided to consider our Java Spring Boot projects

that are related to our most important client (a big company from the healthcare and

pharmaceutical domain). Initially, our client contracted us with the development of an

application for only one market. However, later on, their request was extended to several

different markets and applications with very similar functionalities. Unfortunately, the

initial project was not developed keeping evolvability and maintainability in mind.

The already existing projects contain a large amount of technical debt, which is due to

the high number of innovation projects that are involved in the development process. As it

has been already indicated earlier, these kinds of projects — by their nature — are always

more prone to generate technical debt than others. Therefore, it was important to start

the explicit management of technical debt now, since only a few more markets have been

implemented so far.

4.1 Understanding the company environment

Since the goal is to collect as much information as possible, the larger number of approaches

we use, the better the results are expected to be. Therefore, we identified the following

methods as viable options:

• Interviews: This method refers to those live conversations which are carried out

with employees of different roles. For example:

– Product owners and product managers can help to better understand business

aspects.

– Scrum masters and people with similar Agile roles can explain the role of the

Agile methodology at the SME.

– Software engineers can shed some light on technical details of projects.

66

4.1. UNDERSTANDING THE COMPANY ENVIRONMENT

• Source code: Reading and understanding the source code, which helps with technical

aspects.

• Documentation: Although this option is not necessarily available, it is supposed to

serve exactly the same purpose as this step.

• Visualizations: This refers to visual representation of the whole or parts of the

system architecture, which helps to understand the relationship between different

components of it. However, this is another one of those approaches that might not be

viable in every case.

The table below compares these four approaches in terms of the time needed for in-

formation extraction, the information gain and their availability. Taken every aspect into

account, interviews are found to be the most optimal alternative.

Method Time Information gain Availability

Interviews Medium Medium Guaranteed

Documentation Long High Not guaranteed

Source code Long High Guaranteed

Visualizations Short Low (restricted to some aspects) Not guaranteed

Based on the results of the comparison, we organized several informal interviews that

were all carried out in person, since everybody works at the same office building. The

subjects of these were not only the CTO of the company, but also other employees. De-

pending on the topic of these conversations, their duration ranged from short (5 minutes)

chats to longer (1 hour - 1.5 hours) discussions. It is noteworthy that these interviews

could only yield good results, because the team had a global understanding about ongoing

projects. Unfortunately, documentation of the chosen projects and the overall architecture

was not available with the exception of occasional comments in the code base. Therefore,

we identified some documentation debt at the first step already.

This step provided a good basis for the rest of the methodology. First of all, the main

conclusion was that — due to their innovative nature — the selected projects accumulated

plenty of technical debt (almost every type that was identified in section 2.3.2). This could

happen owing to the fact that at the moment of implementing the initial solution, it was

67

CHAPTER 4. CASE STUDY

not prepared for this kind of future scenarios. Secondly, we identified some missing best

practices and cultural aspects (e.g., almost complete lack of tests, not being Agile) that

favor accruing technical debt. Thirdly, we understood that the product greatly relies on

the Cloud, which has its own implications. Fourthly, we also found that clients of the

company differ from each other in terms of the ease of cooperation and communication

with them. Although, there are clients who manage these things professionally (e.g., they

are somewhat agile, they use good communication practices), others are rather messy, thus

promoting the accumulation of technical debt in the corresponding projects. The client that

we chose for this case study in particular also belongs to the latter group. They try to have

a micromanagement approach to a set of technical projects, but they lack the necessary

technical skills to properly do so. Consequently, communication with this client is also

cumbersome.

68

4.2. TECHNICAL DEBT IDENTIFICATION

4.2 Technical debt identification

In order to identify technical debt at the company, we used three approaches. While issues

of the architecture were identified by experts and by dependency analysis tools,

source code-related problems were discovered by static code analysis (SonarQube).

The following sections examine alternatives with respect to each approach and also present

some of the technical debt items that were identified and remedied during the case study.

4.2.1 Static code analysis

There are several tools available for different technologies and programming languages,

but this section introduces the three most referenced ones. Although, we found that all

three tools can be used for various technical debt related activities, such as identification,

measurement, monitoring and prioritization, this document introduces them here, since in

principle, they are all static code analysis tools.

• SonarSource suite: It is a continuous code quality toolset which consists of Sonar-

Qube, SonarCloud and SonarLint. One of its main advantages is that it supports

various programming languages, CI engines (e.g., Jenkins, Azure DevOps, Travis CI)

and build systems (e.g., Maven, Gradle, MSBuild, Ant). With respect to issue identi-

fication, these tools can detect bugs, code smells, security vulnerabilities and low test

coverage as well. In addition to that, all of these features are built on customizable

rule sets where each rule can be separately enabled/disabled according to the needs of

the team. Finally, the SonarQube dashboard also provides visualizations of metrics,

quality ratings and quality gates (to enforce certain code quality for the code that is

released).

• SQUORE Software Analytics: It is a software intelligence tool for project quality

and performance. It uses different kinds of artifacts (e.g., source code, test results,

bug tracking systems, output of other tools) to aggregate data with its own results

and display a summarized view of the project. Every artifact is publisherrated (using

the SQALE method) and trends can be analyzed using visualizations. The role-based

SQUORE dashboard helps evaluating technical debt in terms of list of instances, key

performance indicators, the overall trend, its distribution per module, the SQALE

pyramid, violation density, complexity debt and cloning debt. A huge advantage

of the dashboard is that it uses various types of visualizations as well as in-depth

statistical data.

• Kiuwan Code Analysis: The main goal of this tool is the detection of defects as

69

CHAPTER 4. CASE STUDY

part of the contiuous development process, with a customizable set of rules. It aims to

address risks, security, maintainability, reliability and efficiency of applications. It can

prioritize the effort of managing technical debt automatically and create action plans

based on the goals of the team or the available resources. The evolution of these plans

can be also monitored by Kiuwan. It provides support for all the major languages,

IDEs, build systems, bug tracking systems and version control systems. Additionally,

it also has the ability to integrate with other analyzers (e.g., PMD, Findbugs and

Ckeckstyle among others). By integrating with IDEs, code is analyized every time

it is saved and the editor is decorated with defects accordingly to help the work of

developers.

The table below compares these three tools with respect to supported technologies, IDEs,

execution environment and the open-source license.

SonarSource S. SQUORE S. Kiuwan C. A.

Technologies ABAP, Apex, C,

C++, Objective-

C, COBOL, C#,

CSS, Flex, Go,

HTML, Java, JS,

Kotlin, PHP, PLI,

PL/SQL, Python,

RPG, Ruby, Scala,

Swift, TS, TSQL,

VB, XML

Ada, C, C++,

C#, Java, Cobol,

PL/SQL, ABAP,

PHP, Python

ABAP, AS,

ASP.NET, C, C++,

C#, COBOL,

HTML, Informix,

Java, JS/TS, JCL,

JSP, Natural,

Objective-C, Or-

acleForms, PHP,

PL/SQL, PS,

Python, RPG,

Swift, TSQL, VB,

Groovy, SQL, Scala,

Ruby, XML

IDE support Eclipse, IntelliJ

IDEA, Visual

Studio, VS Code

IDEs are not sup-

ported

Eclipse, IntelliJ

IDEA, Visual

Studio

Where? On-premises or

using their Cloud-

based service

On-premises On-premises or

using their Cloud-

based service

Open-source? Yes No No

70

4.2. TECHNICAL DEBT IDENTIFICATION

Having compared these tools, we decided to use SonarQube for static code analysis,

since it is an open-source tool (consequently, it is free to use) and it offers a rich set of

features. We installed it on one of our servers and configured the continuous integration

(CI) pipeline to run the analyses of our projects every time new code is pushed to the

repositories. However, it is worth mentioning that the results of the analysis do not affect

the execution of the pipeline (i.e., it is never aborted due to failing a quality gate). We also

made some adjustments to the default settings, such as disabled some of the rules that our

team did not deem necessary. Although the results of the analyses were overwhelming at

first, with the right attitude they proved to be extremely beneficial. In order to showcase

its features and how it helped us, we chose a rather new project (approximately 2 months

old), since it was started during my internship and its evolution provided us with good

measurements and results.

Figure 4.1: Technical debt identification - SonarQube dashboard - Overview

As it can be seen in Figure 4.1 above, SonarQube identified 2 bugs, 23 vulnerabilities

and 90 code smells in the aforementioned project. The platform also displays the estimated

amount of technical debt, which is fortunately rather low in this case, since the project

71

CHAPTER 4. CASE STUDY

was developed taking technical debt-related recommendations into account. It is also worth

mentioning that the code coverage is well-above average in this project — although, it is

still not at a satisfactory level. In addition, the number of duplicated lines is low, which is

also an indicator of better code quality. In general, it can be said that these numbers are

not as low for every project as for this one. However, they are slowly, but surely improving

due to the measures taken against software deficiencies.

Figure 4.2 shows the detailed list of issues. By clicking on an item, the corresponding

part of the source code appears, alongside with a more in-depth description of the issue,

which helps to understand why a given issue is dangerous. In order to further aid decision

making, all of these issues can be filtered using various types of filtering criteria. Although,

it is impossible to address all the 125 issues that were identified in this document, the

analyzer found important problems such as poor exception handling (e.g., when only the

stack trace was printed to the standard output, but events were not logged by any loggers).

Figure 4.2: Technical debt identification - Issues

72

4.2. TECHNICAL DEBT IDENTIFICATION

4.2.2 Dependency analysis

We also examined what our options were with respect to carrying out a dependency analysis

of our projects. In general, we found that there was a lack of universal tools for this purpose

due to the industrial tendency of introducing a new build system or dependency management

system for every new language. Some of these tools and solutions are listed below:

• Java: Maven, Gradle

• Python: Pipenv

• NodeJS: Yarn, NPM

• PHP: Composer

• Objective-C/Swift: CocoaPods

One thing that is common for all of these tools is that they provide a way of visualiz-

ing the dependency graph/tree and most of them can also run an automated dependency

analysis. Furthermore, IDEs also help with the discovery of dependency-related issues. For

example, IntelliJ supports the detection of backward dependencies, cyclic dependencies and

module dependencies, but Eclipse and Visual Studio are also equally well-equipped to aid

dependency management.

At our company, every project used Maven initially, but it started to make the develop-

ment process overly complicated as the number of dependencies on in-house projects grew

and it also made it impossible to manage dependencies of projects separately. Hence we

replaced it with Gradle during the technical debt reduction process. We had to improve

the dependencies of the projects with the goal of escaping from the so-called “dependency

hell”, which was already taking its victims.

Understanding the hierarchy of dependencies is often a strenuous task to do, however,

our work was supported by the following two features:

• Dependency trees: It displays the hierarchy of dependencies as a tree.

mvn dependency:tree

gradle module-name:dependencies

• Dependency analysis: It finds “Used undeclared dependencies” and “Unused de-

clared dependencies”

mvn dependency:analyze

Using the above mentioned methods, for instance we could replace transitive dependencies

with explicit dependencies and also remove unnecessarily declared ones (e.g., instead of

using the entire AWS SDK, use just the modules that were actually needed).

73

CHAPTER 4. CASE STUDY

4.2.3 Identification by experts

Our experts also identified several — mostly architectural — issues. These technical debt

instances are listed below.

• We found that due to the lack of initial design, the application had become the

typical case of a “big ball of mud”. It was a monolith with serious architectural

problems that needed to be addressed.

• Abstractions were missing. For instance, instead of using a generic storage class,

the code kept referring to files on the hard drive, which should be avoided in a Cloud

environment.

• The logging of the application was not centralized.

• There were manual processes that could be easily automated.

• Maven was used as a build system, which made the build and development

process rather complicated. In case of starting work on a new project, in order

to build and run it, first its dependencies also had to be installed, which required a

lot of manual effort when other in-house projects were involved as well.

• Every time a developers started working on a new project, besides importing the

source code of it, they also had to provide a set of configuration files. Therefore, the

configuration management had to be improved as well.

74

4.3. TECHNICAL DEBT MEASUREMENT

4.3 Technical debt measurement

On the one hand, we decided to rely on SonarQube with the measurement of source code-

related technical debt. On the other hand, architectural technical debt was measured man-

ually.

As already mentioned, SonarQube counts the number of bugs (reliability rating), vul-

nerabilities (security rating) and code smells (maintainability rating). Additionally, it also

provides the following metrics: test coverage, code duplication, size (e.g., number of lines of

code, number of classes), complexity (e.g., cyclomatic complexity) and statistics related to

issues. Furthermore, as Figure 4.3 shows, the analysis of these aspects is also supported by

bubble charts. For instance, using the chart below, it is rather easy to see that the selected

project has a large number of code lines with “A” reliability and security rating, having a

test coverage around 80% and an average of 2 hours 30 minutes worth of technical debt.

Figure 4.3: Technical debt measurement

As per the architectural debt, it is only measured in retrospect. This is done manually,

using the spreadsheet that will be introduced in the next section, which discusses technical

debt monitoring.

75

CHAPTER 4. CASE STUDY

4.4 Technical debt monitoring

We monitor technical debt in three different ways at the company. First of all, we use

SonarQube to analyze the trends of each project. Secondly, we use a manually maintained

spreadsheet to track those types of debt that SonarQube cannot identify. Lastly, we oc-

casionally also use “TODO” comments in the source code. However, we try not to do so

if possible, since they are considered bad practice. No backlogs or issue tracking tools are

used for this purpose.

Figure 4.4: Technical debt monitoring - Issues

SonarQube provides powerful visualization about activities related to projects. Figures

4.4, 4.5 and 4.6 depict the three main types of predefined monitoring graphs: issues, test

coverage and code duplications respectively. As it can be observed, owing to our technical

debt management measures, the number of bugs, code smells, vulnerabilities and duplicated

lines of code decreased. Additionally, the test coverage of the project also underwent a

positive change, since it increased. However, it did not reach satisfactory levels.

76

4.4. TECHNICAL DEBT MONITORING

Figure 4.5: Technical debt monitoring - Test coverage

Figure 4.6: Technical debt monitoring - Duplications

77

CHAPTER 4. CASE STUDY

As per monitoring architectural debt, it is based on the technical debt spreadsheet. It

contains the following information about each identified architectural technical debt item:

• An ID that identifies each item without ambiguity.

• IDs of related items (if any).

• Date of registering an item.

• Type of the registered item.

• Name of the responsible person.

• Description of the change to be made.

• Time required to do the change in a completely ideal situation.

• Description of the additional changes needed (paying down the principal).

• Time required to do the refactoring of the corresponding components or the

reengineering of aspects.

• The impact of certain technical debt instance, measured by the percentage of

affected projects.

• The risks of destroying value by paying down the technical debt item (low,

medium, high).

78

4.5. TECHNICAL DEBT PRIORITIZATION

4.5 Technical debt prioritization

Since the company did not have a technical debt management strategy before the beginning

of the case study, our job was to implement a completely new strategy for this purpose. A

crucial element of creating such a strategy is choosing the means of technical debt priori-

tization. In our case, we apply a two-level prioritization strategy, combining the “highest

remediation cost first” and the “highest interests first” strategies.

The first level prioritization is simply done by grouping debt instances into two groups:

architectural debt and non-architectural debt. Out of these two, the former one has a higher

priority, because architectural changes might render some of the remaining technical debt

irrelevant. Therefore, the second level of prioritization is also applied to that category first.

At the second level, always the most burning issues are addressed. Therefore, as already

explained in section 3.5.2.3, this approach focuses on the repayment of those technical debt

items first that demand the highest (and most frequent) interest payments. This strategy

is also equivalent to the “If it’s not broken, don’t fix it” attitude. It is also noteworthy that

SonarQube provides powerful filtering mechanisms to examine non-architectural debt with

the goal of determining the necessary details.

79

CHAPTER 4. CASE STUDY

4.6 Technical debt repayment

During the case study, we paid back a large amount of technical debt. Therefore, the

following subsections aim to present some of the most significant changes that we made.

4.6.1 Splitting the monolith

As already mentioned in the technical debt identification step (section 4.2.3), the application

used to lack modularity and the separation of concerns principle was not applied properly.

What made the situation even worse was the lack of tests, since in such scenarios, regressions

are quite often introduced and left unnoticed.

In order to remedy this situation, we implemented a microservice architecture by creat-

ing a network of loosely-coupled services, where each of these services have a well-defined

role and functionality within the architecture. As a consequence, we gained control over

individual components and also decreased the number of newly introduced regressions sig-

nificantly. The whole refactoring work took us approximately 32 hours (4 entire workdays),

however, it saved us all the time that we would have to spend on constantly fixing regressions

in the future for example.

4.6.2 Introducing abstraction levels

The initial architecture did not have abstraction levels designed properly. As already men-

tioned, in the introduction of this chapter, different markets require very similar features.

Consequently, the source code of newer markets build on that of older ones. Therefore,

it was essential to introduce abstraction levels now, before the number of markets further

grew.

One good example of this is how we replaced every reference to files on hard drives with

a storage abstraction interface. As a result of this, the means of storage can be changed at

any moment (using the configurations of the application only) without the need of changing

the source code at several places. The refactoring activity took us 24 hours, but it made it

possible to implement new storage types in a very short time. For instance, the S3 storage

was introduced in 4 hours, but it would have cost much more without the abstraction layer.

4.6.3 Making logging centralized

With respect to logging, there were two aspects that needed to be addressed. One of them

was the list of issues that were identified by SonarQube (e.g., only printing the stack trace

to the standard output) and the other one is the implementation of a solution that would

80

4.6. TECHNICAL DEBT REPAYMENT

enable centralized log management. While the former could be easily fixed by refactoring

the corresponding parts of the source code, the latter required more of an effort.

After researching the topic, we found that our best option was to use the ELK stack,

which consists of three main components: Elasticsearch, Logstash and Kibana. While

Elasticsearch is a powerful search engine used for logs, Logstash and Kibana are just as

impressive ingest pipeline and visualization tool respectively. Setting up and configuring

all these components made it possible to manage the produced logs of every individual

microservice centrally.

4.6.4 Automating processes

As stated earlier, we identified some automatable processes as well. The most important one

of these was the deployment process, since its automation could save a significant amount

of time. The first version of the process — from the time before we split the monolith —

is displayed in Figure 4.7. Systemctl used to run a “run.sh” script, which basically used

a single JAR file (including all the configuration files) to start an application instance.

However, this process did not include CI/CD and the configuration management was poor

as well. Therefore, it had to be changed.

Figure 4.7: Technical debt repayment - Process v1

Once the microservice architecture was introduced, we also added the well-known au-

tomation server, Jenkins, thus making a step towards CI/CD as well. Naturally, this also

had to involve paying down some people debt and motivating/educating developers to write

tests. The internalization of test-driven development is still an ongoing process. In version

2, we also split the components of the applications into several JAR files and we separated

configuration files from the source code to increase maintainability. Load balancing was

done based on a spreadsheet containing a list of hosts and ports.

81

CHAPTER 4. CASE STUDY

Figure 4.8: Technical debt repayment - Process v2

In the final version, we replaced Systemctl with Nomad as a scheduler. In this case,

Jenkins is responsible for compiling the JARs and uploading them to Amazon S3, generating

Nomad templates and invoking Nomad as well. Next, Nomad downloads a given JAR from

S3, runs it on some machine and it also registers the IP and port number of the machine

in Consul, the service discovery server.

Figure 4.9: Technical debt repayment - Process v3

82

4.6. TECHNICAL DEBT REPAYMENT

Additionally, we also automated the setup of the development environment with the

help of Gradle. In accordance with what was explained in section 4.2.3, while using Maven,

developers had to manually clone and install the internal dependencies of an application

first (using the “pom.xml” files shown in Figure 4.10) in order to be able to build it. In

addition, the maintainability of such a large number of “pom.xml” files also proved to be

very low.

In the new Gradle structure, we introduced a “repos.gradle” file, which contains the de-

tails of the repositories that are used by an application. Using Gradle scripts, we automated

the cloning steps of the listed components into the “lib” folder. Furthermore, Gradle also

takes care of their compilation. By doing this, developers only need to open the application

project and everything else is automatically downloaded and configured now.

Figure 4.10: Technical debt repayment - Build tools

4.6.5 Reengineering

We also did some reengineering work. We realized that storing credentials of certain services

(e.g., Amazon AWS) in the source code was to be considered a security vulnerability, since

83

CHAPTER 4. CASE STUDY

they were also committed to Gitlab for instance.

Therefore, we looked for alternatives and found a product called Vault, developed by

HashiCorp. This tool provides the means of managing different kinds of secrets (e.g., pass-

words, tokens) of our applications in a centralized and secure way, in cooperation with the

previously introduced Nomad.

4.6.6 Documentation

Documentation debt is hard to repay in retrospect, since there is no budget available for

such activities in general. Therefore, the only thing we could do about it is trying to

document newly developed pieces of software better. Fortunately, some of the developers

already made a huge effort to do so.

However, it is also worth mentioning that the need of documentation was argued at

the company, since any kind of documentation — e.g., textual documents, visualizations,

wiki pages and code comments — need to be kept up to date, which is often impossible to

guarantee. Therefore, in addition to the explicit documentation, we aim to keep the source

code as clean as possible, so that it can serve as documentation itself.

84

4.7. TECHNICAL DEBT EVALUATION AND COMMUNICATION

4.7 Technical debt evaluation and communication

A few months ago, our “external” client was not very open to technical debt-related dis-

cussions. However, their attitude towards the matter has significantly changed. This could

only happen by being persistent in communicating our technical debt repayment needs and

by also involving them in the development process as much as possible. Slowly, but surely

they understood the importance of technical debt management, by seeing the benefits of

its repayment. As a result of that, they also accepted the fact that sometimes, seemingly

simple changes require large refactoring efforts.

However, they rejected our efforts to share and discuss the SonarQube dashboard with

them, since they have a preference to focus on burning technical debt issues only. On the

other hand, this dashboard and the architectural technical debt spreadsheet should still be

evaluated and discussed with internal management of the company, considering that they

are our “internal” clients.

85

CHAPTER 4. CASE STUDY

4.8 Technical debt prevention

Luckily, many of the identified prevention measures are already implemented. However,

there are a few more aspects that could be improved, such as communication practices, skill

management and Agile practices. In general, prevention is an attitude, which is still in the

making at the case study company.

We need to further improve our communication practices. Although, there have been

some compelling improvements in the communication between our company and the exter-

nal client already, there is still plenty of room left for increasing the efficacy of communica-

tion. One of our huge achievements is that we managed to persuade them to communicate

the development progress using Kanban boards in Trello, instead of relying on emails only

for every type of communication. We also tried introducing behavior-driven development,

to avoid requirement debt as much as possible, however the “external” client was not will-

ing to cooperate. Additionally, we should also make sure that managers do not hinder

communication between technical employees due to their micromanagement approach.

Skill management should also get a high priority. Besides trying to have a wise hiring

strategy, we should also encourage continuous learning and challenge ourselves every now

and then. This is partially already done by sharing links to interesting and useful technical

materials with each other, using a dedicated Slack channel, but we could also organize

technical training activities. On a related note, most of our developers are currently in the

process of adopting the test-driven development approach to lower the accumulation rate

of testing debt. However, many of them still need to improve their test writing skills.

Becoming Agile would help the company in managing technical debt. However, it is a

goal that is impossible to reach due to the reluctance of the “external” client. Either way,

our task at this point is to implement as many Agile tools as possible. One such example is

the increased transparency within the development team, owing to our recently introduced

weekly meetings.

86

CHAPTER5
Conclusions

This chapter describes and evaluates the achieved goals of the master’s thesis. Additionally,

it also reviews possible activities with respect to the future.

87

CHAPTER 5. CONCLUSIONS

5.1 Achieved goals and conclusions

This master’s thesis has successfully accomplished all the originally defined goals. The key

achievements of this project are the following ones:

• It provided an exhaustive literature review, thus creating the basis of discussing the

methodology.

• It produced a comprehensive methodology that was proven to reduce technical debt.

• It described how easily the methodology could be applied in industrial settings.

• It improved the performance of the case study company.

As per the goal of raising awareness about the phenomenon of technical debt, this

master’s thesis includes a thorough overview. In order to serve SMEs best, it is easily un-

derstandable and only focuses on those characteristics of technical debt that have practical

implications. Only by reading the literature review chapter, IT practitioners can gain useful

insights that can change their ways of thinking about software development, since rather

simple changes can have a positive effect too. It is also worth mentioning that due to the

academic nature of master’s theses, the author tried to concentrate on academic literature

as resources. However, a significant amount of useful information about the topic can be

collected from blog posts and forums as well.

Regarding the methodology, we can conclude that any SME could benefit from it in

order to implement a technical debt reduction strategy. Although, it serves as a powerful

starting point, it does not cover every single alternative for each step due to the scope

restrictions of the master’s thesis. Therefore, there might be cases when certain steps or

even tools need to be customized for the company. Furthermore, it is also a fact that the

role of efficient communication practices is not emphasized enough.

Despite the limitations of the case study (e.g., short duration, involving only one small

company), it proved that the methodology can greatly contribute to the implementation

of an efficient technical debt reduction strategy. Therefore, both the company and the

case study client were satisfied with the methodology and the changes that we managed to

achieve together. Owing to our incremental change strategy and a team with improving

competences (both in terms of tools and languages), we made numerous successful technical

debt reduction steps. A particularly well-received improvement was the introduction of

SonarQube. Because of its success, the company decided to use the tool in all of its future

projects as well. To conclude, the CTO of the company drew the following overall conclusion:

“We moved from ambiguity and a general sense of ‘unknowns’ to a controlled state.”.

88

5.2. FUTURE WORK

5.2 Future work

Although the thesis project fulfilled all the goals that had been previously defined, the

associated research has also raised some new questions and tasks in need of additional

investigation. First of all, the methodology needs to be tested in other companies as well,

also including medium-sized enterprises. These tests would be necessary to further refine its

steps, in order to make sure that it is also applicable in different environments. Secondly,

further examination of people-related aspects and good communication practices is also

considered to be very significant. Lastly, the use of artificial intelligence (AI) in this field is

not very emphasized yet. Therefore, it would be advantageous to study how AI could make

the management of technical debt even more efficient.

89

CHAPTER 5. CONCLUSIONS

90

Bibliography

[1] Eric Allman. Managing technical debt. Queue, 10(3):10:10–10:17, March 2012.

[2] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Sṕınola. Towards an ontology

of terms on technical debt. In 2014 Sixth International Workshop on Managing Technical Debt,

pages 1–7, Sep. 2014.

[3] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de Mendonça, Rodrigo O. Sṕınola, Forrest

Shull, and Carolyn Seaman. Identification and management of technical debt. Inf. Softw.

Technol., 70(C):100–121, February 2016.

[4] Johannes Bohnet and Jürgen Döllner. Monitoring code quality and development activity by

software maps. In Proceedings of the 2Nd Workshop on Managing Technical Debt, MTD ’11,

pages 9–16, New York, NY, USA, 2011. ACM.

[5] Tom Brazier. ACCU - Professionalism in Programming - Managing Technical Debt. https:

//accu.org/index.php/journals/1301, February 2007. Accessed March 28, 2019.

[6] Frederick P. Brooks, Jr. The Mythical Man-month (Anniversary Ed.). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1995.

[7] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe Kruchten,

Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder Sangwan, Carolyn Sea-

man, Kevin Sullivan, and Nico Zazworka. Managing technical debt in software-reliant systems.

In Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, FoSER

’10, pages 47–52, New York, NY, USA, 2010. ACM.

[8] F. Buschmann. To pay or not to pay technical debt. IEEE Software, 28(6):29–31, Nov 2011.

[9] Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN OOPS Mes-

senger, 4(2):29–30, 1993.

[10] Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. Estimating the size, cost, and types of

technical debt. In Proceedings of the Third International Workshop on Managing Technical

Debt, MTD ’12, pages 49–53, Piscataway, NJ, USA, 2012. IEEE Press.

[11] Neil A. Ernst. On the role of requirements in understanding and managing technical debt. In

Proceedings of the Third International Workshop on Managing Technical Debt, MTD ’12, pages

61–64, Piscataway, NJ, USA, 2012. IEEE Press.

[12] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton. Measure it?

manage it? ignore it? software practitioners and technical debt. In Proceedings of the 2015

91

https://accu.org/index.php/journals/1301
https://accu.org/index.php/journals/1301

BIBLIOGRAPHY

10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 50–60,

New York, NY, USA, 2015. ACM.

[13] Erica Finley. Evidence defeats doubt: Tips for expressing your

opinion. http://www.dalecarnegiewayindy.com/2011/03/24/

evidence-defeats-doubt-tips-for-expressing-your-opinion/, March 2011.

Accessed April 07, 2019.

[14] Martin Fowler. TechnicalDebt. https://martinfowler.com/bliki/TechnicalDebt.

html. Accessed March 14, 2019.

[15] Martin Fowler. TechnicalDebtQuadrant. https://martinfowler.com/bliki/

TechnicalDebtQuadrant.html. Accessed March 17, 2019.

[16] D. R. Greening. Release duration and enterprise agility. In 2013 46th Hawaii International

Conference on System Sciences, pages 4835–4841, Jan 2013.

[17] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Q. B. Da Silva, A. L. M. Santos,

and C. Siebra. Tracking technical debt — an exploratory case study. In 2011 27th IEEE

International Conference on Software Maintenance (ICSM), pages 528–531, Sep. 2011.

[18] Rod Hilton. When to work on technical debt, July 2011.

[19] J. Holvitie, V. Leppänen, and S. Hyrynsalmi. Technical debt and the effect of agile software

development practices on it - an industry practitioner survey. In 2014 Sixth International

Workshop on Managing Technical Debt, pages 35–42, Sep. 2014.

[20] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical debt: From metaphor to theory and practice.

IEEE Software, 29(6):18–21, Nov 2012.

[21] Philippe Kruchten, Robert Nord, Ipek Ozkaya, and Davide Falessi. Technical debt: Towards a

crisper definition report on the 4th international workshop on managing technical debt. ACM

SIGSOFT Software Engineering Notes, 38:51–54, 08 2013.

[22] David Laribee. Code Cleanup: Using Agile Techniques to Pay Back Technical Debt. https:

//msdn.microsoft.com/en-us/magazine/ee819135.aspx, December 2009. Accessed

March 29, 2019.

[23] M. M. Lehman and L. A. Belady, editors. Program Evolution: Processes of Software Change.

Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[24] Jean-Louis Letouzey. The sqale method for evaluating technical debt. 2012 Third International

Workshop on Managing Technical Debt (MTD), pages 31–36, 2012.

[25] Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic mapping study on technical debt

and its management. Journal of Systems and Software, 101:193–220, 2015.

[26] E. Lim, N. Taksande, and C. Seaman. A balancing act: What software practitioners have to

say about technical debt. IEEE Software, 29(6):22–27, Nov 2012.

[27] R. Marinescu. Assessing technical debt by identifying design flaws in software systems. IBM

Journal of Research and Development, 56(5):9:1–9:13, Sep. 2012.

92

http://www.dalecarnegiewayindy.com/2011/03/24/evidence-defeats-doubt-tips-for-expressing-your-opinion/
http://www.dalecarnegiewayindy.com/2011/03/24/evidence-defeats-doubt-tips-for-expressing-your-opinion/
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://msdn.microsoft.com/en-us/magazine/ee819135.aspx
https://msdn.microsoft.com/en-us/magazine/ee819135.aspx

BIBLIOGRAPHY

[28] Antonio Martini, Terese Besker, and Jan Bosch. Technical debt tracking: Current state of

practice: A survey and multiple case study in 15 large organizations. Science of Computer

Programming, 163, 03 2018.

[29] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-

2(4):308–320, Dec 1976.

[30] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali. Searching for build debt: Expe-

riences managing technical debt at google. In 2012 Third International Workshop on Managing

Technical Debt (MTD), pages 1–6, June 2012.

[31] Scott Norberg. Beyond requirements: understanding what the busi-

ness needs. https://www.infoworld.com/article/2882015/

beyond-requirements-understanding-what-the-business-needs.html, Febru-

ary 2015. Accessed May 5, 2019.

[32] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas. In search of a metric for man-

aging architectural technical debt. In 2012 Joint Working IEEE/IFIP Conference on Software

Architecture and European Conference on Software Architecture, pages 91–100, Aug 2012.

[33] David Lorge Parnas. Software aging. In Proceedings of the 16th International Conference on

Software Engineering, ICSE ’94, pages 279–287, Los Alamitos, CA, USA, 1994. IEEE Computer

Society Press.

[34] K. Power. Understanding the impact of technical debt on the capacity and velocity of teams

and organizations: Viewing team and organization capacity as a portfolio of real options. In

2013 4th International Workshop on Managing Technical Debt (MTD), pages 28–31, May 2013.

[35] Srinath Ramakrishnan. Scrum Alliance – Managing Technical Debt.

https://www.scrumalliance.org/community/articles/2013/july/

managing-technical-debt, July 2013. Accessed March 17, 2019.

[36] Leilane Ferreira Ribeiro, Mário André de Freitas Farias, Manoel G Mendonça, and Ro-

drigo Oliveira Sṕınola. Decision criteria for the payment of technical debt in software projects:

A systematic mapping study. In ICEIS (1), pages 572–579, 2016.

[37] Robert C. Martin (Uncle Bob). A Mess is not a Technical Debt. - Clean

Coder. https://sites.google.com/site/unclebobconsultingllc/

a-mess-is-not-a-technical-debt. Accessed March 17, 2019.

[38] Carolyn Seaman, Yuepu Guo, Clemente Izurieta, Yuanfang Cai, Nico Zazworka, Forrest Shull,

and Antonio Vetrò. Using technical debt data in decision making: Potential decision approaches.

In Proceedings of the Third International Workshop on Managing Technical Debt, MTD ’12,

pages 45–48, Piscataway, NJ, USA, 2012. IEEE Press.

[39] Edith Tom, Aybüke Aurum, and Richard Vidgen. An exploration of technical debt. Journal of

Systems and Software, 86(6):1498–1516, jun 2013.

93

https://www.infoworld.com/article/2882015/beyond-requirements-understanding-what-the-business-needs.html
https://www.infoworld.com/article/2882015/beyond-requirements-understanding-what-the-business-needs.html
https://www.scrumalliance.org/community/articles/2013/july/managing-technical-debt
https://www.scrumalliance.org/community/articles/2013/july/managing-technical-debt
https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt
https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

BIBLIOGRAPHY

[40] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di Penta, An-

drea De Lucia, and Denys Poshyvanyk. When and why your code starts to smell bad (and

whether the smells go away). IEEE Transactions on Software Engineering, PP:1–1, 01 2017.

[41] Jesse Yli-Huumo et al. The role of technical debt in software development. PhD thesis, Lappeen-

ranta University of Technology, 2017.

94

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context and Motivation
	Objectives
	Structure of this document

	State of the Art
	Technical debt overview
	What is technical debt?
	What are the main attributes of technical debt?
	When and how is technical debt paid back?
	Why is technical debt dangerous?

	Properties of technical debt
	Technical debt categorization
	The technical debt quadrants
	Specific types of technical debt

	Sources of technical debt
	The technical debt landscape
	Most significant technical debt sources
	Ranking of technical debt sources

	Effects of technical debt
	Types of the effects
	Size of the effects

	Technical debt management
	Overall technical debt management approach
	Technical debt-related activities

	Methodology
	Understand the environment
	Identify technical debt sources and instances
	Code analysis
	Static Code Analysis
	Dynamic Code Analysis

	Dependency analysis
	Analyzing statistical data
	Identification by experts

	Measure technical debt
	Models
	SQALE model
	CAST model
	Counting the number of violations

	Metrics
	Code duplication
	Overall coding best practice rules
	General documentation
	Interface documentation
	Method complexity
	Test coverage

	Measurement by experts

	Monitor technical debt
	Monitored information
	Implementation of a monitoring process
	Types of monitoring tools

	Prioritize technical debt and make decisions
	Key factors to consider
	Prioritization approaches
	Cost-benefit analysis
	High remediation costs first
	High interests first

	Repayment
	Continuous repayment
	Means of repayment

	Evaluate results and communicate technical debt
	Take technical debt prevention measures
	People, culture and environment
	Architectural design and source code
	Development practices
	The role of Agile development

	Case study
	Understanding the company environment
	Technical debt identification
	Static code analysis
	Dependency analysis
	Identification by experts

	Technical debt measurement
	Technical debt monitoring
	Technical debt prioritization
	Technical debt repayment
	Splitting the monolith
	Introducing abstraction levels
	Making logging centralized
	Automating processes
	Reengineering
	Documentation

	Technical debt evaluation and communication
	Technical debt prevention

	Conclusions
	Achieved goals and conclusions
	Future work

	Bibliography

