
Universidad Politécnica de Madrid

Escuela Técnica Superior de Ingenieros de

Telecomunicación

A Personal Agent Architecture for Task

Automation in the Web of Data. Bringing

intelligence to everyday tasks.

Tesis Doctoral

Miguel Coronado Barrios

Ingeniero de Telecomunicación

2016

Universidad Politécnica de Madrid

Escuela Técnica Superior de Ingenieros de

Telecomunicación

A Personal Agent Architecture for Task

Automation in the Web of Data. Bringing

intelligence to everyday tasks.

Tesis Doctoral

Miguel Coronado Barrios

Ingeniero de Telecomunicación

2016

Departamento de Ingeniería de Sistemas

Telemáticos

Escuela Técnica Superior de Ingenieros de

Telecomunicación

Universidad Politécnica de Madrid

A Personal Agent Architecture for Task

Automation in the Web of Data. Bringing

intelligence to everyday tasks.

Autor:

Miguel Coronado Barrios

Ingeniero de Telecomunicación

Tutor:

Carlos Ángel Iglesias Fernández

Doctor Ingeniero de Telecomunicación

2016

Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Uni-
versidad Politécnica de Madrid, el día de de

.

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Suplente:

Suplente:

Realizado el acto de defensa y lectura de la Tesis
el día de de en la
E.T.S.I. Telecomunicación habiendo obtenido la calificación de

.

EL PRESIDENTE LOS VOCALES

EL SECRETARIO

A mi familia,

en el ámplio sentido de la palabra.

Agradecimientos

Qué mejor que empezar esta memoria agradeciendo a todas aquellas personas que han

estado a mi lado durante este viaje, y que han contribuído a que llegase a buen puerto.

Primero de todo, agradecer a Carlos su mentoría. Él es parte responsable de que esté

satisfecho del resultado obtenido. Así mismo, no podría olvidarme de mis compañeros del

"labo", Álvaro, "Jota", Oscar y tantos otros que han pasado y de los que he aprendido

mucho. Sin olvidarme de todos aquellos ingenieros en ciernes, que con su trabajo han

contribuido al resultado de esta investigación.

Igualmente, querría agradecer a Jürgen y Ralf el magnifico trato que recibí durante mi

estancia en Hannover. Su empeño en que mi estancia fuese fructífera, también desde el

punto de vista de la investigación, me ayudó a explorar opciones que de otra forma no

hubiera considerado.

Por último, querría agradecir a mi familia, el que siempre estén ahí. Con la madurez te

das cuenta de que su amor y apoyo incondicional es inestimable en los momentos en que más

lo necesitas. Y te alegra profundamente el tenerlo. Y en especial agradecer mi niña, Olga,

mi luz y mi alma. Que ha sufrido conmigo los altibajos de todo este camino. Ha sabido ser

mi calma ante el agobio, mi sosiego ante el enfado y mi voluntad ante el desánimo. Muchas

gracias.

11

Resumen

Internet está evolucionando hacia la conocida como Live Web. En esta nueva etapa en

la evolución de Internet, se pone al servicio de los usuarios multitud de streams de datos

sociales. Gracias a estas fuentes de datos, los usuarios han pasado de navegar por páginas

web estáticas a interacturar con aplicaciones que ofrecen contenido personalizado, basada

en sus preferencias. Cada usuario interactúa a diario con multiples aplicaciones que ofrecen

notificaciones y alertas, en este sentido cada usuario es una fuente de eventos, y a menudo

los usuarios se sienten desbordados y no son capaces de procesar toda esa información a

la carta. Para lidiar con esta sobresaturación, han aparecido múltiples herramientas que

automatizan las tareas más habituales, desde gestores de bandeja de entrada, gestores de

alertas en redes sociales, a complejos CRMs o smart-home hubs. La contrapartida es que

aunque ofrecen una solución a problemas comunes, no pueden adaptarse a las necesidades

de cada usuario ofreciendo una solucion personalizada.

Los Servicios de Automatización de Tareas (TAS de sus siglas en inglés) entraron en

escena a partir de 2012 para dar solución a esta liminación. Dada su semejanza, estos

servicios también son considerados como un nuevo enfoque en la tecnología de mash-ups pero

centra en el usuarios. Los usuarios de estas plataformas tienen la capacidad de interconectar

servicios, sensores y otros aparatos con connexión a internet diseñando las automatizaciones

que se ajustan a sus necesidades. La propuesta ha sido ámpliamante aceptada por los

usuarios. Este hecho ha propiciado multitud de plataformas que ofrecen servicios TAS

entren en escena.

Al ser un nuevo campo de investigación, esta tesis presenta las principales característi-

cas de los TAS, describe sus componentes, e identifica las dimensiones fundamentales que

los defines y permiten su clasificación. En este trabajo se acuña el termino Servicio de

Automatización de Tareas (TAS) dando una descripción formal para estos servicios y sus

componentes (llamados canales), y proporciona una arquitectura de referencia.

De igual forma, existe una falta de herramientas para describir servicios de automati-

zación, y las reglas de automatización. A este respecto, esta tesis propone un modelo común

que se concreta en la ontología EWE (Evented WEb Ontology). Este modelo permite com-

I

parar y equiparar canales y automatizaciones de distintos TASs, constituyendo un aporte

considerable paraa la portabilidad de automatizaciones de usuarios entre plataformas. De

igual manera, dado el carácter semántico del modelo, permite incluir en las automatizaciones

elementos de fuentes externas sobre los que razonar, como es el caso de Linked Open Data.

Utilizando este modelo, se ha generado un dataset de canales y automatizaciones, con los

datos obtenidos de algunos de los TAS existentes en el mercado. Como último paso hacia el

lograr un modelo común para describir TAS, se ha desarrollado un algoritmo para aprender

ontologías de forma automática a partir de los datos del dataset. De esta forma, se favorece

el descubrimiento de nuevos canales, y se reduce el coste de mantenimiento del modelo, el

cual se actualiza de forma semi-automática.

En conclusión, las principales contribuciones de esta tesis son: i) describir el estado del

arte en automatización de tareas y acuñar el término Servicio de Automatización de Tareas,

ii) desarrollar una ontología para el modelado de los componentes de TASs y automatiza-

ciones, iii) poblar un dataset de datos de canales y automatizaciones, usado para desarrollar

un algoritmo de aprendizaje automatico de ontologías, y iv) diseñar una arquitectura de

agentes para la asistencia a usuarios en la creación de automatizaciones.

Palabras clave: Automatización de tareas, Web semántica, Social Stream, aprendizaje

de ontologías, asistente personal, Agentes.

II

Abstract

The new stage in the evolution of the Web (the Live Web or Evented Web) puts lots of social

data-streams at the service of users, who no longer browse static web pages but interact with

applications that present them contextual and relevant experiences. Given that each user

is a potential source of events, a typical user often gets overwhelmed. To deal with that

huge amount of data, multiple automation tools have emerged, covering from simple social

media managers or notification aggregators to complex CRMs or smart-home Hub/Apps.

As a downside, they cannot tailor to the needs of every single user.

As a natural response to this downside, Task Automation Services broke in the Internet.

They may be seen as a new model of mash-up technology for combining social streams,

services and connected devices from an end-user perspective: end-users are empowered to

connect those stream however they want, designing the automations they need. The numbers

of those platforms that appeared early on shot up, and as a consequence the amount of

platforms following this approach is growing fast.

Being a novel field, this thesis aims to shed light on it, presenting and exemplifying

the main characteristics of Task Automation Services, describing their components, and

identifying several dimensions to classify them. This thesis coins the term Task Automation

Services (TAS) by providing a formal definition of them, their components (called channels),

as well a TAS reference architecture.

There is also a lack of tools for describing automation services and automations rules.

In this regard, this thesis proposes a theoretical common model of TAS and formalizes it as

the EWE ontology This model enables to compare channels and automations from different

TASs, which has a high impact in interoperability; and enhances automations providing a

mechanism to reason over external sources such as Linked Open Data.

Based on this model, a dataset of components of TAS was built, harvesting data from the

web sites of actual TASs. Going a step further towards this common model, an algorithm

for categorizing them was designed, enabling their discovery across different TAS.

Thus, the main contributions of the thesis are: i) surveying the state of the art on task

automation and coining the term Task Automation Service; ii) providing a semantic common

III

model for describing TAS components and automations; iii) populating a categorized dataset

of TAS components, used to learn ontologies of particular domains from the TAS perspective;

and iv) designing an agent architecture for assisting users in setting up automations, that

is aware of their context and acts in consequence.

Keywords: Task Automation, Semantic Web, Social Streams, Ontology Learning, Per-

sonal Assistant, Agent

IV

Contents

Resumen I

Abstract III

Contents V

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Structure of this dissertation . 4

2 Task Automation Services:

Automation for the masses 7

2.1 Introduction . 8

2.2 TAS Components: Channels and execution profiles 9

2.2.1 Web channels . 10

2.2.2 Device channels . 11

2.2.3 Rule execution profiles . 12

2.3 A Reference Task Automation Service Architecture 13

2.4 Analysis of current TAS platforms . 15

2.5 TAS and web mash-ups . 19

2.6 Discussion and Outlook . 20

3 Modelling Rules for Task Automation:

V

CONTENTS CONTENTS

the Evented Web Ontology (EWE) 23

3.1 Introduction . 24

3.2 Background . 25

3.2.1 Reference and semantic models . 25

3.2.2 Rule based event processing . 27

3.2.3 Automations as Event-Condition-Action rules 27

3.2.4 Rule representation in the Semantic Web 28

3.3 Evented WEb ontology (EWE) model . 30

3.3.1 EWE design methodology . 30

3.3.2 EWE elements: main classes and properties 31

3.3.3 Mappings from external ontologies in EWE 35

3.3.4 Examples of EWE use . 36

3.4 A prototype of a semantic TAS with EWE . 38

3.4.1 Prototype architecture and operation 38

3.4.2 Semantic use case scenario . 41

3.5 EWE evaluation . 42

3.5.1 Feature extraction . 42

3.5.2 Running the evaluation . 43

3.6 Discussion and Outlook . 49

4 Mining TAS’s channels:

An ontology discovery approach 51

4.1 Introduction . 52

4.2 Background in Ontology learning . 53

4.3 Methodology . 54

4.3.1 Semantic scraping of TASs websites 55

4.3.2 Calculating channel similarity . 57

VI

CONTENTS CONTENTS

4.3.3 Compute channel clusters . 62

4.3.4 Generate vocabularies . 64

4.4 Evaluation . 67

4.4.1 Evaluation metrics . 68

4.4.2 Expert assessment and results . 68

4.5 Discussion and Outlook . 72

5 Personal Agent Architecture for Task Automation in the Web of Data 75

5.1 Introduction . 76

5.2 Background . 77

5.2.1 Personal Assistants . 77

5.2.2 Agent Architectures . 80

5.3 Modular Architecture for Intelligent Agents and Task Automation 81

5.3.1 Adapters . 82

5.3.2 The Agent Bus and the Evented Web Bus 84

5.3.3 Event Manager . 84

5.3.4 Communication between TAS clients, TAS server and personal agents 86

5.4 Personal agent plan library . 87

5.4.1 Types of behaviour . 87

5.4.2 Plan implementation examples . 89

5.5 Case study: Managing a smart environment 92

5.6 Discussion and outlook . 96

6 Conclusions and Future Work 99

6.1 Outlook . 100

6.2 Conclusions . 101

6.3 Future research . 102

VII

CONTENTS CONTENTS

Bibliography 107

List of Figures 122

List of Tables 126

Appendix A Publications 129

A.1 Journal Articles . 129

A.2 Conference Proceedings . 130

Appendix B The Evented WEb Ontology Specification 131

Glossary 145

VIII

CHAPTER1
Introduction

Nowadays, users receive a huge amount of personalised information coming from so-
cial networks, sensor networks and smart phones. Processing all these streams is
very time consuming. Users often get flooded with large number of notifications, and
in most of the cases some pieces of relevant information pass unnoticed. Task Au-
tomation Services are a novel solution to this problem. They provide a mechanism
for creating automations that react to these data without bothering users, thus sav-
ing them time and reducing information leaks. The research described in this thesis
is centred on characterising these services, including their potential and limitations,
and proposing how they can be improved thanks to the use of intelligent techniques.

This chapter introduces the motivation and the objectives of this Ph.D. thesis.
Its goal is to show the reader what observations lead us to undertake the research
developed as part of this work, the challenges we identified, and the contributions and
objectives we pursued.

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

The term Live Web (Windley, 2011a), also called the real-time Web (De Francisci Morales

et al., 2012) or the event Web (Singh and Jain, 2010), describes a new stage in the evolution

of the Web that extends the Web 2.0 or interactive Web. Instead of simply browsing static

web pages or even interacting with a website, the Live Web is characterised by a brand

new style of interaction through dynamic streams of information, called personal streams,

to present contextual and relevant experiences to users (Windley, 2011a). There are several

sources of personal streams such as: social networks, sensor networks, and mobile phones.

These sources provide the necessary location-aware, relationship-aware, preference-aware

and sensory context to achieve a new generation of context-aware applications (Beach et al.,

2010).

Nevertheless, given that each user is a potential source of events, a typical user often gets

flooded with many notifications; e.g. tweets, CRM notifications, chat messages, etcetera.

As a result, they only read a small fraction of those they receive (De Francisci Morales

et al., 2012), wasting tons of potentially useful data. Thus, several automation tools have

emerged in order to simplify personal-stream management. Some of these tools are social

media management tools (Kietzmann et al., 2011) such as: TweetDeck1, with advanced

filtering and scheduling facilities for Twitter; Rapportive2, that combines Linkedin profiles

with Gmail contacts; and many other data-driven mash-up tools (Yu et al., 2008), which

provide users the ability to create new applications based on the available services.

What makes these tools really useful for consumers is that they combine incoming data

available from different personal streams, presenting the information to the user in a manner

that it is more useful than it was by separate. Thus, they create new personalised streams

and services that behave in a particular way for each different user.

In this regard, a number of now prominent web sites, mobile applications, and desktop

applications feature rule-based task automation. Typically, these services provide users the

ability to define which action should be executed when some event is triggered, i.e. each

user defines its own automations. Some examples of this simple task automation could be

‘When I am mentioned in Twitter, send me an email’, ‘When I come within 500 meters of

this place, check-in in Foursquare’, or ‘Turn Bluetooth on when I leave work’. We call these

services Task Automation Service (TAS) (Coronado and Iglesias, 2015a). Ifttt (Ifttt, 2015),

Zapier (Zapier, 2015) or AutomateIt (Automateit, 2015) are a few enlightening examples.

1http://tweetdeck.twitter.com/
2http://rapportive.com/

2

1.2. OBJECTIVES

This innovative technology offers a whole range of possibilities, e.g. to propose more

complex and powerful automations, to gather data not only from web services but from

physical devices, to auto discover these sources of data for convenience, or to distribute

the execution of the automations that take advantages of the mobility of smart-phones,

wearables and other connected devices. Moreover, being a novel field of research (Ifttt, the

most relevant TAS, was founded on December 2014, less than one year prior to the time

this research was started), most of these challenges are still open. Ultimately, it was a

unique opportunity that was worth to take, to propose innovative solutions to some of these

challenges, digging into the possibilities TASs offer.

1.2 Objectives

The primary objective of this thesis, is to build a personal agent architecture for task automa-

tion in the Web of data, bringing intelligence to the already mentioned Task Automation

Systems. The vision of task automation as implemented by TASs, was born with them, and

it is still emerging and at some points fuzzy. So it is necessary to set the foundations of this

research establishing a framework to define and classify these services. Therefore, with that

in mind, we have decomposed the thesis global objective into a number of more specific ones

in order to advance towards the final solution step by step:

• Compose a framework for classifying TASs. Our objective is to study the existing

TASs, soak in their functionalities and unique features, and shed light on the field

building a framework that allows classifying and compare them. This goal involves

to discover different paradigms that characterise TAS and their components, e.g. the

privacy, the configurability, the communication, the availability, etc. the nature of

components offered by the TAS studied, their execution profiles, As a result, we will

obtain the sufficient understanding to i) give a formal definition of TASs, ii) describe

and classify them and their components according to different criteria, iii) and devise

a reference architecture for TAS that may fit any of the studied services.

• Propose a semantic model for describing TASs. Our objective is to identify the

properties of the TAS components (channels, services, connected devices) used in au-

tomations to deliver a solution that would leverage this information to a common level.

It would provide a common model for describing these components and their features,

as well as automations created by consumers using these components. This model

should allow comparing the component catalogue of different TAS, implementations

of the same services given by different TASs, as well as the automations regardless

3

CHAPTER 1. INTRODUCTION

of the TAS used to create them. The formalisation of the model will benefit from

advantages of semantic model, and should put impact on data interoperability and

portability of automations, allowing external resource linking to the instances such as

those from the Linked Open Data (LOD) cloud.

• Discover vocabularies for specific services. Our objective is to provide addi-

tional vocabularies, which extend the semantic model referred in the former step, with

mappings to existing properties from well known vocabularies (e.g. Semantically-

Interlinked Online Communities (SIOC), Friend of a Friend ontology (FOAF), Seman-

tic Sensor Network ontology (SSN)). These vocabularies would leverage discoverability

of components, and lift automation capabilities without harming descriptiveness of the

original model. This goal involves the development of an algorithm for automatic on-

tology discovery that feeds from datasets of TAS component catalogues. Moreover, an

automatic semantic extractor of TAS catalogues is developed, so that altogether with

the algorithm the vocabularies are maintained up to date. Using semantic, linguistic,

and structural information, manual assistance and guidance should be minimised if

not removed.

• Propose a personal agent architecture for task automation. The last step con-

sists in designing a personal agent TAS architecture that supports all features of TAS

adding up the benefits of personal assistant, i.e. immediacy, proactivity, mobility (My-

ers et al., 2007). In that sense, proactivity refers to suggesting useful automations to

each consumer based on their profile, location, or any other meaningful context data,

even before they request them. It involves extending the general architecture proposed

in the first step, to accommodate the agent module. The capabilities of this smart

agent will benefit greatly from the semantic nature of the components and automa-

tions in order to perform reasoning and comparisons. This last step addresses the

principal objective set at the beginning of this section, delivering a solution that fulfils

it, therefore it closes this research work.

1.3 Structure of this dissertation

After introducing the motivation and objectives set for this thesis, the second chapter

presents a framework for classifying TASs, surveys the most relevant ones –setting up the

state of the art in that matter– and proposes a reference architecture for TASs. The second

chapter helps the reader to have a clearer view of what TASs are, their components, their

relation to similar approaches (such as mash-ups technologies), and the current state of

4

1.3. STRUCTURE OF THIS DISSERTATION

commercial TASs as well as their evolution and trends.

Chapter 3 presents in detail an ontology named EWE for modelling TASs. It evaluates

the coverage and accuracy of the ontology, and presents a brief use case scenario where

the capabilities of EWE applied to TAS are unveiled. This chapter shows the reader the

advantages of semantic reference models, how TASs benefit from them. Although it is

difficult to retain it all in detail, the reader will have an intuition of the design principles of

the ontology, and how it would be used to describe TASs and to build a semantic TAS.

Chapter 4 reinforces the semantic model describing a methodology that features auto-

matic vocabulary discovery and learning for specific services in the task automation context.

This methodology is capable of automatically i) extracting channel information from TASs’

websites, ii) grouping the extracted channel instances in clusters based on the similarity

of the events and actions they provide, and iii) generating vocabularies that complement

EWE. This chapter shows the reader the motivation behind ontology learning approaches,

and illustrates it with a methodology for ontology learning in the TAS context.

Chapter 5 describes a personal agent architecture for TASs that brings intelligence into

task automations. It describes a message oriented middle-ware to be used to distribute

messages in TASs, and particularises the reference architecture proposed in chapter 2 to a

few use case scenarios, where the EWE ontology, the specific vocabularies and the message

oriented middle-ware work together in conjunction with an agent system. This chapter

helps the reader to understand the benefits of using agents in TASs, and to have a clear

understanding of the possible tasks the agent develop to assist users. Finally, chapter 6 draws

some conclusions, highlights the contributions, and proposes future research to continue this

work.

This dissertation follows a timeline structure, since the order of the chapters meets the

order the research was made. The outcome presented in each chapter is required in the next

one. Consequently, it is also parallel to the order of the objectives set in the section 1.2.

5

CHAPTER 1. INTRODUCTION

6

CHAPTER2
Task Automation Services:

Automation for the masses

Task Automation Services have been gaining popularity in the past few years. How-
ever, the concepts and terms around TAS are still fuzzy, and there is not a frame
to properly describe these services. Hence, this chapter surveys the most prominent
TASs to extract the factors and features that define them. Those features are organ-
ised as dimensions, and outline a framework for classifying and comparing TASs. The
chapter also defines a reference TAS architecture that identifies the key elements of
TASs as well as their interactions. This architecture provides a common vocabulary
and serves as a reference that can accelerate the development, adoption and evolution
of TASs.

7

CHAPTER 2. TASK AUTOMATION SERVICES:
AUTOMATION FOR THE MASSES

2.1 Introduction

Task automation permeates our daily lives, from the weather forecast that appears when the

alarm clock rings, to the smartphone toast-notification that pops up every time we receive

an incoming email. These automations orchestrate gadgets, Internet services and apps in a

way that makes our life easier (Parks and Watkins, 2012). We are so accustomed to task

automations, that sometimes it is hard to identify them, and even harder to realise that

some years ago we used to perform those tasks manually.

While these predefined task automations are spreading across the web, a new user-

centred fully-customisable approach is beating them all, the so-called task automation service

(TAS). These services are typically web platforms or smartphone apps that provide a visual

programming environment, where non-technical users can seamlessly create and manage

their own personal automations (Meisel, 2014). The automation in these services takes the

form of Event-Condition-Action rules that execute an action upon a certain triggering event

i.e. “when triggering-event then do action”. In the former examples, the alarm clock and the

incoming email would be the triggers, whereas querying the weather forecast and displaying

a notification are the respective actions.

Some TASs have become mainstream, such as Ifttt(Ifttt, 2015; Martinez, 2013) or Auto-

mateIt(Automateit, 2015). In 2014, Ifttt reported more than 14 million web tasks created

by end users. AutomateIt, an Android application, has more than 500,000 users. There

are three success factors that explain their growing adoption. The first is usability; TASs

provide a simple-yet-powerful intuitive interface for programming task automations. Hence,

users experiment almost no learning curve when they start using them. The second factor

is customisability; TASs let users program the automations they need. Although simple,

automations are powerful improvements to users’ daily lives. Giving users the capability to

create their own rules awakens a sense of control and immediacy –they get the automations

they need when they need them. The third factor is integration with existing Internet ser-

vices. Users can automate tasks that access the Internet services they already use and are

familiar with.

Given the novelty of Tasks Automation Services, this chapter aims to shed light on

them. To better understand what TAS’s automations might look like, consider the following

scenario. Sarah uses a TAS every day, so she has defined a set of useful automations.

Some automations notify her when something relevant to her happens, such as “when I’m

mentioned on Twitter, send me an email” notify her when something relevant to her happens.

Others, save her the bore of repeating a simple task, e.g. “when I’m tagged in a Facebook

8

2.2. TAS COMPONENTS: CHANNELS AND EXECUTION PROFILES

picture, save it to my Dropbox” or “convert incoming invoice emails to PDF and store them

in my Evernote”. Furthermore, Sarah also uses the smartphone app provided by the TAS.

Once installed, the TAS can access several resources from her smartphone, so she can set up

rules involving incoming calls, the camera, Bluetooth or GPS among others. Rules such as

“when my smartphone’s battery level is under 10 percent, text my parents” or “when I get to

work, lower the volume of my ring-tone” take advantage of those capabilities. Moreover, the

TASs feature Sarah enjoys most is the discovery of compatible services around her –using

smartphone communication capabilities such as Bluetooth. This feature can automatically

integrate her SmartTV or her home automation lighting system with the TAS, allowing her

to set rules for home automation such as “when my alarm clock rings, switch on the bedroom

lights”.

This brief journey with Sarah illustrates how services and sensors can be connected

by means of automation rules defined with a single TAS. It aims to give a clear view

of the functioning and main features of TASs, and it also outlines some challenges, such

as embracing smartphone resources or auto discovery of services; we will address these

challenges in the following sections.

The rest of the chapter is structured as follows. First, Section 2.2 discusses the elements

the former scenario introduced. Then, Section 2.3 defines a reference TAS architecture that

identifies the key elements of TASs as well as their interactions. This architecture provides a

common vocabulary and serves as a reference that can accelerate the development, adoption

and evolution of TASs. Motivated by their relevance and popularity, Section 2.4 classifies

the most prominent TASs according to different dimensions of the framework. Section 2.5

compares TAS to mash-up technology in order to measure how similar these two approaches

are, and what are their key differences. Finally, Section 2.6 presents some concluding remarks

of this chapter.

2.2 TAS Components: Channels and execution profiles

Our scenario combines events from Internet services, Sarah’s smartphone, and connected

devices. These services and devices are managed by channels. We define channels as ab-

stractions for receiving events or emitting actions to Internet services (i.e. web channels)

and connected devices (i.e. device channels). Channels should be registered in a channel

directory service provided by the TAS. In this way, users can activate available channels

when programming automations.

9

CHAPTER 2. TASK AUTOMATION SERVICES:
AUTOMATION FOR THE MASSES

2.2.1 Web channels

Many TASs rely on third party Internet services to supply a pack of useful, popular, user-

tested channels. Hence, users benefit from using TASs to manage the services they are

already subscribed to (e.g. Evernote, Gmail). As a result, TASs provide users with a new

layer of control to manage their services and they are not required to migrate.

By analysing the behaviour of web channels, we identify three characteristic dimensions.

Consider a user that wants to define a new automation rule. First of all, that user needs

to grant the TAS access to the Internet service, usually by providing access credentials –

this is what privacy paradigm defines. In addition, some channels require to be configured.

This is the case of the weather forecast channel, in which users need to provide a location

for the forecast –this is defined within the configuration paradigm. Finally, channels may

behave differently triggering the rule or being the consequence that takes place, i.e. they

may generate events, provide actions or both –this is the input-output (I/O) paradigm.

From privacy paradigm’s point of view, channels may be public or private. To activate a

channel and let the platform act on behalf of users, they must grant access to the service. In

our former example, Sarah had to allow the TAS to access her Dropbox account and email

inbox to manage her files and emails. When this authentication is required, the channel is

private. The privacy paradigm defines who will have access to events and actions provided

by the channel. Information regarding private channels are for the user’s eyes only, and it is

tailored to the user. On the contrary, channels that do not ask for authentication are public

channels, and every user gets the same information when using them. This is the case of

news feeds or weather forecast channels. The privacy paradigm also covers private group

channels, where every group member receives all the events the channel generates. These

channels are common in scenarios like home automation, where family members are likely

to share home channels.

The configuration paradigm defines the set-up needed to activate a channel –apart from

authentication. Public channels usually require configuration for the sake of better user

experience and also as a matter of efficiency. For instance, in our example to activate a

weather channel Sarah provided the location where she lives. Hence, she will receive weather

events related to that location. In general, private channels don’t require configuration since

they are already tailored to the user.

Finally, when activated, channels might generate events, provide actions or both. This is

what the input-output paradigm defines. Events are changes in the service state, e.g a new

email on Sarah’s inbox. On the other hand, channels might also offer action capabilities,

10

2.2. TAS COMPONENTS: CHANNELS AND EXECUTION PROFILES

e.g. switching on the bedroom light. IO paradigm also covers pipe channels: those that

process the input to generate a different output, that can be wired to another channel, For

instance, the PDF converter channel that saves the content of Sarah’s email into a PDF file

is then connected to the Evernote channel to store the file.

From an integration perspective, most of the efforts in offering a new web channel are

related to implementing the protocol to communicate with the Internet service behind the

channel. This is TAS administrators’ duty, which depends on the availability of an API for

the Internet service. The authorisation process involved in accessing the Internet service

API determines the privacy paradigm. Besides communication with the service, the TAS

administrators define what events and actions will be offered as part of the IO paradigm as

well as the configuration paradigm.

2.2.2 Device channels

In comparison to Web channels, device channels manage data from the connected devices

they manage. In Sarah’s scenario, her home automation lighting system and the Smart

TV provide device channels to control all the switches of her home and her Smart TV,

respectively.

From a behavioural approach, device channels respond to the same three dimensions anal-

ysed for web channels. In addition, device channels implement two additional dimensions,

the communication paradigm and the discovery paradigm. The communication paradigm

defines how the communication between the devices and the channel will be carried out:

wired, wireless, through the Internet, etc. It also defines on what conditions the channel is

available. As opposed to web channels, which may be accessed from all around the world

through Internet connection, access to device channels may depend on local aspects. These

aspects are part of the communication paradigm. For instance, when using wireless commu-

nication, availability is subject to the distance between devices, i.e. being under coverage

area or not. Finally, device channels may announce themselves so that they are available for

automations as in Sarah’s scenario. This is what the discovery paradigm defines. It provides

standard operations and APIs to enable self-identification of devices, capabilities discovery,

and access to device data using pre-defined message structures. As a result, the system

provides a "plug and play" capability.

From the point of view of implementation, each TAS administrator decides which commu-

nication protocols will be supported in the platform. Each protocol has its own restrictions

about range, power consumption, number of connected devices, etc.. They also provide

11

CHAPTER 2. TASK AUTOMATION SERVICES:
AUTOMATION FOR THE MASSES

mechanisms such as security and device discovery. To communicate two devices, they need

to support the same protocol. However, this should not be an issue, as a device may im-

plement several protocols. In fact, many devices are compatible with the most widespread

protocols, e.g. WiFi, ZigBee, Z-Wave, even Bluetooth (Labiod et al., 2007).

2.2.3 Rule execution profiles

This section describes automation rules, which provide the logic to connect channels. As pre-

viously stated, TASs automations address simple Event–Condition–Action (ECA) rules (Beer

et al., 2003). The rule’s event and action may come from the same or different channels.

However, more complex rules could be devised: multi-action rules can execute several ac-

tions in parallel when the rule is executed; multi-event rules are triggered by a combination

of events; and chain rules execute a list of actions in sequential order, so the output of an

action may be used to trigger the next rule. Complex rules require the TAS to support ad-

ditional features. For instance, multi-event rules require Complex Event Processing (CEP)

support to evaluate complex patterns of events, and chain rules make use of pipe channels,

so they must be supported by the TAS.

Group rules are a particular kind of rules that involve several users and are susceptible to

collisions with other rules. For instance, Sarah’s Smart lighting system is a shared resource

managed by a group channel. If Sarah defines a rule to switch off the corridor lights while

she is asleep, and her flatmate had a rule that turns them on when the alarm clock rings,

both rules collide. It is easy to get to a point where the TAS cannot determine if the lights

should be on or off. As a rule of thumb, rules that include group channels are group rules.

The rule execution profile defines where the execution of the rule is taking place. Rules

may be executed according to different execution profiles to increase performance and enable

off-line rule execution. In Sarah’s scenario, she uses a TAS hosted in the web, but we can

imagine other scenarios where a smartphone or a set-top-box performs the automation.

Rule execution may be accomplished according to three different execution profiles: entirely

on the web, on the mobile client, and mixed execution. A Web-driven execution profile

centralises the execution on the server, allowing the existence of lightweight clients at the

cost of requiring Internet connection. A mobile-driven execution profile is orchestrated on

the client (e.g. smartphone, set-top-box), allowing off-line rule execution when only local

device channels are involved. A mixed execution profile takes the advantages of both profiles.

It can shift the execution to the client or to the Web, which also reduces communication

payload between client and server.

12

2.3. A REFERENCE TASK AUTOMATION SERVICE ARCHITECTURE

2.3 A Reference Task Automation Service Architecture

Once we have described the main components of TASs, we define Task Automation Service as

a service that lets users create automation rules that connect channels using a visual editor.

A reference TAS architecture must incorporate the features and components previously

described (channels, rules, execution profiles) and also provide support for some of the

challenges presented in Sarah’s scenario. The following are the architecture requirements:

• provide a visual rule editor for creating rules;

• include both Web and device channels;

• feature channel discovery, providing adapters for connected devices so that they are

reachable directly by the platform;

• enable multi-event, multi-action and chain rules;

• manage group channels and group rules;

• detect collisions with rules that involve group channels; and

• support a mixed-execution profile.

The architecture must provide a visual automation rule editor that users could use to

create their automations, but also to activate channels according to the privacy paradigm.

To provide access to Web and device channels, the architecture must provide the logic

needed to connect with Internet services and connected devices. Moreover, the TAS must

be notified without delay when an event is generated by the channels, and it must be able to

send actions. It also must be able to discover channels according to the discovery paradigm

of device channels.

Advanced rule features such as multi-action rules and chained rules do not imply addi-

tional requirements, because they can be translated in a set of simpler rules. Multi-event

rules involve temporal reasoning of events, and so the TAS requires CEP facilities (Eckert

et al., 2011). Nevertheless, a trade-off among usability for end users and expressiveness

should be reached for multi-event rules. Group rules require group channels support and

rule collision handling. To handle collisions, the architecture must be able to first detect

them, and then act when the collision occurs and prevent any unwanted effects.

Supporting mixed-execution profile requires some additional logic to coordinate server’s

and device’s rule engines while they orchestrate rule execution. The logic is also needed to

13

CHAPTER 2. TASK AUTOMATION SERVICES:
AUTOMATION FOR THE MASSES

Figure 2.1: Reference Task Automation Service Architecture general diagram. Elements in

dashed lines are optional in some implementations.

guarantee that the information about the user and the rules are synchronised on the device

and the server.

Once the requirements to support these novel features are clear, we introduce a reference

architecture shown in Figure 2.1 which fulfils them.

Rules may be created using an editor on a web client or a mobile client. They are

stored in a central rule repository on the TAS server. However, since those rules that can be

executed on the client according to the mobile driven execution profile, they are synchronised

with a local rule repository for off-line access. Mobile and web clients also allow users to

activate channels. Once a channel is activated, it is saved in the channel directory together

with the authorisation credentials. These credentials are used by the adapters to access the

channels.

Adapters provide uniform access to all kinds of devices. They are responsible for notifying

the TAS of incoming events, commanding the execution of actions and taking charge of

channel authentication. Adapters can be implemented following a publish-subscribe (Eugster

et al., 2003) or polling strategy to get notified of device events depending on their nature.

14

2.4. ANALYSIS OF CURRENT TAS PLATFORMS

The implementation of adapters can be done by the TAS administrator or by third parties if

the TAS provides an adapter SDK. Adapters to sensor channels provide two different paths:

access through a web-protocol, or direct access using access protocols such as ZigBee, Z-

wave, Bluetooth or WiFi. They usually expose a set of sensors, i.e. a sensor network, but

single device channels are also feasible.

To support a mixed-execution profile modules involved in rule execution and channel

access must work in coordination. This is the case of the rule engine responsible for executing

rules and managing rule life cycles within the execution query. Rule execution consists in

fetching the incoming triggering event, extracting the arguments and using those parameters

to request the action execution. The Execution Planner guides the orchestration from a

higher level according to the active rule execution profile. It manages the state of the

channels (within the channel directory), tracking when channels are down and new channels

are discovered. For instance, when Sarah arrives at home the Smart TV channel is discovered

and added to the channel directory. In turn, when she leaves home, the channel will be down

because it is out of range.

Finally, the collision handler analyses the rules in the repository, searching for possible

collisions among them. Some patterns of collision are easy to detect e.g. the simplest collision

consists of two rules with the same triggering event that try to execute two opposite actions.

It takes into consideration which users are currently connected to each channel (as registered

in the channel directory), since rules of two users can only collide if they both are connected

to the same channel. Recall the example where Sarah wants to have the corridor lights off

while she is asleep, and her flatmate set a rule to switch them on when the alarm clock rings.

If Sarah’s flatmate is not at home, there is no possibility of collision because the channel is

not active for Sarah’s flatmate. The execution planner consults the collision handler before

executing a rule, and in case that rules collides with other rules, its execution is skipped.

2.4 Analysis of current TAS platforms

To determine which of the features discussed are supported by state of the art task automa-

tion, we have analysed web platforms for general audience (Ifttt (Ifttt, 2015)), web platforms

for business and enterprises (Zapier (Zapier, 2015), Cloudwork (Cloudwork, 2015), elas-

tic.io (Elasticio, 2015), itduzzit (itduzzit, 2015)), a web platform for cloud storage synchroni-

sation (Wappwolf (Wappwolf, 2015)), mobile apps (Tasker (Tasker, 2015), Atooma (Atooma,

2015), Automateit (Automateit, 2015), onx (Onx, 2015)), and smart home systems (Wig-

Wag (WigWag, 2015), Webee (Webee, 2015)). A summary of the results is presented in

15

CHAPTER 2. TASK AUTOMATION SERVICES:
AUTOMATION FOR THE MASSES

* X= supported; ×= not supported; Few = few support; WD = Web-driven execution profile; DD = device-driven

execution profile;

Figure 2.2: Reference Task Automation Service Architecture general diagram.

Figure 2.2 and the complete report is available online (Coronado and Iglesias, 2015c).

As expected, web channel support is much larger than device channel support. Although

the studied apps manage the resources in the smartphone, only home automation related

TASs provide device channels that connect directly to devices. Pipe channels are only

fully-supported by elastic.io. It is a powerful concept, and it integrates perfectly in their

interface; however, it is barely used. It is worth mentioning that home automation TASs

feature channel discovery and group channels. Unfortunately, their support is still extremely

limited.

Regarding different types of rules, few TASs support multi-event rules’ complexity in

comparison to simpler rules. Multi-action rules have wider support, but still many TAS

managers do not include them in their platform in order to keep rule editors simple. In the

end, a user may achieve the same functionality by implementing a rule for each action in the

multi-action rule. Elastic.io, which supports pipe channels, features chain rules, and wigwag

16

2.4. ANALYSIS OF CURRENT TAS PLATFORMS

and webee, that support group channels, feature group rules –however, none of them handles

collisions in group rules. Finally, some TASs provide their users with a pack of predefined

rules that proved to be useful for previous users, because they act as a shortcut for creating

those automations.

At the time we performed this study, none of these platforms supported a mixed-

execution profile. Thus, we split them into those with a web-driven execution profile (Ifttt,

Zapier, Cloudwork, elastic.io, itduzzit and wappwolf) and those with a device-driven ex-

ecution profile (Tasker, Atooma, Automateit, onx, wigwag and webee). By their nature,

platforms with a Web-driven execution profile have more limited access to device channels

than those executed on the smartphone. The latter has access to all the smartphone re-

sources. For that reason, Ifttt has already released a smartphone app that grants Ifttt server

access to smartphone resources. In turn, Zapier includes Tasker as a channel that effectively

grants access to those channels too.

Several TASs offer advanced features for users with programming skills to set up au-

tomations using a programming language. This is the case of Onx (javascript), Auto-

mateIt (bash), elastic.io (javascript), Itduzzit (proprietary), wigwag (Arduino/Raspberry/-

javascript) and webee (boss). Moreover, Zapier, elastic.io, Tasker and webee provide an API

for developing channels (some call them plugins).

Apart from the technical aspects and features considered in the framework, there are

other characteristics that may differentiate them from each other. The most important is

target audience, which defines the type of channels the TAS integrates. Ifttt, AutomateIt

and Atooma focus on the general audience, integrating the most popular channels. For

this audience segment, automation of smartphone resources is essential, because they use

these devices much often than their computers. This is why AutomateIt and Atooma are

smartphone apps, and Ifttt developed its own smartphone app. Zapier, Cloudwork, and

Elastic.io target business users. They integrate wide variety of specific channels (e.g. CRM,

project managing tools, etc.) aiming to support as many services as possible, so that they

cover all business needs. Tasker and onx aim at more technical users, supporting more

complex rules. And obviously, Wigwag and Webee being smart home hubs, give support to

smart homes and IoT integration.

The target audience is in certain correlation with the pricing policy, which includes

freemium service, monthly fee, one payment, upgrade purchases, etc. TASs for business

customers choose monthly fee policy, while general audience TASs opt for freemium models;

smartphone apps usually include in-app purchases, except for Tasker which is not a free app;

and smart home hubs integrate TAS functionalities so buying customers pay for the device.

17

CHAPTER 2. TASK AUTOMATION SERVICES:
AUTOMATION FOR THE MASSES

Concept / name Ifttt Zapier Kinetic Triggers Tasker On{x}

Rule Recipe Zap Rule Trigger Profile Rule

Channel Channel App Endpoint – – (plugin) Object

Event Trigger Trigger Event Input Context Trigger

Action Action Action Action Output Act./Task Action

Table 2.1: Disparity in TAS Nomenclature.

To promote their product and favour user activation, some TASs are building a com-

munity around their users automations. Ifttt, Zapier, and AutomateIt provide a gallery

of automations were users may inspect other’s automations, rate and favourite them, and

easily add them to their automation portfolio1 in a one-click operation. This benefits user

engaging, helps users to discover useful automations, and the system may use their profiles

for better rule recommendation. In particular, Ifttt is watching over this section –they even

include a gamification system to reward the users that create the most popular automations.

Furthermore, while analysing these TASs, we noticed there is a lack of agreement in

the name given to the same concepts. The Table 2.1 presents some examples of different

terms used to define the same elements. This fact shows the concept TAS as a type of

service among other productivity tools is not fully developed yet. It makes harder for users

to figure out how each TAS works, and also for the research community and developers to

understand the design, and even the documentation. In the following chapter we address

this issue and propose a solution to overcome it.

Apart from commercial systems, there are several approaches to TASs in the specialised

literature. Related to the Web of Things (WoT), Paraimpu (Pintus et al., 2012) allows user

to interconnect Http-enabled smartobjects and web services. In the terms we use, it is a TAS

that supports configuring sensors and devices as data streams. Among the current TASs

described before, several of them support using physical sensors and actuators from different

approaches. Ifttt, includes channels to handle sensors such as WeMo2 or PhillipsHue3. Its

approach bypasses communication to them using third party APIs. SmartThings or Webee

directly support managing sensors and but only those they provide. In this regard, Parimpu

is more flexible than any of them since it allows configuring your own smartobjects as chan-

1The set of personal automation orchestrated by a user
2http://www.wemothat.com/
3http://www2.meethue.com/

18

2.5. TAS AND WEB MASH-UPS

nels. However, final users need programming skills to configure them. As Karger (Karger,

2014) points out, one of the main disadvantages of these systems is that it is impossible

to integrate new data suppliers and consumers unless the TAS company chooses to do so.

To overcome this problem, Opasjumruskit et al. designed Mercury (Opasjumruskit et al.,

2012), a powerful TAS that features service discovery. This service is able to find appropri-

ate sensors, services, actuators, etcetera; to perform certain functionality. Mercury relies on

semantic annotation of web of device data sources so it can reason about them.

Regarding better user interfaces, Atomate it (Van Kleek et al., 2010) focuses on pro-

viding a constrained-input natural language interface for composing automations in natural

language. Although it is not an entirely free-text approach, it is very intuitive and the

authors claim that users increase their satisfaction compared to the standard interfaces of

commercial TASs.

2.5 TAS and web mash-ups

Some researchers consider that TASs borrow inspiration from Web Mash-ups; i.e. applica-

tions generated by combining content, presentation, or application functionality from dis-

parate Web sources (Vladimir et al., 2015). This is because TASs also compose services and

combine data from different web data sources. After analysing the existing TASs, we identify

five dimensions in which they may be compared to web mash-ups. The first dimension is the

number channels or widgets, defined as the number of sources or elements that are available

to be used in the compositions. It depends on the number of data sources that are integrated

in the mash-up engine or the TAS. In both cases, it depends on the developers that support

the system, so their performance in this dimension is similar. The second dimension is the

power or the automations, or the resulting mash-up; i.e. the capabilities offered to users.

Mash-ups lead this field since they offer data visualisation, filtering, and processing to name

a few. Next, the ease of use is also considered; i.e. how easy is to configure the automations

or build the mash-ups for the user. In this dimension, mash-ups usually involve complex

data pipelining when not programming skills. On the other hand, TASs are characterised

by presenting their users intuitive interfaces to build their automation. The ease of use

in one the upsides that made TASs so popular these days, since almost all Internet user

is a potential TAS user. Customisability or personalisation is another advantage of TASs.

Each user is able to compose their own task automations, as opposed to mash-ups, that are

packed serviced delivered to the user. More importantly, TASs allow users to utilise their

own personal streams. However, since TASs are focused on being as easy to use as possible,

some customisation capabilities are skipped. Finally, portability is the fifth dimension. This

19

CHAPTER 2. TASK AUTOMATION SERVICES:
AUTOMATION FOR THE MASSES

Ease of use (program)

Personalisation

Portability Channels / Widgets

Capabilities

Web Mashups

TAS

Semantic TAS

Figure 2.3: Comparison between mash-ups and rule based TASs.

is the capability of exporting and importing automations/mash-ups to different engines or

systems. Both, TASs and mash-ups perform very low in this dimension because typically

there is not any support for this.

After a qualitative analysis based on experts insights, all these dimensions are compiled

in the chart shown in Figure 2.3. According to the given explanation, the reason of the

higher penetration of TASs compared to mash-ups is their personalisation and ease of use.

There is a third kind of system considered in the chart: semantic TASs, i.e. TASs which

employ semantic technologies. These provide several advantages over classic TASs in most

of the dimensions shown in the chart. In the following chapter, we explore the benefits of

semantic TASs and propose a solution to implement them.

2.6 Discussion and Outlook

As TASs gain in popularity and existing TASs increase their number of users, new services

appear and compete. As a novel domain, task automation opens the door to several oppor-

tunities –yet many challenges remain. First, a certain degree of standardisation is required.

Because each TAS wages war on its own, Internet service developers might find their services

available as channels in some TASs, but not in all of them. Moreover, when users define

rules within the scope of a TAS, these rules can not be exported to others, nor shared.

Second, TASs should evolve into a mixed execution profile that is able to interact with Web

and device channels. Third, TASs that include device channels to manage shared devices

(such as a smart TV or a smart lighting system) should allow group rules and consider

the mechanism for detecting and handling collisions. This is quite challenging and will re-

20

2.6. DISCUSSION AND OUTLOOK

quire complex algorithms. Finally, TASs should include mechanisms for discovering device

channels so that their configuration is almost transparent to the end user.

This chapter offers an overview of Task Automation Services (TASs); their features, and

to what they owe their popularity. The chapter surveys the most important commercial

platforms, mobile apps and smart home hubs that feature task automation. This survey is

summarised in Figure 2.2. Furthermore, an extended report is available online (Coronado

and Iglesias, 2015c) as additional material of this chapter.

This survey arises several conclusions. Firstly, TASs that focus on different user audience

implement different feature sets; e.g. Ifttt (Ifttt, 2015) or AutomateIt (Automateit, 2015),

that target the general audience, offer neat and easy to use interfaces with connectivity to

smartphone channels. On the other hand, Zapier (Zapier, 2015), Elastic.io (Elasticio, 2015)

Cloudwork (Cloudwork, 2015), that target the business users, pay more attention to the

power and capabilities of the rules. Secondly, there is a lack of agreement in the nomenclature

used to refer to the same concepts, Table 2.1 gathers these variations. Thirdly, the TASs

studied suffer from two major shortcomings, they lack of: support for channel discovery;

and, reasoning over contextual data and Linked Open Data(LOD).

Since several authors consider TASs an evolution of web mash-ups, this chapter also

describes a framework embracing five dimensions to compare them. The conclusion of this

study is that TASs perform better in the personalisation and easy of use dimensions; while

web mash-ups feature better automation capabilities. In the comparison, we also include

TASs with semantic capabilities, as the prototype introduced in Section 3.4 which improves

TASs performance in all five dimensions.

Finally, we identified three main trends in the market. First, web-based TASs are de-

veloping smartphone apps in order to integrate smartphone resources as channels of their

catalogue. Second, existing Web TASs are starting to offer Rest APIs in order to delegate

channel integration to Internet service developers. Thus, Internet service developers inter-

ested in integrating their services as channels will have a way to do it themselves. Finally,

home automation systems are acquiring this vision, incorporating custom rule automations

in their hubs, moving from ‘remote control’ to ‘automate control’.

21

CHAPTER 2. TASK AUTOMATION SERVICES:
AUTOMATION FOR THE MASSES

22

CHAPTER3
Modelling Rules for Task Automation:

the Evented Web Ontology (EWE)

This chapter presents a reference model for describing TASs. Having identified there
is a need of standardisation in the domain, a reference model can fulfil this need and
provide several additional advantages. The proposed model is implemented as an on-
tology named EWE, which is compiled following a formal procedure for extracting the
main concepts and relations of the most relevant TASs studied. Finally, its capa-
bility for describing TASs has been evaluated and a use case scenario illustrates its
functionality.

23

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

3.1 Introduction

The novel vision of task automation as implemented by TASs is at an early stage of devel-

opment, in fact some concepts involved are still fuzzy. For instance, the lack of consensus

in naming these concepts (as shown in table 2.1, in the former chapter) is an evidence of

that. This disparity makes harder to communicate ideas, to discuss proposals, or to compare

different systems.

Reference models stand as a solution to this issue, setting a framework for communicating

concepts at a particular environment. According to Mackenzie et al. “A reference model is

an abstract framework for understanding significant relationships among the entities of some

environment” (MacKenzie et al., 2006). Its purpose is “to provide a common conceptual

framework that can be used consistently across and between different implementations and

is of particular use in modelling specific solutions.” Although the methodical description

of the TAS’s components shown in the former chapter constitutes a framework to be used

for comparing TAS’s channels, rules and execution profiles, there is not a formal reference

model that comprises concepts, relationships and entities. Thus, reference models make

easier for TAS managers to communicate to their users and to the research community, for

developers to be aligned to meet the requirements of the architecture, and allow users to

easily understand where these products fit into their needs.

One of the most common implementations to reference models are the ontologies. De-

fined by Gruber (1993) as explicit specification of a conceptualisation, they enhance reference

models with the benefits from the Semantic Web (Berners-Lee et al., 2001). There exists

ontologies for almost any domain of knowledge. Among the most popular ontologies and

vocabularies are the SIOC ontology for modelling online communities, the GeoNames Ontol-

ogy (GN) for adding geospatial semantic information to the Word Wide Web, or the vCard

vocabulary for describing contact information as in business cards.

Regarding the task automation domain, semantic models offer five major advantages

apart from those inherited from reference models. With a common semantic model for

describing channels and automations, i) users can export their automation portfolio and

load it on a different TAS since both work with the same model. ii) Semantic description

of automations enables reasoning over external resources. So, a semantic rule engine with

access to the LOD Cloud, could trigger automations with complex conditions that depend

on external resources. Somehow, the LOD becomes a new public channel to the users (as

given by the privacy paradigm described in Chapter 2). iii) External software agents can

read, understand and thus reason with the data from TAS. This enables other services

24

3.2. BACKGROUND

or programs to be developed around the TASs, enhancing the scenario. Apart from these

agents, iv) it facilitates the entrance of new actors –whether they are new TASs or channel

providers– because of compatibility reasons, and ease of integration. Finally, v) it also

facilitates the analysis of domain data: the extraction, processing and analysis.

In this scenario, we present a threefold contribution. The first contribution of this

chapter is the development of an ontology called the Evented WEb ontology (EWE) to

model TASs. This ontology was designed to offer all the benefits recently described, and

it was compiled using a formal iterative process of feature extraction. It also unifies the

several dimensions of TAS components presented in Section 2.2 in the former chapter. The

second contribution is the proposal of a use case scenario to show de advantages of EWE.

Within that use case, we developed a prototype of a semantic TAS using EWE. Finally,

the third contribution is an ontology evaluation that validates that EWE covers the domain

it models by comparing its coverage and accuracy to popular alternative approaches. The

rest of the chapter is organised as follows. First Section 3.2 describes the background in

several topics that are addressed throughout the chapter. Next, Section 3.3 presents the

EWE ontology: its design methodology, the main classes, properties, mapping to existing

external ontologies, and examples of EWE usage. An implementation of a semantic TAS

featuring EWE and a use case are presented in Section 3.4. Then, in Section 3.5, EWE is

formally evaluated. Finally, Section 3.6 concludes and gives future works.

3.2 Background

In this section, we introduce some of the background technologies and efforts made in the

state of the art that are related to the research described in this chapter. It includes

reference and semantic models, representation of rules and some scientific approaches to

task automation services that cover some challenges identified in the former chapter.

3.2.1 Reference and semantic models

An ontology is an explicit specification of a conceptualisation (Gruber, 1993). As imple-

mentation of reference models using Semantic Web technologies, ontologies offer several

advantages that justify their usage. One of the most common reasons for developing on-

tologies is sharing common understanding of the structure of information among people or

software agents (Musen, 1992). Probably, the most representative example to illustrate it is

the SIOC ontology, which provides the main concepts to describe online communities (Bres-

lin et al., 2005). When blogs and news sites use the SIOC ontology, software agents are able

25

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

to extract and aggregate information from these different sites. It allows the agents to easily

perform operations such as compiling a list of articles of an author, combining posts about

the same event, or creating a timeline of all the entries of a certain topic. Other ontologies

like the Music Ontology (Raimond et al., 2007, 2013) for describing music (artist, album,

tracks, etc.) or the Good Relations ontology (Hepp, 2011) for describing e-commerce stores

and products, provide the same advantages in similar scenarios.

As with the linked-data initiative, ontologies enable reuse of domain knowledge. Best

practices in ontology development encourage to create mappings to concepts of existing

ontologies, to avoid concept redefinition. There are several sites collecting Resource De-

scription Framework (RDF) vocabularies and Ontology Web Language (OWL) ontologies.

FOAF ontology (Brickley and Miller, 2014), the Dublin Core (dcterms), or Simple Knowl-

edge Organization System (SKOS) are among the most reused ontologies (Jentzsch et al.,

2011). In this regard, there are several efforts aiming for automatic ontology mapping discov-

ery. Jain et al. (2011) propose a mechanism to aid ontology developers to find schema-level

links between two LOD ontologies. Nikolov and Motta (2010) assist in discovering relevant

repositories for interlinking and comparing them with respect to the coverage of specific

domains.

Another common use of ontologies is separating the domain knowledge from the oper-

ational knowledge. We can describe a task of configuring a product from its components

according to a required specification and implement a program that does this configuration

independent of the products and components themselves (McGuinness and Wright 1998).

We can then develop an ontology of PC-components and characteristics and apply the al-

gorithm to configure made-to-order PCs. We can also use the same algorithm to configure

elevators if we “feed” an elevator component ontology to it (Rothenfluh et al. 1996).

Analysing domain knowledge is possible once a declarative specification of the terms is

available. Formal analysis of terms is extremely valuable when both attempting to reuse

existing ontologies and extending them (McGuinness et al. 2000).

Apart from the ontologies mentioned to illustrate the advantages of ontology develop-

ment, there are many other ontologies modelling many domains. In the context of TAS,

the range of suitable mappings is very wide, because supported channels may represent ser-

vices of very different nature. For instance, the Description Of A Project (DOAP) ontology

may be used to describe projects used by channels like Trello or Github, the Tag Ontol-

ogy (TAGS) ontology for describing bookmark from services like Evernote or Bitly, or the

SSN for describing sensors.

26

3.2. BACKGROUND

3.2.2 Rule based event processing

In TAS architecture, adapters act as data-streams driven by events, they trigger data gen-

eration that is then distributed to all the subscribers. Those events are usually combined

to each other producing more complex ones that enhance event selection according to the

context of the user. Therefore, there is a need to process those events efficiently and con-

currently so CEP technologies arise.

Several standardisation attempts have been made in rule based event processing and

complex event processing. A thorough overview of these efforts and their limitations can

be found in the work by Paschke et al. (2011). Among them, some notable approaches

for event vocabulary standardisation are the WSDM Event Format (WEF) standardised by

OASIS (Bullard et al., 2006) and the semantic XML format of AMIT that includes temporal

extensions (Aberer et al., 2007). Event Processing Technology Society (EPTS) Reference

Architecture (Paschke and Vincent, 2009) defines an initial functional reference architecture

describing the typical event processing and complex event processing operations.

Research shows much overlap among existing standards for business and software at

multiple levels (Paschke et al., 2011). Shaw et al. (2009) provide a comparison of existing

event ontologies, nevertheless, as pointed out by Paschke et al. (2011), none of these on-

tologies have been developed specifically for CEP or being used in combination with CEP

technologies. Westermann and Jain (2007) give a thorough view of how events are used in

multimedia systems –describing some examples of traditional and emerging uses– ranging

from programming frameworks to life logs and the Event Web. They provide a catalogue

of requirements, and sketch a multimedia event model that addresses those requirements.

Gu et al. (2005) model events as the outcome produced by sensors, and use them to trigger

context-aware rules and services. Ricquebourg at al. (Ricquebourg et al., 2007) applied the

same vision at a Smart Home scenario using Semantic Web Rule Language (SWRL) rules.

3.2.3 Automations as Event-Condition-Action rules

According to the classification by Boyle et al. 2007, rules can be classified into three cat-

egories: deduction rules, normative rules and reactive rules. Deductive rules are logical

statements for deriving new knowledge from other knowledge by using logical inference.

Normative or consistency rules define constraints on the data or business logic in order to

ensure data consistency. Finally, reactive rules describe reactive behaviour and usually fol-

low the form of ECA rules, that is, ON Event IF Condition DO Action. This is the type of

rules that better represent the automations orchestrated in TASs.

27

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

The ECA rules paradigm has been widely used in many application fields, ranging from

active database management systems (Paschke and Kozlenkov, 2009), workflow management

systems (Bae et al., 2004; Cugola and Margara, 2012), ambient intelligence (Augusto and

Nugent, 2004; Sadri, 2011) to service integration (Ipiña, 2001).

In the service scenario, several approaches have been followed for monitoring the com-

position of web services. A large body of research has been based on assertions. ECA rules

have been used for the definition of policies, which has been standardised in WS-Policy. An

interesting extension is WS-Policy4MAS (Erradi et al., 2006) that enables the specification

of policies for monitoring of functional and QoS aspects. Other approaches have monitored

QoS statistics based on CEP techniques (Moser et al., 2008, 2010) or temporal properties

of web services compositions (Barbon et al., 2006).

3.2.4 Rule representation in the Semantic Web

OMG Production Rule Representation (PRR) defines a rule meta-model and profiles for

production rules in order to provide interoperability across modelling tools and inference

engines. Along with other types of rules, the specification considers the need for defining an

ECA profile based on this meta-model but this work is still an open issue (OMG, 2009).

One of the initiatives involved in PRR model is RuleML (Boley et al., 2010; rul, 2010),

a non profit specification with the aim of facilitate sharing and publishing rules in the web.

The first specification of the standard covers deliberation and reaction rules, and provides

a concrete syntax to PRR. The branch of reaction rules includes ECA and CEP rules.

RuleML rules can combine all parts of both deliberation and reaction rules, which enables

uniform XML serialisation across all kinds of rules.

SWRL (O’Connor et al., 2005; SWRL, 2005) takes parts from OWL CL and OWL Lite,

and extends the set of OWL axioms to include Horn-like rules (which may be used in ECA

rules). The proposed rules are of the form of an implication between an antecedent (body)

and consequent (head). The intended meaning can be read as: whenever the conditions

specified in the antecedent hold, then the conditions specified in the consequent must also

hold. Thus, SWRL is able to describe ECA rules. The XML Concrete Syntax is a combina-

tion of the OWL XML Presentation Syntax with the RuleML XML syntax. It has several

advantages regarding the Semantic Web: i) rules are explicitly defined in RDF format;

ii) arbitrary OWL classes (e.g., descriptions) can be used as predicates in rules; iii) rules

and ontology axioms can be freely mixed; iv) interoperability between OWL and RuleML

is simplified, existing RuleML tools can be adapted to SWRL. Currently the SWRL 2

28

3.2. BACKGROUND

specification (OĆonnor et al., 2012) is under development, to include OWL 2 features into

SWRL.

W3C Rule Interchange Format (RIF) recommendation (Kifer, 2008; rif, 2008) is an

alternative to RuleML, focused on rule interchanger. RIF was created for exchanging rules

among rule systems, in particular among Web rule engines. It is an XML language for

expressing rules which computers can execute. RIF was born with the philosophy that a

single language would not satisfy the needs of many popular paradigms for using rules in

knowledge representation and business modelling. Because of the serious tradeoffs in the

design of rule language, RIF provides multiple versions, called dialects. RuleML and RIF

recommendations influence each other, both providing input to the counterpart. Shared

RIF RuleML implementations and use cases are projected to lead to further convergence.

When compared to SWRL, RIF covers most SWRL features are in the RIF-BLD with the

exception of “different-from”, thus it should be possible to exchange most SWRL rules via

RIF. RIF-BLD supports multiple-arity predicates, and SWRL is limited to unary and binary

predicates. RIF-BLD has functions, SWRL is function-free. RIF-BLD has an extensive set

of datatypes and built-ins, SWRL supports most of the same datatypes but has no built-ins.

SPARQL Inferencing Notation (SPIN) (spi, 2011) is yet another approach to bring a

rule format to the Semantic Web. It is based on SPARQL Protocol and RDF Query Lan-

guage (SPARQL) queries that are wrapped in an RDF format. So, SPIN rules can be

executed (because they are rules) and stored within the semantic data, in the end point,

since they are RDF. SPIN rules provide explicit support for constraint checking in addition

to the native OWL inferencing mechanisms (that are enhanced too). Thus, they are com-

monly used for Data Quality Management (Fürber and Hepp, 2010) and Data Reasoning

and Inferencing (Spohr et al., 2012; Pignotti and Edwards, 2012). SPIN is more expressive

than SWRL because SPARQL is, extensible –functions and templates can be created– and

object-oriented. Any SWRL rule can easily be converted to a SPARQL query, as an example,

Listing 3.1 shown the implementation of the same rule in SWRL and SPARQL (SPIN).

Listing 3.1: Comparison between SWRL and SPARQL.

// SWRL rule

parent(?x,?y) \wedge brother(?y,?z) \Longrightarrow uncle(?x,?z)

// SPARQL rule

CONSTRUCT {?x :uncle ?z}

WHERE

{ ?x :parent ?y .

?y :brother ?z .

}

29

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

In addition, SPIN inherits the support and evolution of SPARQL –since it acts as an

envelope for SPARQL queries. For all these reasons, some semantic suits dropped SWRL

compatibility in favour of SPIN (Topbraid).

Notation3 (N3) is another alternative for describing rules in the semantic Web. N3

Logic (Berners-Lee, 2011) provides additional RDF properties that allow N3 to be used to

express rules in a web environment. They were designed to be informal semantics that should

be understandable by a human being. These properties are not part of the N3 language,

but are properties which allow N3 to be used to express rules. Just as OWL is expressed

in RDF by defining properties, so rules, queries, differences, and so on can be expressed in

RDF with the N3 extension to formulae. However, N3 logic is still at a draft state, and

it is not fully supported by semantic engines. The EYE reasoner (Meester et al., 2015)

is a reasoning engine that uses an optimized resolution principle, supporting forward and

backward reasoning. Backwards reasoning with new variables in the head of a rule and list

predicates are a useful plus when dealing with OWL ontologies. EYE supports all N3’s

expressibility whilst being more performant than other N3 reasoner (Verborgh and De Roo,

2015).

3.3 Evented WEb ontology (EWE) model

In this section, we present the EWE Ontology, which models the most important aspects

of TAS, and stands as a reference model to define and describe TASs. EWE is available

online (Coronado and Iglesias, 2015b).

After analysing the TASs in the former chapter, we derive a model that contains the

most relevant concepts (and relations between them) presented by those services, using the

most widespread terminology. The EWE Ontology comprises two major parts: the main

objects and properties defined in the EWE ontology, and the mapping that relates EWE

to existing ontologies such as TAGS or FOAF(Amini et al., 2014). The ontology design

methodology and examples of rules defined with EWE are also given in this section.

3.3.1 EWE design methodology

The final model we propose is the result of an iterative development process consisting of

three steps: i) we analyse each of the TASs considered, identifying features and functional-

ities, then we extract the concepts and properties they address; ii) we define a model that

30

3.3. EVENTED WEB ONTOLOGY (EWE) MODEL

ewe:Channel

ewe:pageUrl
ewe:timesInRules
dcterms:description
dcterms:title
foaf:logo

ewe:Action

ewe:hasParameter
dcterms:description
dcterms:title

ewe:Event

ewe:hasParameter
ewe:source
ewe:time
dcterms:description
dcterms:title

ewe:hasAction

ewe:generatesEvent

ewe:Rule

ewe:pageUrl
ewe:timesUsed
dcterms:description
dcterms:title

ewe:User

foaf:accountName

ewe:hasCreator

ewe:TaskAutomation

ewe:pageUrl
dcterms:description
dcterms:title

ewe:definedBy

ewe:Category

dcterms:description
dcterms:title

ewe:hasCategory

ewe:hasCategory

ewe:firesAction

ewe:hasActiveChannel

ewe:triggeredByEvent

ewe:hasCategory

Figure 3.1: Detail of the EWE Ontology Model.

formally describes those elements; and finally, iii) we evaluate the model against the different

use cases considered, i.e. we check how suitable it is for describing rules from sites such as

Ifttt or Zapier. After each iteration, we repeat the process, including some new elements

that the results have shown to be relevant, and remodelling others to best describe the do-

main. Each iteration refines the model, i.e. classes and properties are included, modified, or

even removed from the ontology to make it not only broader but also more accurate, thus

more useful.

Therefore, the ontology design has been undertaken by an iterative incremental develop-

ment as in most agile software development methodologies. Figure 3.1 presents a diagram

of an excerpt of the resulting model showing the major classes and properties.

3.3.2 EWE elements: main classes and properties

This section addresses the main objects and properties –which are the outcome of the design

methodology– included in the EWE ontology.

3.3.2.1 Main classes

The core of the ontology comprises four major classes: Channel, Event, Action and Rule.

The description of particular TASs or use case scenarios may inherit from them, creating

31

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

new classes that are specific to the domain. We detail the usage of the main classes below.

The class Channel defines individuals that either generate Events, provide Actions, or

both. In the context we refer to, Channel usually defines Web services. For instance,

according to this definition Dropbox is channel because it generates Events every time a

new file is uploaded or changed, and it provides the capability (Action) to rename files or

move them to another folder. Of course, Dropbox channel would offer much more Events

and Actions. Furthermore, sensors and actuators are also modelled as Channels since they

produce Events and/or provide Actions; e.g. a wearable device with GPS programmed to

generate alerts when it is near certain locations.

The class Event defines a particular occurrence of a process, which may trigger rules in the

TAS. As opposed to the definition given in other ontologies (Raimond and Abdallah, 2012),

in EWE events are instantaneous, i.e. they have no duration over time. The Event class may

be subclassed to define particular types of Events. For instance, the class NewChatMessage

is subclass of Event and defines the type of event that is generated when a new chat messaged

is typed. Instances of Event class offer information of the particular event; e.g. instances

of NewChatMessage have information of the chat message and the date when it was sent.

Event individuals are generated by a certain Channel, when triggered by the occurrence of

the process that defines them, e.g. typing and sending a message in GoogleHangouts triggers

the generation of an event instance of type NewChatMessage. We say that the channel

that generates the event is the event generator; GoogleHangouts is the event generator.

Definitions of Event subclasses are not bound to a Channel since different channels may

generate the same events; e.g. both, GoogleHangouts and Whatsapp channels may generate

instances of NewChatMessage.

The class Action defines an operation or process provided by a Channel. Actions produce

effects whose nature depends on the action nature. These include: producing a log message,

modifying a public or private state on a server, a physical action such as switching on a light,

etcetera. The effect can even trigger an Event generation, either by the same Channel or a

different one. Similar to Event, the Action class may be subclassed to specific actions. Again,

Action definitions are not bound to a Channel, because different channels can support the

same actions; e.g. Linkedin and Facebook channels provide the ChangeProfilePicture action.

The class Rule defines an automation, i.e. an ECA rule triggered by an Event that pro-

duces the execution of an Action. Rules define particular interconnections between instances

of the Event and Action classes transferring information from the event to the action. The

aim of EWE’s Rule is describing automations, giving information that may be used to com-

pare automations, to analyse datasets of automations, etcetera. Thus, Rule class does not

32

3.3. EVENTED WEB ONTOLOGY (EWE) MODEL

provide explicit support to rule execution, it delegates this to any of the recommendations

described in Section 3.2.3, e.g., SPIN, N3 Logic or RIF.

3.3.2.2 Main Properties

In addition to the description of the main classes, we offer a list of the important properties

and the purpose of including them within the overall EWE ontology. These are hasParam-

eter, hasCategory, activeChannel, hasCreator, firesAction and triggeredByEvent.

The property hasParameter presents the parameters of an Action or an Event. Instances

of Event and Action can rarely be defined without some configuration parameters. They

differentiate each individual, e.g. the body and the sender of an EmailReceivedEvent. Each

parameter should be provided by the appropriate subPropertyOf of hasParameter. Given

the hasParameter example, the body is given by a hasBody property, and the sender by a

hasSender property both sub properties of hasParameter.

The property hasCategory indicates that a Channel, Event or Action belongs to a certain

category. An element may have more than one category. The EWE Ontology does not pro-

vide a taxonomy of channels, events, or actions; but it facilitates building that classification.

The Channel categorisation is important for channel discovery and recommendation. This

happens not only with discovery and recommendation methods based on profiling, but also

with methods based on semantic similarity. Besides, expert systems may use the channel

categorisation and help a user to find alternatives to other channels; e.g. when a channel is

not available due to geographical restrictions. The range of the hasCategory property is the

class Category, a subclass of the Concept class from the SKOS(Amini et al., 2015) ontology.

The hasActiveChannel property links users to Channel on which they have an account,

i.e. a channel they can include in the Rule definition. Combined with the category of the

channels, this information may be used to reason over the alternatives that a user may have

to a particular choice of channel.

The property hasCreator links instances of Rule to its creator, an onlineAccount from

the FOAF ontology. The authors of the rules are significant information for data analysis

purposes and recommendation systems.

The ewe:firesAction and ewe:triggeredByEvent properties link Rule instances with the

event and action instances that are related to it. They describe the rules enabling rule

comparison and analysis.

33

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

3.3.2.3 Channel characteristic dimensions properties

Apart from the features extracted using the mentioned methodology, we included several

additional properties to represent the characteristic dimensions of channels, rules and exe-

cution profiles studied in the former chapter.

The property channelType classifies the channel. Its range is the class channelType,

and according to the classification of channels made in the former chapter. There are two

individuals of class channelType: webChannel and deviceChannel.

Regarding the privacy paradigm, the property privacyType defines the privacy policy

associated to the channel which, as explained, defines the scope of the events and actions that

channel produces. With range channelPrivacy, three individuals are defined: publicChannel,

privateChannel, and privateGroupChannel.

Regarding the configuration paradigm, the property hasConfiguration defines which pa-

rameters should be provided by the user to activate the channel. Its range channelConfigu-

ration, with the properties dc:title and dc:type, and dc:description.

The property related to the configuration paradigm has already been described, the

hasParameter property, because it also appeared as a feature given by the ontology design

methodology. In this case, the domain is the union of the Event and Action classes.

There are two properties related to the communication paradigm of device channels:

communicationType and coverageRestriction. The property communicationType indicates

how is the communication with between the devices carried out, and the property cover-

ageRestriction –is present– sets the restrictions of coverage of channel activity. In both

cases, the range of the property is not defined because these are declarative properties to

describe the communication type and coverage. This ontology does not intend to create a

categorisation of coverage types o communication types. Those grounding features, such as

the communication protocol or frequency band, should be described by a different grounding

oriented ontology.

Regarding the discovery paradigm, the isDiscoverable property is included to indicate

whether the channel include any mechanism that allows the TAS to discover it –thus, it is

a boolean datatype property. The description of the discovery methods should be modelled

with a different ontology.

Finally, the execution profile of the TAS is given by the hasExecutionProfile property,

whose domain is the TaskAutomationService

34

3.3. EVENTED WEB ONTOLOGY (EWE) MODEL

Figure 3.2: External ontologies mapping.

3.3.3 Mappings from external ontologies in EWE

EWE has been developed based on a number of existing classes and properties from external

ontologies as possible in the spirit of the linked data philosophy. Hence, EWE enhances

search, interoperability and linking data because several tools and search engines are capable

of using those vocabularies. The connections between EWE and external ontologies are

summarised in Figure 3.2 and detailed below.

• SPIN: the contribution of SPIN to EWE is essential, since rule grounding is done by

means of sp:Construct instances. The implementation of SPIN rules as members of

EWE rules connects Events to Actions in the same way they are connected in TASs.

• FOAF: EWE User class inherits from FOAF onlineAccount and is connected by an

account to a FOAF Agent. This assures better interoperability and search operation,

as well as enhances profiling by allowing using external context.

• TAGS: the TAGS ontology provides a common definition of tags. This ontology can

extract information from third party sources and also can provide smart connection

and recommendations depending on the tags set. The taggedWithTag property, from

the TAGS ontology, links rules to each of their associated tags. This is thus another

method for classifying Rules.

• SKOS: SKOS is proposed for representing structured vocabularies for the Semantic

Web. Several tools search and reason using the relations they define. The EWE

concept Category inherits from the SKOS Concept.

• dcterms: most of the administrative properties of every class of EWE are defined

according to DCMI Metadata Terms (dcterms) metadata elements. This improves the

35

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

searches of elements of the ontology.

3.3.4 Examples of EWE use

In order to give a better idea of how specific Channels, Events and Actions are defined

using EWE; we show a short excerpt of a Gmail channel definition in Listing 3.2. The

channel represents the Gmail channel implemented in a particular TAS (e.g. Gmail channel

from Ifttt1). We use the punning mechanism of OWL2 (Ruttenberg et al., 2008) to attach

properties to that channel. As a result, the description explicitly states that the channel

may generate events of a particular class (ewe-mail:NewEmail) and provides a particular

action for them (ewe-mail:SendEmail). This is useful to analyse and compare data from

different TASs. The example also includes a few related hasParameter subproperties.

Listing 3.2: Channel definition excerpt.

ewe-mail:Gmail a owl:Class ;

rdfs:subClassOf ewe:Channel ;

rdfs:type ewe:Channel ;

dcterms:title "Gmail"^^xsd:string ;

dcterms:description "Webmail by Google"^^xsd:string ;

ewe:generatesEvent ewe-mail:NewEmail ;

ewe:hasAction ewe-mail:SendEmail .

ewe-mail:NewEmail a owl:Class ;

rdfs:subClassOf ewe:Event ;

dcterms:title "Any new email in inbox"^^xsd:string ;

dcterms:description "New email arrives in Gmail"^^xsd:string .

ewe-mail:SendEmail a owl:Class ;

rdfs:subClassOf ewe:Action ;

dcterms:title "Send an email"^^xsd:string ;

dcterms:description "Send an email from Gmail"^^xsd:string .

ewe-props:hasBody rdfs:subPropertyOf :hasParameter.

ewe-props:hasSender rdfs:subPropertyOf :hasParameter.

ewe-props:hasToAddress rdfs:subPropertyOf :hasParameter.

ewe-props:hasSubject rdfs:subPropertyOf :hasParameter.

An example of event and action instances with grounded parameters, which are based

on the concepts defined in the listing given above, is presented in Listing 3.3.

1Ifttt Gmail channel website: http://ifttt.com/gmail.

36

3.3. EVENTED WEB ONTOLOGY (EWE) MODEL

Listing 3.3: Event and action instances.

:new-email#1 a ewe-mail:NewEmail ;

ewe-props:hasSubject "the email subject"^^xsd:string ;

ewe-props:hasBody "the email body"^^xsd:string ;

ewe-props:hasSender "from-this@email.com"^^xsd:string .

:send-email#1 a ewe-mail:SendEmail ;

ewe-props:hasSubject "the email subject"^^xsd:string ;

ewe-props:hasBody "the email body"^^xsd:string ;

ewe-props:hasToAddres "to-this@email.com"^^xsd:string .

Similarly, automation rules are described using the punning mechanism to attach classes

to properties of Rule instances. In the example shown in Listing 3.4, the rule instance

describes a rule that is triggered by events from class NewEmail and produces actions of class

SendChatMessage, in that example the implementation of the rule is given using the spin:rule

property. However, this is not part of the EWE ontology, and so other rule description

vocabularies may have been used.

Listing 3.4: Rule instance.

:email-alarm#1 a ewe:Rule ;

dcterms:title "Text me when I receive an important email"^xsd:string ;

ewe:triggeredByEvent ewe-mail:NewEmail ;

ewe:firesAction ewe-chat:SendChatMessage ;

spin:rule :rule#1 .

As explained, rules are conveniently defined as SPARQL construct queries, and then

stored as SPIN objects in RDF format. Since SPIN syntax is more complex than SPARQL

syntax, for the sake of readability, we present the implementation of the rule from Listing 3.4

in SPARQL format, shown in Listing 3.5. The example shows a rule that is triggered every

time an event of type NewEmail happens. Events are filtered so only those with the label

‘important’ are considered. Then, a SendChatMessage action is generated. The message sent

contains the email address captured from the incoming event. As seen, the event-condition

part of the ECA rule is given by the WHERE clause and the FILTER function. The action

part is given by the CONSTRUCT clause, using the variables bound in the WHERE clause.

Listing 3.5: Rule in SPARQL form.

CONSTRUCT {

?action a ewe-chat:SendChatMessage .

?action ewe-props:message ?msg .

}

37

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

WHERE {

?event a ewe-mail:NewEmail .

?event ewe-mail:FromAddress ?fromAd .

BIND (fn:concat("Important message from: ", ?fromAd) AS ?msg) .

FILTER {

?event ewe-props:haslabel "important"

}

}

The rule of the example does not restrict the incoming event to be of a particular

Channel. It will be triggered by events of the appropriate type regardless of what channels

generates them: the Gmail channel, the Yahoo channel, or any other. Therefore, EWE

allows defining rules where the Channels, Events, and Actions involved are not bound. This

example illustrates how EWE enables a new kind of rule, looser than the classical rules

defined by the TASs explored in the related works section.

3.4 A prototype of a semantic TAS with EWE

This section illustrates the use of EWE to implement a semantic TAS which enables rea-

soning over LOD. For that purpose, we have developed a prototype of a TAS with several

channels integrated within the platform. These channels generate events that are described

following the EWE model and processed by the engines using SPIN rules. This section also

contributes to give the reader an explanation of i) how events are distributed in a semantic

TAS based on EWE, ii) how Actuators and Web Services handle actions, and iii) how the

Rule Engine processes incoming events and fires rules. Nevertheless, the prototype described

in this section is shown as a use case, and it is not intended to be an implementation of the

reference architecture shown in the former chapter, nor to achieve great results in terms of

performance, scalability, etcetera.

3.4.1 Prototype architecture and operation

Figure 3.3 presents the general architecture of the prototype whose components are dis-

tributed in three layers. The generation layer shows that events may come from either Web

Services or Sensors, thus there are channels of different nature. Since several processing

modules take part in the execution flow, and in order to support other modules to be in-

cluded in the future, a transportation layer is needed to distribute these events among them.

Engines in the processing layer are in charge of executing the rules when their triggers ap-

38

3.4. A PROTOTYPE OF A SEMANTIC TAS WITH EWE

Service API AdaptersSensor Network

Web ServicesSensors / Actuators

Generation
Layer

Transportation
Layer

Processing
Layer

MOM

Semantic Rule Engine
Linked

Open Data
Cloud

Figure 3.3: General architecture of TAS implementation with EWE support.

pear. In particular, the Semantic Rule Engine is able to connect to SPARQL endpoint of

LOD cloud and to use that information to evaluate the rule conditions.

When Web Services and Sensors generate events, the Service API Adapters or the Sensor

Network, respectively, generate a message that is pushed to the Message Oriented Middle-

ware (MOM) in the transportation layer. A payload with the RDF representation of the

event has to be included in these messages. The MOM is in charge of distributing the mes-

sages to the subscribers according the publish-subscribe pattern (Eugster et al., 2003). Thus,

the Semantic Rule Engine in the processing layer subscribes to the event messages from the

MOM. In the same manner, the Sensor Network and the Service API Adapters subscribe to

the action messages. When these two modules receive the action messages from the MOM,

they forward these messages to the Actuators or the Web Services, respectively, which are

responsible for interpreting and executing the actions. This communication based on mes-

sages gives loose coupling to the architecture and fits the Semantic Web vision (Berners-Lee

et al., 2001).

The Semantic Rule Engine is responsible for: processing the incoming event messages;

executing the rules; and discarding the messages once they have been processed to avoid

executing the same rule multiple times for the same event. In our prototype, which employs

the SPIN notation and a SPARQL engine, the manner that rules are processed relies on

the fact that these rules can be expressed as SPARQL queries (see example in Listing 3.5).

39

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

Figure 3.4: Use case example event model with linked-data.

These SPARQL queries are run every time an event is received in the SPARQL engine.

After executing the rules in their SPARQL query form, the new actions constructed by

these queries are pushed to the MOM. Then the MOM can deliver these actions to the

subscribers, e.g. Sensor Networks and Service API Adapters.

In order to provide a complete overview of how an event is generated, processed by the

rule engine, and the constructed action is executed; we illustrate all the steps for processing

the rule “Whenever I receive an email labelled as important, text me a notice” shown in List-

ing 3.5. First of all, a user (e.g. Ann) should have created this rule. Then, the rule is loaded

in the Semantic Rule Engine. When Ann receives an email in her Gmail account, the Ser-

vice API Adapter, which is connected to the Gmail service, generates an ewe-mail:NewEmail

event message that is pushed to the MOM. Then, the MOM distributes the new message

to the subscribers. In our case, the Semantic Rule Engine receives the message, extracts

the RDF payload, and executes the rule. In case the email has the label ‘important’, a

new action message will be constructed (ewe:NewChatMessage action) and pushed to the

MOM. Consequently, the MOM distributes the new action message to the subscribers. In

the example, the Service API Adapter receives the message, extracts the service parame-

ters, and sends a request to the Hangout Service API, which texts Ann informing about the

important email just received.

40

3.4. A PROTOTYPE OF A SEMANTIC TAS WITH EWE

Event generator (channel) Enhancements Vocabularies

Blogger, ESPN, Evernote Post NLU. Emotion analysis sioc, onyx, sport

Delicious, Evernote Tagging and categorisation tags, skos

Facebook, Linkedin, G+ Unified account information foaf, vcard, curric

Foursquare, Life360 Geolocation information geo

Last.fm, SoundCloud Track recognition. Music emotions music, af, onyx

Wemo, SmartThings Sensor information, deployment loc. ssn

Table 3.1: Examples of vocabularies that may be used to enhance events.

3.4.2 Semantic use case scenario

Based on this general architecture for a prototype, we have modelled a scenario about

meeting arrangement that takes advantage of the semantic capabilities of EWE. Figure 3.4

shows an instance of a meeting event similar to those the semantic engine work with. As

seen in the figure, some of the classes and instances are labelled as Enhanced (according to

the legend). We refer to types, properties and instances that are not directly provided by

the event generator (the Web Services or Sensors), but obtained from semantic endpoints

(from the LOD cloud). The information retrieved is sometimes several steps away from that

information initially given. For instance, with the email address of the attendees, we can

derive: their social ids described with the FOAF ontology; then their Linkedin account; and,

then their public profile. Similarly, the location of the meeting, its agenda, or the project

to which the meeting is related; may be retrieved from the semantic endpoints.

There are numerous vocabularies available that we can use to describe different types

of events as well as related information that may be derived from the data LOD cloud. In

Table 3.1, we present several channels that are available in Ifttt. For each of them, we suggest

how the information provided by EWE may enhance the TAS as well as which mappings

could be used.

This enables the definition of rules that include clauses in the condition part that are not

directly related to the information given within the event. We could define a rule that reads

“When I confirm the attendance to a meeting, add all other attendees to linkedin as contacts”.

In this case, the Semantic Engine would have to browse the LOD to get the foaf:Agent

41

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

of the attendees, and in case they have a foaf:OnlineAccount that describes a Linkedin

account, obtain the information needed to add them as contacts. This is an enlightening

example of reasoning over large scale data outside the platform which is possible thanks to

the contribution presented in this chapter, the Evented WEb ontology (EWE) model. The

implementation of the semantic TAS used in this section is available online (Crespo et al.,

2014).

3.5 EWE evaluation

In this section, we describe the evaluation process that was carried out to show how EWE

success at modelling some of the TASs revised in the related works section while the short-

comings of these approaches are addressed.

According to Brank et al. (Brank et al., 2005), when evaluating an ontology is more

practical to focus the evaluation of different levels of it separately. They identify several levels

—lexical, hierarchical, semantic, application, etcetera— and determine which evaluation

approaches are more suitable for evaluating each level. In general, selecting which levels

should be evaluated depends on the nature of the ontology itself. In our case, the EWE

ontology was designed to describe all relevant features from existing TASs. Altogether, those

TASs form a wide domain to be modelled, which possesses important differences between

their feature sets. Hence, the evaluation described will focus on the lexical level. Besides, in

Section 3.4 we show an architecture based on EWE to improve the capabilities of a typical

task automation scenario. Thus, that use case addresses the application level evaluation.

Since there is no golden standard to compare with, a data-driven evaluation was selected.

To do so, we first analysed a set of selected TASs and extracted their main features to define

a corpus; then, we define and apply metrics to get the results from the corpus.

3.5.1 Feature extraction

The feature extraction process consists of the formalisation of a conceptual model as a list

of features. Then, we will use those extracted features to compile the corpus to use. In the

process, we thoroughly analysed Ifttt, Zapier, on{x}, and Tasker, to obtain four theoretical

models that represent them. Ifttt and Zapier were included because they have many features

in common with most of the TASs we analysed in Section 2.4, but Tasker and on{x} were

also considered because they have many unique features.

We capture the feature list of each TAS by applying Algorithm 1 to the corresponding

42

3.5. EWE EVALUATION

Algorithm 1 Feature extraction process.
Data: Conceptual model of the Task Automation Service

Result: Formal list of features related to the Task Automation Service

foreach Concept in Model do
addFeature: ∃ Concept

foreach Property of Concept do
addFeature: hasProperty(Concept, Property)

end

foreach Relationship of Concept do
addFeature: hasRelation(Concept, Relationship)

foreach Restriction of Relationship do
addFeature: restriction(Concept, Relationship, Restriction)

end

end

end

conceptual model. As it shows, we considered features of four types: concepts, properties,

relationships and their restrictions. A sample of the feature extraction process outcome is

shown in Table 3.2. The summary of the results of the process carried out with the four

TASs selected is also presented in Table 3.3.

With the whole list of features extracted, we compile the corpus to use in the evaluation.

The list of features extracted from each TAS is modelled as a logical vector where each

position represents a feature from the corpus: ‘1’ or ‘0’ on a position means that the feature

is in the TAS or is not included, respectively.

Tj = (f1, f2, ..., fn), fn ∈ {0, 1} (3.1)

The EWE ontology is also represented as a logical vector in order to apply the metrics

as explained below.

3.5.2 Running the evaluation

We use the coverage and accuracy functions to the measure of the quality of the ontology.

Coverage measures the spread of the ontology: the more features included, the greater the

coverage. We also use the accuracy function, to keep the ontology as sharp and concise as

possible. Both of these are in a trade-off between embracing many features, and perfectly

fitting the corpus.

43

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

Feature Type

∃ Rule Concept

hasProperty(Rule, title) Property

hasProperty(Rule, dateCreation) Property

hasProperty(Rule, timesUsed) Property

hasRelation(Rule, tagged) Relation

restriction(Rule, tagged, range(Tag)) Restriction

hasRelation(Rule, hasCreator) Relation

restriction(Rule, hasCreator, range(User)) Restriction

hasRelation(Rule, triggeredBy) Relation

restriction(Rule, triggeredBy, range(Event)) Restriction

restriction(Rule, triggeredBy, maxCardinality(1)) Restriction

Table 3.2: List of features extracted from Ifttt rules model.

Feature type Ifttt Zapier Tasker On{x}

Concepts 11 14 16 21

Relations 12 24 18 26

Properties 22 13 30 36

Restrictions 31 37 32 40

Total 76 88 96 123

Table 3.3: Feature extraction process outcome.

44

3.5. EWE EVALUATION

Target Coverage Accuracy

Ifttt 0.96 0.91

Zapier 0.92 0.84

on{x} 0.42 0.38

Tasker 0.51 0.48

Table 3.4: Coverage and accuracy results for the EWE ontology.

Coverage describes the range of relevant features from the domain in use that are defined

in the ontology. Currently, the state of the art has different ways for evaluating the coverage

of an ontology over a knowledge domain. The straightforward approach is measuring the size

of the ontology, i.e. counting classes. This can be sufficient for a quantitative view (Ruan

and Yang, 2010), even when it lacks the qualitative aspect (Ouyang et al., 2011).

Therefore, coverage is defined as the proportion of features from the TAS that are defined

in the ontology. With T being the TAS and O the ontology:

Coverage(O, T) = Dim(O ∩ T)
Dim(T)

(3.2)

Accuracy is defined as the Jaccard similarity (Jaccard, 1901).

Accuracy(O, T) = Dim(O ∩ T)
Dim(O ∪ T)

(3.3)

We introduced the accuracy metric to keep the ontology as tightly suited to the corpus

as possible, i.e. as simple and useful as possible. If the ontology embraces too many features,

it becomes huge, too complex, and thus hard to use.

The results of the process are generated using formula (3.2) and formula (3.3), and are

summarised in Table 3.4. As anticipated, the results are favourable to Ifttt and Zapier,

which shows our modelling efforts to focus on the common TASs features. Including most

of the features from Tasker or on{x} in EWE would have increased their coverage measure

at a cost of lowering the accuracy metric of Ifttt and Zapier.

Then, we undertook a scrapping process to extract data of channels, events, actions and

rules from the websites of Ifttt, Zapier, on{x} and Tasker. In this case, the data is extracted

from the application itself. The results showed 55,914 rules connecting 718 events to 910

45

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

Class / Individuals Ifttt Zapier on{x} Tasker

Rule 80353 31501 39 -

Channel 195 521 - 22

Event 725 1532 70 72

Action 357 1046 352 218

Table 3.5: Scraping process results.

actions that were provided by 222 different channels. To extract the data from the websites,

we used Scrappy (Fernández-Villamor et al., 2012), since it returns data in RDF and can be

instructed to format it according to EWE.

The crawling, made during the last quarter of 2015, obtained the results that are sum-

marised in Table 3.5. Although the four TASs studied are similar, the results show great

differences in the ratios between channels, events, and actions. Ifttt and Zapier, both web

platforms, present around two actions per channel on average and a higher ratio of events.

Tasker and on{x}, both smartphone apps, show opposite results. They present a greater

number of actions than events: three times the number of events for Tasker, and five times

for on{x}. This is because their control over the device allows them to provide many actions.

Finally, the scraped data were loaded into a SPARQL endpoint in order to make them

available as a directory of channels, events and actions available in several TASs. We defined

a set of meaningful queries that a common user would make in order to retrieve information

about the channels available, the events of a particular type, etcetera. We coded those

queries using SPARQL and executed them. Table 3.6 gathers some of them together with

their execution outcomes.

These experiments show that the EWE ontology this chapter contributes with effectively

models the TAS domain; i.e. the classes and properties defined by EWE are suitable for

describing TAS channels, actions, events and rules. This conclusion is not only supported by

the metric results shown in Table 3.4, but also by the process of automatically extracting data

from TASs websites and applications. This process is described in detail in Section 4.3.1

in Chapter 4 2. Finally, the scenario described around the architecture and prototype

proposed in Section 3.4 supports the hypothesis that semantic TASs address the identified

2Author’s note: the instance extraction is an essential part of ontology learning process, so we described

it there for convenience

46

3.5. EWE EVALUATION

Query SPARQL Query Results

How many channels are

supported by each TAS?

SELECT ?tas (COUNT(?serv) AS ?channels)

WHERE {

?serv rdfs:subClassOf ewe:Channel .

?serv ewe:supportedBy ?tas

}

GROUP BY ?tas

Zapier (141), Tasker

(22), Ifttt (65)

Which channel categories

are defined?

SELECT DISTINCT ?category

WHERE {

?serv rdfs:subClassOf ewe:Channel .

?serv ewe:hasCategory ?category

}

Event Management,

CRM, Phone, De-

veloper Tools, Email

Marketing, Social

and 9 more

Which channels are

categorised as social?

SELECT ?servName

WHERE {

?serv rdfs:subClassOf ewe:Channel .

?serv ewe:hasCategory ewe:Social .

?serv dcterms:title ?servName

}

Wordpress, buffer,

chatter, Facebook,

Twitter, and 7 more

How many actions can be

executed by means of the

Tasker TAS?

SELECT (COUNT(?act) AS ?actsProvided)

WHERE {

?chan ewe:hasAction ?act .

?chan ewe:supportedBy ewe:Tasker

}

204 actions

How many rules are

triggered by Gmail

channel events?

SELECT (COUNT(?rule) AS ?ruleCount)

WHERE {

?srule rdf:type ewe:Rule .

?srule ewe:triggeredByEvent ?Event .

ewe:Gmail ewe:generatesEvent ?Event .

}

GROUP BY ?rule

7240 rules

Table 3.6: SPARQL example queries using the EWE ontology.

47

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

TASs drawbacks.

48

3.6. DISCUSSION AND OUTLOOK

3.6 Discussion and Outlook

The EWE ontology presented in this chapter constitutes a specification of a reference model

for describing TAS. As a semantic model, it presents several benefits ranging from providing

better communication of concepts around TASs to enabling reasoning over LOD capabilities

for the automation rules. It establishes the foundations of building a semantic TAS.

This chapter central contribution is the definition of the Evented WEb Ontology (EWE).

EWE constitutes a specification of a reference model for describing TAS. As a semantic

model, it presents several benefits ranging from providing better communication of concepts

around TASs to enabling reasoning over LOD capabilities for the automation rules. It

establishes the foundations of a semantic TAS. The chapter introduces a realistic use case

scenario where the progress made beyond the state of the art is illustrated. Besides, it

presents an implementation of a semantic TAS with support to EWE rules. This prototype

employs SPARQL Inferencing Notation (SPIN) to describe Event-Condition-Action (ECA)

rules. Finally, the chapter exhaustively evaluates the EWE ontology proposed by using

a data-driven approach. The evaluation conclusion is that EWE effectively models four

popular commercial TASs while it addresses the shortcomings observed in them.

For sake of reproducibility, the material developed within this work, including code, is

available online for the interested reader: the EWE ontology (Coronado and Iglesias, 2015b),

and the implementation of the semantic TAS (Crespo et al., 2014).

Our main future work is to develop an agent system to assist users to configure new

rules in the semantic TAS proposed. To feed the agent system knowledge and thus to

enhance the assistance provided, a clustering method can be proposed to group channels,

events, actions and rules. This agent system may recommend related automation rules and

variations given a certain rule. Given a channel, it will bring up those similar channels

according to different criteria: frequently connected in rules, same category, similar event

and action sets, etcetera. This clustering approach can be used to infer Channel groups, as

given by some TASs. We aim to create a disambiguation method that combines channels

which are equal but described in different TASs. This method may determine which events

and actions correspond to the same purpose to merge them. The EWE ontology has to be

adapted to support this issue. Besides, some TASs providers have shown their interest in

building a tagging system for rules, as already covered by EWE. In this regard, we intend

to extract and analyse the tags when available in order to incorporate them into the expert

system knowledge.

Another important future work is the evaluation of alternative manners for passing

49

CHAPTER 3. MODELLING RULES FOR TASK AUTOMATION:
THE EVENTED WEB ONTOLOGY (EWE)

messages and their performance in the proposed TAS architecture. In this vein, to further

explore SPARQL Streaming technologies (Bolles et al., 2008; Barbieri et al., 2009) and the

feasibility of processing RDF events in real time, we will extend the prototype presented

in this chapter with the best alternative assessed. This is not required in a low rate event

scenario, as the one described in Section 3.4. Nonetheless, real time events are desirable in

case of having sensors or other high rate streams.

50

CHAPTER4
Mining TAS’s channels:

An ontology discovery approach

This chapter presents a methodology for automatic ontology learning in the context
of TAS. This methodology complements the EWE ontology, since it provides a mech-
anism to extract automatically instances of Channels and Automations from com-
mercial TAS, and proposes an algorithm to generate vocabularies derived from these
instances. Moreover, it reduces the maintenance cost of these vocabularies being an
unsupervised approach.

51

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

4.1 Introduction

The EWE ontology presented in the former chapter constitutes a specification of a reference

model for describing TAS. As a semantic model, it presents several benefits ranging from

providing better communication of concepts around TASs to enabling reasoning over LOD

capabilities for the automation rules.

One of the most immediate usages of EWE consists in describing all channels from com-

mercial TASs using the ontology. Being a semantic dataset, it allows agents and users to

make complex queries about the channels supported by each TAS, the event and actions

provided by each channel, and also to reason over them. However, in spite of their benefits,

semantic models have a high maintenance cost (Sabou et al., 2005), and given the growing

rate of the channel directories of TASs1, an automatic approach for extraction those vocab-

ularies is required. Furthermore, to fully benefit from the capabilities of semantic TAS these

vocabularies must include mappings to external vocabularies and link external resources.

The linkage process is also time consuming and in many cases repetitive.

Automatic ontology learning stands as a solution to these challenges. Being able to gen-

erate vocabularies from a dataset of instances at any domain of knowledge, ontology learning

reduces the maintenance cost, and can handle the process of linkage to external instances.

The resulting vocabularies best fit the domain they model (Sabou et al., 2005), specially

when the process is tailored to a particular domain. More generalistic approaches may be

found in the state of the art to generate new ontologies for diverse domains (Sánchez, 2012;

Wong et al., 2012; Buitelaar et al., 2005). But this is not the case of the process described

in this chapter, which focuses on reducing the maintenance cost of existing ontologies of the

TAS domain.

Therefore, this chapter proposes an ontology learning methodology in the TAS domain,

for discovering vocabularies of specific channel domains. Its main contributions are i) propos-

ing an automatic process for describing all channel information from a TASs using the EWE

ontology, and creating different mappings for concepts extracted from channels to other on-

tology concepts; ii) providing a similarity metric based on the semantic structure of channels

in combination with their linguistic similarity, and design an algorithm that computes that

metric; and iii) developing an algorithm for automatic channel ontology learning from the

extracted instances using the proposed similarity metric. As a result, a pack of channel on-

tologies were learned. With these contributions it will be feasible to port rules from a TAS

1Ifttt increased its number of supported channels from 97 to 238 between the first quarter of 2013 and

the last quarter of 2015.

52

4.2. BACKGROUND IN ONTOLOGY LEARNING

to another, to swap events or actions in automations of two compatible channels, and to

facilitate channel discovery. Beside, they support cross platform user profiling based on the

automations they use, which facilitates rule recommendations and assistance in automation

orchestration.

The remainder of this chapter is structured as follows: first, in Section 4.2 we intro-

duce the background on automatic ontology learning. Then, in Section 4.3 we describe the

methodology for ontology learning that comprises the process of extracting instances, the

metric definition used to compute channel similarity, and the algorithm for ontology learn-

ing and generation. Next, in Section 4.4 we describe the evaluation process carried out to

assess the methodology outcome. Finally, the conclusions and future work are stated in

Section 4.5.

4.2 Background in Ontology learning

Manual ontology development is time consuming and error prone, and requires an expert

in the domain of application. Moreover, since they are designed for a specific application

they are hard to reuse (Sabou et al., 2005; Shamsfard and Barforoush, 2003). To get over

these disadvantages, automatic ontology generation and ontology learning are suitable mech-

anisms to build ontologies from datasets or other domain models without any or very little

supervision. They reduce the time and effort invested in ontology development, but also

produce models that best fits their application (Sabou et al., 2005).

Ontology learning refers to extracting conceptual knowledge (represented as ontolog-

ical elements) from the input dataset or domain model, and building an ontology from

them (Shamsfard and Barforoush, 2003). It serves the purpose of supporting an ontology

engineer in the task of creating and maintaining an ontology (Cimiano et al., 2009). The

process covers several steps ranging from domain terminology extraction and concept dis-

covery to learning ontology relations and populating the ontology. Throughout this process

several technologies take part, such as Natural Language Processing (NLP), Information

retrieval, semantic web, machine learning, etc.

Ontology learning systems may be categorised according to type of data from which

they learn: there are structured, semi-structured and unstructured approaches (Hazman

et al., 2011; Cimiano et al., 2009). The central problem in learning from structured data

is to determine which pieces of structural information can provide relevant knowledge. For

instance, a database schema may be used to identify ontology concepts and their relation-

ship (Kashyap, 1999; Drumond and Girardi, 2008)

53

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

Unstructured and semi-structured ontology learning require preprocessing the input to

extract the concepts, and learn the relations and attributes. The unstructured techniques

feed from plain text, and so it constitutes the most difficult approach. They usually involve

heavy NLP, combined with statistical analysis (Sánchez and Moreno, 2004), pattern match-

ing, entity discovery (Tiddi et al., 2012) or machine learning(Cimiano and Völker, 2005).

The most common case of semi-structure ontology learning uses web pages as input. It uses

both traditional data mining and web content mining techniques to preprocess the data.

Some approaches simply use the web pages structure, while others apply NLP to refine the

structure. Then, a clustering algorithm is applied to extract the concepts and its relations.

On the other hand, highly structured data as found in databases facilitates the application

of pure machine learning techniques (Cimiano et al., 2009), or a set of rules for converting

entities, attributes and relations in the database into concepts, attributes and relations in

the ontology (Jacinto and Antunes, 2012). Likewise, semantic models and linked open data

may be used for learning new ontologies or refine existing ones (Tiddi et al., 2012).

4.3 Methodology

In this section we present the methodology we follow to learn vocabularies from the in-

formation provided in the list of channels of each TAS’s website. The process comprises

four sequential steps as shown in Figure 4.1: Semantic scraping, calculate channel similari-

ties, compute channel clusters, and generate the vocabularies. This strategy is common in

information retrieval from unstructured data (Liu et al., 2013), it consists in progressively

enhance the information until the knowledge is obtained. Throughout the rest of the section,

we will describe each step in detail.

LOD

TAS's
Website

Semantic
mapping

Channel instances
(EWE)

RDF

Semantic
scraping

Calculate
channel
similarities

Compute
channel clusters

RDF

Generate
vocabularies

LOD
mapping

Figure 4.1: Overview of the ontology learning methodology used.

54

4.3. METHODOLOGY

4.3.1 Semantic scraping of TASs websites

Fetching instances constitutes the first step in any ontology learning process. In our case, it

consists in extracting the instances from the information about the channels and automations

of each TAS’s websites, by means of a semantic scraping process. Then, in the following

steps these instances will be used to learn the ontologies by applying semantic mapping and

clustering based on their semantic similarity.

The existence of multiple commercial TASs that expose information about their chan-

nels on their web pages enables this data harvesting process. We say the information about

the channels and automations of a TAS is stored in the channel and automation directory:

the channel directory provides information about all the channels supported by a TAS, and

the automation directory provides information about all the automation rules created by its

users, using the channels from the channel directory. We targeted Ifttt and Zapier, because

they are the TASs that integrate greater number of channels, and they have their channel di-

rectories available. Zapier’s directories are available at https://zapier.com/zapbook/

and Ifttt’s channel and automation directory at ifttt.com/channels/ and https:

//ifttt.com/recipes/ respectively. With this information we populate a dataset of

channels and automations used in the process of ontology learning. It consists of a set of

semantic instances that represent all the channels and automations from the TAS’s channel

and automation directory. The instances are modelled using the EWE ontology described

in the former chapter.

In the EWE evaluation section of the former chapter (section 3.5 of chapter 3), we already

made use of this dataset and loaded it into the SPARQL endpoint that we query to show

how EWE effectively models the domain data. However, being the instance extraction an

important part of the Ontology learning process, we describe it here for convenience.

We have defined a semantic proxy layer on top of the TAS’s channel and automation

directories. For each TAS, we have defined a mapping between their HTML contents of

their channel directory and automation directory and the EWE model. An example of these

mapping is shown in Figure 4.2. It presents two snapshots of Ifttt’s and Zapier’s Web pages,

and it highlights the pieces of information used to populate the channel properties. Then

we defined several templates to export instances in EWE model to multiple formats such

as RDF, N3, or JSON-LD. To define this mapping we use scrappy (Fernández-Villamor

et al., 2012), a framework for semantically scrape web resources that lets to separate the

data model from the importers (mapping from HTML to the data model) and the exporters

(templates to export the data). By using this approach, we reduce the number of mappings

required to i) one pair mappings per TAS to transform the html in their channel directory

55

https://zapier.com/zapbook/
ifttt.com/channels/
https://ifttt.com/recipes/
https://ifttt.com/recipes/

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

http://zapier.com

http://ifttt.com

rdf:id

ewe:generatesEvent:Twitter

Zapier's channel mapper

Ifttt's channel mapper

ewe:hasAction

dcterms:title

rdf:id

dcterms:description:Twitter

ewe:generatesEvent

ewe:hasAction

Figure 4.2: Mapping for scrapping TAS channels from Ifttt and Zapier

and automation directory into the EWE model, and ii) a mapping (or template) to export

that common model to each desired format (RDF, N3, etcetera.).

The first exploratory analysis of the extracted data is summarised in Table 4.1. It

presents the number of instances extracted from each TAS, showing that Zapier integrates

many channels than Ifttt, and in consequence much more events and actions. However, the

larger number of Ifttt’s users produces more automations (rules) than Zapier’s

A deeper inspection of the event and action data, shows that Ifttt’s data contains infor-

mation about event and action parameters, while Zapier’s data do not –since that data were

not available from Zapier’s channel directory. This will stop the ontology learning process

from using Zapier’s data because the missing information about parameters is important in

the following steps of the process.

Next, we searched for the channels that are supported by both TASs –browsing the

channel directory in their websites, it may be seen that popular services such as Dropbox,

or Twitter are supported by both of them. After a quick tiding up of the channel titles, we

56

4.3. METHODOLOGY

Table 4.1: Number of instances of each type in the dataset

Instance type Ifttt Zapier Total

Channel 195 521 716

Event 725 1532 2257

Action 357 1046 1403

Rule 80353 31501 113073

discovered that 54 channels are shared by Zapier and Ifttt. This is 7.54% of the total number

of channels. However, considering the channels involved in the set of rule instances scrapped

we calculated that 49.9% of those rules use channels supported by both TAS (22.01% of the

Zapier rules and 59.33% of Ifttt rules), i.e. shared channels are much more common in

rules than the rest of the channels, and this is so because these channels are more popular

among users. These data assist our contribution of developing a common model to transfer

automation from one TAS to another, since 49.9% of the rules are liable of being transferred

between both TAS fully functional.

The taxonomies of channel categories provided by both TASs highly differ from each

other: i) Ifttt assigns each channel a single category, while Zapier tags each channel with

multiple categories, and ii) Ifttt defines 15 categories while Zapier defines 27. We run several

attempts to deduce a general taxonomy that could be applied to channels from both TAS by

simply using the categories assigned to shared channels. However, since both taxonomies are

very different and the number of shared channels is small, we obtained no successful outcome.

Nonetheless, having a general channel categorisation across different TAS is required to

assist users in creating automations, to automatically identify substitutive channels, or to

recommend channels and automations. Thus, it leads us to attempt to cluster channels

based on the similarity given by the events and actions as we describe in the following step

of the ontology learning process.

4.3.2 Calculating channel similarity

The second step consists in calculating the distances between channels that will be used by

the clustering algorithm, in the following step. To do so, we propose a method to measure

similarity between instances combining semantic structure and linguistic similarity.

Recall that according to EWE model, channels may generate events and provide actions.

57

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

Table 4.2: Most frequent parameter titles

Param title count Param title count

Title 155 Tags 92

CreatedAt 151 OccurredAt 63

URL 103 DeviceName 56

Which device? 102 Message 44

Description 95 Caption 37

These events and actions define the structure of the channel, which may be seen as a set

of actions and actions. Therefore, the semantic similarity between two channels is given by

their events and actions. Likewise, events and actions (for sake of readability we will refer

to them as channel elements) have a particular structure that is defined by their parameters

(e.g. an event titled “new email received” has three output parameters with the information

about the email received: subject, body, and sender). Hence, the semantic similarity between

two channel elements is given by their parameters.

On the other hand, Ifttt’s and Zapier’s channel directory designers have been consistent

in naming events, actions and also parameters. As a consequence, elements that have the

same title are expected to have the same effect. For instance, both Wordpress and Blogger

have an action titled “Create new post”, and as expected, in both cases the effect is publishing

a post (in Wordpress and Blogger respectively). This consistency in the naming policy also

enables using the title of channel elements and parameters to measure (or approximate)

its similarity. In the particular case of parameters, harvested data from the former section

(section 4.3.1) shows that there is a relatively small set of parameter names that is reused

along the list of events and channels. In Table 4.2, the most frequent parameter names are

listed.

Considering the example of Blogger’s event “New post labelled” and Tumblr’s event “New

post tagged”, both taken from Ifttt channel directory. Both titles are almost synonyms

(as tag and label are), so its semantic similarity should be close to a full match. In a

further inspection considering the parameters of each event, Blogger’s event has PostTitle,

PostUrl, PostContent, and Tags and Tumblr’s event has the same param-set but Tags, that

is exchanged for Labels. The pair-wise semantic similarity of these parameters is shown in

Table 4.3. Again, its structure is almost identical, so its structural similarity should also be

a close match.

58

4.3. METHODOLOGY

Table 4.3: Similarity score between parameters of the example.

PostTitle PostUrl PostContent Labels

PostTitle 1 0.13 0.17 0

PostUrl 0.13 1 0.09 0

PostContent 0.17 0.09 1 0

Tags 0 0 0 0.93

Within these two considerations about the structure of the instances, and the naming

policy, we will propose a similarity metric that takes both into account. In particular,

• the similarity between two channels is given by the semantic similarity of their channel

elements,

• the similarity between two channel elements is given by a combination of the semantic

similarity of their parameter sets, and the linguistic similarity of their titles,

• and the similarity between two parameters is the linguistic similarity of their titles

(because parameters do not have structure)

Our first attempt to use a metric that considers this structural similarity is using Jaccard

similarity (Jaccard, 1901).

Jaccard(A,B) =
|A ∩B|
|A ∪B|

(4.1)

As so, the intersection of sets is the number of elements that share in common (those

that are identical), and the union is the total number of distinct elements. However, that

approach should be corrected in our case, because there is not a binary comparison between

elements, i.e. channel elements are not always equals or not equals, they can also be similar

with a certain score. Back to the same example of Blogger’s and Tumblr’s events. According

to binary comparison of elements, parameters “labels” and “tags” are not strictly equals, so

they are different elements. In consequence, the similarity score of those two events would

be 0.6, value that is far from what it would be expected after what have been formerly

discussed.

We propose to correct the way the intersection is calculated, to take into consideration

the similarity score of the elements in each set. It consists in accumulating the maximum

similarity score between elements of the two sets.

59

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

Figure 4.3: Comparison of Jaccard similarity score and its corrected version.

Jaccardcorr(A,B) =
max_sim_acc(A,B)

|A|+ |B| −max_sim_acc(A,B)
(4.2)

With this correction, and using the similarity values shown in Table 4.3 the value of the

accumulated maximum similarity (max_sim_acc) between both element is 3.93, and so

the new similarity is 0.96, almost a full match. As shown in Fig. 4.3, where the similarity

between all events and actions from the dataset is plotted, the improvement of similarity

score in some cases is up to 0.6 points. The implementation of this function, given by the

Algorithm 2, searches for pairs of elements from both sets with the maximum similarity.

Once a pair is found, they are remove so they cannot match any other element.

Algorithm 2 max_sim_acc
Data: E1, E2 sets of comparable elements / |E1| < |E2|
metric similarity metric to use

Result: acc_sim: accumulated similarity between elements in both sets

acc_sim = 0

foreach elem in E1 do
elem2, sim = max_sim(metric, elem, E2)

elem3, sim = max_sim(metric, elem2, E1)

if elem == elem3 then
E1 = E1 r {elem}
E2 = E2 r {elem2}
acc_sim + = sim

end

60

4.3. METHODOLOGY

Finally, being able to calculate the similarity of channel elements, we can apply the

same metric to measure channel similarity. As an outcome, we obtained two tables, i) with

the similarity between all channel elements (events and actions separated), and ii) with the

similarity of all channels in the dataset. We propose a combination of both, linguistic and

structural similarities to compute the element distance tables and channel distance table.

The parameter α is used to tune up the weight of each similarity type.

Sim(A,B) = α · Simling(A,B) + (1− α) · Simstruct(A,B)

0 6 α 6 1
(4.3)

Nonetheless, it is important to point out that this similarity metric has one major lim-

itation: it depends on the linguistic similarity of the element’s title, which is subject to

arbitrary decision of external agents.

Similarity tables contain the similarity measure between each pain of elements in the

table. Using a pivot transformation, similarity tables may be seen as a collection of similarity

measures between elements. Similarity tables are built using the Algorithm 3, which is based

on the former assumption2.

Algorithm 3 Similarity table compile algorithm
Data: Elems, set of all elements to compare

α control parameter

Result: table Pair-wise similarity between elements

table = []

foreach elem1 in Elems do

foreach elem2 in Elems::tail do
sim = α · Simling(elem1, elem2) + (1− α) · Simstruct(elem1, elem2)

table.add(elem1, elem2, sim)
end

end

We calculate the element distance table with α = 0.5, to give equal weight to both com-

ponents of the similarity measure. This value has been determined in a heuristic inspection

using a subset of the channel dataset. A more formal approach to calculate this value is

suggested in the future work of this chapter. The channel distance table is calculated with

α = 0 because using the syntactic similarity between channels has no sense (channel names
2For brevity, it uses the expression :: tail to address the set of elements that have not yet been processed

by the outer loop

61

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

are not descriptive). The information in this table may be used to feed recommender sys-

tems that suggest channels according to their similarity, or to select substitutive actions and

events when a channel is not available. Moreover, in the following steps we will follow this

approach to first compute the clusters, and then discover the ontologies.

Recall that, as explained in the former section, the channel dataset does not have in-

formation about elements of Zapier’s channels. Therefore, it is not possible to compute the

similarity of Zapier’s channels, and include them on the similarity table. For the rest of the

process, only Ifttt data will be used.

4.3.3 Compute channel clusters

The third step consists in computing the channel clusters using the similarity metric, and the

similarity tables described in the former step. Each cluster is defined by a set of individuals

(the channels) and a set of features that characterise the cluster (the events and actions).

In the next step, each cluster will be exported as an ontology using these individuals and

features.

We filter the channel similarity table to create a list of all channel pairs with a similarity

greater than a threshold Θch. For channels pair, we extract the elements they share, and

for each of them, we check if there exists a cluster that already has that element among its

features. If so, we add the channels to the cluster. Then, all elements that did not match

are added as features to the same cluster. However, in the case the channels had been added

to more than one cluster (usually when the considered channels share too many elements),

those elements are discarded. Finally, in case the channels were not added to any existing

channel, we define a new cluster with the elements they share as features. The process is

formalised by Algorithm 4.

This strategy has a few advantages from other clustering approaches: i) it does not

require the number of cluster a priori, ii) individuals that do not match any cluster are left

unclustered, iii) individuals may belong to more than one cluster, iv) each cluster provides

the features that support that cluster, and v) the algorithm accepts initial clusters, so that

when the data from the channel dataset is updated the clusters can be updated too without

risk of generating different clusters in each execution.

The clustering process with channels scrapped from Ifttt and a value of Θch = 0.90, split

62 of the 195 channels into 22 clusters, leaving 133 channels unassigned to any cluster. The

average size (number of individuals) of the clusters is 3.26 channel, and the average number

of features per channel 4.13. We selected a value of Θch = 0.90 because it is the value at

62

4.3. METHODOLOGY

Algorithm 4 Associative clustering
Data: List of channel pairs with the elements they share

Result: Set of clusters with information about the individuals and the features that define

the cluster

clusters = []

foreach ch1, ch2 in channel_table_row do
temp_clusters = []

loose_elems = []

shared_elems = extract_shared_elems(ch1, ch2)

foreach elem in shared_elems do

if elem in clusters.any then
cluster = clusters.get_cluster_with(elem)

cluster.add([ch1, ch2])

temp_clusters.add(cluster)
else

loose_elems.add(elem)
end

if temp_clusters.size == 1 then

foreach elem in loose_elems do
temp_clusters.get().add_feature(elem)

end

else if temp_clusters.size == 0 then
cluster = new Cluster([ch1,ch2], shared_elems)

clusters.add(cluster)
end

63

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

which function between the size of the table and Θ has an elbow. A summary of the resulting

clusters is shown in table 4.4.

As shown, the developed algorithm creates small clusters compared to the number of

available items. In particular, more than half the clusters contain only two elements. This

behaviour was a design criteria, i.e. finding pairs of channels with meaningful relations is the

pursued outcome, since the clustering purpose is to discover relations among channels that

will be exported into the new ontologies. We will deeply discuss these data in the evaluation

(section 4.4) where we will also assess the sense of these clusters.

Table 4.4: Overview of the cluster sizes, number of features and mean similarity between

channels of the clustering outcome with Ifttt data.

cluster size features similarity cluster size features similarity

0 5 10 0.3110 12 5 2 1.0000

1 6 5 0.2950 13 2 1 0.6187

2 7 15 0.2230 14 6 7 0.3045

3 2 1 0.6455 15 2 3 1.0000

4 2 1 0.6568 16 6 7 0.3874

5 5 8 0.5902 17 2 2 1.0000

6 4 2 0.4105 18 3 8 0.5019

7 2 2 0.5367 19 2 2 0.6421

8 2 2 0.5655 20 2 4 0.7920

9 2 2 0.5410 21 2 6 0.7142

10 2 2 0.7708 22 2 1 0.6363

11 2 2 0.7165

4.3.4 Generate vocabularies

Finally, the clusters are used to generate the vocabularies by means of templates to export the

ontology in N3 or RDF/XML formats. Each vocabulary contains a main class representing

the channel that aggregates the properties of the cluster channels. For instance, in the case

of a cluster that contains blogging related channels like Wordpress, Tumbler or Blogger,

it would be the blogging:BlogChannel class. Each vocabulary also provides a set of classes

64

4.3. METHODOLOGY

that represent the events and actions that the cluster channels share. Carrying on with

the same example, Wordpress, Tumbler and Blogger share the actions with title “Create

a post” and “Create a photo post”, so the vocabulary includes class definitions for actions

blogging:CreateAPost and CreateAPhoyoPost. Listing 4.1 shows an excerpt of the blogging

ontology used in the example.

Listing 4.1: Excerpt of the blogging ontology learnt.

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/> .

@prefix blogging: <http://gsi.dit.upm.es/ontologies/ewe/blogging/ns/> .

@prefix ifttt: <http://ifttt.com/channels/> .

Channel definition

blogging:BlogChannel a owl:Class ;

rdfs:label "BlogChannel"@en ;

rdfs:subClassOf ewe:Channel .

{ ?channel a ifttt:Wordpress} => { ?channel a blogging:BlogChannel } .

{ ?channel a ifttt:Tumblr} => { ?channel a blogging:BlogChannel } .

{ ?channel a ifttt:Blogger} => { ?channel a blogging:BlogChannel } .

Events definition

blogging:NewBlogPost a owl:Class ;

rdfs:label "New blog post"@en ;

rdfs:comment "A new blog post was created"@en ;

rdfs:comment "Fired with new posts"@en ;

rdfs:subclassOf ewe:Event ;

ewe:generatedBy blogging:BlogChannel .

{ ?event a ifttt:NewBlogPost } => { ?event a blogging:NewBlogPost } .

{ ?event a blogging:NewBlogPost ; ewe:generatedBy ?channel }

=>

{ ?channel a blogging:BlogChannel}

[...]

Actions definition

blogging:CreateAPost a owl:Class ;

rdfs:label "Create a Post"@en ;

rdfs:comment "Create a regular post"@en ;

rdfs:subclassOf ewe:Action ;

ewe:generatedBy blogging:BlogChannel .

{ ?action a ifttt:CreateAPost } => { ?action a blogging:CreateAPost } .

{ ?action a blogging:CreateAPost ; ewe:providedBy ?channel }

65

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

=>

{ ?channel a blogging:BlogChannel}

[...]

In addition to the classes, each vocabulary contains a set of assertions written in N3 (Berners-

Lee and Connolly, 2011)3 to match instances of the original classes with the new classes in the

vocabulary. In the assertions shown in the Listing 4.1, instances of classes ifttt:Wordpress,

ifttt:Tumblr, and ifttt:Blogger are set to be of type blogging:BlogChannel. And a similar

process is applied to the events and actions. Moreover, it also includes a rule to indicate

that the channel that generates the events and actions of this vocabulary must be a blog-

ging:BlogChannel.

By means of these assertions, semantic TASs and other applications may benefit from

these vocabularies, even when the instances the work with are not annotated using these vo-

cabularies, because they would be inferred. For instance, when a software agent is extracting

the information from a semantic TAS that exposes its channel directory using EWE but it

does not include any other vocabulary. The agent extracts the instances but needs extra se-

mantic information. Using this methodology, the vocabularies are automatically generated,

and the previously extracted instances are enhanced, once the inferences are performed.

The vocabularies also provide mappings to external resources in the LOD cloud. For

instance, the posts generated by actions from the BloggingChannel are of type sioc:Post,

and have the properties of the SIOC ontology (Berrueta et al., 2010). This is also performed

using additional assertions as shown in Listing 4.2. There, events generated by instances

of class blogging:BlogChannel are annotated using the properties dc:title, sioc:content and

sioc:topic. With these rules we are overloading the instances to provide as much semantic

information as possible. The mappings to the external vocabularies are extracted from the

Linked Open Vocabularies (LOV) database, using the provided API4.

Listing 4.2: Example of property mapping in the blogging ontology learnt.

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/> .

@prefix blogging: <http://gsi.dit.upm.es/ontologies/ewe/blogging/ns/> .

@prefix ifttt: <http://ifttt.com/channels/> .

@prefix sioc: <http://purl.org/dc/terms/> .

@prefix dc: <http://purl.org/dc/terms/> .

{ ?event ewe:generatedBy ?channel .

3This is a more readable alternative to OWL class inferences (Bechhofer, 2003)
4http://lov.okfn.org/dataset/lov/api

66

http://lov.okfn.org/dataset/lov/api

4.4. EVALUATION

?channel a blogging:BlogChannel .

?event ifttt:title ?title .

?event ifttt:body ?body .

?event ifttt:category ?category .}

=>

{ ?event a sioc:Post ;

?event dc:title ?title .

?event sioc:content ?body .

?event sioc:topic [rdfs:label ?category] } .

This step requires manual post processing to i) give a meaningful namespace to each

ontology, and ii) check the proposed mappings of properties to external ontologies are correct.

Nonetheless, these adjustments are not essential to obtain the vocabularies. The alternative

is to obtain vocabularies with an alphanumeric namespace that identify them (this is a

common solution in programs that convert from XML to N3, and in SPARQL endpoints),

and a non filtered list of property mappings that may be inaccurate, which is of no harm in

an open world assumption.

4.4 Evaluation

In this section we propose an evaluation for the methodology described in the former section.

Although the evaluation of ontology learning procedures is still an open problem, there is

already some work in this direction. Shamsfard and Barforoush (2003) present two basic

approaches for evaluating these systems: the evaluation of the underlying learning methods

and the evaluation of the learned ontology. However, because of the difficulty concerning

the measurement of the correctness of the learning procedure,the former approach is less

addressed. According to Dellschaft and Staab (2006), the resulting ontologies can be com-

pared by evaluating them in a running application, a posteriori evaluation by experts, or

evaluation by comparison of learned results against a predefined gold standard.

In our case, we chose to perform an evaluation of the learnt ontologies by an expert.

Manual evaluation has advantages, since experts are supposed to know the concepts and

their relationships in their domain of expertise and, therefore, they are supposedly able

to tell whether a given ontology represents the domain or not. However, it also has their

drawbacks. For instance manual ontology evaluation is subjective and time consuming, and

it is not feasible for large-scale evaluations (Dellschaft and Staab, 2006).

67

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

4.4.1 Evaluation metrics

To communicate the results of the evaluation, we calculate the precision and recall of the

process measured at two levels: i) at a dataset level, evaluating whether the meaningful vo-

cabularies are discovered, and ii) at a vocabulary level, evaluating whether the composition

of each vocabulary is correct and complete. At a dataset level, recall is the fraction of mean-

ingful vocabularies identified among all those in the dataset (equation 4.4), and precision

is the fraction of correctly identified vocabularies (equation 4.5). The following section will

describe how the terms from the equations are computed.

Recalldataset =
| correctly_generated_vocabularies |
| all_discoverable_vocabularies |

(4.4)

Precisiondataset =
| correctly_generated_vocabularies |
| all_generated_vocabularies |

(4.5)

At a vocabulary level, recall is the fraction of identified channels that belongs to the

vocabulary (equation 4.6), i.e. leaving out of the vocabulary channels that belong to it

decreases the recall. Precision is the fraction of correctly identified channels term (equa-

tion 4.7), i.e. including in the vocabulary channels that do not belong to it decreases the

precision.

Recallvocabulary =
| correctly_identified_channels |
| all_belonging_channels |

(4.6)

Precisionvocabulary =
| correctly_identified_channels |
| all_channels_included |

(4.7)

To combine both measures in a single score, we use their harmonic mean, commonly

known as the F-score (equation 4.8):

F = 2 · precision · recall
precision+ recall

(4.8)

4.4.2 Expert assessment and results

The process consists on a manual assessment by a domain expert who evaluates the two

levels defined in the former section.

At the vocabulary level, the initial number of channels in the vocabulary is the all

channels included term from the equation 4.7. The expert removes from the vocabulary

the channels that are misplaced, i.e. those that are not similar to the rest of the channels.

68

4.4. EVALUATION

The resulting size of the vocabulary is the correctly identified channels term (equations 4.6

and 4.7). Then, the expert adds those that, not being included by the automatic learning

process, are similar to the rest of the channels in the vocabulary. The number of resulting

channels in the vocabulary is the all belonging channels term (equation 4.6).

At the dataset level, the initial number of vocabularies automatically generated is the

all generated vocabularies term from the formula 4.5. The expert studies which vocabularies

present a set of channels which offer a similar service, e.g. blogging channels, email channels,

activity trackers, etcetera. Those that does not meet these criteria are removed. This is

usually the case of small clusters where two or three channels are put together because they

share an event/action with a similar structure or title, but they do not offer a similar service.

The number of resulting channels is the correctly generated vocabularies term (equations 4.4

and 4.5). Finally, the expert analyses the channel directory of the TAS to figure out if there

is any other group of channels that offer a similar service, that share events or actions with

a similar structure, and create those new vocabularies. This final number of vocabularies is

the all discoverable vocabularies term (equation 4.4).

Despite the subjects that performed the evaluation were domain experts, they had to

consult the channel directory of the TAS frequently, because knowing which channels are

supported is out of their expertise. Since manual evaluation is a subjective process, we

reduce the effect of subjectivity we repeated the evaluation with two different experts.

Out of the 23 vocabularies generate by the ontology learning process, we identified 18

of them are meaningful vocabularies, while the other 5 are either vocabularies that should

be included in other vocabularies, duplicate vocabularies or meaningless vocabularies. We

assign a name to these vocabularies (as pointed out in section 4.3.4) as presented in Table 4.6.

In addition, one meaningful vocabulary was not identified in the process. With these data,

the resulting precision is 94.74%, the recall 78.26% and the F-score 85.71%.

At a vocabulary level, each single vocabulary was assessed annotating the missing and

exceeding channels. The computed values of precision, recall and F-score are shown in 4.6.

The average precision considering all vocabularies is 96.03%, the average recall 85.56% and

the average F-score 87.93%.

These results show that the resulting ontologies effectively model the specific channel

domains, and therefore the ontology learning methodology this chapter contributes with

effectively generates them with little human supervision.

Another advantage of this approach is related to reusability of the resulting ontologies.

Due to the high complexity and error prone of some manually developed ontologies or the

69

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

Table 4.5: Dataset level precision, recall and F-score

Measure Precision Recall F-Score

Dataset level metrics 94.74% 78.26% 85.71%

Average of vocabulary level metrics 96.03% 85.56% 87.93%

high specificity of the automatically generated (Sabou et al., 2005; Shamsfard and Bar-

foroush, 2003), developers usually prefer to build new ones causing a duplicity of models in

the state of the art. The ontologies produced by our approach are compact and simple, so

that they are easy to understand, reuse and extend.

70

4.4. EVALUATION

Table 4.6: Vocabulary level precision, recall and F-score

Vocabulary title Channels Features Precision Recall F-Score

Social networks 5 11 100% 100% 100%

News 5 2 100% 100% 100%

Blogging 6 7 42.86% 100% 60%

Activity trackers 3 8 100% 100% 100%

Picture sharing 7 15 85.71% 100% 92.31%

Cloud Storage 2 2 100% 66.67% 80%

Geolocalized photos 2 1 100% 40% 57.14%

Favouriting 2 1 100% 100% 100%

Bookmarking 5 8 100% 100% 100%

Video feed 3 4 100% 66.67% 80%

Positioning systems 2 3 100% 100% 100%

Connected Lighting 6 7 100% 100% 100%

Connected Air-conditioning 2 2 100% 100% 100%

Connected Automotive 2 1 100% 50% 66.67%

Meteorological stations 6 5 100% 100% 100%

Visual notifications 2 2 100% 66.67% 80%

Feeds saving 2 1 100% 100% 100%

Messaging 2 1 100% 50% 66.67%

71

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

4.5 Discussion and Outlook

In this chapter, we complement the existing semantic reference model EWE developed in

Chapter 3, with a set of automatically learnt vocabularies that may be used for automatic

channel discovery, and for recommending substitutive channels in task automation compo-

sition.

The first contribution of this chapter, was to harvest data of channels and automations

from the channel and automation directory of existing TASs, describe them using the com-

mon semantic model, and present them as a dataset fed from different sources. This is

relevant information to be used by software agents and users to consult information about

the TASs.

The second contribution was to establish a similarity metric between channels, suitable

when they come from different sources. We define the structure of a channel as the set of

events and actions it provides. The resulting metric takes into consideration this structure,

the parameters that each event and channel exposes, and the title used to identify/describe

them. We discovered that the way different events or actions are titled, is a good measure

of their similarity. However, this is also, a limitation because the similarity relies on an

arbitrary decision made by external agents. We balanced the weight of this similarity with

that provided by the set of parameters, which also measures its compatibility in terms of

swapping both evens/actions. This similarity is presented as a correction of the Jaccard

similarity, and it has been evaluated in the former dataset concluding the results of the

corrected similarity are more accurate, in the domain under study, than those obtained

using the original similarity.

The third contribution was to design a process to automatically learn ontologies from the

dataset of channels using the similarity metric described. It clusters the similar channels,

extract the features they share and export that as ontologies. In the process, a channel

categorisation arise. This is different from the categorisation some TAS offer, since it is not

based on those taxonomies, but in the similarity of channels. It has been proved that this

clustering algorithm presents advantages in this scenario such as, i) it does not require to

number of cluster a priori, ii) individuals that do not match any cluster are left unclustered,

iii) individuals may belong to more than one cluster, iv) each cluster provides the features

that support that cluster, and v) the algorithm accepts initial clusters, so that when the

data from the channel dataset is updated the clusters can be updated too without risk of

generating different clusters in each execution. Finally, we used the harvested instances,

the similarity metric and the clustering algorithm to automatically learn ontologies. The

72

4.5. DISCUSSION AND OUTLOOK

results have been evaluated at a dataset level, and at an ontology level obtaining a combined

F-score of 86.82%.

As future work, we intend to evaluate the resulting ontologies against other ontology

learning approaches that use different clustering algorithms, with the goal of refining the

learning process, aiming to minimise the number of non meaningful ontologies produced, i.e.

those that make sense from the point of view of the structure of the channels involved, but

that they do not represent a category of channels. Moreover, in the evaluation process we

will take into account more TAS, extracting data from more different sources, so increasing

the size of the dataset. We aim to make the process self-adaptive to the source of the date,

by harvesting more semantic relations, the process will take into account the availability of

data, the naming policy, or the local categorisation used by each source.

On the other hand, the extracted data will be used to develop a metadirectory of TAS

channels, that user may consult to check which channels are supported by each TAS, which

channels are similar to other in terms of the function they perform or the structure they offer,

how two events or actions may be swapped, etc. In a next iteration of this metadirectory, it

will include the possibility of orchestrate automations and export them using EWE format.

Finally, with this information, a comprehensive data analysis of the automation rules

may be performed to extract different profiles of users and automations as well.

73

CHAPTER 4. MINING TAS’S CHANNELS:
AN ONTOLOGY DISCOVERY APPROACH

74

CHAPTER5
Personal Agent Architecture for Task

Automation in the Web of Data

This chapter describes a personal agent architecture for TASs that brings intelligence
into task automations. It presents a few case studies to show the benefits of applying
agents in a TAS scenario, and helps the reader to have a clear understanding of the
possible tasks the agent might develop to assist the users.

75

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

5.1 Introduction

In the former chapters, we addressed the problem of semantically describing task automa-

tions and their components. We provided a specification of a Semantic Reference Model,

and designed a method for automatically learn vocabularies that populate an automation

dataset using the aforementioned model.

Agent systems can exploit the potential of task automations –benefiting from the se-

mantic technologies used– by facilitating the users the creation and management of these

automations. In particular, personal agents can use additional personal and contextual

information to manage task automations on behalf of users. However, this approach re-

quires that the agent and the TAS share the information of personal streams (web services,

smartphones, sensors).

The need of immediacy and interaction with services is a recurring topic addressed in

the state of the art in different application fields, such as connected home (Costa et al.,

2012; Yang, 2013), collaborative Web scenarios (Jung, 2011), travel assistance (Yueh et al.,

2007), etcetera. Unfortunately, current agent platforms do not provide any standardised

mechanisms to integrate external sources. The challenge consists in proposing a flexible

and modular architecture that features seamlessly interactions with a variety of streams,

regardless of their nature. For instance, the integration of sensors and actuators typically

requires extending the basic agent architecture and a deep understanding of its implemen-

tation. Furthermore, this challenge is not exclusive of agent systems, TASs suffer from it

too.

Thus, this chapter briefly reviews the state of the art of personal agents, and extends a

former work by Rada et al. (2014), modifying the architecture proposed to address the TAS

scenario. The architecture, called Modular Architecture for Intelligent Agents (MAIA), pro-

vides an event-based perspective and a modular design. This chapter also explains how this

architecture provides the TASs connectivity to multiple data streams, sharing the adapters

and connectors with the agent architecture.

This chapter is structured as follows: Section 5.2 introduces several concepts of personal

assistants and agent platforms that are relevant to this chapter; Section 5.3 presents an

overview of the proposed architecture called, describing in detail the function of each module,

and how the communication is orchestrated; Section 5.4 presents a list of proactive agent

behaviours to assist the user in a TAS scenario; Section 5.5 describes a case study where

the personal agent help the users to manage their automation rules, showing how all the

communication is handled by the proposed architecture. Finally, in Section 5.6 we present

76

5.2. BACKGROUND

the conclusions to this chapter.

5.2 Background

In this section, we introduce some of the background technologies and efforts made in the

state of the art that are related to the research described in this chapter. It includes personal

agent –classification and behaviours–, and agent architectures.

5.2.1 Personal Assistants

Personal Assistants (PA) are agents that can represent individuals in a certain environment:

the Web, an action, when scheduling a meeting, etcetera. They help users in their day-to-

day activities, especially those involving information retrieval, negotiation, or coordination.

A personal assistant might schedule a meeting and then, based on the meeting location, find

the nearest baby sitting service (Huhns and Singh, 1998; Olsen and Malizia, 2011).

With the rise of smartphones, PA shifted from the Web to mobile devices, which provides

several advantages such as immediacy, ubiquity or access to enhanced user information. As

smartphone PA became popular, all smartphone OS developed their own pre-installed PA.

These are Apples’ Siri, Google Now or Microsoft’s Cortana. There is also a growing trend in

including Natural Language Interface (NLI) in PA, which the three former examples already

implement. However, PAs spread beyond smartphones and reached connected homes and

IoT. There are multiple projects on this topic that provide a physical device that connects

to the Internet and provides a NLI to assist the user with common queries about weather,

user’s agenda, movies, etcetera. The most popular is Amazon Echo, which nonetheless is

still work in progress (Dempsey, 2015).

5.2.1.1 Personal assistant classification

According to the task they perform, Personal Agents can be classified into five main cate-

gories: personal information management agents, purchasing and trading agents, task and

time management agents, reminder agents, and recommender and filtering agents. Some au-

thors suggest an additional category named decision-making agents (Ohmukai et al., 2003),

that may also address some agents of the former categories. Personal Information Manage-

ment agents (Vassileva, 2008) help users in acquiring, organising, retrieving, and processing

information in their personal spaces, e.g. spreadsheets, email messages, contact lists, to-do

lists, and web bookmarks, but it also includes physical items.

77

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

The objective of purchasing agents is assisting the user in the shopping process, by fil-

tering the best item to purchase according to a search criteria, and if the case execute the

purchase. Purchasing agents are heavily driven by user profiles, e.g. in some cases being

a trustworthy seller or providing a fast delivery may take precedence over price. Similarly,

interpersonal opinions have been found to have a significant influence (LaTour and Hen-

thorne, 2015). Taking the decision of making a purchase is delicate and usually involves

several goals to attain he best profit. Choices made about how to pursue each of these goals

may well result in a set of intentions which are conflicting, thus these agents should be able

to reason about and modify its set of intentions to take account of such issues (Shapiro

et al., 2012). In this category, travel agents are the most common example, since the price

of the trip is the prevailing factor when travelling, as opposed to other kinds of sales. On

the other side, we find the trading agents, a more specialised kind of agent which has to face

the inner complexity of the stock market, and have a heavy communication component.

Time management refers to the process of helping a user manage actual and potential

temporal commitments. Task management involves the planning, execution, and oversight

of tasks. These tasks may be personally imposed or they derived from her responsibilities.

Theoretically, these agents organise the tasks and duties of the user in order to make her

more efficient. Task management agents fetch information about every task (its deadline,

the priority, the workload, etc.) and use optimisation algorithms to generate possible sched-

ules. This is a complex type of agent, due to the large number of factors taken into account

when planning the schedule of a user, the need for such planning to change based on con-

tingencies that may arise, and the most important: people have their own standards for

judging and scheduling (Ohmukai et al., 2003). An important point in every user’s working

agenda are meetings, since they are very important and common events. Therefore, many

time management personal agents focus on managing commitments and collaborative de-

cision making (Indiramma and Anandakumar, 2008). They are designed to enhance user

participation in a meeting through mechanisms that track the topics that are discussed, the

participants’ positions, and any resultant decisions, providing tools that improve decision

making. Recently, social task networks(Gil et al., 2010) have been proposed as a social

approach to task management (Indiramma and Anandakumar, 2008), taking into account

that tools such as to-do items usually show relationships among users’ tasks, their social

network and web resources.

Reminder agents are a fairly simple type of persona assistants which check the users

data-streams in order to remind them about important events. Google Calendar is a great

example of reminder agent since it tracks all meetings and task deadlines and allows the user

to set custom alerts. Other implementations make use of artificial intelligence techniques

78

5.2. BACKGROUND

to determine what action should be performed, depending on the nature of the event. For

instance, depending on the user location and event venue, the reminder will appear soon

enough to allow the user to attend the meeting on time (Coronado et al., 2014b).

Recommender agents are an important and widespread type of agents. The key issue

in making recommendations is extracting the user’s profile (Montaner, 2003). These agents

appear on the Internet associated with other different agents, since almost all types of

agents mentioned above use a recommender agent as well for some purpose. Some different

recommender agents according to their application domain are e-commerce, e-mail filtering

or web, movie, travel and news recommender, etcetera.

5.2.1.2 Personal assistant behaviours

The literature surveyed by Lin and Carley (1993) distinguishes between two types of agent

behaviour: reactive and proactive, to which some authors add a third type, a social be-

haviour (Wooldridge and Jennings, 1995). A proactive agent asks for information, reads it,

then makes a decision based on the available information, and passes on the decision. Unlike

the proactive agent, a reactive agent will not make a decision and pass it on unless being

requested by the user. Consequently, when an agent with proactive behaviour performs a

task without having been instructed to do so the efficiency the user perceives is clearly supe-

rior. Apparently, the assistant completed its task instantly, even when it lasted quite some

time. On the other hand, it is possible that the work done by the agent is not valuable, but

its availability without having been requested gives a certain added value. (Gruber, 2009).

Thus, what makes agents so powerful is their proactive behaviour.

Proactive behaviour is also seen as an essential characteristic of autonomous and semi-

autonomous agents (Norman, 1994). As said, the goal of personal agents is helping the

user on completing a task. Agents may aid the users directly by performing tasks on their

behalf or in conjunction with them (Grosz and Kraus, 1996), and indirectly through actions

such as providing context information, minimising interruptions, and offering suggestions

and reminders (Czerwinski et al., 2004).

Yorke-Smith et al. (2012) split proactive behaviour into two types. The first type, called

task-focused proactivity, involves providing assistance for a task that the user either is al-

ready performing or is committed to performing; assistance takes the form of adopting or

enabling some associated subtasks. For instance, Task-focused proactivity behaviour collects

background information in support of a scheduled meeting. The second type of proactive

behaviour, called utility-focused proactivity, involves assistance related to helping the user

79

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

generally with her set of tasks, rather than contributing directly to a specific current task.

An example of this type occurs when and assistant takes the initiative to recommend trans-

ferring a paper review task in response to the detection of high workload levels. This action

is triggered not by a motivation to assist with any individual task on the user’s to-do list,

but rather in response to a higher-level motivation (namely, workload balancing).

5.2.2 Agent Architectures

In the 1990s, research interest was focused on the investigation of architectural issues raised

by three influential threads of agent research (i.e. reactive agents, deliberative agents and

interacting agents), as collected in the excellent survey by Müller (1999).

Software agent platforms are usually specialised in a particular agent architecture. For

instance, most platforms for deliberative agents have adopted the Belief-Desire-Intention

(BDI) model, e.g. Jadex (Pokahr and Braubach, 2009), Jack (Wallis et al., 2002) or Ja-

son (Bordini and Hübner, 2005), while the most popular agent platform for interacting

agents, Jade (Bellifemine et al., 2007), is based on FIPA (Steiner, 1998). Some of these

platforms provide facilities to combine reasoning and interacting features, such as Jadex or

Jason, which can be integrated with Jade.

The BDI architecture defined by Rao et al. (1995) is based on the original model proposed

by Bratman for modelling human reasoning (Bratman, 1987). The BDI abstract architec-

ture models human-like reasoning by capturing the mentalist notions of belief, desire and

intention, which are processed according to a generic interpreter. This interpreter assumes

that events are atomic and recognised after they have occurred.

Traditionally, both messages and precepts have been managed in the same interpretation

cycle, as both are considered forms of external events. Consequently, most agent implemen-

tations mix reasoning processes with the communication logic and make them hard to reuse,

debug and develop. Recently, several works such as ACRE (Lillis, 2012) and Alfonso et al.

(2011) have proposed to delegate conversation management in a specific module external to

the agent reasoning process. The interaction between these two modules is done through

actions and perceptions. The reasoning module can reason about the outcomes of every

conversation through a set of predefined perceptions, and then execute several actions to

manage the status of those conversations (e.g. cancelling, forgetting or retrying a conversa-

tion).

Several works have proposed different mechanisms for integrating agents and web ser-

vices, as surveyed in (Greenwood et al., 2007). The existing solutions provide mappings

80

5.3. MODULAR ARCHITECTURE FOR INTELLIGENT AGENTS AND TASK
AUTOMATION

between addressing and messaging schemes in web services and agent systems. They are

implemented using a gateway that publishes web service descriptions into FIPA’s directory

facilitator and vice versa. Nevertheless, this solution is rather complex. For some applica-

tions, a more lightweight solution that integrates intelligent agents and web services would

be desirable.

5.3 Modular Architecture for Intelligent Agents and Task Au-

tomation

This section discusses the main design choices behind the Modular Architecture for In-

telligent Agents and Task Automation, and presents the main modules of the architecture

(Figure 5.1), focusing on the relationship between them. Each module is described in greater

detail in a separate subsection, including the underlying communication mechanism, and the

interconnection with the TASs components. This architecture is a continuation of a former

work (Rada et al., 2014), under the name of MAIA, and it was designed with the aim of

being an architecture that provides transparent access to data-streams and web services.

Thus, it is the perfect solution to integrate agents systems with TASs.

This architecture introduces a few elements in the Reference Architecture for TAS pre-

sented in Chapter 2. These are the Evented Web Bus, the Agent Bus and the Event Man-

ager. The driving forces behind it are modularity and loose coupling, i.e. the architecture

is designed to allow adding new modules that expand the capabilities of the system. Exter-

nal modules are connected to one of the two buses, either directly or through an adapter

(Section 5.3.1). This isolates every components that could be plugged and unplugged inde-

pendently.

The Evented Web Bus 5.3.2 connects to external data-streams (web services, connected

devices, etcetera). e.g., an email server or a sensor network. In general, an adapter will be

needed. The Agent Bus 5.3.2 connects to the modules that are closely related to a typical

agent (BDI platform, sensors, actuators, etc.) The Agent Bus 5.3.2 provides an entry point

to the agent platforms, but also connects the TAS clients with the rest of the system. The

Event Manager mediates between both buses, providing extra services to the as described in

Section 5.3.3. These services will have an important role in the development of BDI agents.

In Figure 5.1, LOD linked and Semantic Reasoner were included, but there are much more

services available.

81

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

Rule Engine

Web Client
Internet

Local Rule
Repository

Open APIs Social Stream

Web Wrapper

Smartphone Resources

GPS

Agenda

Messaging

Eye Tracker

...
Rule Engine

Rule
Repository

Distributed
Sensor
Network

Execution
Planner

Exec. queue

Biometrics

NFC

Web Channel
Adapter

Sensor
Channel
Adapter

Smartphone
Resource Adapter

Exec.
queue

Mobile Client

Task Automation Service

Channel
Directory

Collision
Handler

Collision
Handler

Sensor
Channel
Adapter

Web
Channel
Adapter

Execution
Planner

E
ve

nt
ed

 W
eb

 B
us

Event Manager Event
Filtering

Event
Subscription

Plugins Semantic
reasoner

LOD
linker

A
ge

nt
 B

us
 (

C
lie

nt
 B

us
)

Channel
Activation

Personal
Agent

Plan
Library

Knowledge
Base

Agent
Adapter

Channel
Activation

Rule
Editor

Rule
Editor

Figure 5.1: Modular Architecture for Intelligent Agents and Task Automation.

5.3.1 Adapters

To be able to connect to any of the buses a module must communicate via events and use one

of the protocols that its bus implements. Unfortunately, not all systems are natively evented.

Even when they are, they do not always follow the events format (explained by Rada et al.

(2014)) or use the same protocol as the bus.

An Adapter is a piece of software that mediates between such systems and the rest of the

modules. In the best case scenario, which is that of software that is already event oriented,

the adaptation process is as simple as translating event formats on the fly and dealing with

protocol differences. In the worst case scenario, deeper changes in the software itself might

be needed.

We group the adapters in two categories according to the level of integration they provide:

basic adapters and Agent Adapters. Basic adapters make the features of an external service

or module available to the rest of the modules. Agent Adapters also make the advanced

services provided by the Event Manager available to the module in question.

In essence, basic adapters simply add sources of information or interaction with external

services, whereas an Agent Adapter connects to a module with more complex logic.

82

5.3. MODULAR ARCHITECTURE FOR INTELLIGENT AGENTS AND TASK
AUTOMATION

These adapters take care of: connecting with the Event Manager; translating event

formats back and forth; generating events that are compliant with the supported format,

and storing events for later consumption. Every adapter that connects to the Evented Web

Bus is a basic adapter.

Agent Adapters are the interface between an agent system, typically an Agent Platform,

and the Agent Bus. The role of these agent systems is to implement the logic of the final

application, adding intelligence to the system and communicating to the different modules.

The Event Manager provides several services to make it easier to perform certain common

actions or simply delegate tasks that would otherwise be done by the agent. Thus, an Agent

Adapter should integrate these services in the agent platform.

The design and features of the Agent Adapter highly depend on the target Agent Plat-

form, its internals and the programming interface it offers. Hence, we will focus on the

development of an adapter for Jason. Nevertheless, most of the concepts herein are general

and apply to other Agent Platforms.

We identified three main challenges in the adaptation process. The first one consisted

in communicating with the platform itself, and its individual agents. The second one was

translating events to beliefs, in this case Jason beliefs. Lastly, there needs to be a way to

use the extra services provided by the Event Manager from within any Jason agent.

Every agent within Jason has its own knowledge database, which is populated by data

from the different sources. To be able to actually modify the perceptions of the agents, a

custom Jason Environment is needed, along with an ad-hoc model for this scenario. By

modifying the basic Jason Environment we are able to control not only the sources through

which new information is added, but the life cycle of such information.

More precisely, the custom model follows the data inbox concept, the same as regular

mailboxes. All information received by the agent is volatile, and will be discarded after it

is fetched. Should the agent find the information interesting or necessary for the future, it

will save it as beliefs in its permanent knowledge database.

Using these data boxes it is rather easy to integrate our Java code and our agents in

AgentSpeak. A special function allows any Java method to send information to any certain

agent, and any Java function can be wrapped and made available to the agents in the

platform.

Apart from the modifications explained above, events themselves need to be converted

to beliefs internally. For this purpose, we created the libraries to translate a subset of the

JSON notation to beliefs and vice versa. Unfortunately, the limited syntax of beliefs makes

83

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

it impossible to perform a complete mapping.

Lastly, it is important to note that every agent should subscribe only to those events

that are relevant to its functioning, and to avoid permanently storing them. Otherwise, we

risk overloading the agents with too many facts, which hinders the reasoning process and

might lead to undesired behaviours.

5.3.2 The Agent Bus and the Evented Web Bus

The role of the buses is to communicate external nodes with the Event Manager. The

architecture differentiates between two buses: the Agent Bus, which connects to the high-

level components of the agent, and the Evented Web Bus, to connect to external services.

For instance, the Agent Platform, the User-Interface, and the Communication Manager

would be connected to the Agent Bus. In contrast, micro-blogging or web services would

interact with the Evented Web Bus.

The reason behind this separation is twofold: it draws a clear line between the access to

services and logic, and it allows the Event Manager to provide additional high level services

only to the Agent Bus. Most of these services, which will be discussed in the next section,

are focused on the development of personal agents that interact with social networks.

5.3.3 Event Manager

The Event Manager is the bridge between the two buses. One of its roles is to exchange

events between them, making Evented Web and sensory information available to agents and

forwarding requests from agents to services. However, such information is usually verbose

and frequent. Most of the times it is redundant or not critical. In contrast, the communi-

cation among agents or between agents and the user interface are usually more critical and

sensitive to delays. As a consequence, the exchange between both buses has to be controlled.

That is the role of the Event Manager. In addition to the plain message passing provided by

the buses, it adds event filtering, event subscription, and store. In addition to plain message

passing provided by the buses, the event manager adds event filtering, event subscription,

and store and forward. Event Filtering allows selecting only the relevant events in each situ-

ation and for each module. By using Event Subscription modules can indicate their interest

in certain kind of event which they wish to receive. These subscriptions can be used for

event filtering as well. Store and Forward means that modules can receive the events they

subscribed to and that were sent while they were disconnected. It also means that events

will be saved until they can be forwarded to a module. Without it, an overloaded module

84

5.3. MODULAR ARCHITECTURE FOR INTELLIGENT AGENTS AND TASK
AUTOMATION

would not be able to consume all the events sent to it, which might then be discarded.

Besides controlling the flow of events between the different modules, it complements the

Agent Bus by providing higher level functions that are not present in it, these are the so-

called plugins 5.1. The Event Manager provides several useful services for the development

of personal agents. Namely, these services are: Identity, Event Based Task Automation,

Location, Semantic Information, Social Networks, Calendar and Transactions.

The Identity Service allows agents to define virtual identities. These identities can be

linked to the rest of the services. For instance, an identity can be linked to several calendars

and social networks. These identities are defined via FOAF (Brickley and Miller, 2014).

Each identity has a unique ID that can be used to subscribe to the events from the sources

linked to it. The Event Based Task Automation offers the option for agents to delegate

actions to the Event Manager. These actions will be fired by a certain event, and their

result will be another event.

The Social Network service homogenises the connection and interaction with different

social networks. Social networks are an important part of the average user’s everyday

activity. By integrating them in a personal agent, we can gather relevant information about

the user and improve the user’s experience. Each social network profile can be linked to

several identities. As we saw before, this means the events from different profiles will share

a common namespace, making it easy to subscribe to all of them.

The Location service makes it possible to set locations to each identity. Events are sent

every time there is a location change, or when a module queries the location of an identity.

The Calendar service is a common interface to deal with calendars from different sources. It

is especially meant as an abstraction for online calendar services. The Information service

offers a simple unified interface for agents to query information from external information

sources. As of this writing, the Information service supports SPARQL, being able to send

queries to multiple endpoints (DBpedia, data.gov, etc.). The Transaction service makes

it easier for agents to handle operations with online services that follow a known pattern.

For instance, the processes between booking a flight and arriving safe to the destination

accommodation are quite similar regardless of the flight company, shuttle bus operator,

etc. Given that, the Transaction service identifies different events as steps in such processes

and acts accordingly to offer extra information to the agents. The Semantic reasoner is a

semantic inference engine offered to be used on demand. This is a service offered primarily to

the Personal Agent, to relieve it of including a semantic engine. Additionally, although the

Rule Engine of the TAS is also a semantic engine so it does not require using the semantic

reasoner, it may be configured to be used to reduce the load of the Rule Engine, pre-

85

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

computing some of the inferences and inject them as new events. The LOD instance linker

is in charge of querying the semantic endpoint it is connected to (e.g. FreeBase, DBPedia,

LOV) and extract additional information from the semantic instances received. The LOD

is in charge of executing the instance and property linkage included in the vocabularies

described in Section 4.3.4. It makes use of the semantic reasoner to perform this task.

5.3.4 Communication between TAS clients, TAS server and personal agents

In this section, we describe how different components communicate, taking advantage of the

modularity of the architecture. In particular, the architecture is required to orchestrate the

event distribution among i) the TAS server, ii) the TAS clients, iii) the distributed sensor

network and Web services, and iv) the Personal Agent.

The Event Manager is the main actor in the communication process, and it is directly

connected to the TAS’s execution planner, which from Event Manager’s perspective may

be seen as one of the plugins (as described in Section 5.3.3). This direct communication

transfers to the TAS all events coming from the Evented Web Bus, and receives the events it

generates. Instead of using an adapter to the Evented Web Bus, the direct communication

was preferred to reduce the load of the event subscription handler and improve performance.

This is not the case of the execution planner from the mobile client. In this case, the

mobile client has direct access to Web services and sensor networks using its own adapters.

Thus, there is no need to keep an open communication between the event manager and the

execution planner. Therefore, the messages exchanged to orchestrate the execution of the

automations with a Mixed Execution Profile will be driven trough the Agent Bus. One of

the interesting features this architecture offers to mobile clients, is that storing the message

when the client is disconnected, and sending them all when it is back available. But this

feature is only available when the access to the Web Service is done using the buses instead

of direct connectors from the client.

The Web Client and the Mobile Client, communicate with the agent and the TAS using

the Agent Bus (also known as the Client Bus). In addition to supporting the Mixed Execu-

tion Profile as just explained, this is used to inform the TAS of i) new channel activations,

ii) creation, modification and deletion of automation rules, and iii) disconnection periods.

Channel activations are performed in the client side, once activated the information is sent

to the TAS to update the channel directory. The information about creation, modification

and deletion, when received is stored in the Rule Repository. This may be a bidirectional

operation to handle synchronisation of multiple clients with local rule repositories. The

client also informs the architecture of disconnection issues, to that the event manager can

86

5.4. PERSONAL AGENT PLAN LIBRARY

forward all stored messaged the client was subscribed to. To receive information from the

TAS, the clients have to subscribe the to the messages they want to receive.

The Personal Agent communication with the TAS is performed throughout the Agent

Bus too. As with the client, the Personal Agent has to subscribe to the messages it is

interested in.

5.4 Personal agent plan library

As seen in Section 5.2.1, Personal assistants help users in their day-to-day activities, releasing

them from performing repetitive time consuming tasks. This functionality overlaps with task

automation of TASs. For instance, tasks developed by information management agents in

charge of organising email attachments may be replaced by a set of automations similar to

“when I receive an email from my boss, save the attachment to the Dropbox folder in named

‘from-boss’ ”. With reminder agents, it is even more obvious that they may be replaced

using rules like “Open a toast notification in my smartphone five minutes before the start of

my meetings”.

However, strictly speaking, personal agents usually overtake TASs, either because their

plans are more flexible and have the ability to take decisions reasoning on the context

information, or simply because they are proactive and the user does not need to instruct

them to act. Nonetheless, the personal agent designed in this chapter is not intended to

perform tasks that may be accomplished using automations from a TAS but to assist the

user while using TAS in their daily life.

5.4.1 Types of behaviour

The plan library of the personal agent for TASs is oriented to assist the users in creating,

updating, and managing the automations rules of their portfolio. Below, we present the list

of proactive behaviours the personal agent for TAS may perform to achieve these goals.

Recommend popular automation rules. One of the most obvious proactive behaviours

of the personal agent for TAS is suggesting popular automations to the users. To

enable this behaviour the agent is granted access to the automation directory of the

TAS (described in Section 4.3.1) where the information about automations is stored,

and also to the Channel Directory from the TAS architecture (Section 2.3) that stored

the list of active channels available for is user. Thus, knowing which are the active

87

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

channels for the user, the agent may filter those automations that are feasible to the

users and suggest them, i.e. those automations where the channels involved are active

for the user.

Suggest automation rules based on recently activated channels. This is a behaviour

similar to the former one, but it is triggered by recently activated channels.

Learn rules from user behaviour. Personal agents have access to context information,

since they receive all incoming events from all user channels. This a powerful source

of information that may be used to learn the routines of the users, and propose them

to automate those routines. For instance, the personal agent may detect that every

morning, a few moments after a user arrives to work she mutes her smartphone. The

agent have access to the event stream of the user, so it inspects which events happened a

few moments prior to muting the phone –in this case, the positioning service announced

she arrived at the office. When a sequence event-action is repeated several times, the

agent suggests the user to automate that routine.

Update rules based on changes in the context. Personal agents also have access to

Channel Directory from the TAS architecture (Section 2.3) where the information

about the service of channels is stored. It registers when channels are deactivated,

temporary unavailable, or out of coverage range. When a channel is no longer available

and it is used in one or more automations, the agent searches for an alternative among

the active channels. If any, a modification in the rule is suggested until the service of

the initial channel is restored. For instance, if a user decides to migrate to Bitbucket,

and closes her Github account. The Github channel becomes inactive for the user and

all the automations are halt. The agent gets aware of the situation, taking advantage

of the semantic description of the channels –using the specific vocabularies generated

in Chapter 4 (Section 4.3.4)– it finds the Bitbucket channel as a replacement which is

suggested. Then, all the Github related automations are migrated to use the Bitbucket

channel.

Duplicate rules in similar environments. In the particular case of device channels (Sec-

tion 2.2.2), being under coverage is particularly important. When a user gets away

from a sensor, the channel is marked to be out of coverage, thus these device channels

need to announce themselves –according to the discovery paradigm– to be activated

when back into coverage. This fact may be used by the agent to adapt existing rules

to different environments. This is one of the behaviour described in Sarah’s scenario in

Chapter 2 (Section 2.1). Consider the user (Sarah) has her home’s SmartTV channel

activated, and she orchestrated an automation rule to lower the TV volume when she

88

5.4. PERSONAL AGENT PLAN LIBRARY

has an incoming call. Taking advantage of the semantic description of the channels,

the agent discovers that when Sarah is at her friends house the SmartTV is compatible

with that automation, and it suggests adapting the automation to this environment.

Alert of rules with low usage. Personal agents track the execution of the automation.

Therefore, it has information about the frequency automations are executed, and also

about the last execution time. When it has been a long time since the last time an

automation was executed, the agent informs the user and ask permission to remove it,

with the aim of keeping the automation portfolio clean.

Deactivate inconsistent rules. One of the side effects of not keeping the automation

profile clean, is that as it becomes bigger, the changes of having collisions in the rules

increases. This situation was described in Section 2.2.3. The simplest situation where

two rules may collide, is when two automations triggered by the same type of event

try to execute incompatible actions. Using the semantic description of the actions, the

agent is able to detect incompatible actions and warn the user about these situations.

5.4.2 Plan implementation examples

Although the chapter is not intended to be code intensive, we considered it is convenient to

illustrate some of the behaviours just described. Thus, we present below a few scripts with a

tentative implementation of some agent behaviours. Each script presents a list of agent plans

in AgentSpeak (Bordini and Hübner, 2005), and it is commented for easier understanding.

The implementation of the plans assumes the environment of the agent system is connected

to the TAS database, and injects in the agent belief base information about the user’s events

and actions, as well as the channels.

The script shown in Listing 5.1 presents a set of plans to propose the user to create

automations taken from the list popular automations for recently activated channels. It

matches the behaviour suggest rules based on recently activated channels described in the

former section.

Listing 5.1: Plans to learn automations from user’s routine.

// Every time a new channel is active,

// for every popular_automation in the automation directory that matches

// the channel, if the second channel involved is also active

// suggest the user to user the automation

+channel(ChannelId, active)[source=user] :

popular_automation(automation(ChannelId, OtherChannel), Relevance) &

Relevance > 0.5 &

89

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

channel(OtherChannel, active)

<-

!suggest(create, Automation) .

// Handle suggestions asking the user when available

+!suggest(create, Automation) : user_available

<-

.ask_user("Do you want to create this automation?");

tas.describe(Automation) .

+!suggest(create, Automation) : not user_available

<-

.at("now +1 h", "+!suggest(create, Automation)") .

// Handle response

+response(create, Automation, true)

<-

tas.create_automation(Automation) .

+response(create, Automation, false) <- True

The script shown in Listing 5.2 presents a set of plans to propose the user to create

automations based on the routines learnt from the user behaviour.

Listing 5.2: Plans to learn automations from user’s routine.

// Analyse event registry every time an action is taken.

// the internal function add to the KB routine facts

+action(Id, Action_payload) <-

context.analyse_recent_events(Id) .

// When a routine repeats more than five times suggest to automate it

+routine(Event, Action, Times) : Times > 5

<-

!suggest(create, automation(Event, Action)) .

// Handle suggestions asking the user when available

+!suggest(create, Automation) : user_available

<-

.print("Do you want to create this automation?");

tas.describe(Automation) .

+!suggest(create, Automation) : not user_available

<-

.at("now +1 h", "+!suggest(Automation)") .

90

5.4. PERSONAL AGENT PLAN LIBRARY

// Handle response

+response(create, Automation, true)

<-

tas.create_automation(Automation) .

+response(create, Automation, false)

<-

?automation(Automation, Event, Action) ;

-routine(Event, Action) .

The script from Listing 5.3 shows a set of plans to analyse the automation profile of the

users and detect unused rules. Those are marked to be removed after user’s approval.

Listing 5.3: Plans to remove unused automations.

// Everyday analyse the automations and check their last exection time

+!analyse_rules(User)

<-

.findAll(automation, User, LA) ;

!analyse_rule(User, LA) ;

.at("now + 24 h", "+!analyse_rules(User)") .

-!analyse_rules(User) <- .at("now + 24 h", "+!analyse_rules(User)").

// Analyse last time a rule was used.

// If it is more than three let the user know

+!analyse_rule(User, automation(Aut, lastUsed(D, M, Y))|LA) :

.date(DD,MM,YY) &

std.compare_date(date(D,M,Y), date(DD,MM,YY), Days) &

Days > 90

<-

!suggest(remove, Aut) ;

!analyse_rule(User, LA) .

// otherwise

+!analyse_rule(User, automation(_, _|LA) <- !analyse_rule(User, LA).

// Handle suggestions asking the user when available

+!suggest(remove, Automation) : user_available

<-

.print("This automation has not been usd for 3 months");

.print("Do you want to remove it?");

tas.describe(Automation) .

91

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

+!suggest(remove, Automation) : not user_available

<- True . // Make the suggestion other day

// Handle response

+response(remove, Automation, true)

<-

tas.remove_automation(Automation) .

These scripts present a few examples of the implementation of the behaviours above.

They are shown for illustrative purposes, thus they do not contain all plans that manage all

the cases in order to assure the goal achievement, and for sake of readability and expressibility

they are not fully compliant with AgentSpeak syntax. In addition, they rely on a few

functions that implement communication with the user, and the creation and deletion of

automation, and also on the injection of beliefs into the BB that are received from the bus,

as a consequence a user action, or other contextual event.

5.5 Case study: Managing a smart environment

This case study presents a personal agent for managing and customising smart workspaces.

It aims to assist users in creating automation rules that involve using sensors and actuators

from the connected environments.

Each connected environment is organised in hot-spots. They consist on a grid of con-

nected beacons that provide information about the location of the users inside the workspace;

a few connected light switches that allow the system to switch on/off the plugged lights or

devices, and send event messages when they are manually operated; and a connected door

lock –installed at the entrance door– to be aware when the door opens, that also lets the

system open the door remotely by connecting to the door lock. In addition, a few Web

services are involved (Twitter and Google Calendar) as well as some smartphone resources

(NFC, messaging).

The particularisation of the TAS architecture (Figure 5.1) for this implementation is

shown in Figure 5.2. The TAS connects to the beacons and other connected devices using

a set of adapters. In particular, the beacons offer two modes of functioning: they send a

notification to a hub server every time a user is located, and they also communicate with

the smartphone whose NFC tag was identified. In this case study, the first mode is used

since it is easier to gather the information from the beacon hub. Similarly, the door lock and

the switches are connected to the Internet, they send notifications to the server every time

92

5.5. CASE STUDY: MANAGING A SMART ENVIRONMENT

Rule Engine

Local Rule
Repository

Twitter

Google
Calendar

Smartphone Resources

GPSMessaging

Rule
Repository Beacons

NFC

Web Channel
Adapter

Smartphone
Resource Adapter

Exec.
queue

Mobile Client

Task Automation Service

Channel
Directory

Sensor
Channel
Adapter

Execution
Planner

E
ve

nt
ed

 W
eb

 B
us

Event
Manager

Event
Filtering

Event
Subscription

A
ge

nt
 B

us
 (

C
lie

nt
 B

us
)

Channel
Activation

Personal
Agent

Plan
Library

Knowledge
Base

Agent
Adapter

Sensor
Channel Adapter

Door
Lock

Rule
Editor

Figure 5.2: Architecture of the event-based task automation prototype.

an event happens (e.g. manually switching the light, opening the door, etcetera). A mobile

client is included, not only to be used as a NFC tag to let the beacons know the user location,

but also to provide the user a rule editor and show the communication capabilities of the

Agent Bus to connect the Mobile client and the central TAS. The activation of the channels

(Google calendar, Twitter) is also handled in the mobile client. Finally, the personal agent

is connected to the TAS using the MAIA Agent Bus as usual. In this scenario, the personal

agent is subscribed to all incoming messages to be able to assist the user in automating the

environment.

We model the channels using the specific vocabularies for connected-spaces learnt in

Chapter 4. An excerpt of the beacons channel is shown in Listing 5.4. It includes mappings

to event properties from the SSN ontology for describing observations, and from DBpedia,

for unifying the property used to provide a distance.

Listing 5.4: Beacons channel excerpt (channel and events).

Channel definition

ewe-presence:PresenceSensor a owl:Class ;

rdfs:label "Connected presence sensor"@en ;

rdfs:comment "This channel represents a presence sensor."@en ;

rdfs:subClassOf ssn:SensingDevice ;

rdfs:subClassOf ewe:Channel .

Events definition

ewe-presence:PresenceDetected a owl:Class ;

93

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

rdfs:label "Presence Detected"@en ;

rdfs:comment "This Trigger fires every time your presence sensor detects

presence at any distance."@en ;

rdfs:subclassOf ewe:Event ;

ewe:generatedBy ewe-presence:PresenceSensor ;

rdfs:subclassOf ssn:ObservationValue .

No actions defined for this channel

Parameter mappings

Use observe property from ssn

{ ?event ewe:generatedBy ?channel .

?channel a ewe-presence:PresenceSensor . }

=>

{ ?channel ssn:observes ?event . }.

Mapping for DBpedia distance

{ ?event ewe:generatedBy [a ewe-presence:PresenceSensor] .

?event ewe:distance ?distance . }

=>

{ ?event dbpedia-owl:distance ?distance . }.

In this scenario, the central TAS executes the automations using the EYE reasoner 1,

which is compatible with N3 rules. EYE rules constitutes an alternative to SPIN rules shown

in Chapter 3, and show the flexibility of the EWE ontology in this matter. The system has

been tested, loading several automation rules using the rule editor in the mobile client. The

automation rules are created, loaded into the user profile, and executed when the triggering

event happens. The automation rules may use any of the channels previously described. On

the other hand, the agent system, which is subscribed to all events, receives all information

that sent to the TAS and stores it in its belief base, to be used in plans and goal achievement

In this scenario, the automations that are related to a hot-spot, are stored in the rule

database in relation to the hotspot they are related to. This way, these automations are

only active in the context of the hotspot, and letting the user to load or unload all the

automation at once.

This use case is intended to show i) that the proposed architecture provides access to

data-streams of different nature; ii) that the agent system has access to those data-streams

too; iii) that the automation rules, created in the mobile client, are sent to the TAS and

stored there; and iv) that the automation rules are executed in the rule engine. Furthermore,

it is also intended to show functionalities that are beyond the implementation. This is the
1http://n3.restdesc.org/

94

5.5. CASE STUDY: MANAGING A SMART ENVIRONMENT

case of the scenario described below.

Within this environment, a user may create automations that read “When I get to work,

tweet a random tweet from a morning-tweets list”, or “text me when someone sits at my

desk”. However, the aim of this case study is to show how the personal agent can learn from

users routine and propose automations. Consider a daily-routine of a common user named

Anna. In the morning, when Anna gets to the connected workspace the beacon situated at

the entrance detects she just arrived. She uses the ID card to unlock the door, gets to her

desk, and switches on the computer. The beacon at her desk detects she is sitting there.

After checking the email, she goes to the coffee machine (where another beacon is situated)

and has cappuccino. Meanwhile, her co-workers have been arriving. Around 11:00 am one

of the co-workers goes to the coffee machine and immediately some others, Anna included,

join him to have a coffee together.

At this point, the reader can identify several routines that repeats every day, and so does

a personal agent. These routines are subject to be automated. For instance, after a few days,

the personal agent may suggest Anna to create an automation rule to automatically open

the door when the beacon at the entrance detects her. Anna considers this automation very

convenient, since she no longer needs to get the ID out of her purse. The implementation

of the plans of the personal agent for learning automations from routines are shown in

Listing 5.52.

Listing 5.5: Plans to learn automations from user’s routine.

// Analyse event registry every time an action is taken.

// the internal function add to the KB routine facts

+action(Id, Action_payload) <-

context.analyse_recent_events(Id) .

// When a routine repeats more than five times suggest to automate it

+routine(Event, Action, Times) : Times > 5

<-

!suggest(create, automation(Event, Action)) .

// Handle suggestions asking the user when available

+!suggest(create, Automation) : user_available

<-

.print(‘‘Do you want to create this automation?’’) ;

tas.describe(Automation) .

+!suggest(create, Automation) : not user_available

2This is taken from plan implementations described in Section 5.4

95

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

<-

.at("now +1 h", "+!suggest(Automation)") .

// Handle response

+response(create, Automation, true)

<-

tas.create_automation(Automation) .

+response(create, Automation, false)

<-

?automation(Automation, Event, Action) ;

-routine(Event, Action) .

Moreover, this scenario also supports multi-user rules as defined in Section 2.2.3. For

instance, the agent may detect that a few moments after user is near the coffee machine and

it is around 11:00 am, other users start going there too. Thus, a suitable automation could

be to send a text message to all co-workers, as soon as one user is at the coffee machine,

to let them know it is coffee time. This situation is much more complex that the former

routines, and it involves additional reasoning to decide sending the messages; however, with

the necessary adjustments, the agent could address this automation too. Similarly, the

lights or the security alarm may be automated taking into account if there is any user at

the working space.

The approach presented in this use case shows an interesting situation, where the per-

sonal agent no longer needs to include plans to execute the task automations as personal

agents in the state of the art do. In this case, the intelligence of the agent is at a higher level,

learning from the context which automations should be created. In addition, this also has

advantages to the user who is in total control of the automations because she can modify or

even delete them using the rule editor of the TAS.

5.6 Discussion and outlook

The architecture presented in this chapter proves that it is possible to achieve modern

systems that combine the potential of intelligent agent systems and the interconnection and

ever-growing applications of the modern web.

The resulting application goes beyond the state of the art, putting together already

existing solutions from different fields. It thus shows that we can make good use of the

existing technologies to implement innovative ideas. It is important to note that the most

96

5.6. DISCUSSION AND OUTLOOK

important shift is in the way we understand agents and agent communication. Adapting

existing systems and frameworks to MAIA also requires work, especially in the case of Multi

Agent Systems. However, such adaptation only needs to be done once, and it allows its

connection to a wide range of modules.

The Modular Architecture for Intelligent Agents has been integrated within the Refer-

ence Architecture of TAS to give the agent systems access to the features of TASs. The

architecture has been validated in two case studies, in the first one as a independent archi-

tecture i.e. without a TAS, and in the second case study in combination with a TAS. It

has been validated that the modularity and loose couple design favours the integration of

personal agent in TASs.

In this chapter, the different behaviours that a personal agent may adopt to assist the

user while using a TAS has been studied. As a result, seven different proactive behaviour

have been documented, as well as another supporting reactive behaviour. Moreover, some

of these have been implemented using AgentSpeak, and used in the case studies.

There are several aspects in which MAIA can be extended or improved. It also opens

the discussion about the integration of the evented programming paradigm and the design

of BDI agents.

One of the main aspects to improve from a pragmatic point of view is the security of

the information being exchanged and the scope in which it is visible. Currently MAIA

allows username/password authentication and mechanisms to control event subscription on

a per-module basis.

Another field for future research is to further expand the definition of events to include

other concepts such as propagation of events. This might lead to delegation and collective

planning, but it also poses challenges related to agent communication.

97

CHAPTER 5. PERSONAL AGENT ARCHITECTURE FOR TASK AUTOMATION IN THE
WEB OF DATA

98

CHAPTER6
Conclusions and Future Work

This chapter summarises the conclusions of the thesis. It presents the most relevant
contributions obtained from this research journey, and aims to condensed it as a
sequence of decisions, motivated by insights, that drove the study —ranging from the
motivational situation to the final conclusions. Additionally, the research done has
enabled to identify potential research lines which are also discussed here.

99

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Outlook

Task Automation Systems (TAS) have experimented a remarkable increase of its popularity,

which is reflected in their number of users. To have a broad view of the scene, in the second

chapter we presented a thorough review of the most relevant TASs, since the task automation

market is already very wide and embraces players of very different nature. Nonetheless, new

players are continuously entering the stage, and not only new web-based TASs, but also

TASs that execute as mobile apps, TASs that are embedded in smart home hubs, or even

connected devices that integrates as channels in third party TASs. Crowdfunding1 platforms

such as Kickstarter2 or Indiegogo3 are a breeding ground for new TASs and TAS components.

Monitoring the projects on these platforms may give an idea of the movements in the task

automation market. For instance, considering only Kickstarter, in the last two quarters of

2015, there appeared 14 projects developing products that fit the TAS approach, and 67 more

products that are likely to be integrated as TAS channels. This is more than two new TASs

per month, and more than six new channels per month, on average, in a single crowdfunding

platform. A second evidence of growth is the channel and functionality expansion made by

existing TASs. As an example, Ifttt (Ifttt, 2015) increased the number of channels integrated

in its platform from 97 to 238 between the first quarter of 2013 and the last quarter of 2015

—this is an average of 3.91 new channels each month. Meanwhile, Zapier (Zapier, 2015)

took its channel offer much further, increasing the number of supported channels up to 621

by the end of 2015.

In this novel and growing scenario we identified several challenges that worth be ad-

dressed and solved. First, the concept of Task Automation Services is still fuzzy. Some re-

searchers consider they borrow inspiration from mash-up technology (Vladimir et al., 2015),

so it is legitimate to uphold that they may be considered as a deviation of this technol-

ogy. After analysing their similarities and differences, we concluded TAS and mash-ups

have substantial differences so there is room for a formal definition of TAS, as we argued

in the second chapter. Second, the current evolution of TASs –taking in new players and

expanding the channel offer, tends to the democratisation of the technology, making it more

accessible to users and developers. As a consequence, it will also increase the capabilities

and features of future TASs systems, but there is still a technological gap that should be

filled. We identified that a common model for describing channels and automations pro-

vides several advantages such as supporting interconnection between TAS, facilitating the

1Crowdfunding is the practice of funding a project or venture by raising monetary contributions from

numerous people, today often performed via Internet-mediated registries
2http://www.kickstarter.com
3http://www.indiegogo.com

100

http://www.kickstarter.com
http://www.indiegogo.com

6.2. CONCLUSIONS

exposure of services and connected devices as channels, enabling automations with reason-

ing over external services, etc. Therefore we proposed the EWE ontology, described in the

third and fourth chapters. Finally, the evolution of other similar services and platforms

that are also centred on the user is to become more proactive, offering the service or the

information to the user even before it asks for it. For instance, Google Now4, Microsoft’s

Cortana5 or Apple’s Siri6 are prominent examples of this trend. In this regard, TAS have

a lot of potential, e.g. users may be assisted when creating automations and recommended

with useful automations based on their profile. We proposed an agent architecture for TAS

that supports common task automation features with the proactivity given by the agent.

6.2 Conclusions

Throughout the course of the thesis, a number of contributions have been delivered that can

be gathered under three main contribution areas:

A reference model for describing TAS. This thesis proposes a reference model for de-

scribing TAS, which has been build upon the insight gathered from comparing the fea-

tures of twenty-one TASs. To formally extract the features of these TAS, a comparison

framework was proposed. It is based on 18 criteria developed around 6 dimensions of

the three main components of TAS: channels, rules and the TAS platform. As result of

the formalisation of the reference model, this thesis coined the term Task Automation

Service (TAS). The model has been implemented as an ontology named Evented WEb

ontology (EWE). Apart from the advantages of reference models, EWE introduces five

additional advantages i) it enables exporting the automation portfolio, ii) it enables

reasoning over external resources, iii) it allows external software agents to read, un-

derstand ant thus reason with the data, iv) it facilitates the entrance of new actors in

the market, and v) it also facilitates the analysis of domain data. Finally, the chapter

exhaustively evaluates the EWE ontology proposed by using a data-driven approach.

The evaluation conclusion is that EWE effectively models four popular commercial

TASs while it addresses the shortcomings observed in them.

Ontology learning methodology for extracting TAS vocabularies. The thesis pro-

poses a methodology to automatic ontology learning about specific channel domains.

The process consist of four steps that have been thoroughly validated. First, using

4https://www.google.com/landing/now/
5http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana
6http://www.apple.com/ios/siri/

101

https://www.google.com/landing/now/
http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana
http://www.apple.com/ios/siri/

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the channel and automation directory of TAS a dataset of channels has been com-

piled. This is relevant information to be used by software agents and users to consult

information about the TASs, and it has been used by the implementation of the per-

sonal agent, to suggest automations in various ways. Then, a measure of similarity

that combines semantic structure and linguistic similarity has been proposed. It is

presented as a correction of the Jaccard similarity, and it has been evaluated in the

former dataset concluding the results of the corrected similarity are more accurate,

in the domain under study, than those obtained using the original similarity. Next,

a clustering algorithm was designed to group channel in small clusters which expose

shared functionalities. It has been proved that this clustering algorithm presents ad-

vantages in this scenario such as, i) it does not require to number of cluster a priori,

ii) individuals that do not match any cluster are left unclustered, iii) individuals may

belong to more than one cluster, and iv) each cluster provides the features that sup-

port that cluster. Finally, we used the harvested instances, the similarity metric and

the clustering algorithm to automatically learn ontologies. The results of the whole

process have been evaluated at a dataset level, and at a ontology level obtaining a

combined F-score of 86.82%.

Personal agent architecture for task automation. The thesis proposes a Modular ar-

chitecture for Intelligent Agents (MAIA) to providing agent platforms an easy and

transparent communication channel to Web services, sensor networks, user interfaces,

etcetera. Although it has been designed as a stand-alone architecture, it has been

integrated within the Reference Architecture of TAS to give the agent systems access

to the features of TASs. The architecture has been validated in two case studies, in

the first one as an independent architecture i.e. without a TAS, and in the second

case study in combination with a TAS. It has been validated that the modularity and

loose couple design favours the integration of personal agent in TASs. Moreover, the

thesis studies the different behaviours a personal agent may adopt to assist the user

while using a TAS, and those have been implemented in the case studies.

6.3 Future research

The development of this thesis and its contributions to the state of the art in Task Automa-

tion have opened new possibilities for future research. The case scenarios and evaluation

processes described have proof the usefulness of the contributions, but at the same time they

have unveiled different approaches that, although not being addressed in this work, worth

being mention here. In terms of conclusions for the thesis research, the following lines of

102

6.3. FUTURE RESEARCH

future research can be pointed out as follows.

The survey about commercial Task Automation Services described in Chapter 2, not

only set the foundations of the research conducted along this thesis, but also discover many

interesting features and possibilities of TASs that have not been addressed in depth. This

is the case of group channels and group rules, a concept still not covered by the state of the

art, neither by commercial TASs. A sample of their potential is shown in Section 5.5, where

a few automations considering events coming from data-streams that belong to different

users are explained. The future work in this matter covers a proper definition of group

channels, including their usage restrictions between users. Different usage policies may be

considered: first connected user has priority, fixed priorities, shared priority, etcetera. Once

group channels are defined, group rules may be addressed. These are automation rules that

may be triggered by event related to different users or a combination of those. For instance,

at a working space, a rule for switching on/off the heating system depending on who is in

the room could be considered. However, group rules are strongly associated to the concept

of collisions. In the former example, a collision would be caused by two different users

setting the temperature to different values when they are at the room. Collision has already

been addressed in this thesis, considering only the simplest cases where two rules triggered

by the same event try to execute incompatible actions, i.e. actions that put a channel

into incompatible estates. However, the ontology does not cover the definition of these

restrictions, thus it does not provide support to identify collisions. Moreover, the concept of

collisions in groups channels is even more challenging, because the conflict may be caused

by rules of different users and in that case a resolution process must be considered. The

simplest resolution process consists on using priorities, but different process that consider

lower impact may be more appropriate. This concept refers to a mechanism to resolve

collisions without taking into account the usage priority, and instead infer the deactivation

of which automation rule may cause fewer harm.

In Chapter 2 the concept of Mixed Execution Profile was introduced. Although some

of its features and requirements are introduced and even addressed in the Reference Ar-

chitecture, the execution of automation rules with a Mixed Execution Profile requires the

definition of coordination algorithms to orchestrate the exchange of command between the

central TAS and the mobile TAS, or more precisely between the execution planners of both

TAS. A first approach to this concept was presented by Coronado et al. (2014a). Moreover,

the concept of Mixed Execution Profile offers several advantages to the industry that could

drastically reduce the bandwidth usage, or allow users to have automations event in areas

without Internet coverage.

103

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The EWE ontology presented in Chapter 3, effectively describes TASs. For design de-

cisions, features related to rule execution, the channel connection (either device of web

service), authorisation were left apart. However, the concept of group channels and rules,

and collisions require the support of an ontology to be efficiently handled. Thus, an ex-

tension of EWE’s core could be considered to address all issues mentioned. Similarly, the

orchestration of the mixed execution profiles may benefit from an EWE’s extension too.

From the point of view of the final user, the semantic definition of TAS channels allow

them to search for channels and automations across different TAS. To allow the user perform

these queries, the semantic endpoint of channels presented in Chapter 3, as a proof of concept

should be deployed and provided with a user interface. In combination with the automatic

scraping of the channel and automation instances, the information contained in the endpoint

may be always up to date. This also enables further research in semantic introspection and

linking of channels instances to those from the LOD cloud.

In Chapter 4, the EWE ontology was complemented with the specific vocabularies learnt.

However, analysing the data from the harvested automations was out of the scope of this

thesis. Having harvested more than 350k automations, the dataset constitutes a valuable

resource for exploring user profiles from the point of view of automations, analysing substi-

tutive channels, etcetera. This information may also be used to train a recommender system

of automations based on user profiles. This is also an interesting line of future research.

In Chapter 5 a distributed and modular agent architecture was presented. It was used

to easily communicate TAS with agent systems as well as with connected devices and web

services. Several use cases were implemented to proof its feasibility, and they were used to

present the functionalities personal agent introduces to task automation services. However,

it was out of the scope of this thesis providing a formal evaluation of these systems from the

point of view of Human Computer Interaction. It is an interesting future research line that

could validate the usefulness of personal assistants in TASs environments. Performing this

evaluation requires the development and deployment of a stable version of semantic TAS

which provides access to a sufficient number of channels so that the users use the system on

a daily basis.

Moreover, this system enables the evaluation of the vocabularies learnt in Chapter 4

using an application based approach (Hazman et al., 2011) which would complement the

current approach.

Another interesting addition to the user interface of the personal assistant for TAS

consist on including a NLI interface. This has already been tackled by Van Kleek et al.

(2010) providing a constrained NLI, and also in other application fields (Coronado et al.,

104

6.3. FUTURE RESEARCH

2015), or commercial like Apple’s Siri or Microsoft’s Cortana.

105

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

106

Bibliography

RIF Production Rule Dialect. http://www.w3.org/2005/rules/wiki/PRD, 2008.

Accessed: 2015-06-10.

RuleML Overview and Motivation. http://wiki.ruleml.org/index.php/RuleML_

Home, 2010. Accessed: 2015-06-10.

SPIN Overview and Motivation. http://www.w3.org/Submission/

spin-overview/, 2011. Accessed: 2015-06-10.

K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for Data Processing in Large-

Scale Interconnected Sensor Networks. In 2007 International Conference on Mobile Data

Management, number 1, pages 198–205. Conference and Custom Publishing, May 2007.

B. Alfonso, E. Vivancos, V. Botti, and A. García-Fornes. Integrating jason in a multi-agent

platform with support for interaction protocols. In Proceedings of the compilation of

the co-located workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11 and

VMIL’11, SPLASH ’11 Workshops, pages 221–226, New York, NY, USA, 2011. ACM.

B. Amini, R. Ibrahim, M. S. Othman, and A. Selamat. Capturing scholar’s knowledge

from heterogeneous resources for profiling in recommender systems. Expert Systems with

Applications, 41(17):7945 – 7957, 2014.

B. Amini, R. Ibrahim, M. S. Othman, and M. A. Nematbakhsh. A reference ontology for

profiling scholar’s background knowledge in recommender systems. Expert Systems with

Applications, 42(2):913 – 928, 2015.

Atooma. Atooma a touch of magic. http://www.atooma.com/, 2015. Accessed: 2015-

03-31.

J. C. Augusto and C. D. Nugent. The Use of Temporal Reasoning and Management of

Complex Events in Smart Homes. In Proceedings of the 16th European Conference on

Artificial Intelligence, Valencia, 2004.

Automateit. Automateit turn your smartphone into a genius-phone. http://

automateitapp.com/, 2015. Accessed: 2015-03-31.

107

http://www.w3.org/2005/rules/wiki/PRD
http://wiki.ruleml.org/index.php/RuleML_Home
http://wiki.ruleml.org/index.php/RuleML_Home
http://www.w3.org/Submission/spin-overview/
http://www.w3.org/Submission/spin-overview/
http://www.atooma.com/
http://automateitapp.com/
http://automateitapp.com/

BIBLIOGRAPHY

J. Bae, H. Bae, S.-h. Kang, and Y. Kim. Automatic control of workflow processes using

ECA rules. IEEE Transactions on Knowledge and Data Engineering, 16(8):1010–1023,

August 2004.

D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: SPARQL

for continuous querying. In Proceedings of the 18th international conference on World wide

web, pages 1061–1062. ACM, 2009.

F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-Time Monitoring of Instances

and Classes of Web Service Compositions. In International Conference on Web Services,

2006, 2006.

A. Beach, M. Gartrell, X. Xing, R. Han, Q. Lv, S. Mishra, and K. Seada. Fusing mobile,

sensor, and social data to fully enable context-aware computing. In Proceedings of the

Eleventh Workshop on Mobile Computing Systems & Applications, page 60, New York,

February 2010. ACM Press.

S. Bechhofer. OWL Reasoning Examples. http://owl.man.ac.uk/2003/why/

latest/, 2003. Version 03/12/2003.

W. Beer, V. Christian, A. Ferscha, and L. Mehrmann. Modeling Context-Aware Behavior

by Interpreted ECA RulesIn , Euro-Par 2003 Parallel Processing, volume 2790 of Lecture

Notes in Computer Science, pages 1064–1073. Springer Berlin Heidelberg, 2003.

F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with JADE

(Wiley Series in Agent Technology). John Wiley & Sons, 2007.

T. Berners-Lee. Notation 3 Logic. https://www.w3.org/DesignIssues/Notation3,

2011. Accessed: 2016-01-10.

T. Berners-Lee and D. Connolly. Notation3 (N3): A readable RDF syntax. http://www.

w3.org/TeamSubmission/n3/, 2011. Version 28/03/2011.

T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific american, 284

(5):28–37, 2001.

D. Berrueta, D. Brickley, S. Decker, S. Fernandez, C. Gorn, A. Harth, T. Heath, K. Ide-

hen, K. Kjernsmo, A. Miles, A. Passant, A. Polleres, and L. Polo. SIOC Core Ontology

Specification. http://rdfs.org/sioc/spec/, 2010. Version 25/03/2010.

H. Boley and M. Kifer. Rule Interchange on the Web. New York, (September):269–309,

2007.

108

http://owl.man.ac.uk/2003/why/latest/
http://owl.man.ac.uk/2003/why/latest/
https://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://rdfs.org/sioc/spec/

BIBLIOGRAPHY

H. Boley, A. Paschke, and M. O. Shafiq. RuleML 1.0: The Overarching Specification of Web

RulesIn , Semantic Web Rules - International Symposium, RuleML 2010, Washington,

DC, USA, October 21-23, 2010. Proceedings, volume 6403 of Lecture Notes in Computer

Science, pages 162–178. Springer, 2010.

A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL-extending SPARQL to process

data streams. Springer, 2008.

R. H. Bordini and J. F. Hübner. Bdi agent programming in agentspeak using jason. In Pro-

ceedings of 6th International Workshop on Computational Logic in Multi-Agent Systems.

Volume 3900 of lncs, pages 143–164. Springer, 2005.

J. Brank, M. Grobelnik, and D. Mladenić. A survey of ontology evaluation techniques.

In Proceedings of 7th International Multi-conference on Information Society, Ljubljana,

2005.

I. Bratman. Plans, and practical reason. Cambridge, Mass.: Harvard UP, 1987.

J. G. Breslin, A. Harth, U. Bojars, and S. Decker. Towards semantically-interlinked online

communities. In The Semantic Web: Research and Applications, pages 500–514. Springer,

2005.

D. Brickley and L. Miller. FOAF Vocabulary Specification 0.99. http://xmlns.com/

foaf/spec/, 2014. Version 14/01/2014.

P. Buitelaar, P. Cimiano, and B. Magnini. Ontology learning from text: methods, evaluation

and applications, volume 123. IOS press, 2005.

V. Bullard, B. Murray, and K. Wilson. An Introduction to WSDM. OASIS, 2006.

P. Cimiano and J. Völker. Text2onto - a framework for ontology learning and data-driven

change discovery In , Proceedings of the 10th International Conference on Applications of

Natural Language to Information Systems (NLDB), volume 3513, pages 227–238, Alicante,

Spain, Juni 2005. Springer.

P. Cimiano, A. Mädche, S. Staab, and J. Völker. Ontology learning. In Handbook on

ontologies, pages 245–267. Springer, 2009.

Cloudwork. Cloudwork connect your business apps. http://cloudwork.com/, 2015.

Accessed: 2015-03-31.

M. Coronado and C. A. Iglesias. Task Automation Services: Automation for the masses.

IEEE Internet Computing, 99:52–58, 2015a.

109

http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://cloudwork.com/

BIBLIOGRAPHY

M. Coronado and C. A. Iglesias. EWE ontology specification. http://www.gsi.dit.

upm.es/ontologies/ewe/, 2015b. Accessed: 2015-03-31.

M. Coronado and C. A. Iglesias. Task automation services study. http://www.gsi.dit.

upm.es/ontologies/ewe/study/full-results.html, 2015c. Accessed: 2015-

03-31.

M. Coronado, R. Bruns, J. Dunkel, and S. Stipković. Context-awareness in Task Automation

Services by Distributed Event ProcessingIn , Proceedings of the 15th Internacional Con-

ference of Web Information System Engineering (WISE 2014), number 191-202, 2014a.

M. Coronado, R. Bruns, J. Dunkel, and S. Stipković. Context-awareness in Task Automation

Services by Distributed Event ProcessingIn , Proceedings of the 15th Internacional Con-

ference of Web Information System Engineering (WISE 2014), number 191-202, 2014b.

M. Coronado, C. A. Iglesias, and A. M. Mardomingo. A Personal Agents Hybrid Architecture

for Question Answering featuring Social Dialog. In 2015 International Symposium on

INnovations in Intelligent SysTems and Applications, September 2015.

A. Costa, J. C. Castillo, P. Novais, A. Fernandez-Caballero, and R. Simoes. Sensor-driven

agenda for intelligent home care of the elderly. Expert Systems with Applications, 39(15):

12192 – 12204, 2012.

C. Crespo, M. Coronado, and C. A. Iglesias. DrEWE an intelligent platform for task au-

tomation. https://github.com/gsi-upm/DrEWE, 2014. Accessed: 2015-03-31.

G. Cugola and A. Margara. Processing flows of information. ACM Computing Surveys, 44

(3):1–62, June 2012.

M. Czerwinski, E. Horvitz, and S. Wilhite. A diary study of task switching and interruptions.

In Proceedings of the SIGCHI conference on Human factors in computing systems, CHI

’04, pages 175–182, New York, NY, USA, 2004. ACM.

G. De Francisci Morales, A. Gionis, and C. Lucchese. From chatter to headlines. In Pro-

ceedings of the fifth ACM international conference on Web search and data mining, page

153, New York, February 2012. ACM Press.

K. Dellschaft and S. Staab. On how to perform a gold standard based evaluation of ontology

learningIn , The Semantic Web - ISWC 2006, volume 4273 of Lecture Notes in Computer

Science, pages 228–241. Springer Berlin Heidelberg, 2006.

P. Dempsey. The teardown amazon echo digital personal assistant [teardown consumer

electronics]. Engineering Technology, 10(2):88–89, March 2015.

110

http://www.gsi.dit.upm.es/ontologies/ewe/
http://www.gsi.dit.upm.es/ontologies/ewe/
http://www.gsi.dit.upm.es/ontologies/ewe/study/full-results.html
http://www.gsi.dit.upm.es/ontologies/ewe/study/full-results.html
https://github.com/gsi-upm/DrEWE

BIBLIOGRAPHY

L. Drumond and R. Girardi. A survey of ontology learning procedures. volume 427, 2008.

M. Eckert, F. Bry, S. Brodt, O. Poppe, and S. Hausmann. A CEP Babelfish: Languages

for Complex Event Processing and Querying SurveyedIn , Reasoning in Event-Based

Distributed Systems, volume 347 of Studies in Computational Intelligence, pages 47–70.

Springer Berlin Heidelberg, 2011.

Elasticio. Elastic.io integrate once. connect many. http://www.elastic.io/, 2015.

Accessed: 2015-03-31.

A. Erradi, P. Maheshwari, and V. Tosic. Policy-Driven Middleware for Self-adaptation of

Web Services Compositions. In Proceedings of the ACM/IFIP/USENIX 2006 Interna-

tional Conference on Middleware, pages 62–80, 2006.

M. S. et al. Json-ld 1.0. http://json-ld.org/spec/latest/json-ld/, January

2014.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of pub-

lish/subscribe. ACM Comput. Surv., 35(2):114–131, June 2003.

J. I. Fernández-Villamor, C. A. Iglesias, and M. Garijo. First-Order Logic Rule Induction for

Information Extraction in Web Resources. International Journal of Artificial Intelligence

Tools, 21:1250032–1–,1250032–2, 2012.

C. Fürber and M. Hepp. Using SPARQL and SPIN for Data Quality Management on the

Semantic Web. Business Information Systems, (1):35–46, 2010.

Y. Gil, P. Groth, and V. Ratnakar. Social task networks: Personal and collaborative task

formulation and management in social networking sites. In Proceedings of the AAAI Fall

Symposium on Proactive Assistant Agents, 2010.

D. Greenwood, M. Lyell, A. Mallya, and H. Suguri. The ieee fipa approach to integrating

software agents and web services. In Proceedings of the 6th international joint conference

on Autonomous agents and multiagent systems, AAMAS ’07, pages 276:1–276:7, New

York, NY, USA, 2007. ACM.

B. J. Grosz and S. Kraus. Collaborative plans for complex group action. ARTIFICIAL

INTELLIGENCE, 86(2):269–357, 1996.

T. R. Gruber. A translation approach to portable ontology specifications. Knowl. Acquis.,

5(2):199–220, June 1993.

111

http://www.elastic.io/
http://json-ld.org/spec/latest/json-ld/

BIBLIOGRAPHY

T. Gruber. Intelligence at the interface: Semantic technology and the consumer internet

experience, 2009.

T. Gu, H. K. Pung, and D. Q. Zhang. A service-oriented middleware for building context-

aware services. Journal of Network and Computer Applications, 28(1):1–18, January 2005.

M. Hazman, S. R. El-Beltagy, and A. Rafea. A survey of ontology learning approaches.

International Journal of Computer Applications, 22:6, 2011.

M. Hepp. Goodrelations language reference. http://www.heppnetz.de/ontologies/

goodrelations/v1, 2011. Version 1.0, , 01/10/2011.

M. N. Huhns and M. P. Singh. Personal assistants. Internet Computing, IEEE, 2(5):90–92,

1998.

Ifttt. IFTTT put the internet to work for you. http://ifttt.com/, 2015. Accessed:

2015-03-31.

M. Indiramma and K. Anandakumar. Collaborative decision making framework for multi-

agent system. In Computer and Communication Engineering, 2008. ICCCE 2008. Inter-

national Conference on, pages 1140 –1146, May 2008.

D. L. D. Ipiña. An ECA Rule-Matching Service for Simpler Development of Reactive Ap-

plications. IEEE DSOnline, 2, 2001.

itduzzit. Cloud integration - itduzzit. http://cloud.itduzzit.com/, 2015. Accessed:

2016-01-10.

P. Jaccard. Etude comparative de la distribution florale dans une portion des Alpes et du

Jura. Impr. Corbaz, 1901.

C. Jacinto and C. Antunes. User-driven ontology learning from structured data. In Computer

and Information Science (ICIS), 2012 IEEE/ACIS 11th International Conference on,

pages 184–189. IEEE, 2012.

P. Jain, P. Z. Yeh, K. Verma, R. G. Vasquez, M. Damova, P. Hitzler, and A. P. Sheth.

Contextual ontology alignment of lod with an upper ontology: A case study with proton.

In The Semantic Web: Research and Applications, pages 80–92. Springer, 2011.

A. Jentzsch, R. Cyganiak, and C. Bizer. State of the lod cloud. http://lod-cloud.

net/state/, 2011. Version 0.3, 09/19/2011.

J. J. Jung. Contextgrid: A contextual mashup-based collaborative browsing system. Infor-

mation Systems Frontiers, 14(4):953–961, 2011.

112

http://www.heppnetz.de/ontologies/goodrelations/v1
http://www.heppnetz.de/ontologies/goodrelations/v1
http://ifttt.com/
http://cloud.itduzzit.com/
http://lod-cloud.net/state/
http://lod-cloud.net/state/

BIBLIOGRAPHY

D. Karger. The Semantic Web and End Users: What’s Wrong and How to Fix It. Internet

Computing, IEEE, 2014.

V. Kashyap. Design and creation of ontologies for environmental information retrieval. In

Proceedings of the 12th Workshop on Knowledge Acquisition, Modeling and Management,

pages 1–18. Citeseer, 1999.

J. H. Kietzmann, K. Hermkens, I. P. McCarthy, and B. S. Silvestre. Social media? Get

serious! Understanding the functional building blocks of social media. Business Horizons,

54(3):241–251, May 2011.

M. Kifer. Rule interchange format: The frameworkIn , Web Reasoning and Rule Systems,

volume 5341 of Lecture Notes in Computer Science, pages 1–11. Springer Berlin Heidel-

berg, 2008.

H. Labiod, A. Hossam, and C. D. Santis. Wi-Fi, Bluetooth, Zigbee and WiMax. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2007.

M. S. LaTour and T. L. Henthorne. Informal interpersonal influence on purchasing agents’

perceived risk. In Proceedings of the 1987 Academy of Marketing Science (AMS) Annual

Conference, pages 371–375. Springer, 2015.

D. Lillis. Internalising Interaction Protocols as First-Class Programming Elements in Multi

Agent Systems. PhD thesis, University College Dublin, 2012.

Z. Lin and K. Carley. Proactive or reactive: An analysis of the effect of agent style on

organizational decision making performance. Intelligent Systemt in Accounting, Finance

and Management, 1993.

J. N. Liu, Y.-L. He, E. H. Lim, and X.-Z. Wang. A new method for knowledge and in-

formation management domain ontology graph model. Systems, Man, and Cybernetics:

Systems, IEEE Transactions on, 43(1):115–127, 2013.

C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A. Hamilton.

Reference model for service oriented architecture 1.0. OASIS Standard, 12, 2006.

A. Martinez. The Ultimate IFTTT Guide: Use The Web’s Most Powerful Tool Like A Pro.

2013.

B. D. Meester, D. Arndt, P. Bonte, J. Bhatti, W. Dereuddre, R. Verborgh, F. Ongenae,

F. D. Turck, E. Mannens, and R. V. de Walle. Event-driven rule-based reasoning using

eye. In SSN-TC/OrdRing@ISWC, volume 1488 of CEUR Workshop Proceedings, pages

75–86. CEUR-WS.org, 2015.

113

BIBLIOGRAPHY

A. R. Meisel. Optimze, Automate, and Outsource Everything In Your Life: How to Make

Email, IFTTT, and Virtual Assistants Your Ultimate Productivity Weapons. CreateSpace

Independent Publishing Platform, 2014.

M. Montaner. A Taxonomy of Recommender Agents on the Internet. Artificial Intelligence

Review, pages 285–330, 2003.

O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and service adaptation

for WS-BPEL. In Proceeding of the 17th international conference on World Wide Web,

page 815, New York, 2008. ACM Press.

O. Moser, F. Rosenberg, and S. Dustdar. Event Driven Monitoring for Service Composi-

tion Infrastructures. In The 11th International Conference on Web Information System

Engineering 2010, pages 38–51, Hong Kong, 2010.

J. P. Müller. Architectures and applications of intelligent agents: A survey. The Knowledge

Engineering Review, 13(4):353–380, 1999.

M. A. Musen. Dimensions of knowledge sharing and reuse. Comput. Biomed. Res., 25(5):

435–467, October 1992.

K. Myers, P. Berry, J. Blythe, K. Conley, M. Gervasio, D. L. McGuinness, D. Morley,

A. Pfeffer, M. Pollack, and M. Tambe. An intelligent personal assistant for task and time

management. AI Magazine, 28(2):47, 2007.

A. Nikolov and E. Motta. Capturing emerging relations between schema ontologies on the

web of data. 2010.

D. A. Norman. How might people interact with agents. Commun. ACM, 37:68–71, July

1994.

M. O’Connor, H. Knublauch, S. Tu, B. Grosof, M. Dean, W. Grosso, and M. Musen. Sup-

porting Rule System Interoperability on the Semantic Web with SWRLIn , The Semantic

Web – ISWC 2005, volume 3729 of Lecture Notes in Computer Science, pages 974–986.

Springer Berlin Heidelberg, 2005.

M. OĆonnor, M. Dean, H. Boley, and A. Das. SWRL2 - Ruleml. http://wiki.ruleml.

org/index.php/SWRL2, 2012. Accessed: 2015-01-10.

I. Ohmukai, H. Takeda, and M. Miki. A proposal of the person-centered approach for

personal task management. 2003 Symposium on Applications and the Internet, 2003.

Proceedings., pages 234–240, 2003.

114

http://wiki.ruleml.org/index.php/SWRL2
http://wiki.ruleml.org/index.php/SWRL2

BIBLIOGRAPHY

K. A. Olsen and A. Malizia. Automated personal assistants. Computer, 44(11):112, 110–111,

2011.

OMG. Production Rule Representation. Technical report, Object Managment Group, 2009.

Accessed: 2016-01-10.

Onx. On{x} automate your life. https://www.onx.ms/, 2015. Accessed: 2015-03-31.

K. Opasjumruskit, J. Expósito, and B. König-Ries. MERCURY: User Centric Device and

Service Processing–Demo paper. ABIS 2012, pages 2–5, 2012.

L. Ouyang, B. Zou, M. Qu, and C. Zhang. A method of ontology evaluation based on cov-

erage, cohesion and coupling. In 2011 Eighth International Conference on Fuzzy Systems

and Knowledge Discovery, pages 2451–2455. IEEE, July 2011.

K. Parks and D. Watkins. How to Automate Your Way to Freedom. 2012. ebook.

A. Paschke and A. Kozlenkov. Rule-Based Event Processing and Reaction Rules. In Proceed-

ings of the 2009 International Symposium on Rule Interchange and Applications, pages

53–66, 2009.

A. Paschke and P. Vincent. A reference architecture for Event Processing. In Proceedings

of the Third ACM International Conference on Distributed Event-Based Systems, page 1,

New York, 2009. ACM Press.

A. Paschke, P. Vincent, and F. Springer. Standards for Complex Event Processing and

Reaction RulesIn , Rule-Based Modeling and Computing on the Semantic Web, pages

128–139. Springer-Verlag, 2011.

E. Pignotti and P. Edwards. Using Web Services and Policies within a Social Platform

to Support Collaborative Research. In Working Notes of AAAI 2012 Stanford Spring

Symposium on Intelligent Web Services Meet Social Computing (March 2012), pages 64–

69, 2012.

A. Pintus, D. Carboni, and A. Piras. Paraimpu: a platform for a social web of things. In

Proceedings of the 21st international conference companion on World Wide Web, pages

401–404, 2012.

A. Pokahr and L. Braubach. From a research to an industry-strength agent platform: Jadex

v2. Business Services: Konzepte, Technologien, Anwendungen. 9. Internationale Tagung

Wirtschaftsinformatik, pages 769–780, 2009.

115

https://www.onx.ms/

BIBLIOGRAPHY

J. F. S. Rada, C. A. I. Fernandez, and M. C. Barrios. Maia: an event-based modular archi-

tecture for intelligent agents. In IEEE/WIC/ACM International Conference on Intelligent

Agent Technology (WIC 2014), pages 87–94, Agosto 2014.

Y. Raimond and S. Abdallah. The Event Ontology. Technical report, Technical report,

2007. http://motools. sourceforge., 2012. Accessed: 2015-03-31.

Y. Raimond, S. A. Abdallah, M. B. Sandler, and F. Giasson. The music ontology. In ISMIR,

pages 417–422. Citeseer, 2007.

Y. Raimond, T. Gangler, F. Giasson, K. Jacobson, G. Fazekas, S. Reinhardt, and A. Passant.

The Music Ontology - Specification. http://purl.org/ontology/mo/, 2013. Version

2.1.5, , 22/07/2012.

A. S. Rao, M. P. Georgeff, et al. Bdi agents: From theory to practice. In Proceedings of the

first international conference on multi-agent systems (ICMAS-95), pages 312–319. San

Francisco, 1995.

V. Ricquebourg, D. Durand, D. Menga, B. Marhic, L. Delahoche, and C. Logé. Context

inferring in the Smart Home: An SWRL approach. In 21st International Conference on

Advanced Information Networking and Applications Workshops, 2007, number iv, pages

290–295, Niagara Falls, 2007.

J. Ruan and Y. Yang. Assess Content Comprehensiveness of Ontologies. 2010 Second

International Conference on Computer Modeling and Simulation, pages 536–539, January

2010.

A. Ruttenberg, J. Carroll, and M. Krotzsch. Punning - OWL. http://www.w3.org/

2007/OWL/wiki/Punning, 2008. Version 10/07/2008.

M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt. Learning domain ontologies for

semantic web service descriptions. Web Semantics: Science, Services and Agents on the

World Wide Web, 3(4):340 – 365, 2005. World Wide Web Conference 2005——Semantic

Web TrackWorld Wide Web Conference 2005——Semantic Web Track.

F. Sadri. Ambient intelligence: A survey. ACM Computing Surveys, 43(4):1–66, October

2011.

D. Sánchez. Domain Ontology Learning from the Web: An Unsupervised, Automatic and

Domain Independent Approach. AV Akademikerverlag, 2012.

D. Sánchez and A. Moreno. Creating ontologies from web documents. Recent Advances in

Artificial Intelligence Research and Development. IOS Press, 113:11–18, 2004.

116

http://purl.org/ontology/mo/
http://www.w3.org/2007/OWL/wiki/Punning
http://www.w3.org/2007/OWL/wiki/Punning

BIBLIOGRAPHY

A. Seaborne. Sparql results in json. http://www.w3.org/TR/

sparql11-results-json/, January 2011.

M. Shamsfard and A. A. Barforoush. The state of the art in ontology learning: a framework

for comparison. Knowledge Engineering Review, 18:293–316, 2003.

S. Shapiro, S. Sardina, J. Thangarajah, L. Cavedon, and L. Padgham. Revising conflict-

ing intention sets in bdi agents. In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’12, pages 1081–1088,

Richland, SC, 2012. International Foundation for Autonomous Agents and Multiagent

Systems.

R. Shaw, R. Troncy, and L. Hardman. LODE: Linking Open Descriptions of Events. School

of Information, 2009.

V. K. Singh and R. Jain. Structural analysis of the emerging event-web. In Proceedings

of the 19th International Conference on World Wide Web, pages 11–83, New York, April

2010. ACM Press.

D. Spohr, P. Cimiano, and J. M. Crae. Using SPIN to Formalise Accounting Regulations on

the Semantic Web. In International Workshop on Finance and Economics on the Semantic

Web (FEOSW 2012), pages 1–15, 2012.

D. Steiner. Fipa: Foundation for intelligent physical agents - das aktuelle schlagwort. KI,

12(3):38, 1998.

SWRL. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. http:

//www.w3.org/Submission/SWRL/, 2005. Accessed: 2015-06-10.

Tasker. Tasker total automation for android. http://tasker.dinglisch.net/, 2015.

Accessed: 2015-03-31.

I. Tiddi, N. Mustapha, Y. Vanrompay, and M.-A. Aufaure. Ontology learning from open

linked data and web snippetsIn , On the Move to Meaningful Internet Systems: OTM 2012

Workshops, volume 7567 of Lecture Notes in Computer Science, pages 434–443. Springer

Berlin Heidelberg, 2012.

Topbraid. TopBraid Suite 3.5.0 changelog.

M. Van Kleek, B. Moore, D. R. Karger, P. André, and M. Schraefel. Atomate it! end-

user context-sensitive automation using heterogeneous information sources on the web.

In Proceedings of the 19th international conference on World wide web - WWW ’10, page

951, New York, New York, USA, 2010. ACM Press.

117

http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://tasker.dinglisch.net/

BIBLIOGRAPHY

J. Vassileva. A review of organizational structures of personal information management.

Management, pages 1–19, 2008.

R. Verborgh and J. De Roo. Drawing conclusions from linked data on the web: The eye

reasoner. Software, IEEE, 32(3):23–27, May 2015.

K. Vladimir, I. Budiselić, and S. Srbljić. Consumerized and peer-tutored service composition.

Expert Systems with Applications, 42(3):1028 – 1038, 2015.

P. Wallis, R. Ronnquist, D. Jarvis, and A. Lucas. The automated wingman - using jack in-

telligent agents for unmanned autonomous vehicles. In Aerospace Conference Proceedings,

volume 5, pages 5–2615–5–2622. IEEE, 2002.

Wappwolf. Automate your dropbox. http://wappwolf.com/, 2015. Accessed: 2016-01-

10.

Webee. Webee experience, connected. http://www.webeeuniverse.com/, 2015. Ac-

cessed: 2015-03-31.

U. Westermann and R. Jain. Toward a Common Event Model for Multimedia Applications.

IEEE Multimedia, 14(1):19–29, 2007.

WigWag. WigWag smart starts with a brain. http://www.wigwag.com/, 2015. Ac-

cessed: 2015-03-31.

P. J. Windley. The Live Web: Building Event-Based Connections in the Cloud. Course

Technology, 2011a.

P. Windley. The Live Web: Building Event-Based Connections in the Cloud. Course Tech-

nology, 2011b.

W. Wong, W. Liu, and M. Bennamoun. Ontology learning from text: A look back and into

the future. ACM Comput. Surv., 44(4):20:1–20:36, sep 2012.

M. J. Wooldridge and N. R. Jennings. Intelligent agents. Springer-Verlag, 1995.

S.-Y. Yang. Developing an energy-saving and case-based reasoning information agent with

web service andontology techniques. Expert Systems with Applications, 40(9):3351 – 3369,

2013.

N. Yorke-Smith, S. Saadati, K. L. Myers, and D. N. Morley. The design of a proactive

personal agent for task management. International Journal on Artificial Intelligence Tools,

21(01):1250004, 2012.

118

http://wappwolf.com/
http://www.webeeuniverse.com/
http://www.wigwag.com/

BIBLIOGRAPHY

J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding Mashup Development. IEEE

Internet Computing, 12(5):44–52, September 2008.

Y. Yueh, D. Chiu, H. fung Leung, and P. Hung. A virtual travel agent system for m-tourism

with semantic web service based design and implementation. In Advanced Information

Networking and Applications, 2007. AINA ’07. 21st International Conference on, pages

142–149, May 2007.

Zapier. Zapier the best apps. better together. http://zapier.com/, 2015. Accessed:

2015-03-31.

119

http://zapier.com/

BIBLIOGRAPHY

120

BIBLIOGRAPHY

121

BIBLIOGRAPHY

122

List of Figures

2.1 Reference Task Automation Service Architecture general diagram. Elements

in dashed lines are optional in some implementations. 14

2.2 Reference Task Automation Service Architecture general diagram. 16

2.3 Comparison between mash-ups and rule based TASs. 20

3.1 Detail of the EWE Ontology Model. 31

3.2 External ontologies mapping. 35

3.3 General architecture of TAS implementation with EWE support. 39

3.4 Use case example event model with linked-data. 40

4.1 Overview of the ontology learning methodology used. 54

4.2 Mapping for scrapping TAS channels from Ifttt and Zapier 56

4.3 Comparison of Jaccard similarity score and its corrected version. 60

5.1 Modular Architecture for Intelligent Agents and Task Automation. 82

5.2 Architecture of the event-based task automation prototype. 93

123

LIST OF FIGURES

124

LIST OF FIGURES

125

LIST OF FIGURES

126

List of Tables

2.1 Disparity in TAS Nomenclature. 18

3.1 Examples of vocabularies that may be used to enhance events. 41

3.2 List of features extracted from Ifttt rules model. 44

3.3 Feature extraction process outcome. 44

3.4 Coverage and accuracy results for the EWE ontology. 45

3.5 Scraping process results. 46

3.6 SPARQL example queries using the EWE ontology. 47

4.1 Number of instances of each type in the dataset 57

4.2 Most frequent parameter titles . 58

4.3 Similarity score between parameters of the example. 59

4.4 Overview of the cluster sizes, number of features and mean similarity between

channels of the clustering outcome with Ifttt data. 64

4.5 Dataset level precision, recall and F-score . 70

4.6 Vocabulary level precision, recall and F-score 71

127

LIST OF TABLES

128

APPENDIXA
Publications

The results of this thesis have produced a number scientific publications in journals and in

conference proceedings. The list of those publications is shown below:

A.1 Journal Articles

• Miguel Coronado, and Carlos A. Iglesias. Task Automation Services: Automation

for the masses. IEEE Internet Computing, 99:52-58, 2015. ISSN 1089-7801. doi:

10.1109/MIC.2015.73. Impact Factor (2014): 1.71 Q1.

• Miguel Coronado, Carlos A. Iglesias, and Emilio Serrano. Modelling Rules for Au-

tomating the Evented Web by Semantic Technologies. Expert Systems With Applica-

tions , 37:7979-7990, 2015. ISSN 0957-4174. doi: 10.1016/j.eswa.2015.06.031. Impact

Factor (2014): 2.240 Q1.

• Juan F. Sanchez-Rada, Carlos A. Iglesias, and Miguel Coronado. MAIA: An Event-

based Modular Architecture for Intelligent Agents, VV(1):pp-pp, 2016. ISSN 1570-

1263. SJC Factor (2014): 0.45 Q2 (in press).

• Miguel Coronado, Carlos A. Iglesias, Alejandro López, and Mercedes Garigo. Tu-

129

APPENDIX A. PUBLICATIONS

torGSI: aplicación de tecnologías de bots a entorno LMS. Revista de Educacion a

distancia (RED), 28:1-12, 2011. ISSN 1578-7680.

A.2 Conference Proceedings

• Miguel Coronado, Alberto Mardomingo, and Carlos A. Iglesias. A Personal Agents

Hybrid Architecture for Question Answering featuring Social Dialog. In Interna-

tional Symposium on INnovations in Intelligent SysTems and Applications (INISTA),

2015 International Conference on, pages 1-8, September 2015. doi: 10.1109/IN-

ISTA.2015.7276780.

• Miguel Coronado, Ralf Bruns, Jurgen Dunkel, and Sebastian Stipkovic. Context-

awareness in Task Automation Services by Distributed Event Processing. In Proceed-

ings of the 15th Internacional Conference of Web Information System Engineering

(WISE 2014), pages 190-203, September 2014. ISBN 0302-9743. doi: 10.1007/978-3-

319-20370-6_15.

• Juan F. Sanchez-Rada, Carlos A. Iglesias, and Miguel Coronado. MAIA: An Event-

based Modular Architecture for Intelligent Agents. In Web Intelligence (WI) and Intel-

ligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Confer-

ences on (Volume:3), pages 87-94. IEEE, 2012. INSPEC: 14686910. doi: 10.1109/WI-

IAT.2014.154.

• Miguel Coronado, Felipe Echanique, and Carlos A Iglesias. Personal Agents for man-

aging social notifications in an e-learning environment. In Proceedings of 5th Inter-

national Work Conference of the interplay between natural and artificial computation

(IWINAC 2013), Palmanova 2013.

130

APPENDIXB
The Evented WEb Ontology Specification

One of the contributions of the thesis is the EWE ontology - a formal specification of the

reference model for describing Task Automation Services. The following appendix contains

a summarized version of the specification. In comparison, the full specification available

on-line is a more structured document with a greater number links, and back-references

that facilitate improved specification browsing in the web environment. Moreover, the on-

line version is a live specification that will be updated any time changes are approved into

the EWE specification. The summarized version presented in the appendix contains all the

information required for the proposed modelling process as does its web counterpart. The

following appendix is primary a supplement for Chapter 3.

131

EWE Ontology Specification
V1.1 ­ 10 Jan 2016

This version: http://gsi.dit.upm.es/ontologies/ewe/1.0 (RDF/XML, HTML)

Latest version: http://gsi.dit.upm.es/ontologies/ewe
Editors: Miguel Coronado, Carlos A. Iglesias

Authors: Miguel Coronado

Contributors: See acknowledgements

This work is licensed under a Creative Commons Attribution License. This copyright applies to the EWE Ontology
Specification and accompanying documentation in RDF. This ontology uses W3C's RDF technology, an open Web
standard that can be freely used by anyone.

Abstract
Evented WEb Ontology (EWE) is a standardized data schema (also referred as "ontology" or "vocabulary") designed to describe
elements within Task Automation Services enabling rule interoperability. The following document contains the description of ontology and
instructions how to connect it with descriptions of other resources.

Table of Contents
1. Introduction

1. Task Automation Services
2. The Semantic Web
3. What is EWE for?

2. EWE ontology at a glance
3. EWE ontology overview

1. Referrenced Namespaces
2. EWE Channel example
3. SPARQL Construct EWE Rule example
4. Extended channel search example

4. Cross­reference for EWE Classes and Properties

Appendixes

A. Changelog
B. Acknowledgements

1 Introduction
The following specification is a formal description of metadata schema proposal that can be applied to data gathered in the so­called Task
Automation Services. The goal of the following section is to introduce both Semantic Web and Task Automation Services to the topic and
goals of the ontology and provide the basic knowledge to comprehend the technical part of the specification.

1.1 Task Automation Services

A number of now prominent web sites, mobile and desktop applications feature rule­based task automation. Typically, these services
provide users the ability to define which action should be executed when some event is triggered. Some examples of this simple task
automation could be “When I am mentioned in Twitter, send me an email”, “When I reach 500 meters of this place, check in in
Foursquare”, or “Turn Bluetooth on when I leave work”. We call them Task Automation Service (TAS). Some TASs allow users to share
the rules they have developed, so that other users can reuse these tools and adapt them to their own preferences.

Task Automation is a rising area, recently lots different web services and mobile­apps focus their business on this topic. Although the
concept is not new, several changes on the state of technology supports the success of these services and applications. Among them the
massive publishing of third­party APIs on the Cloud, providing access to their services is a key factor that unchained this mushrooming.

We could find several details that difference these services to each other. Some are web services and some are mobile­apps, so they
distinguish their scope. Those smartphone based focus on those capabilities that are provided by the device that cannot be addressed in
a web environment: switching on/of BT under certain conditions, automatically connect the wireless receiver when we reach some place,
automation based on positioning, based on the level of the battery etc. At the time of writing these lines, there is no Task Automation
Service that cover both a web service and a smartphone application, i.e. that let you define rules that mix both worlds, triggered by events
from the web that execute tasks on the mobile phone, or vice versa.

We can also classify them according to the target audience. Some of them focus on the user, on automation of their repetitive task, e.g.
changing Twitter's profile picture when we change Facebook's, or texting my mother that I'm running out of battery when its level is below
10%. For of the mobile based TAS are of this type. Some other, are more specific and focus on business tasks. We can perceive this by
examining the category of the services (so­called channels) they integrate. Also, depending on the process used to create the rule, we
can infer the target, this is, those that provide a rule language are focused on programmers.

Some of the most popular Task Automation Services are:

ifttt
Zapier
CouldWork
Onx
Atooma
AutomateIt

1.2 The Semantic Web

The Semantic Web is a W3C initiative that aims to introduce rich metadata to the current Web and provide machine readable and
processable data as a supplement to human­readable Web.

Semantic Web is a mature domain that has been in research phase for many years and with the increasing amount of commercial
interest and emerging products is starting to gain appreciation and popularity as one of the rising trends for the future Internet.

One of the corner stores of the Semantic Web is research on inerlinkable and interoperable data schemas for information published
online. Those schemas are often referred to as ontologies or vocabularies. In order to facilitate the concept of ontologies that lead to a
truly interoperable Web of Data, W3C has proposed a series of technologies such as RDF and OWL. EWE uses those technologies and
the research that comes within to propose an ontology set in the domain of Task Automation Services.

1.3 What is EWE for?

The goals of the EWE ontology to achieve are:

Enable to publish raw data from Task Automation Services (Rules and Channels) online and in compliance with current and future
Internet trends
Enable Rule interoperability
Provide a base vocabulary for building domain specific vocabularies e.g. Twitter Task Ontology or Evernote Task Ontology

2. EWE ontology at a glance
An alphabetical index of EWE terms, by class (concepts) and by property (relationships, attributes), are given below. All the terms are
hyperlinked to their detailed description for quick reference.

Classes: | Action | Agent | Channel | Event | InputParameter | OnlineAccount | OutputParameter | Parameter | Rule | Tag | Tagging |
TaskAutomationService | User |

Properties: | created | generatesEvent | hasActiveChannel | hasCreator | hasInputParameter | hasOutputParameter | hasParameter |
isGeneratedBy | isProvidedBy | isUsedIn | logo | page | providesAction | supportedBy | supportsChannel | tag | taggedWithTag |
timesUsed | triggeredBy | uses |

3. EWE ontology overview
The EWE UML diagram presented below shows connections between classes that implement the data model of Task Automation
Services.

UML Class Diagram for the EWE Ontology (high resolution version: PNG)

3.1. Referenced Namespaces

A common practice in Semantic Web domain is to take advantage of the work previously done and model new domains with the use of
widely known and well established vocabularies. This practice simplifies the vocabulary pool, allows to establish naming standards and
implement better interoperability and data portability across potentially very different systems.

We attempted to follow those rules, thus some of the classes and properties defined in this specification have references to properties
from other ontologies to indicate point of connection. Those referenced ontologies are described with the following namespaces:

Prefix Namespace Specification/ Usage Description

dcterms http://purl.org/dc/terms/
Dublin Core Terms ontology is a core ontology that defines a number of very
generic properties such as title, description, value, etc. Those are used
across many classes in the EWE ontology.

foaf http://xmlns.com/foaf/0.1/
Friend Of A Friend ontology. Within EWE it is used to model concepts related
to user account and the digital personification of a human being.

skos http://www.w3.org/2004/02/skos/core#

Simple Knowledge Organization System is a common data model for
knowledge organization systems such as thesauri, classification schemes,
subject heading systems and taxonomies. Within EWE, it is used to describe
different categories of Channels and Events.

tags http://www.holygoat.co.uk/owl/redwood/0.1/tags/
Newman's Tags ontology. The concepts of this ontology are used as a base
model tags.

spin http://spinrdf.org/spin#
SPARQL Inferencing Notation. EWE's rules are described using SPIN
SPARQL Syntax, an RDF representation of the semantic web query
language SPARQL.

The next diagram summarizes relation between external vocabularies and their relation to EWE.

Diagram that shows relation among external vocabularies and EWE (PNG).

3.2. EWE Channel example

A very basic example below shows a single Channel described using EWE vocabulary. It defines a new subclass of Channel that outlines
how GoogleTalk Service works. As defined below, Gmail Channel generates two events and provide one single action. These are "Any

new email" and "New email from" events and "Send an email" action (their RDF description is not shown in the example below for sake of
simplicity).

This is a real example of class definition scrapped from ifttt.com (channel definition provided here). Note that the current version of
channel description at ifttt.com may differ from the description shown here, due to ifttt is in continuous expansion, remodeling their
channels, so new events or actions may have been added since this example was written down .

 <owl:Class rdf:about="https://ifttt.com/gmail">
 <rdfs:subClassOf rdf:resource="http://gsi.dit.upm.es/ontologies/ewe/ns#Channel"/>

 <!-- Administrative properties -->
 <dcterms:title>Gmail</dcterms:title>
 <dcterms:description>
 Gmail is a free, advertising-supported webmail, POP3, and IMAP service provided by Google.
 </dcterms:description>
 <foaf:logo>https://ifttt.com/images/channels/gmail_lrg.png</foaf:logo>

 <!-- Categorization -->
 <ewe:hasCategory rdfs:resource="http://gsi.dit.upm.es/ontologies/ewe/ns#email">

 <!-- Functionalities -->
 <ewe:generatesEvent rdf:resource="https://ifttt.com/channels/gmail/triggers/85"/>
 <ewe:generatesEvent rdf:resource="https://ifttt.com/channels/gmail/triggers/86"/>
 <ewe:hasAction rdf:resource="https://ifttt.com/channels/gmail/actions/34"/>
 </owl:Class>

In the former example events and actions are included as external references. This is the preferred way for describing channels, since it
is easier to read, and offers a more modular view of the model. However, as in any other RDF graph, RDF entities can be nested, thus we
can include the Event or Action definition nested within the Channel definition. We could even add them as black entities or nodes if there
is no need to reference them from the outside (this is without relating them to the Channel that defines them), although not common and it
is discouraged.

The example below provides the description of the "New Email from" Event referenced at the Gmail Channel definition from the example
above. The event shown presents one input parameter ­the email address of the sender­ and three output parameters ­the email address
of the sender, the subject of the email, and the body of the message in plain text.

In this case, parameters are included as nested elements instead of being referenced as external resources. Although parameters have
not been given an ID (for sake of simplicity on the example) we encourage you to do so. Moreover, the reference­to­external­resources is
also an acceptable approach (once more, we did not use it here to save the reader from following multiple link from the referral to the
definition).

 <owl:Class rdf:about="https://ifttt.com/channels/gmail/triggers/86">
 <rdf:type rdf:resource="http://www.semanticweb.org/ontologies/2012/9/ewe.owl#Event"/>
 <dcterms:title>New email from</dcterms:title>
 <dcterms:description>
 This Trigger fires every time a new email arrives in your inbox from the address you specify.
 </dcterms:description>

 <!-- Input Parameters -->
 <ewe:hasInputParameter>
 <ewe:InputParameter>
 <dcterms:title>EmailAddress</dcterms:title>
 </ewe:InputParameter>
 </ewe:hasInputParameter>

 <!-- Output Parameters -->
 <ewe:hasOutputParameter>
 <ewe:OutputParameter>
 <dcterms:title>FromAddress</dcterms:title>
 <dcterms:description>Email address of sender.</dcterms:description>
 </ewe:OutputParameter>
 </ewe:hasOutputParameter>
 <ewe:hasOutputParameter>
 <ewe:OutputParameter>
 <dcterms:title>Subject</dcterms:title>
 <dcterms:description>Email subject line.</dcterms:description>
 </ewe:OutputParameter>
 </ewe:hasOutputParameter>
 <ewe:hasOutputParameter>
 <ewe:OutputParameter>
 <dcterms:title>BodyPlain</dcterms:title>
 <dcterms:description>Plain text email body.</dcterms:description>
 </ewe:OutputParameter>
 </ewe:hasOutputParameter>

 </owl:Class>

Just one more detail, the former example uses the properties ewe:hasInputParameter and ewe:hasOutputParameter to reference the Input
and Output Parameters. However, the parent hasParameter could have also been used with OutputParameter or InputParameter. When
the inference engine is available, both approaches are equivalent and any query that matches one of them will also match the other.

Nevertheless, when it is not, the procedure shown is more explicit, thus preferred.

3.3. SPARQL Construct EWE Rule example

The example below shows how is a EWE rule defined using a CONSTRUCT query.

The rule in the example sends the user a new chat message thought the GoogleTalk channel every time a new email is received. The
content of the chat message specify the senders email address, so the user can decide if it is important or not.

In detail, the WHERE graph selects all events whose title is "Any new mail", that also have an output

 CONSTRUCT {
 ?action a ewe:Action .
 ?action dcterms:title "New chat message" .
 ?action ewe:hasParameter ?iParam .
 ?iParam dcterms:title "message" .
 ?iParam dcterms:value ?message .
 <https://ifttt.com#GoogleTalk;> ewe:providesAction ?action .
 }
 WHERE {
 ?event a ewe:Event .
 ?event dcterms:title "Any new email" .
 ?event ewe:hasOutputParameter ?oParam .
 <https://ifttt.com/Gmail> ewe:generatesEvent ?event .
 ?oParam dcterms:title "FromAddress" .
 ?oParam dcterms:value ?oParamFrom .
 BIND (fn:concat("You have received a new message from ", ?oParamFrom) AS ?message) .
 BIND (URI("http://example.org/action1") AS ?action) .
 BIND (URI("http://example.org/param1") AS ?iParam) .
 }

The former rule is written using a SPARQL CONSTRUCT query. It can be transformed into a RDF format using the SPIN language. This
provide some advantages such as the capability of store the rule in the RDF endpoint with the Channels, Events and Actions. It is
executable code, since SPIN libraries provide functions to transform it back to the defining SPARQL query and also to execute it directly.
In addition, since the rule is loaded in the endpoint, it can be queried to get rules that meet a certain criteria.

The example below shows an SPARQL query to extract all the EWE rules stored that connects Gmail's events to Google talk's actions.

 SELECT * WHERE {
 _:srule rdf:type ewe:SpinRule ;
 dcterms:title ?ruletitle ;
 spin:rule _:aux1 .
 _:aux1 sp:where _:aux2 .
 _:aux2 rdf:rest*/rdf:first ?triplet_w .
 ?triplet_w sp:predicate ewe:generatesEvent ;
 <sp:subject https://ifttt.com/gmail> .
 _:aux1 sp:templates _:aux3 .
 _:aux3 rdf:rest*/rdf:first ?triplet_t .
 ?triplet_t sp:predicate ewe:providesAction ;
 sp:subject <https://ifttt.com/gtalk> .

 }

3.4. Enhance channel search example

Modeling Task Automation Service assets using EWE Ontology provides a great deal of expressiveness, enhancing search queries of
Channels and Rules. The example below shows several meaningful queries that can be done:

Query SPARQL Query Results

How many channels are defined by
each Task Automation Service?

SELECT ?tas (COUNT(?channel) AS ?channels)
WHERE {
?channel rdfs:subClassOf ewe:Channel .
?channel ewe:supportedBy ?tas
}
GROUP BY ?tas

Zapier (141), Tasker (22), Ifttt
(59)

Which channel categories are
defined?

SELECT DISTINCT ?category
WHERE {
 ?channel rdfs:subClassOf ewe:Channel .
 ?channel ewe:hasCategory ?category
}

Event Management, CRM,
Phone, Developer Tools,
Email Marketing, Social and
9 more.

[#] [back to top]

[#] [back to top]

Which channels are categorized as
social?

SELECT ?channelName
WHERE {
 ?channel rdfs:subClassOf ewe:Channel .
 ?channel ewe:hasCategory ewe:Social .
 ?channel dcterms:title ?channelName
}

Wordpress, chatter, buffer,
facebook, twitter, and 7 more

Which channels are categorized as
’developer tools’ and ’Phone’?

SELECT ?channelName
WHERE {
 ?channel rdfs:subClassOf ewe:Channel .
 ?channel ewe:hasCategory ewe:Phone .
 ?channel ewe:hasCategory ewe:Developer_Tools .
 ?channel dcterms:title ?channelName
}

Twillio and Opsgenie

Which channels’ events can be
used without configuration?

SELECT DISTINCT ?channelName ?eventName
WHERE {
 ?channel rdfs:subClassOf ewe:Channel .
 ?channel dcterms:title ?channelName .
 ?channel ewe:generatesEvent ?event .
 ?event dcterms:title ?eventName .
 FILTER NOT EXISTS {
 ?event ewe:hasInputParameter ?inp
 }
} GROUP BY ?channelName ?eventName

Paypal’s Succecc Sale,
Olark’s New Message,
Google­doc’s New Document
and 324 more.

How many actions can be executed
by means of the Tasker TAS?

SELECT (COUNT(?action) AS ?actsProvided)
WHERE {
 ?channel ewe:hasAction ?action .
 ?channel ewe:supportedBy ewe:Tasker
}
GROUP BY ?channel

204 actions

4. Cross­reference for EWE classes and properties
Below see a comprehensive list of all EWE classes, properties and their descriptions.

Classes and Properties (full detail)

Classes
Class: ewe:Action

Action ­ Action class defines an operation or proccess provided by a Service. Actions produce effects whose nature depend on the
action's nature (e.g. producing a log message, modifying a public or private state on a server, switching on a ligth, etc.). Actions are on
the right part of the Rule. Web services, actuators, and smartphone apps can provede actions when modeled as Services

Used with: providesAction

Sub class of owl:Thing

Class: foaf:Agent

Agent ­ It describes an Agent using the FOAF ontology

Sub class of owl:Thing

Class: ewe:Channel

Channel ­ It defines individuals that either generate Events, provide Actions or both. In the context we refer, Channel mostly defines Web
Services. However, sensors and actuators are also described as channels, thus they produce events or provide actions (e.g. a GPS
device programmed to generate alerts when it is near certain locations).

Properties include: providesAction generatesEvent

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

Used with: hasActiveChannel uses supportsChannel

Sub class of owl:Thing

Class: ewe:Event

Event ­ Event class defines a particular ocurrence of a process, they are generated by a particular Service (e.g. new_chat_message
events are generated by GoogleTalk service). Events have no duration. Changes on the state of a system or a sensor, can be modeled
as events (the change in the state triggers the Event generation).

Used with: generatesEvent triggeredBy

Sub class of owl:Thing

Class: ewe:InputParameter

InputParameter ­ InputParameters are configuration parameters that can be used to define the specific behavior of Events or Actions.
Event's triggering conditions are set using InputParameters. Action's execution results is set using InputParameters.

Used with: hasInputParameter

Sub class of Parameter

Class: foaf:OnlineAccount

OnlineAccount ­ It describes an OnlineAccount using FOAF ontology. The OnlineAccount class represents the provision of some form of
online service, by some party (indicated indirectly via a accountServiceHomepage) to some Agent. The account property of the agent is
used to indicate accounts that are associated with the agent.

Sub class of owl:Thing

Has sub class User

Class: ewe:OutputParameter

OutputParameter ­ OutputParameters are more common in Events than in Actions. They specify the output arguments from an Event
ocurrences. For instance, the timestamp of a chatmessage, the author of a tweet, the subject of an email, etc. The value of an output
parameter is often bound to the input parameter while connected in a Rule.

Used with: hasOutputParameter

Sub class of Parameter

Class: ewe:Parameter

Parameter ­ Parameters provide additional data that is either consumed or generated by Actions or Services. Depending on the nature of
the Paremeter they can be either InputParameter or OutputParameter. The value of a Parameter is given by the property dcterms:value,
and its name by the property dcterms:title. The property dcterms:description can also provide an overview of its meaning and usage.

Properties include: value

Used with: hasParameter

Sub class of owl:Thing

Has sub class InputParameter OutputParameter

Class: ewe:Rule

Rule ­ Rule defines an ECA rule, triggered by an Event that means the execution of an Action. It defines particular interconections among
instances of event and action, that includes the configuration parameters set for both of them. Rules are defined as a SPARQL construct
query by means of the property spin:rule, using the SPIN language.

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

Properties include: hasCreator timesUsed triggeredBy uses

Sub class of owl:Thing

Class: tags:Tag

Tag ­ It describes a certain tag annotation using the tags ontology

Used with: taggedWithTag

Sub class of owl:Thing

Class: tags:Tagging

Tagging ­ It describes a set of tags applied to a certain resource by a certaing agent. Class from Tagging ontology.

Used with: tag

Class: ewe:TaskAutomationService

TaskAutomationService ­ This describes a Task Automation Service for the Evented Rules defined in EWE.

Properties include: supportsChannel

Class: ewe:User

User ­ It defines a User who define some AppRules among the services he has account in.

Properties include: hasActiveChannel

Used with: hasCreator

Sub class of OnlineAccount foaf:OnlineAccount

Properties
Property: dcterms:created

created ­ It indicates the data at wich a Rule was created.

Domain: owl:Thing or ewe:Rule

Property: ewe:generatesEvent

generatesEvent ­ Describes the event that can be generated by the Service (e.g. Weather forecast service may generate rain alert
events).

Domain: Channel

Range: Event

Has inverse property isGeneratedBy

Property: ewe:hasActiveChannel

hasActiveService ­ It states that the User has the target service activated. This means, it has an acoount on that service and so he can
use it.

Domain: User

Range: Channel

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

Property: ewe:hasCreator

hasCreator ­ The creator of the Rule. It enables user profiling and authoring.

Domain: Rule

Range: User

Property: ewe:hasInputParameter

hasInputParameter ­ Links Actions or Events to an Input­Parameter.

Domain: ewe:Action or ewe:Event

Range: InputParameter

Sub property of hasParameter

Property: ewe:hasOutputParameter

hasOutputParameter ­ Links Actions or Events to an Output­Parameter.

Domain: ewe:Action or ewe:Event

Range: OutputParameter

Sub property of hasParameter

Property: ewe:hasParameter

hasParameter ­ Links Actions or Events to a Parameter.

Domain: owl:Thing or ewe:Action or ewe:Event

Range: Parameter

Has sub property hasOutputParameter hasInputParameter

Property: ewe:isGeneratedBy

isGeneratedBy ­ It points out the Service that may generate the Event (e.g new chat message may be generated by Google Talk Service)

Inverse property of the anonymous defined property with the label 'generatesEvent' (Object Property)

Property: ewe:isProvidedBy

isProvidedBy ­ It points out a Service that provides the Action (e.g. send new blog entry is provided by a RSS channel)

Inverse property of the anonymous defined property with the label 'provicesAction' (Object Property)

Property: ewe:isUsedIn

isUsedIn ­ Describes an AppRule that is using any of the Events that generates or Actions that provides the Service

Inverse property of the anonymous defined property with the label 'uses' (Object Property)

Property: foaf:logo

logo ­ it describes the logo of a given Service

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

[#] [back to top]

Domain: owl:Thing or ewe:TaskAutomationService or ewe:Channel

Property: foaf:page

page ­ Describes the original web resource that the class models or referes to. It is described using the FOAF ontology, accordint to
which, this points out to a document it is about.

Domain: owl:Thing or ewe:Rule or ewe:TaskAutomationService or ewe:Channel

Property: ewe:providesAction

provicesAction ­ Describe an action provided by the service (e.g. Email services provides send new email action)

Domain: Channel

Range: Action

Has inverse property isProvidedBy

Property: ewe:supportedBy

supportedBy ­ It indicates that a channel is supported by the TaskAutomationService given. It is said that a Channel is supported by a
certain TaskAutomationService when rules that involve use of Events or Actions generated or provided by that Channel can be executed
on the TaskAutomationService. It is used to build the list of TaskAutomationServices that support a certain channel.

Inverse property of the anonymous defined property with the label 'supportsChannel' (Object Property)

Property: ewe:supportsChannel

supportsChannel ­ It indicates that a TaskAutomationService supports the Channel given. It is said that a TaskAutomationService
supports a certain Channel when rules that involve use of Events or Actions generated or provided by that Channel can be executed on
the TaskAutomationService. It is used to define the list of Channels that a instance of TaskAutomationService supports.

Domain: TaskAutomationService

Range: Channel

Has inverse property supportedBy

Property: tags:tag

tag ­ It associates a resource to a Tagging object.

Range: Tagging tags:Tagging

Property: tags:taggedWithTag

taggedWithTag ­ It indicates that the object has been tagged with the Tag Object.

Range: Tag tags:Tag

Property: ewe:timesUsed

timesUsed ­ Statistical property that stores the number of times a Service, Event or Action has been used. Thus, the value it stores
corresponds to an snapshot of the Rule Database, for instance, at the time of the extraction from the origian Task Automation Service.

Domain: Rule

Range: xsd:int

[#] [back to top]

[#] [back to top]

Property: ewe:triggeredBy

triggeredBy ­ Connects the left part of the ECA rule, the Event that triggers the rule.

Domain: Rule

Range: Event

Property: ewe:uses

uses ­ Points out a Service that is used in the definition of the AppRule, either in the left part ­the event­ or the right part ­the action.

Domain: Rule

Range: Channel

Has inverse property isUsedIn

A. Change Log
2013 ­ 05 ­ 20

First version of the document

B. Acknowledgments
This documentation has been generated automatically from the most recent ontology specification in OWL using a python script called
SpecGen. The style formatting has been inspired on FOAF specification.

Special thanks for support with ontology creation and research to: Prof. Carlos A. Iglesias and members of the GSI Group of DIT
department of Universidad Politécnica de Madrid.

This work has been funded by the Spanish Ministerio de Economía y Competitividad through the Calista project (TEC2012­32457).

143

APPENDIX B. THE EVENTED WEB ONTOLOGY SPECIFICATION

144

Glossary

BDI Belief-Desire-Intention

CEP Complex Event Processing

dcterms DCMI Metadata Terms

DOAP Description Of A Project

ECA Event–Condition–Action

EPTS Event Processing Technology Society

EWE Evented WEb ontology

FOAF Friend of a Friend ontology

GN GeoNames Ontology

LOD Linked Open Data

LOV Linked Open Vocabularies

MAIA Modular Architecture for Intelligent Agents

MOM Message Oriented Middleware

NLI Natural Language Interface

NLP Natural Language Processing

N3 Notation3

OWL Ontology Web Language

PA Personal Assistants

PRR Production Rule Representation

RDF Resource Description Framework

145

RIF Rule Interchange Format

SIOC Semantically-Interlinked Online Communities

SKOS Simple Knowledge Organization System

SPARQL SPARQL Protocol and RDF Query Language

SPIN SPARQL Inferencing Notation

SSN Semantic Sensor Network ontology

SWRL Semantic Web Rule Language

TAGS Tag Ontology

TAS Task Automation Service

WEF WSDM Event Format

WoT Web of Things

146

147

	Resumen
	Abstract
	Contents
	Introduction
	Motivation
	Objectives
	Structure of this dissertation

	Task Automation Services: Automation for the masses
	Introduction
	TAS Components: Channels and execution profiles
	Web channels
	Device channels
	Rule execution profiles

	A Reference Task Automation Service Architecture
	Analysis of current TAS platforms
	TAS and web mash-ups
	Discussion and Outlook

	Modelling Rules for Task Automation: the Evented Web Ontology (EWE)
	Introduction
	Background
	Reference and semantic models
	Rule based event processing
	Automations as Event-Condition-Action rules
	Rule representation in the Semantic Web

	Evented WEb ontology (EWE) model
	EWE design methodology
	EWE elements: main classes and properties
	Mappings from external ontologies in EWE
	Examples of EWE use

	A prototype of a semantic TAS with EWE
	Prototype architecture and operation
	Semantic use case scenario

	EWE evaluation
	Feature extraction
	Running the evaluation

	Discussion and Outlook

	Mining TAS's channels: An ontology discovery approach
	Introduction
	Background in Ontology learning
	Methodology
	Semantic scraping of TASs websites
	Calculating channel similarity
	Compute channel clusters
	Generate vocabularies

	Evaluation
	Evaluation metrics
	Expert assessment and results

	Discussion and Outlook

	Personal Agent Architecture for Task Automation in the Web of Data
	Introduction
	Background
	Personal Assistants
	Agent Architectures

	Modular Architecture for Intelligent Agents and Task Automation
	Adapters
	The Agent Bus and the Evented Web Bus
	Event Manager
	Communication between TAS clients, TAS server and personal agents

	Personal agent plan library
	Types of behaviour
	Plan implementation examples

	Case study: Managing a smart environment
	Discussion and outlook

	Conclusions and Future Work
	Outlook
	Conclusions
	Future research

	Bibliography
	List of Figures
	List of Tables
	Appendix Publications
	Journal Articles
	Conference Proceedings

	Appendix The Evented WEb Ontology Specification
	Glossary

