
TRABAJO FIN DE GRADO

Título: Diseño e implementación de un Framework de Automati-

zación de Reglas Semánticas para dispositivos Android

Título (inglés): Design and implementation of a Semantic Task Automation

Rule Framework for Android Devices

Autor: Antonio Fernández Llamas

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingeniería de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Luis Bellido Triana

Secretario: Carlos Ángel Iglesias Fernández

Suplente: Juan Fernando Sánchez Rada

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingeniería de Sistemas Telemáticos

Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION OF A

SEMANTIC TASK AUTOMATION RULE

FRAMEWORK FOR ANDROID DEVICES

Antonio Fernández Llamas

Enero de 2016

Resumen

El concepto de Internet de las Cosas se basa en explicar cómo la conexión entre elementos

físicos e Internet permite a dispositivos recoger y extraer datos, interactuando con el mundo

real desde una perspectiva exterior. Su aplicación a las plataformas móviles puede ofrecer

la posibilidad de de�nir, gestionar y analizar el comportamiento del usuario, automatizando

tareas realizadas frecuentemente de forma sencilla e intuitiva.

Este proyecto se centra en diseñar e implementar un framework de automatización basado

en la utilización de reglas con un patrón del tipo ECA (Evento - Condición - Acción), que

permitan a los usuario automatizar acciones desde sus teléfonos móviles utilizando recursos

internos o externos (Ej: Cambia el estado de mi teléfono de normal a vibración cuando

empiece la reunión). Este framework se conectará con un motor de inferencias para ejecutar

el proceso.

Este motor esta alojado en un servidor remoto, donde se almacenan y gestionan las reglas

creadas. Cuando se lanza un evento, se envía una petición al servidor con los parámetros

de entrada. Estos son procesados por el motor de inferencias EYE, el cual devuelve una

respuesta. El servidor se encarga de �ltrar y extraer la información deseada de esta respuesta

y redirigirla de vuelta al smartphone.

Por último, se presentan las conclusiones extraídas tras la realización de este proyecto,

así como las tecnologías utilizadas durante el desarrollo y los posibles aspectos a mejorar en

un futuro.

Palabras clave: Automatización de Tareas, Android, EWE, SQLite, Motor de Inferen-

cias, Java, EYE.

V

Abstract

The Internet of Things concept is based on how the connection of physical things to the

Internet enable devices to collect and exchange data, interacting with real world from a

distance. Its application to mobile platforms can provide the ability to de�ne, manage and

track user behaviour, automating daily frequently actions in a simple and intuitive way .

The project will focus on design and implement an automation framework based on the

use of ECA (Event - Condition - Action) rules, that allow users to automate tasks in their

phone based on internal or external events (i.e. switch ring mode from normal to vibration

when I am in a meeting). The framework will connect to a remote rule inference engine for

executing the inference process.

This engine will be hosted in a remote server, where the rules will be storaged and

managed. When an event is triggered, a request will be sent to the server with the input

parameters. This input will be processed by the EYE inference engine which will o�er a re-

sponse. The server will adapt this response �ltering and extracting the desirable information

generating the action that will be returned to the smartphone.

Finally, we will present the conclusions extracted from this project, the technologies we

have used during the development and the possible lines of future work.

Keywords: Task Automation, Android, EWE, SQLite, Inference Engine, Java, EYE.

VII

Agradecimientos

A mis padres por animarme a terminar esta carrera y apoyarme en todo momento y a mi

tutor Carlos Ángel Iglesias Fernández por ayudarme con este proyecto.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Motivation . 1

1.2 Project Goals . 3

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Introduction . 5

2.2 IFTTT . 5

2.2.1 Architecture . 6

2.3 Atooma . 7

2.3.1 Modules . 7

2.3.2 Triggers . 8

2.3.3 Condition Checkers . 9

2.3.4 Performers . 10

XI

2.4 EYE . 10

2.4.1 Architecture . 11

2.4.2 EWE . 13

2.4.3 Design methodology . 13

2.4.4 Elements . 13

2.4.4.1 Main classes . 13

2.4.4.2 Main properties . 14

3 Architecture 17

3.1 Introduction . 17

3.2 Overview . 17

3.2.1 Server Modules . 18

3.2.2 Client Modules . 19

3.3 Modules . 20

3.3.1 Rule De�nition Module . 20

3.3.1.1 Channel Information . 20

3.3.1.2 Database . 21

3.3.1.3 Creation Process . 22

3.3.2 Rule Execution Module . 23

3.3.2.1 Execution Process . 24

3.3.2.2 Receivers and Performers . 25

3.4 Semantic rules . 27

3.4.1 Modelling channels with EWE . 27

3.4.2 Rule declaration example . 29

3.5 Android aplication . 29

3.5.1 User Interface . 29

3.5.2 Channel De�nition . 32

3.5.3 Structure . 32

3.6 Conclusions . 34

4 Case study 35

4.1 Introduction . 35

4.2 Channel Edition . 35

4.3 Rule Edition . 37

4.4 Rule Execution . 39

5 Conclusions and future work 41

5.1 Conclusions . 41

5.2 Achieved goals . 42

5.3 Future work . 43

A Rule and channel templates using N3 45

A.1 Channels . 45

A.1.0.1 Event parameters . 45

A.1.1 Action parameters . 46

A.2 Rules . 47

Bibliography 49

List of Figures

2.1 Atooma's module structure based on IF - DO aproach 7

2.2 Atooma modules: Mobile, Apps, Objects, Plugins and Files 8

2.3 WiFi triggers . 9

2.4 WiFi Connected condition checker. Requests an optional parameter SSID. . . 10

2.5 Noti�cation Toast performer. Requests an optional String type paramenter. . 10

2.6 Example of how SymetricProperty de�nition works 11

2.7 The EYE stack, which o�ers a generic reasoning engine. 12

2.8 Detail of the EWE Ontology model. [1] . 15

3.1 Client - Server architecture overview. 18

3.2 Get Channels JSON structure . 21

3.3 Sequence diagram of channel obtaining . 21

3.4 Database model . 22

3.5 Description of the Rule Creation process in sequence diagram 23

3.6 Decision diagram of the execution cycle . 24

3.7 Example of server response JSON structure 25

3.8 Bluetooth channel with EWE ontology modelling 27

3.9 Bluetooth events using EWE ontology modelling 28

3.10 Noti�cation actions using EWE ontology modelling 28

3.11 IF - THEN rule declaration using vocabularies 29

3.12 Input declaration using vocabularies . 29

XV

3.13 ListRules activity on Android app. 30

3.14 Channel - Event selection on New Rule activity. 31

3.15 Request parameters and rule general attributes. 31

3.16 Channel creation in the task automation website. 32

3.17 Asynctasks attributes attached to the remote server request. 34

4.1 Wi� channel general attributes. 36

4.2 Wi� events and actions. [2] . 36

4.3 Start Rule De�nition process from aplication 37

4.4 IF tab behaviour on Rule De�nition process 38

4.5 DO tab behaviour on Rule De�nition process 38

4.6 The �nal step on Rule De�nition process . 39

A.1 WiFi channel template described in N3 . 46

A.2 Location channel template described in N3 using parameters. 46

A.3 Noti�cation actions template described in N3 47

A.4 Rule example. If I enter GSI the enable WiFi in my smartphone 47

A.5 Rule example. If I enable WiFi then show a noti�cation 48

CHAPTER1
Introduction

1.1 Motivation

Since the beginning of the century, the Internet of Things concept and its impact in human

daily life has become an innovative and important �eld of development in several countries.

The relation between physical things and the Internet enable devices to collect and exchange

data, interacting with the real world from distance. From the analysis of this data, some

interesting conclusions about people behaviour and their habits can be extracted.

The evolution of mobile phones into smartphones has caused a boom in their usage,

increasing their impact in society and o�ering a wide ensemble of possibilities. Nowadays,

everybody has a smartphone and use it most of the day , which results in a huge dependency.

Tons of innovative aplications have been developed with multiple perspectives, which have

created a new market with new ways of interact and contact with people through di�erent

platforms.

The idea of implementing technology in familiar devices has come up recently with a

clear objective, choose a technological solution to automate common activities that people

accomplish frecuently in their lifes. The smartphone is hardly attached with this idea and

might become precursor of it. A device that stays most of the time in the pocket of your

1

CHAPTER 1. INTRODUCTION

jeans may contribute valuable information to a�liate customers in some enterprises.

Even though people use the smartphone every day, many of them don't know how to

optimize it resources. There are many processes like scheduling a meeting everyday at nine

o'clock, or turning o� the WiFi connection and enabling data network when I leave home

that are repeated frecuenly. The automation of these tasks might be a smart solution for

the waste of time and battery power consumption. Therefore, the concept of automating

tasks depending on position, or speci�c events triggering sounds really attractive to people

familiarized with the Smart Homes sector.

Inside this scenario, some new companies are emerging as task automation platforms on

mobile devices. Some examples of these are IFTTT [3] or Atooma [4]. These aplications give

the user the opportunity to de�ne rules using local resources or third-party aplications like

social networks or calendar, even gadgets or external devices with speci�c uses like beacons.

The rule structure is really simple and the creation process is intuitive and accesible. Some

rule examples could be If I start a meeting sctive silent mode on my smartphone or If my

battery has low charge level then decrease the screen brightness. This simplicity makes the

user feel comfortable and free to create and customize the rules he actually needs.

The aplication that we present in this project feeds on these ideas. All these innovative

projects try to make advantadge of the imminent automated tasks arrival, where every

event accomplished through mobile phones (E.x. search on Google, send an email, upload

a picture...) can generate an action performance, considering statments with a Event -

Condition - Action (ECA) structure for rule automation. This approach opens hundreds of

possibilities, where the users can combine di�erent events and actions in multiple ways to

solve their problems.

To conclude, the global overview of this project relies in the implementation of a complete

independent framework which enables the channel adition, the rule de�nition and the rule

execution from the smartphone, using local or remote resources as channels for create rules.

This can be useful for automating processes that the user executes frecuently and setting

up rules to some geographic locations, allowing to manage these decisions in order to create

an intelligent device capable of acting itself and learning from his owner. For this we will

connect to a remote rule inference engine, which hosted the automated server, for executing

the inference process.

2

1.2. PROJECT GOALS

1.2 Project Goals

The main purpose of this project is to create a scalable Android aplication for creating rules

and executing them. This aplication must be able to connect with the remote server, where

the channels will be described. This server will act as an intermediary between the aplication

and the rule inference engine. The aplication will have to listen to the local resources in

case one event is triggered, and communicates with the server, where the response will be

generated with the action that has to be performed.

Among the main goals of this project we can highlight:

• Design and implement an Android aplication which enables the rule de�nition using

the list of local and remote channels hosted in the server.

• Implement a local service that handles the communication with the server and allows

the channel download and rule management.

• Develop the receivers and performers of the mobile local resources and implement their

events and actions.

• Build a rule execution module that uses the EWE ontology to describe every channel

and notices the server when an event happens.

• Build a response interpreter for the EYE engine response sent by the server.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

project is divided into the following sections:

Chapter 1 is an introduction of the project where the motivation and the main goals

and achievements of this project are described.

Chapter 2 explains the enabling technologies related to this project. Here some stan-

dards and technologies will be analyzed, in order to provide a technological background of

the technologies used in the �nal project, giving a context to the main idea.

Chapter 3 presents the architecture we have adopted to implement the project, starting

with aglobal overview followed by the explanation of all the modules of the system. It

�nalizes with the description of the Android aplication itself.

3

CHAPTER 1. INTRODUCTION

Chapter 4 o�ers an overview of a selected use case, explaining the main functionalities

to help the user understand the overall concept.

Chapter 5 sums up the conclusions extracted from the realization of this project with

a brief future perspective.

4

CHAPTER2
Enabling Technologies

2.1 Introduction

In this chapter we will present in depth the main technologies and resources used in this

project. First of all, we will analyze the structure of the IFTTT[3] ecosystem, explaining

their di�erent usages and how third party applications can be connected to it. Secondly, we

introduce some emerging applications that have come up recently and are related to task

automation services on mobile devices. Finally, we present how semantic reasoning works

with EYE engine and it behaviour inside the Android SDK framework.

2.2 IFTTT

IFTTT ("If This Then That") [3] is a web-based service that allows users to create con-

ditional statements, which are triggered based on the occurrence of particular local events

(E.g. Mute your phone, enable GPS receiver...) or changes to other web services applica-

tions such as Facebook, Twitter or Gmail (E.g. Send a tweet, make an appointment in my

Google Calendar pro�le, recieve an email...).

If we analize in detail IFTTT's platform, we can work out thousands of rule combina-

5

CHAPTER 2. ENABLING TECHNOLOGIES

tions that can automate and solve daily situations in a smart way. This allows us working

e�ciently, training mobile phones to make their own decissions and learn from their bearer.

Nowadays, IFTTT platform is used and shared by hundred of its users, sorting similar

rules by categories and assembling packages for speci�c situations.For example, rules oriented

to keep track of your health and �tness activities (If I enter the gym - Then record my session

on a Google Doc), even using third-party applications with similar purposes (If I dont meet

my Fitbit daily goals - Then send me a noti�cation message to my email addres). The huge

growth that this trendy applications are experiencing comes from three success factors [5].

1.- Usability: These applications provide an intuitive interface for programming task

automations, therefore users experiment no learning curve when they begin using them.

2.- Customisability: These task automation services allow users to program the rules

they need, which cause a sense of freedom and innovation, providing a total control over

rule de�nition.

3.- Integration: The integration between Internet applications and task automation

frameworks makes possible the access to services and platforms where the user feels com-

fortable and familiar, being accustomed to using them everyday.

2.2.1 Architecture

Every single IFTTT rule follows the same design pattern. This pattern has the following

structure: If EVENT accomplish CONDITION, Then perform ACTION. Attending to this

structure we can di�erenciate several components:

• Event: It is the preamble of the rule. It describes the action that should happen

to execute the rule. The principal component of the event is the channel, which is

the actor who performs the corresponding action. For example, one channel could

be the Bluetooth module of a smartphone. Every channel have di�erent triggers and

performig actions, like turn on and turn o�, �nd a device entering the Bluetooth

starring radio or a device attempting to contact us with a speci�c SSID.

• Condition: This element indicates what should happen to perform the action. If

satis�ed or evaluated to true, causes the action to be carried out.

• Action: It is the update or invocation on the receiver agent. Analyzing the previous

example, the action will correspond to send a noti�cation message via email. Actions

could be carried out by external applications, like social networks applications or

6

2.3. ATOOMA

Gmail, or internal components like Android toast service or smartphone connectivity

modules such as GPS or WiFi.

2.3 Atooma

In the last section we have explained how IFTTT enviroment works and the evolution it has

experienced in recent years. Some development groups have take advantage of this emerging

technology, building up some applications and projects related to this �eld. Atooma [4] is

one of the most important Android application in the market for task automation service

following the IFTTT model.

What makes Atooma di�erent is the simplicity of its user interface. You simply have to

program the rule and tell the app what to do in the case of a certain event. This allows to

perform automatically any kind of tasks on your smartphone.

Figure 2.1: Atooma's module structure based on IF - DO aproach

Attending to �gure 2.1, we can di�erenciate several components in module de�nition

structure. In the Atooma framework SDK, the main element is the Module object, which is

the component that will perform the Event - Condition - Action (ECA) statement. Some

examples could be the SMS controller or the battery level listener, which controls the power

consumption. Modules are composed by three di�erent set of components: Triggers, Con-

dition Checkers and Performers. [6]

2.3.1 Modules

Modules are the components that will perform the automated rule statement. Atooma

assembles these modules in di�erent categories or subclasses, depending on their architecture

and purpose. We can di�erenciate di�erent modules (Figure 2.2)

7

CHAPTER 2. ENABLING TECHNOLOGIES

• Mobile: In this group we can �nd local modules physically installed in the smartphone.

For example, battery, screen, GPS, WiFi, light sensor, Internet, SMS ...

• Apps: This ensemble is composed by third-party applications such as Twitter, Face-

book, Google Drive, Calendar, Dropbox...

• Objects: This section allows the user to write rules using external devices as modules.

NFC or Smart Watch are some of the examples that we can �nd in this mixture.

• Plugins: This section regroups plugins developed by third persons using the Atooma

Plugin SDK.

• Files: Finally, this group is formed by �les stored inside the smartphone memory card,

like photos, videos, audio �les o private folders.

Figure 2.2: Atooma modules: Mobile, Apps, Objects, Plugins and Files

2.3.2 Triggers

Triggers are components responsible for rules activation when a speci�c event occurs. Some

examples are WIFI ENABLED (Figure 2.3) or SMS INCOMING. There are two di�erent

types of triggers:

• Intent based triggers: The activation of intent based triggers relies on the reception of

an speci�c intent from Android system. The WiFi activation or SMS reception belong

to this section.

8

2.3. ATOOMA

• Alarm based triggers: The activation on alarm based triggers relies on periodic checks

of speci�c conditions. The Alarm module or events related to scheduled situations

belong to this section.

Figure 2.3: WiFi triggers

2.3.3 Condition Checkers

Condition checkers are used by a module for allowing it to check a condition when they are

invoked, and return a boolean outcome. It is possible that some condition checkers require

speci�c parameters to decide the right answer. One condition checker example could be the

WIFI CONNECTED, which allows us to control if WiFi is enabled and connected (Figure

2.3). This condition checker requires an optional parameter SSID (Unique Identi�er), that

reports the identi�er of the WiFi network to check (Figure 2.4). By default, connection to

any network is positively evaluated. Triggers and Condition checkers usually conform de IF

part of the rule statement.

9

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.4: WiFi Connected condition checker. Requests an optional parameter SSID.

2.3.4 Performers

Performers are components responsible of executing operations on demand, as requested by

rules they are declared in. As condition checkers, they can have optional parameters attached

and can produce optinal variables in output. The most visible performer is NOTIFICATION

TOAST, where the performer shows a message to the user via Android toast module. It

requires a text parameter with the string sentence to be displayed (Figure 2.5.

Figure 2.5: Noti�cation Toast performer. Requests an optional String type paramenter.

2.4 EYE

EYE [7] stands for "Euler Yet another proof Engine" and it is a further delevopment of Euler

which is an inference engine supporting logic based proofs. EYE is a semibackward reasoner

10

2.4. EYE

enhanced with Euler path detection, Semibackward reasoning is backward reasoning for

EYE components, i.e. rules using <= in N3 and forward reasoning for rules using => in

N3.

The reasoning that EYE is performing is grounded in FOL (First Order Logic). Keeping

a language less powerful than FOL, is quite reasonable within an application but not for the

web.

During the last years, EYE [8] has been tackling such reasoning challenges on a large

scale, thereby forming a part of the bigger Semantic Web vision. In this vision, machines

perform tasks on the Web for people, combining linked data with concepts such as reasoning

and proof to turn data into knowledge and concrete actions.

Let's see how EYE moves from data to conclusions. We can describe the knows property

with existing concepts such as domain, range and SymetricProperty. Many reasoners have

built-in knowledge; they would know what those concepts mean and how to apply them. The

drawback is that only built-in concepts can create new knowledge. So, EYE was designed

to have the least amount of inherent knowledge. It is extensible through rules so that new

knowledge can be created. Here is an example of how SymetricProperty de�nition works:

{

?property rdf:type owl:SymetricProperty

?A ?property ?B

}

=>

{

?B ?property ?B

}

Figure 2.6: Example of how SymetricProperty de�nition works

2.4.1 Architecture

Algorithmically speaking, EYE is a theorem prover. Users set a goal and EYE tries to reach

it by applying logical rules similar to what we mentioned previously, mostly working back-

ward from the �nal goal. To evade endless loops, the algorithm avoids needlessly repeating

previous work through Euler path detection. EYE interpretes each logical rule P => C,

11

CHAPTER 2. ENABLING TECHNOLOGIES

where P is a precondition and C is a consequent, as P and NOT C => C, so that rules

execute only when they can generate new triples.

A key characteristic of EYE's architecture is portability, because interoperability is cru-

cial to the Semantic Web. EYE runs in a Prolog virtual machine, which is compiled to

assembly code ans runs directly on the CPU. The core of EYE (the Euler Abstract Ma-

chine) accepts N3 (Notation3) code, which is a Prolog representation resulting from parsing

RDF (Resource Description Framework) triples and N3 rules. This entire stack be-

comes a generic reasoning engine, which is extensible with any kind of domain speci�c rules.

Because EYE can output N3 code to a �le, you can create reasoning-engine instances that

have a certain rule set preloaded for a particular domain.

Figure 2.7: The EYE stack, which o�ers a generic reasoning engine.

EYE also exhibits external compatibility, accepting exchangeable N3 and RDF docu-

ments from any source on the Web. Users can ask EYE to generate a proof explaining how

the given goal is reached. Such proofs use a publicly available , interoperable vocabulary, so

other parties can follow and understand the line of reasoning.

Most important, this mechanism allows independnt proof validation, which contributes

to one of the forms of trust on the Semantic Web. If a certain party comes to a conclusion,

12

2.4. EYE

any other party can thus verify why taht conclusion is valid.

2.4.2 EWE

In this section, we will present the EWE (Evented WEb) ontology [1] [9], which models

the most important aspects os task automation services from a descriptive approach, that

enables service discovery and semantic rule de�nition featuring reasoning over LOD (Linked

Open Data). The goals of the EWE ontology to achieve are:

• Enable to publish raw data from TASs online, and in compliance with current and

future Internet treds.

• Enable rule interoperability

• Provide a base vocabulary for building domain speci�c vocabularies like Twitter Task

Ontology or Bluetooth Task Ontology.

2.4.3 Design methodology

The �nal model we propose is the result of an iterative development process consisting

on three steps. First of all,the analysis of each TAS considered, identifying features and

functionalities later we can use to extract the concepts ans properties they address. Secondly,

the de�nition of a model that formally describes those elements, and �nally, the evaluation

of the model against the di�erent use cases considered.

After each iteration, the proccess is repeated, including some new elements that the

results have shown to be relevant or important, and remodelling others in order to improve

the domain description.

2.4.4 Elements

2.4.4.1 Main classes

The core of the ontology comprises four major classes: Channel, Event, Action and Rule.

The description of particuar TASs or use case scenarios may inherit from them, creating

new sub-classes that are more speci�c to the domain. This ontology model is described in

2.8

13

CHAPTER 2. ENABLING TECHNOLOGIES

• Channel: this class de�nes individuals that either generate Events, provide Actions,

or both. In the context we refer to, a Channel implementation usually de�nes the

behaviour of an speci�c smartphone component (i.e Buetooth module, Light sensor,

Calendar application...). It can also de�ne Web services implementations like Twitter

or Facebook. This channels generate Events every time a tweet is posted, every time

a scheduled meeting starts through Calendar application etc, and Actions like show

a text message pop up, disable GPS connectivity or switch your mobile to Vibrate

mode.

• Event: This class de�nes a particular occurrence of a process, which may trigger rules

in the TAS. They are instantaneous, which means it happens without duration over

time. For instance, the class NewEventScheduled is subclass of Event and de�nes the

type of event that is generated when a new event has been scheduled in the Calendar

application. This event can carry information of the event name or when it has been

triggered.

• Action: This class de�nes an operation or process provided by a Channel. Actions

produce e�ects whose nature depends on the action nature. In this category we can

include facts like turn o� the WiFi receiver, decrease the screen light level in order

to reduce power consumption or show a custom noti�cation. These actions can be

triggered by an event generation in the same Channel or a di�erent one. In the

same way as Events behaviour, the Action class may be subclassed to speci�c actions.

Nevertheless, an Action is not attached to a speci�c Channel, it can be supported by

di�erent ones.

• Rule: Finally, the Rule class de�nes an Event-Condition-Action (ECA) rule, trig-

gered by an Event that produces thee execution of an Action. Rules de�ne particular

interconnections between instances of the Event and Action classes transferring in-

formation from the event to the action. EWE rules can be fully described as EYE

construct queries, being executed in theremote server by the EYE inference engine.

2.4.4.2 Main properties

Each class described in the previous section can have attached several properties or at-

tributes. Coming up next we will list some of this properties and explain the purpouse of

including them within the overall EWE ontology [1]. These attributes are hasParameter,

hasCategory, hasActiveChannel, hasCreator and spin:rule.

The property hasParameter presents the parameters of an Event or Action. For instance,

14

2.4. EYE

an event triggered when a user enters a speci�c area must be declared the latitude, longitude

and radius parameters that de�nes the scene of action. The property hasCategory indicates

that a Channel, Event or Action belongs to a certain category. The EWE Ontology does

not provide a taxonomy of channels, events and action; but it facilitates building that

classi�cation. Some example could be the mobile category, which consists of all internal

mobile resources (GPS, Bluetooth, WiFi, Calendar...), or apps category formed by third-

party aplications like Twitter, Facebook, LinkedIn etc. The hasActiveChannel property

links users to the Channel on which they have an account. The property hasCreator links

instances of Rule to its creator, allowing to associate an author to every single rule statement.

To sum up, the spin:rule property which links rule instances with the SPARQL execution

logic described using the spin vocabulary. In this thesis we will not use this module because

we will focus on the EYE usage.

Figure 2.8: Detail of the EWE Ontology model. [1]

15

CHAPTER 2. ENABLING TECHNOLOGIES

16

CHAPTER3
Architecture

3.1 Introduction

In this chapter we will explain the architecture of the project, including a global overview

about how the di�erent elements interact and communicate each other, and showing how

they have been implemented. First of all, we will present a global vision about the project

architecture, identifying and explaining the principal server and client modules. Secondly

we will focus on the task automation application, starting with the Rule De�nition module

and his internal activity sequence. To sum up, we will explain the Rule Execution module,

explaining how the Android receivers listen when an event is triggered, and how the appli-

cation communicates itslef with the remote server, analyzing the response and performing

the right action.

3.2 Overview

In this section we will present the global architecture of the project, de�ning the diferent

modules that participate in the Rule Task Automation service. We can divide the modules in

two sub-groups: Client and Server [2], linked each other between an API service. Attending

17

CHAPTER 3. ARCHITECTURE

to the 3.1, we can notice several parts which build the project architecture.

Figure 3.1: Client - Server architecture overview.

3.2.1 Server Modules

The server [2] is formed by di�erent modules that communicate each other and interact

with the client application. The main functionalities that the server gives to the user are

the possibility of save, edit and delete custom rules, enable direct contact between EYE web

reasoner and the �nal user, and wrap the response (the action that will be performed) from

any input (the triggered event),what o�ers a transparent service for the client part.

• Channel Manager: This module provides an automation channel editor. Neverthe-

less, it also handle Internet and contextual events and pass them to the Rule Engine,

where will be evaluated with the rules and will generate an action as result. Engine,

where will be evaluated with the rules and will generate an action as result. This

action is received by the Channel Administration too, and after being parsed, it's sent

to the Actions Trigger module or to the Mobile or Google Glass App, depending on its

nature. It is divided into four main parts: Channel Editor, Channel Manager, Channel

18

3.2. OVERVIEW

Repository and Events Manager.

• Rules Administrator: The main purpose of this module is to provide an automation

rule editor in which users can con�gure and adapt their preferences about Internet and

contextual events, and it is also the module that provides the stored rules to the Rule

Engine. It is divided into three main parts, Rules Editor, Rules Manager and Rule

Repository.

• Rule Engine: Rule Engine is one of the most important modules in this project,

and is based in an ontology model, which uses the EWE ontology. It is divided into

two parts: EYE Server and EYE Helper. EYE Server is implemented in Javascript.

It is the reasoner that processes the events and rules written in Notation3 and gen-

erates accordingly a response with an action. EYE Helper, implemented in PHP, is

responsible for the reception of the events from the Channel Administration and the

load of rules that are stored in the repository available on the Rules Administration

module. Once it has the events and the rules, it sends them to the EYE Server for

being processed and receives the response.

3.2.2 Client Modules

In this case, the client is basically the mobile aplication, but it can also be a web page or

an aplication developed for another enviroment or framework. In this project, the client is a

mobile application developed for Android devices, which is composed by a Rule De�nition

module, which allows the user to create his own IF - DO statements and store them locally

and in the remote server database, and a Rule Execution module, where the smartphone

can trigger di�erent events noti�ed to the server, and perform actions declared in rules.

These actions are always performed by mobile channels, which means that third-party app

channels will not be included inside the application because the server will handle them

directly. Attending to �gure 3.1, we can observe these client side modules:

• Rule De�nition: Composed by a service that enables to comunicate with the server,

sending the Event - Condition - Action (ECA) selected by the user over the rule

de�nition sequence. During the selection process, the user must �ll every rule property

and de�ne their parameter if it is required. The Rule De�nition module will also save

the rule locally in order to minimize the number of requests per minute sent to the

server.

• Rule Execution: This module refers to the process of listening and execution of the

event triggers, communicating with the server, where at the same time calls the EYE

19

CHAPTER 3. ARCHITECTURE

engine with the corresponding input statement, obtaining a response. This response

can be irrelevant or either represent the performance of an action, in which case the

server will �lter and adapt the output, modelling and simplifying it. This embebed

sentence is sent to the user who preset the rule, performing the local channel action.

• SQLite Database [10]: This module represents the smartphone local database, where

the rules hosted by the server are saved.

• Smartphone Local Resources: This module groups together all the local resources

that will act in de rule creation process as Channel. Each resource has events and

actions.

3.3 Modules

3.3.1 Rule De�nition Module

As it is explained in the previous section, this module main function is the rule de�nition,

starting with the channel selection and continuing with the selection of the event and action.

After this, an N3 statement is generated from this choices, describing the rule and sending

it to the server, where it is saved.

3.3.1.1 Channel Information

First of all, the mobile aplication needs to request the channel list. The automation server

answers with a string chain in JSON format containing the channel with their particular

events and actions. The aplication transforms this information and generates a List <Chan-

nel> object with all necessary channels for set up the rules.

This channel request process is described in Figure 3.3. We can appreciate how the client

request the channels, receiving the automation server response and stocking it locally in a

SQLite [10] database.

The JSON structure is showed below. It is composed by an array of channels with

their own attributes. At the same time, the events ans actions of the current channel are

described, being grouped in a list:

20

3.3. MODULES

[{
"title":"",
"description":"",
"events":[{

"title":"",
"prefix":"",
"rule":"",
"numParameters":""

}],
"actions":[{

"title":"",
"prefix":"",
"rule":"",
"numParameters":""

}]
}]

Figure 3.2: Get Channels JSON structure

Figure 3.3: Sequence diagram of channel obtaining

3.3.1.2 Database

In the Rule De�nition Module persistence layer we have implemented a local database to

store the downloaded channels and the generated rules. We stock the channels in a List

<Channel>, according to the Figure 3.4 channel model. These channels are downloaded

every time the application is launched so it is not necessary to store them for later sessions.

For the rule storage we have chosen an SQLite [10] database because its easier to manage

21

CHAPTER 3. ARCHITECTURE

the item addition and removal. It has been implemented a SQLiteDatabaseHelper which

facilitates the inout communication.

Figure 3.4: Database model

A channel has descriptive attributes like title or description because the server has to

be able to distinguish between channels with similar events and actions. For example the

Noti�cation module can belong to the smartphone or either to an email or alert reminder.

Moreover, the channel has a list of events and actions attached to them, which can trigger

or perform respectively.

Each rule object is composed by contextual attributes (title, description and place), and

main attributes that de�ne the rule behaviour (ifChannel, ifEvent, doChannel, doAction

and the array parameters for IF and DO clauses).

3.3.1.3 Creation Process

In this section we will introduce the rule creation process and explain the steps that the

application has to follow to set up a rule from the channel selection to the remote server

storage. Every decision the aplication makes will be sent to the Rule De�nition service,

where it will be processed and packaged for the server delivery.

In Figure 3.5 is explained how this sequence works. First of all, the aplication gets the

channels we presented in section 3.3.1.1. Secondly, the user chooses the channel that will

trigger the rule execution. Afterwards, the user has to select what event of the channel

22

3.3. MODULES

selected will be the trigger. If the event selected has parameters, the activity will request it.

Once the IF elements are chosen, the aplication sends this information to the local service,

�lling the corresponding parameters.

Figure 3.5: Description of the Rule Creation process in sequence diagram

The second part consists on DO part con�guration. The aplication requests the channel

which will perform the action. In the same way, the user will have to specify the action that

will perform the rule, asking for parameters if necessary. Finally, these data are sent to the

service completing the main rule attributes.

By last, the aplication asks for complementary parameters like the rule name, description

or the place where it will be executed. With all these parameters, the app will launch an

asyncronous task, generating a POST request to the server with all these parameters. At

the same time, the Database Helper will save this rule locally adding one new row to the

Rules table. With the latter, the rule de�nition process concludes.

3.3.2 Rule Execution Module

In this section we will explain the proccess that occurs when an event is triggered and how

the aplication handles the server response performing the corresponding preset action. This

module is always listening any changes on local channels, constantly tracking events to the

23

CHAPTER 3. ARCHITECTURE

server, mostly without any consequence. In addition, the execution module acts as the brain

of the aplication, coordinating the event triggering and action performance.

3.3.2.1 Execution Process

The aplication has several listeners that notify any modi�cation in the channel events. These

listeners behave as broadcast receivers when they notice the aplication, starting a process

which involves client and server. All the receivers have the same structure, set by the number

of events the channel have. When an event is triggered, a request is created and sent to the

Rule Execution module, where it analyses what channel and event have been triggered and

sends this input to the remote server in N3 format.

Figure 3.6: Decision diagram of the execution cycle

The server passes this input to the EYE engine, which returns a string corpus containing

pre�xes, the input inserted and, if it is successful, the output. The server �lters this output

and generates a JSON with the desired response. This JSON is sent back to the aplica-

tion, where it is parsed. Finally the real response is extracted and executed, causing the

performance of an action, or nothing happens if there is not a rule de�ned with the event

24

3.3. MODULES

triggered.

Sometimes an action performance can be the trigger of another action, restarting the pro-

cess described above and converting this action to event, listening again the server response

and causing an action chain process.

Attending to Figure 3.6 we can observe the whole execution cycle from the event trig-

gering to the action performance. Furthermore, we can notice the loop perspective when an

action becomes an event as we explained in the previous paragraph.

The JSON server response looks like the code fragment included below. It is compodsed

by a success variable which means if the EYE engine has generated any successful answer.

This has attached an action array which contains the result processed by the server. We

can extract the channel that has to perform the action, the action that has to be performed

and the parameter in case it is needed.

{

"success":"1",

"actions":[{

"channel":"",

"action":"",

"parameter":""

}]

}

Figure 3.7: Example of server response JSON structure

3.3.2.2 Receivers and Performers

To perform the rule execution it is necessary to implement receivers and performers for

every channel we want to listen to. In this project, we have picked the most important

ones, because the smartphone has lots of resource modules to listen about, most of them

irrelevant for trigger events.

In the mobile aplication we have selected the most important smartphone resources.

In Table 3.1 and 3.2 we have described those channels properties, with their events and

actions.

25

CHAPTER 3. ARCHITECTURE

Table 3.1: Receivers table

Receivers

Name Events

Bluetooth Turn On, Turn O�

Wi� Turn On, Turn O�

GPS Turn On, Turn O�

Calendar Event Alert

Location Enter Area, Exit Area

Data Network Turn On, Turn O�

Table 3.2: Performers table

Performers

Name Actions

Noti�cation Show text

Toast Show text

Bluetooth Turn On, Turn O�

Wi� Turn On, Turn O�

GPS Turn On, Turn O�

AudioManager Vibration, Silent or Normal mode

Brightness Set Level

Data Network Turn On, Turn O�

26

3.4. SEMANTIC RULES

This framework enables new channel aditions through the server website, where the user

can set the new event action properties. When the mobile aplication gets the channels, this

new one will appear and it will be possible to build new rules using it.

Some of the events and actions have optimal parameters attached. These parameters

are usually string type, but they could be a number or boolean. An event or action can

have more than one parameter, for example the Location channel entered event need the

latitude, longitude and radius of the area.

3.4 Semantic rules

3.4.1 Modelling channels with EWE

In this section we are going to explain how the channels are modeled using the EWE ontology

[1]. For this I will support the explanation with a channel de�nition example, describing

their events and actions behaviour. It's neccesary to de�ne a vocabulary for each channel

used in rule creation. Every channel follows the same structure, a class which de�nes the

channel and another for each event and action the channel has. This classes will be useful

to �lter the rules in the server and trigger an event only when it belongs to an speci�c class.

For example, for the Bluetooth channel:

ewe-bluetooth:Bluetooth a owl:Class ;
rdfs:label "Bluetooth smartphone module"@en ;
rdfs:comment "This channel represents a bluetooth module."@en ;
rdfs:subClassOf ewe:Channel .

Figure 3.8: Bluetooth channel with EWE ontology modelling

Now the channel is de�ned, it is necessary to implement the events and actions of that

channel (Figure 3.9).

Because the Bluetooth events and action are very similar each other we are going to

describe the action of the noti�cation module. We can notice that a string parameter is

required. This parameter represents the text that the user wants to be displayed (Figure

3.10).

27

CHAPTER 3. ARCHITECTURE

ewe-bluetooth:TurnON a owl:Class ;
rdfs:label "Bluetooth turned ON"@en ;
rdfs:comment "This Trigger fires every time you enable
Bluetooth."@en ;
rdfs:subclassOf ewe:Event ;
rdfs:domain ewe-bluetooth:Bluetooth .

ewe-bluetooth:TurnOFF a owl:Class ;
rdfs:label "Bluetooth turned OFF"@en ;
rdfs:comment "This Trigger fires every time you disable
Bluetooth."@en ;
rdfs:subclassOf ewe:Event ;
rdfs:domain ewe-bluetooth:Bluetooth .

Figure 3.9: Bluetooth events using EWE ontology modelling

ewe-notification:Show a owl:Class ;
rdfs:label "Show a notification"@en ;
rdfs:comment "This action will show a notification."@en ;
rdfs:subclassOf ewe:Action ;
rdfs:domain ewe-notification:Notification .

Figure 3.10: Noti�cation actions using EWE ontology modelling

28

3.5. ANDROID APLICATION

3.4.2 Rule declaration example

Once the channel is fully described let's try to create a rule. According to the channels

de�ned on the previous section (Bluetooth and Noti�cation), the rule statement example

could be If I enable Bluetooth then show a Noti�cation saying "Hello World" (Figure 3.11).

{
?event rdf:type ewe-bluetooth:ON .

}
=>
{

ewe-notification:Notification rdf:type ewe-notification:Show;
ov:message "Hello World".

}.

Figure 3.11: IF - THEN rule declaration using vocabularies

The last step is de�ne how the input should be to trigger the rule we have just created

(Figure 3.12).

ex:smartphone rdf:type ewe-bluetooth:Bluetooth .

ex:event rdf:type ewe-bluetooth:TurnON ;
ewe:generatedBy ex:smartphone ;

Figure 3.12: Input declaration using vocabularies

3.5 Android aplication

3.5.1 User Interface

In this section we are going to explain the mobile aplication structure, which can be divided

in activities. Basically the aplication is formed by 2 activities, the ListRules Activity (Figure

3.13) and the NewRule Activity (Figure 3.14). In the �rst one we regroup the content

stored in the rule SQLite [10] database, showing them in a ListView. Each row has the

rule description inclueded when the rule was created and the If- Then clause, with the

corresponding channel pictures.

The second activity handles the creation process and its divided into two di�erent frag-

29

CHAPTER 3. ARCHITECTURE

Figure 3.13: ListRules activity on Android app.

ments: the IF fragment wher the user has to select the channel and the event, and the DO

fragment where the action is selected and �nally the rule is saved in the database with the

name, description and place. To end this process, the activity calls an asynctask which post

the rule into the server and close the activity.

During the de�nition process some alert dialogs can be showed for �lling the event and

action parameters, or just the rule attributes. We can observe this behaviour in Figure 3.15.

The user can add new rules by tapping the plus symbol button in the ListRules activity.

All the rule de�nition process is supported by the Rule De�nition Service, completing the

server post request. The management of the local and remote database allows the user to

remove the rules by clicking on the remove icon.

The channels showed in the IF and DO tab comes from the server. This list can be

modi�ed adding new channel through the website, where you can de�ne the events and

actions, and set the title, description and a representative icon.

30

3.5. ANDROID APLICATION

Figure 3.14: Channel - Event selection on New Rule activity.

Figure 3.15: Request parameters and rule general attributes.

31

CHAPTER 3. ARCHITECTURE

3.5.2 Channel De�nition

For channel de�nition it is required to use the task automation service website because �ll

the �elds from the mobile phone can be really hard. The channel creation process is quite

simple and fast, and it can be edited whenever is needed. The attributes required for setting

up the channel are the title, description, the channel nice name, the logo, events and actions.

Each event and action is formed by the pre�xes, the rule statement of the event/action and

the title.

Figure 3.16: Channel creation in the task automation website.

3.5.3 Structure

The architecture of the Android framework for task automation of the smartphone has been

structured as a set of cooperating classes, following Android abstractions and components,

such as Activities, BroadcastReceivers, AsyncTasks, Services and auxiliary classes. In this

project, these components have been selected according to what the framework needs.

When the app is launched, the onCreate method executes the GetChannelsAsyncTask.

This task will obtain the complete channel list from server in JSON format. In the onPos-

tExecute method, this JSON is saved locally in SharedPreferences for future usages. When

32

3.5. ANDROID APLICATION

a NewRuleActivity intent is triggered, this JSON is processed, obtaining a List<Channel>

(procedure explained on �g. 3.3).

After the rule de�nition process has ended up, a new PostRuleAsyncTask is executed,

making a POST request to the automation server with the attributes described on �gure

3.17. These attributes have been saved in the RuleDe�nitionService using static variables

because this service is a singleton. The task extracts these values to generate the request in

the doInBackground method.

Every local resource (3.1) in the smartphone is a channel, and has one BroadcastReceiver

which listens changes in the channel, and one Performer that has a single method for each

action. Everytime an event is triggered, the BroadcastReceiver calls the rule execution

module giving the channel and the event as parameters. Calling the createInput method,

the aplication extract the pre�xes an the rule writen in N3 format and generates the complete

input string that will be inserted into EYE [8] engine by the remote server.

A new PostInputAsyncTask is created, giving attributes such as place, user and the input

string in the doInBackground method. The task waits for the response asyncronously and

handles the JSON on the onPostExecute function. This JSON is processed, extracting the

actions array. For each action, the rule execution module tries to �nd the channel expressed

on the channel attribute (�g. 3.7)and associates it a performer. If success, the performer

action with the same action title will be called, attaching the parameters if necessary.

Once the performer is selected, depending on the multiple actions implemented on it,

the aplication executes the one speci�ed in the response (procedure explained in �g. 3.6).

33

CHAPTER 3. ARCHITECTURE

Figure 3.17: Asynctasks attributes attached to the remote server request.

3.6 Conclusions

In this chapter I have explained the features and objects that this project has along with

their communication and relationship.

To sum up, this project counts with an Android aplication from where the user can

create and manage semantic rules, using local or remote channels. All these rules are sent

to the server, where they are saved. When an event is triggered, the smartphone aplication

generates an input depending on the event launched and post it to the server. This server

will generate the corresponding action response connecting with the EYE semantic reasoner.

The mobile aplication will receive this response and link it to a channel action, executing it

locally.

34

CHAPTER4
Case study

4.1 Introduction

In this chapter we are going to describe the features provided by the developed Android apli-

cation. For that, it's necessary to consider a main use case to explain how the implemented

functionalities can be applied, and help to understand the project value.

The actor of this case is the user who runs the aplication, whose objective is to import a

channel, and use it to create an automated task that will involve other channels. To achieve

this purpose, the user will have to use the server website to de�ne the channel attributes

and the mobile aplication to edit and execute the rule.

4.2 Channel Edition

The �rst step the user needs to take is the channel creation. For this, he has to access the

Task Automation website [2] and choose the option Create New Channel by clicking on the

Channels tab. A form will be showed with a �eld for every parameter the channel needs to

be created. In the �gure 4.1 and 4.2 we can observe this form.

35

CHAPTER 4. CASE STUDY

In the �rst group of �elds we can see channel attributes such as title, description, the nice

name and the image that will represents the channel. Below those attibutes we can observe

the events and actions selector. The user can add or remove them in case the channel does

have multiple events or actions. Each event and action has attributes like title, rule and

pre�x. The title represents the event or action that is being de�ned, the rule represents the

N3 fragment code that will be used when the event is triggered or the action is performed.

By last, the pre�xes import the libraries needed to execute the rule statement in the EYE

engine.

Once all these �elds are completed, the user has to click the Send button, saving this

channel in the MongoDB database. The user must repeat this process for every channel

involved on rule creation process.

Figure 4.1: Wi� channel general attributes.

Figure 4.2: Wi� events and actions. [2]

36

4.3. RULE EDITION

4.3 Rule Edition

Now the channels have been created, the users must launch the aplication on his device. The

ListRules activity will looks empty because there is not any rule con�gured. By tapping the

plus button, the user will start the rule de�nition process. The asyncronous task will get all

the available channels from the server and display them in the IF tab, in case the channel

has at least one event.

Figure 4.3: Start Rule De�nition process from aplication

After the NewRule activity initialization, the process starts with the selection of the

IF tab parameters. During this, the DO tab is disabled so the user cant set up the rule

haphazardly. First of all, the channels that have any event will be showed. The user just

have to tap the channel card and the aplication will automatically add it to the service.

Afterwards, the events of the channel selected previously will appear.The user can press the

back button in case he has chosen the wrong channel. This is showed in Figure 4.4.

In case the user choose an event with parameters, the aplication will display an alert

dialog where the user has complete writing the value and tapping the Save button. In this

point, the IF part will be completed, changing the tab window to the DO one.

37

CHAPTER 4. CASE STUDY

Figure 4.4: IF tab behaviour on Rule De�nition process

In the DO tab the user will visualize the channels that have actions available. In the

same way, he will select the channel and the action that will be performed. Analogously, if

the action has parameters an alert dialog will be displayed requesting them.

Figure 4.5: DO tab behaviour on Rule De�nition process

Once the rule is completely de�ned, the aplication will show an alert requesting the

context parameters (title, description and place). Finally the user needs to press the Save

button and the asynctask will begin. All the choices will be sent to the server and stored

locally. The aplication will close the Rule De�nition activity and reset the service parame-

ters.

The list of rules now won't be empty and will have the rule element that the user have

38

4.4. RULE EXECUTION

just created.

Figure 4.6: The �nal step on Rule De�nition process

4.4 Rule Execution

In this situation, the rule has already been created and the user just needs to trigger the

action to execute the rule. The process that will be explained is described in depth in �gure

3.6 presented in the architecture chapter.

In order to clarify this process I will use the rule de�ned in the previous rule de�nition

process If I turn on Bluetooth then show a noti�cation. When the user enables Bluetooth,

the receiver listening the intent STATE CHANGED will be triggered with STATE ON

value. The fragment of code implemented in that section will be executed, calling the Rule

Execution module. In this module, the rule input of the event triggered will be send with

more attributes for the server. This will launch a background task obtaining the EYE engine

output as server response.

After process this response, the action Noti�cation Show "Hello this is a noti�cation"

will be performed. In case the action supposes the launch of another event, this process will

be repeated cyclically.

39

CHAPTER 4. CASE STUDY

40

CHAPTER5
Conclusions and future work

5.1 Conclusions

To conclude this project we will resume the principal concepts that are explained in this

document. We have developed an Android aplication which communicates with an automa-

tion task server and allows the user to create and de�ne customizable rules using local or

remote resources. The channels that participate in the rule creation process are modeled by

the EWE ontology. Each channel has events and actions, declared in N3 format for the rule

de�nition. All the rules de�ned from the smartphone are saved locally and in the server.

These rules can be removed or edited whenever the user wants.

The execution of these rules is based on the implementation of receivers and performers

for every channe event and action respectively. These receivers and performers de�ne the

posible events and action that a channel may have. When an event is triggered, the aplication

contacts with the server and receive as response the result of inserting the input in the EYE

[8] engine.

The main objective during the project development has been the creation of an aplication

that facilitates the smartphone usability and makes people life easier with a platform that

allows one to automate procedures executed frecuently.

41

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

For the project implementacion we have keep in mind innovative tecnologies like the

usage of an inference engine to execute the rules, basing the user interface on aplications

with the same purpose which has come up recently, using an intuitive and optimal ditribution

in screens limited by small sizes. Likewise, in the persistence layer we have chosen SQLite

[10] for storing rules locally and MongoDB in the server.

Finally we have suggested an implementation that facilitates the implementation of

Smart Homes through the smartphone aplication with an approach which focuses on save

time and program routines in an easy and intuitive way.

5.2 Achieved goals

The achieved goals obtained developing this project are:

Create a graphical interface which allow user to de�ne rules We have created an

accessible enviroment inside Android aplication where the user can customize his own

rules and adapt the framework to de�ne the IF - DO statements that he needs. The

interface simplicity allows the user to know what rules are enabled or not, and what

happens when the rule is executed showing a brief description.

Build a local persistent model to save those rules The persistence layer of the apli-

cation store rules locally to prevent excesive requests to the server every time the user

launches the aplication, and for showing only the rules he has con�gured. On the other

hand, every time a rule is created, it is sent to the server, where it is saved until an

input executes it. This model is �exible and allows the user to manage the database

by removing or editing any rule from aplication or the server website.

Develop an interface which enables to communicate with a remote server The apli-

cation depends partially on the server. This involves the implementation of a class

that handles the request and responses, �lling the parameter with the appropriate

values when the aplication needs to post a rule or an event has been triggered.

Execute rules through EYE engine All the events and actions are described in N3 and

modelled following the EWE ontology. This means that each channel has it own vo-

cabulary. This N3 statements are inserted in the EYE engine by the server. The

implementation of the EYE engine with the aplication has been an important achieve-

ment in this project because the engine returns the pre�xes mixed with the input and

output, which complicates the action extraction.

42

5.3. FUTURE WORK

De�ne receivers and performers that execute events and perform actions This is

the main module of the aplication because is responsible of the rule execution. We

have developed a receiver which listens all the changes that can trigger an event in a

particular channel, handling the communication with the server. The performers have

functions with the action performance and can be executed when the server responses

an action involved with that performer.

5.3 Future work

There are several tips that can be followed to improve some of the project features but

were not implemented into this project because of the time limitation. We will mention

some upgrades from a future perspective that could help to continue the development of the

project we have presented inside this document.

• Implement a login system where each user could have their own pro�le and share rules

each other

• Give the possibility to the user of creating category of one speci�c topic (home, work,

gaming...) and group rules by categories. This with the previous point could create a

social network where users might download rule packages oriented to a particular life

situation and export their own rules.

• Create a top rated rules ranking where the most interesting rules will appear.

• Increase the channel list with some third-party application like social networks. In

the current version of the project, this is viable but the server is the one who accesses

directly to these apps.

• Add the active/inactive �eld to created rules, which one allows to disable certain rules

without deleting them from database.

• Improve the access to the inference engine with EYE, creating a better �lter which

handles multiples parameters and types o�ering much more possibilities.

• Adapt the application to other devices like tablets or di�erent platforms like iOS

framework.

43

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

44

APPENDIXA

Rule and channel templates using N3

In this appendix we will detail in depth the channel and rule de�nition using the EWE

ontology [1]. This appendix is essential to understand how the rule execution module works

and the way the channels are modelled in N3 for the EYE [8] inference engine.

A.1 Channels

We will start with an example channel de�nition that belongs to the WiFi channel, which

has two events and two actions. This template can be generalized to every channel with

turn on and turn o� events, for example Bluetooth, GPS or Data network connection.

In case WiFi is enabled, the input inserted into inference engine will be ?event rdf:type

ewe-wi�:ON.. However, if any event cause the WiFi enable action, EYE will return ewe-

wi�:Wi� rdf:type ewe-wi�:ON .

A.1.0.1 Event parameters

Some certain events may have attached parameters, for example the Location channel, which

needs the latitude longitude and radius of the geofence area. It is necessary to follow a speci�c

45

APPENDIX A. RULE AND CHANNEL TEMPLATES USING N3

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ewe-wifi: <http://gsi.dit.upm.es/ontologies/ewe-wifi/ns/#> .

#Events

?event rdf:type ewe-wifi:ON.

?event rdf:type ewe-wifi:OFF.

#Actions

ewe-wifi:Wifi rdf:type ewe-wifi:ON .

ewe-wifi:Wifi rdf:type ewe-wifi:OFF .

Figure A.1: WiFi channel template described in N3

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix math: <http://www.w3.org/2000/10/swap/math#>.

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/#> .

@prefix ewe-location: <http://gsi.dit.upm.es/ontologies/ewe-location/ns/#>

.

?event rdf:type ewe-location:Entered;

?event!ewe:latitude math:EqualTo #PARAM_1#.

?event!ewe:longitude math:EqualTo #PARAM_2#.

?event!ewe:radius math:EqualTo #PARAM_3#.

Figure A.2: Location channel template described in N3 using parameters.

structure when the channel is being de�ned. We can observe this implementation in �gure

A.2.

A.1.1 Action parameters

In the same way, some actions may have attached parameters, for instance the text we

want to show inside a noti�cation or the message we want to post on Twitter. These

implementations must follow the template described in �gure A.3.

46

A.2. RULES

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ewe-notification: <http://gsi.dit.upm.es/ontologies/ewe-

notification/ns/#> .

@prefix ov: <http://vocab.org/open/#> .

ewe-notification:Notification rdf:type ewe-notification:Show ;

ov:message "#PARAM_1#".

Figure A.3: Noti�cation actions template described in N3

A.2 Rules

Once we have de�ne several channel structure templates, we are going to create some rule

templates using these channel examples.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix math: <http://www.w3.org/2000/10/swap/math#>.

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/#> .

@prefix ewe-location: <http://gsi.dit.upm.es/ontologies/ewe-location/ns/#>

.

@prefix ewe-wifi: <http://gsi.dit.upm.es/ontologies/ewe-wifi/ns/#> .

{

?event rdf:type ewe-location:Entered;

?event!ewe:latitude math:EqualTo 40.453217 .

?event!ewe:longitude math:EqualTo -3.725631 .

?event!ewe:radius math:EqualTo 30 .

}

=>

{

ewe-wifi:Wifi rdf:type ewe-wifi:ON .

}

Figure A.4: Rule example. If I enter GSI the enable WiFi in my smartphone

47

APPENDIX A. RULE AND CHANNEL TEMPLATES USING N3

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix math: <http://www.w3.org/2000/10/swap/math#>.

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/#> .

@prefix ewe-wifi: <http://gsi.dit.upm.es/ontologies/ewe-wifi/ns/#> .

@prefix ewe-notification: <http://gsi.dit.upm.es/ontologies/ewe-

notification/ns/#> .

@prefix ov: <http://vocab.org/open/#> .

{

?event rdf:type ewe-wifi:ON .

}

=>

{

ewe-notification:Notification rdf:type ewe-notification:Show ;

ov:message "You have enabled WiFi".

}

Figure A.5: Rule example. If I enable WiFi then show a noti�cation

48

Bibliography

[1] M. Coronado, C. A. Iglesias, and E. Serrano, �Modelling rules for automating the Evented

WEb by semantic technologies,� Expert Systems with Applications, vol. 42, no. 21, pp.

7979 � 7990, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0957417415004339

[2] S. M. López, �Development of a task automation platform for beacon enabled smart homes,�

http://www.

[3] IFTTT, �Ifttt's o�cial website,� https://ifttt.com/, accessed March X, 2015.

[4] Atooma, �Atooma's o�cial website,� https://www.atooma.com/.

[5] M. Coronado and C. A. Iglesias, �Task Automation Services: Automation for the masses,�

Internet Computing, IEEE, vol. PP, no. 99, pp. 1�1, 2015.

[6] Atooma, �Resonance android sdk's documentation,� http://doc-resonance-sdk.readthedocs.

org/en/latest/.

[7] J. de Roo, �Eye note,� http://eulersharp.sourceforge.net/2006/02swap/eye-note, accessed

March X, 2015.

[8] R. Verborgh and J. de Roo, �Drawing conclusions from linked data on the web. the eye reasoner,�

http://online.qmags.com/ISW0515?cid=3244717&eid=19361&pg=25#pg25&mode2.

[9] O. Araque, �Design and implementation of an event rules web editor,� July 2014.

[10] SQLite, �Sqlite documentation,� https://www.sqlite.org/docs.html.

49

http://www.sciencedirect.com/science/article/pii/S0957417415004339
http://www.sciencedirect.com/science/article/pii/S0957417415004339
http://www.
https://ifttt.com/
https://www.atooma.com/
http://doc-resonance-sdk.readthedocs.org/en/latest/
http://doc-resonance-sdk.readthedocs.org/en/latest/
http://eulersharp.sourceforge.net/2006/02swap/eye-note
http://online.qmags.com/ISW0515?cid=3244717&eid=19361&pg=25#pg25&mode2
https://www.sqlite.org/docs.html

BIBLIOGRAPHY

50

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Motivation
	Project Goals
	Structure of this document

	Enabling Technologies
	Introduction
	IFTTT
	Architecture

	Atooma
	Modules
	Triggers
	Condition Checkers
	Performers

	EYE
	Architecture
	EWE
	Design methodology
	Elements
	Main classes
	Main properties

	Architecture
	Introduction
	Overview
	Server Modules
	Client Modules

	Modules
	Rule Definition Module
	Channel Information
	Database
	Creation Process

	Rule Execution Module
	Execution Process
	Receivers and Performers

	Semantic rules
	Modelling channels with EWE
	Rule declaration example

	Android aplication
	User Interface
	Channel Definition
	Structure

	Conclusions

	Case study
	Introduction
	Channel Edition
	Rule Edition
	Rule Execution

	Conclusions and future work
	Conclusions
	Achieved goals
	Future work

	Rule and channel templates using N3
	Channels
	Event parameters
	Action parameters

	Rules

	Bibliography

