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Abstract: Recent works have shown that sentiment analysis on social media can be improved by
fusing text with social context information. Social context is information such as relationships
between users and interactions of users with content. Although existing works have already
exploited the networked structure of social context by using graphical models or techniques such
as label propagation, more advanced techniques from social network analysis remain unexplored.
Our hypothesis is that these techniques can help reveal underlying features that could help with
the analysis. In this work, we present a sentiment classification model (CRANK) that leverages
community partitions to improve both user and content classification. We evaluated this model on
existing datasets and compared it to other approaches.
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1. Introduction

The state-of-the-art in the field of sentiment analysis has improved considerably in recent years,
partly due to the advent of social media. Social media text imposes several limitations that are hard
to overcome even for human annotators, such as the extensive use of annotations, jargon, and heavy
reliance on context. Moreover, understanding a piece of content often requires following a conversation
(i.e., a thread of replies) or the style and stance of the author of the content.

To solve these limitations, new approaches are starting to combine text with additional information
from the social network, such as links between users and previous posts by each user. The blend
of all this information can be referred to as social context. A recent work [1] analyzed the use of
social context in the sentiment analysis literature, and it showed that context-based approaches
performed better than traditional analysis without social context (i.e., contextless approaches). It
also provided a taxonomy of approaches based on the types of features included in the context:
contextlessapproaches do not use social context at all; microapproaches only use features from the
users and their content; mesoapproaches include features from other users and content, as well as
connections between different users and content; and macroapproaches also exploit other sources such
as knowledge graphs. meso approaches are further divided into three categories: mesor only uses
relations (e.g., follower-followee); mesoi adds interactions (e.g., replies and likes); and mesoe uses Social
Network Analysis (SNA) techniques to process other elements of the context and generate additional
features. Comparing the performance of existing approaches seems to show that more elaborate
features provide an advantage over simpler features. Simpler features are those directly extracted from
the network, such as follower-followee relations (mesor). More complex features can be obtained from
applying further processing, typically through filtering and aggregating information from the network
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(mesoi), or through SNA techniques such as calculating user centrality or unsupervised community
detection (mesoe). Unfortunately, these features remain mostly unexplored and show higher variability.

This work is motivated by the following hypotheses about the use of social context:

Hypothesis 1. meso features improve user classification in the absence of micro features.

Hypothesis 2. micro features improve content classification over pure contextless features.

Hypothesis 3. meso features improve content classification in the absence of micro features.

Hypothesis 4. mesoe, and community detection in particular, can improve classification compared to only
using mesoi and mesor features.

As a result, we propose a model to classify both users and content using social context. In our
evaluation, we will test whether our proposal supports these hypotheses.

The social context used in our model consists of a set of users and content for a topic, as well an
authorship relation between content and users, and a form of interaction or relation between users.
Moreover, some of the users and content have known sentiment labels. Through community detection,
we generate a network of users that belong to the same community. This network is then used to
estimate the sentiment of the missing labels for users and content, i.e., it performs both user-level and
content-level classification.

The estimation is based on maximizing a metric that is inspired by sentiment consistency and
homophily theories. Sentiment consistency implies that the sentiment of a user on a given topic is
stable over time. The homophily theory dictates that similar users are more likely to form connections.
In our case, two users are similar if they share the same sentiment on a given topic.

The classification model is based on an earlier model by Pozzi et al. [2], which our model improves
in two significant ways: (1) it can be used for content-level classification, and (2) in addition to using
the raw relations from the social network, it can also use community detection to find weak relations
between users.

The rest of the paper is structured as follows: Section 2 covers related works and concepts;
Section 3 describes the classification model; Section 4 is dedicated to a description of the datasets used
for evaluation and how they have been enriched with social context; Section 5 presents the evaluation
of the model; Section 6 closes with our conclusions and future lines of work.

2. Related Work

This section summarizes the state-of-the-art in the fields of sentiment analysis and Social Network
Analysis (SNA). It also provides a summary of the definitions and nomenclature on social context.

2.1. Sentiment Analysis

Sentiment analysis, or the process of assessing attitudes expressed in text, is hardly a new field,
but its popularity has grown due to the increasing availability and popularity of opinion-rich resources
such as online review sites and personal blogs [3].

The approaches in this field can be grouped into three main categories: lexicon-based, machine
learning-based, and hybrid [4]. In this section, we will focus on lexicon and machine learning-based
approaches, as hybrid approaches use a combination of both.

Lexicon-based approaches are potentially the simplest. They estimate the sentiment of a
text using a lexicon, or associations of lexical entries (e.g., words) in a domain with one or more
sentiments. Machine learning approaches apply a predictor on a set of features that represent the input.
The predictors used for sentiment analysis are not very different from those used in other areas. The
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complexity lies in extracting useful features from the text, curating them, and applying them with the
appropriate predictor [5].

Lexicon-based approaches are heavily limited by the quality of the lexicon at hand, and creating
consistent and reliable lexicons for a domain is an onerous task [6]. As a consequence, pure lexicon techniques
are seldom used. Instead, lexicons typically are combined with machine learning techniques [7–11]. Hence,
machine learning techniques and hybrid approaches dominate the state-of-the-art [12–14],

Machine learning techniques can use different types of features for their predictions.
These features are manually crafted and picked for the specific application. The simplest types
of features, which rely solely on lexical and syntactical information (e.g., bag-of-words, syntactic trees),
are often referred to as surface forms. Surface forms can also be combined with other prior information,
such as lexicons with word sentiment polarity [7–11]. Some lexicons also include non-words such
as emoticons [15,16] and emoji [17]. The combination of the resulting features is fed into a classifier,
which can be trained on a known dataset or part of it.

The main disadvantage of these approaches is that each feature needs to be conceived of and
added by an operator. Although there are processes to select the most informative (i.e., best) features
for a given combination of dataset and classifier, the problem of finding and calculating new features
still remains.

In contrast, deep learning techniques can automatically learn complex features from data.
New approaches based on deep learning have shown excellent performance in sentiment analysis
in recent years [18,19]. The downside is that they usually require large amounts of data, which is
not always available. They also raise other concerns such as interpretability [20,21] or the inability of
a model to adapt to deal with edge cases [20]. In the realm of Natural Language Processing (NLP),
most of the focus is on learning fixed-length word vector representations using neural language
models [22]. These representations, also known as word embeddings, can then be fed into a deep
learning classifier or used with more traditional methods. One of the most popular approaches in this
area is word2vec [23]. Although training these models requires enormous amounts of data and fair
amounts of computation, there are several publicly available models that have already been trained on
large corpora such as Wikipedia.

Lastly, it is also possible to combine independent predictors to achieve a more accurate and reliable
model than any of the predictors on their own. This approach is known as ensemble learning. Many
ensemble methods have been previously used for sentiment analysis. An exciting new application
of ensemble methods is the combination of traditional classifiers based on feature selection and deep
learning approaches [12].

2.2. Social Network Analysis

Social Network Analysis (SNA) is the investigation of social structures through a combination of
social science and graph theory [24]. It provides techniques to characterize and study the connections
and interactions between people, using any kind of social (human) network. The mathematical analysis
of a social network using graph theory predates the appearance of Online Social Network (OSN) by
more than a hundred years. The same techniques have been applied successfully on other types of
social networks such as citation networks in academia and call records in mobile networks.

Through SNA techniques, it is possible to extract useful information from a social network, such as
chains of influence between users, groups of like-minded users, or metrics of user importance. This
information may be useful for many applications, including sentiment analysis. There are several
ways in which SNA techniques can be exploited in sentiment analysis, but the analysis of current
approaches [1] shows that they can be grouped into one of two categories: those that transform the
network into metrics or features that can be used to inform a classifier and those that limit the analysis
to certain groups or partitions of the network.

A simple example of metrics provided by SNA could be user’s follower in-degree (number of
users that follow the user) and out-degree (number of users followed by the user), which could be used
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as features for each user [25]. However, these metrics are not very rich, as they only cover users directly
connected to a user, and they do so in a very naive way: all connections are treated equally. Other more
sophisticated metrics could be used instead of in-/out-degree, such as centrality, a measure of the
importance of a node within a network topology, or PageRank, an iterative algorithm that weights
connections by the importance of the originating user. Several works have introduced alternative
metrics for user and content influence in a network [26,27].

The second category of approaches is what is known either as network partition or as community
detection, depending on whether the groupings may overlap. Intuitively, community detection aims
to find subgroups within a larger group. This grouping can be used to inform a classifier or to limit the
analysis to relevant groups only. More precisely, community detection identifies groups of vertices
that are more densely connected to each other than to the rest of the network [28]. The motivation is
to reduce the network into smaller parts that still retain some of the features of the bigger network.
These communities may be formed due to different factors, depending on the type of link used to
connect users, and the technique used to detect the communities. Each definition has its own set
of characteristics and shortcomings. For instance, if users are connected after messaging each other,
community detection may reveal groups of users that communicate with each other often [29]. By using
friendship relations, community detection may also provide the groups of contacts of a user [30].

Other publications [28,31] cover further details of the different definitions of community and
algorithms to detect them.

2.3. Social Context

Social context [1] is the collection of users, content, relations, and interactions that describe the
environment in which social activity takes place. It encapsulates the frame in which communication in
social media takes place.

Social context is used in sentiment analysis for two reasons that are subtly different. First, it can
be used to compensate for implicit elements in the text. An example of this is how slang, abbreviations,
or semantic variations can be detected and accounted for in the classification. Humans apply a similar
process when trying to understand content. Content authors also unconsciously rely on this fact, and
they assume certain prior knowledge. The second motivation to add social context is that it may help
correct ambiguity or situations where textual queues are lacking. For example, a classifier may use the
sentiment of earlier posts by the user and similar users on the same topic.

For the sake of clarity and for the ease of comparison with other works, we will employ the
following general definition of social context [1]:

SocialContext = 〈C, U, R, I〉 (1)

where: U is the set of content generated; C is the set of users; I is the set of interactions between users,
and of users with content; R is the set of relations between users, between pieces of content, and
between users and content.

Figure 1 provides a graphical representation of the possible links between entities of the two
available types. Users may interact (i) with other users (Iu) or with content (Ic).

I ≡ {it | t ∈ Ti} = Iu ∪ Iuc (2)

Iu
t = {iu

t,ui ,uj ,i | ui, uj ∈ U, t ∈ Ti,u} (3)

Iuc
t = {iuc

t,ui ,uj ,i | ui ∈ U, cj ∈ C, t ∈ Ti,uc} (4)
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Figure 1. Model of social context, including: content (C), users (U), relations (Rc, Ru, and Ruc), and
interactions (Iu and Iuc).

Relations (R) can link any two elements: two users (Ru), a user with content (Ruc), or two pieces
of content (Rc).

R ≡ {rt | t ∈ Tr} = Ru ∪ Ruc ∪ Rc (5)

Ru
t = {ru

t,ui ,uj
| ui, uj ∈ U, ui 6= uj, t ∈ Tr,u} (6)

Ruc
t = {ruc

t,ui ,cj
| ui ∈ U, cj ∈ C, t ∈ Tr,uc} (7)

Rc
t = {rc

t,ci ,cj
| ci, cj ∈ C, ci 6= cj, t ∈ Tr,c} (8)

where Ta,b are the types of elements Ab, e.g., Ti,uc are the types of interactions between users and
content (Iuc).

From these definitions, it is obvious that interactions and relations are very similar, and a network
of users and content can be created using either one or both of them. In the parts of the model where a
relation (R) or an interaction (I) can be used, the term edge (E) can be used instead.

There are countless ways to construct a social context for the piece of text, depending on the
types of information included and how it is gathered. The richness of context influences the type
of analysis that can be performed. For the sake of comparison, the ways in which social context is
constructed and analyzed can be grouped into one of several categories, according to a taxonomy of
approaches [1]. The categories are, from simpler to more complex: micro approaches, in which only
one user is included along with the content he or she created; meso approaches, which also add other
users and relations or interactions with them; and macro approaches, which include information from
outside the OSN, such as facts or encyclopedic knowledge. The meso level is further divided: mesor

only uses relations; mesoi also includes interactions; and mesoe adds information from social network
analysis, such as partitions, modularity, or betweenness.

2.4. Sentiment Analysis Using Social Context

This section provides a brief summary of works that have leveraged social context for sentiment
analysis, following the taxonomy of approaches by Sánchez-Rada and Iglesias [1].
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Tan et al. [32] was one of the first works to incorporate social context information, which the
authors called heterogeneous graph on topic, to infer (user) sentiment. The underlying ideas behind
that work were user consistency and homophily. A function to measure each of those attributes was
provided, and the model tried to maximize the overall value. The authors compared alternative
ways to construct the user network, using variations of follower-followee relations and direct replies
(interactions). However, the approach could be categorized as mesor, for two reasons. Firstly, in their
work, relations and interactions yielded similar results. Secondly, in the original, formulation edges
(relations or interactions) were not weighted, so users were influenced equally by all their neighbors.
Interactions were bound to be noisy, and aggregating them in this fashion was likely to provide little
or no advantage over a simple relation. The SANTmodel [33] follows similar ideas, but for content
classification. It is also a mesor approach that combines sentiment consistency, emotion contagion, and
a unigram model in a classifier.

Pozzi et al. [2] extended the model by Tan et al. [32]. Their model used what they called an
approval network, which effectively added weights for edges between users. The rationale for that
change was that friendship did not imply approval and that a weighted network of interactions should
better capture emotion contagion. This addition invalidated the two reasons for not considering it a
mesoi approach.

Other models have exploited community detection, which included them into the mesoe category.
An example is Xiaomei et al. [34], which incorporated weak dependencies between microblogs, using
community detection (different algorithms) on a network of microblogs. In their work, microblogs
were connected if their authors were (i.e., there was a follower-followee relation).

3. Sentiment Classification

The sentiment classification task consists of finding all the sentiment labels for users (Lu = {lu
i |

ui ∈ U}) and content (Lc = {lc
i | ci ∈ C}) in a given social context, where the labels of a sub-set of

users (Bu) and a sub-set of content (Bc) are known in advance. The social context is made up of a set of
content (C), a set of users (U), relations between both users and content (R), and interactions between
users and content (I). This is illustrated in Figure 2, where relations and interactions are simplified
as undirected edges between nodes (i.e., users and content). For the sake of simplicity, we will only
consider two possible labels: positive and negative. However, the model can be used with an arbitrary
number of labels.

To solve the classification problem, we propose a classification model that uses a combination of a
probability model for a given configuration of user and content labels and a classification algorithm
that finds the set of labels with the highest probability. In other words, we define a metric that,
based on a given social context, estimates the likelihood that users and content are labeled in a
specific configuration. The metric incorporates homophily and consistency assumptions. It also
involves several parameters that need to be adjusted or trained. We propose a classification method
that estimates the parameters and the labels at the same time, by employing a modified version of
SampleRank [35], an algorithm to estimate parameters in complex graphical models.

Both the probability model and the classification algorithm were based on two earlier works [2,32],
which are described in Section 2.4. However, this section does not assume prior knowledge of
these models.
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3.1. Probability Model

In order to find the best configuration of user and content labels, the classification model uses
a probability model that estimates the likelihood of a given distribution of user and content labels.
This probability model was based on the Markov assumption that the sentiment of user ui (lu

i ) is
influenced only by the sentiment of every piece of content ci (lc

j ) authored by the user (Pi) and the
sentiment labels of its neighbors in the network (Ni). Likewise, the sentiment of a piece of content ci
(lc

i ) is influenced by the sentiment label of its author. The label of a node (i.e., user or piece of content)
may or may not be known in advance. If a label for a node is known, that node is said to be labeled.
Labeled users (Bu) and content (Bc) are assigned a higher weight or influence on global probability.

The model is defined as follows. Let lu
i be the label for user ui, and let Lu be the vector of labels

for all users. Let lc
i be the label for content uc and Lc be the vector of labels for all content. To simplify

our notation, we will also use Pi as the subset of content that has been authored by user ui and Ni as
the subset of users who are connected to user ui in the social context graph. Two users are connected
when there is an edge between them, which can be chosen from the different types of relations and
interactions available in the context, i.e., {ui, uj} ∈ E, E ∈ {R, I}. The probability of a configuration of
labels (Lu, Lc) is given by Equation (9):

log(P(Lu, Lc)) = ∑
ui∈U

∑
cj∈Pi

µ(lu
i , lc

j )
ρu(ui) · ρc(cj)

|Pi|

+ ∑
uj∈Ni

λ(lu
i , lu

j )
ρneigh · ei,j

∑
uk∈Ni

ei,k

−log(Z)

(9)

where ρneigh is a constant that controls the weight of the effect of neighboring users, ρu and ρc determine
the weight of each piece of content and each user, respectively, and ei,j is the weight of the edge between
neighboring users ui and uj. The value of µ(α, β) and lambda(α, β) models how a node labeled β affects
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a node labeled α (α, β ∈ Polarities). For the typical case, where Polarities = {positive, negative}, µ

and λ can be thought of as an array with four values, one per combination of the two polarities. For
instance, the value of µpositive,positive is the weight given to positive content by positive users.

The weight of a specific user is controlled through ρu (Equation (10)), and ρc (Equation (11))
controls the weight of each piece of content. The values of both functions depend on whether the
label for the specific user and or content is known a priori. For users with a known sentiment, the
weight is ρlabeled, and for unknown values, it is ρunlabeled. Based on previous works [2,32], we use the
following values: ρu,labeled = ρc,labeled = 1, ρu,unlabeled = ρc,unlabeled = 0.2Ȯnce again, ei,j is the weight of
the edge between users ui and uj. Intuitively, this allows for some specific edges to represent stronger
bonds and, hence, have a bigger impact on the result. The influence of neighboring agents ρneigh is a
parameter that can be adjusted.

ρu(u) =

{
ρu,labeled : if u ∈ Bu

ρu,unlabeled : otherwise

}
(10)

ρc(c) =

{
ρc,labeled : if u ∈ Bc

ρc,unlabeled : otherwise

}
(11)

3.2. Parameter Estimation and Classification

Some parameters in the probability model in the previous section were manually set, such as
ρneigh or ρu,labeled, whereas other values were to be calculated. More specifically, the classification
process would consist of calculating the values for µ and λ and then maximizing the log-likelihood of
a given distribution of labels (Lu and Lc).

In order to explain the classification process, it is useful to decompose the log-likelihood into a
dot product of a matrix of constants and a function of the set of labels:

log(P(Lu, Lc)) = φ · ψ(Lu, Lc)− log(Z) (12)

where φ (Equation (13)) is constant and the value of ψ (Equation (13)) only depends on the labels
and the pre-set parameters. In Equation (13), the µ and λ functions are represented as matrices,
where µα,β = µ(α, β). In Equation (14), we simply introduced an auxiliary function, γ (Equation (15)),
to separate the summations into components, just like µ and λ.

φ = {µ, λ} (13)

ψ(Lu, Lc) = { ∑
ui∈U

∑
cj∈Pi

γα,β(lu
i , lc

j )
ρu(ui) · ρc(cj)

|Pi|
,

∑
ui∈U

∑
uj∈Ni

γα,β(lu
i , lu

j )
ρneigh · ei,j

∑
uk∈Ni

ei,k
}

(14)

γα,β(a, b) =

{
1 : a = α ∧ b = β

0 : otherwise

}
(15)

The model is thus trained by inferring the values of φ and the Z constant. As we explained earlier,
the value of φ roughly encodes the expected likelihood of finding a given combination of labels for
two nodes. For instance, λpositive,positive is the likelihood of positive content on positive users, which is
expected to be lower than λnegative,positive, under the assumption of consistency. Once these parameters
are calculated for a given domain, the classification consists of maximizing the log-likelihood of a
given distribution of labels.
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SampleRank can be used to determine the value of φ, which is divided into µα,β and λα,β. Ideally,
the value of Z could be obtained through regularization, but in practice, this can be costly. This need
can be circumvented by using other methods that calculate the labels for all unknown elements, such
as loopy belief propagation. Alternatively, some works exploit the fact that SampleRank can also
output the set of labels in addition to the value for φ [2]. When used in this manner, training can be
interpreted as a search in the space of possible labels, and the log-likelihood function is a heuristic that
restricts the search. This method has been used successfully for user classification [2], and its main
advantage is that it is simpler than using an additional layer of label propagation.

Our proposed classification algorithm (Algorithm 1) is a modified version of SampleRank,
which returns the labels for both users and content.

Algorithm 1 Sentiment detection.
Input

Bu : {(u, p) | u ∈ U, p ∈ Polarities} . Known user labels
Bc : {(c, p) | c ∈ C, p ∈ Polarities} . Known content labels
Eu : {(i, j) | i, j ∈ U} . Edges connecting users
Euc : {(u, c) | u ∈ U, c ∈ C} . Edges between users and content
P : LN → R . Performance (accuracy)
ψ : LN × PN → R . Objective function

Output
Lu . Estimated user labels
Lc . Estimated content labels
φ . Learned weights

1: Eu ← CD(Eu) . Community detection. This is skipped in CrankNoComm

2: Lu, Lc ← Random(Lu, Lc)

3: Stale← 0

4: for step← 1 to MaxSteps do

5: Lunew, Lcnew ← Sample(Lu, Lc) . Randomly modify only one label

6: ∇ ← ψ(Lunew, LcnewBu, Bc, Eu, Euc)− ψ(Lu, Lc, Bu, Bc, Eu, Euc)

7: ∆P← P(Lunew, Lcnew)− P(Lu, Lc)

8: if φ · ∇ > 0∧ ∆P < 0 then . Performance is worse, objective is better

9: φ← φ− η∇ . Performance is better, objective is worse

10: else if φ · ∇ < 0∧ ∆P > 0 then

11: φ← φ + η∇ . Converge if there are no changes in a given number of steps

12: if ∇ ≤ 0∧ P(Lcnew, Lu) ≤ 0 then

13: Stale← Stale + 1

14: if Stale >= Convergence then return
15: else

16: Stale← 0
17: if ∆P > 0∨ (∆P = 0∧ φ · ∇ > 0) then . Performance is better, and objective function is at least the same

18: Lu ← Lunew

19: Lc ← Lcnew
20:

In this algorithm, the Random(Lu, Lc) function returns a random set of user and content
labels (within the range of Polarities, which in a simple case would just be negative and positive).
Eu represents edges between users, i.e., either relations or interactions. The CD(Eu) function performs
community detection given a set of edges and returns the set of edges between all users within the
same community. In particular, we are using the Louvain method [36]. The Sample(Lu, Lc) function
changes one of the labels from either Lu or Lc, at random. Since the SampleRank algorithm is inherently
stochastic, the model should be run several times, and the results of each run should be aggregated.
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In our case, we used a number of 21 iterations, based on earlier works [32], and simple majority over
all iterations.

4. Data

4.1. Datasets

Table 1 provides basic information about the datasets used in the evaluation. Since the model
used in this work requires a social context with interactions or relations, the list is limited to datasets
that either contained this information or that could be extended using other sources (Section 4.2).

Table 1. Datasets used in the experiments. OMD, Obama–McCain Debate; HCR, Health Care Reform.

Source Users Entries Year

OMD [37] Twitter 893 1261 2009
HCR [38] Twitter 277 1434 2011
RTMind [2] Twitter 62 159 2013

The OMD dataset (Obama-McCain debate) [37] contains tweets about the televised debate between
Senator John McCain and then-Senator Barack Obama. The tweets were detected by following three
hashtags: #current,#tweetdebate, and #debate08. The dataset contained tweets captured during the
97-minute debate, and 53 after it, for a total of 2.5 hours. The dataset included tweet IDs, publication
date, text, author name and nickname, and individual annotations of up to seven annotators.

The Health Care Reform (HCR) [38] dataset contained tweets about the run-up to the signing of
the health care bill in the USA on March 23, 2010. It was collected using the #hcr hashtag, from early
2010. A subset of the collected tweets were annotated with polarity (positive, negative, neutral,
and irrelevant) and polarity targets (health care reform, Obama, Democrats, Republicans, Tea Party,
conservatives, liberals, and Stupak) by Speriosu et al. [38]. The tweets were separated into training,
dev(HCR-DEV), and test (HCR-TEST) sets. The dataset contained the tweet ID, user ID and username,
text of the tweet, sentiment, target of the sentiment, and the annotator and annotator ID.

RTMind [2] contained a set of 62 users and 159 tweets, with positive or negative annotations.
To collect this dataset, Pozzi et al. [2] crawled 2500 Twitter users who tweeted about Obama during two
days in May 2013. For each user, their recent tweets (up to 3200, the limit of the API) were collected.
At that point, only users that tweeted at least 50 times about Obama were considered. The tweets
from those users that relate to Obama were kept and manually labeled by three annotators. Then, a
synthetic network of following relations was generated based on a homophily criterion, i.e., users with
a similar sentiment were more likely to be connected. The dataset contained the ID of the tweet, the ID
of the author, the text of the tweet, the creation time, and the sentiment (positive or negative).

4.2. Gathering and Analyzing Social Context

The model proposed needs to access the network of users. Since all datasets provide both tweet
and user IDs, it would be possible to access Twitter’s public API to retrieve the network. However, that
approach has several disadvantages that stem from the fact that these datasets were originally captured
circa 2010 [1], such as the fact that the relationships between users have likely changed and that many
of the original tweets and users have been deleted or made private, making it impossible to fetch
them. Alternatively, we decided to retrieve the follower network from a snapshot of the whole Twitter
network in summer of 2009 [39]. Since the datasets used were gathered around the same time period
as the snapshot, this should provide a more reliable list of followers than other methods. We refer to
the the resulting network as relations.

Upon realizing that the relations network was rather sparse for the OMD and HCR datasets,
we investigated an alternative to find hidden links between users: connecting users that followed
similar people. To do so, we extracted the list of users followed by each author and we compared the
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list of followees for each pair of users in the dataset. Users that shared at least a given ratio of their
followees were considered similar, and an edge between them was drawn. After evaluating different
values for the threshold ratio, it was set to 15%, as it resulted in a degree similar to the RT Mind dataset.
We refer to this network as common.

To compare the two network variants, relations and common, we used some basic statistics of each
network, shown in Table 2. The table includes the average degree of each node in the network (i.e.,
mean number of edges per node), the ratio of users that have the same label as the majority of their
neighbors in the network (majority agreement), the ratio of users that have the same label as all their
neighbors (total agreement), and the ratio of users that do not have any neighbors (isolation ratio). The
degree measures the density of the network. The majority and total agreement metrics are a measure
of homophily in the network. The table also includes two measures of the balance in labels for user
(user label ratio) and content (content label ratio). These two metrics were calculated by dividing
the number of elements (i.e., users and content) with the most common label by the total number of
elements.

We observed that the RT Mind dataset was the most promising of all the networks, as its labels
were balanced, it had high density and homophily, higher content count per user, and all of its users
were connected. The OMD networks were the densest, but their agreement was very low and a fourth
of its users not connected to others. Moreover, we observed that the common extension of this dataset
had a lower agreement ratio and fewer edges, whereas the isolation ratio remained the same as in
the relations network. Lastly, the HCR dataset showed the lowest agreement of the datasets, and the
relations network was almost non-existent. Although the common network significantly improved
every metric, the majority agreement was still very low (0.29). This meant that the additional links
were connecting users that were dissimilar, which negated the homophily assumption.

In summary, we concluded that this particular strategy to extend social context did not work for
these datasets. The statistics for the RT Mind dataset made it ideal for the evaluation of our proposed
model. The results for the OMD dataset may indicate how the model would work in scenarios with a
higher degree, but relatively low homophily. In that scenario, the meso features may interfere with
micro features. Lastly, the HCR dataset could show how the model would work with an almost
complete lack of meso features.

Table 2. Statistics of the networks gathered for each dataset.

Dataset Variant Content
Mean

Content
Median Degree Isolation

Ratio
Majority

Agreement # Edges # Nodes Total
Agreement

Content
Label Ratio

User
Label Ratio

RT Mind relations 2.56 3.00 8.61 0.00 0.90 267 62 0.52 0.56 0.52
OMD relations 2.56 1.00 14.25 0.24 0.39 6364 893 0.16 0.61 0.69

common 2.56 1.00 9.59 0.24 0.30 4280 893 0.15 0.61 0.69
HCR relations 1.21 1.00 0.02 0.99 0.01 3 277 0.01 0.62 0.60

common 1.21 1.00 2.89 0.80 0.19 400 277 0.18 0.62 0.60

5. Evaluation

The sentiment classification task can be divided into two sub-tasks: user-level classification, which
only focuses on predicting user labels (Lu), and content-level classification, which focuses on content
labels (Lc). Since these two tasks are seldom tackled at the same time, we will evaluate how the model
performs in each of them independently. The datasets used are described in Section 4.

First, we focus on user-level classification (Section 5.1). The main goal was to evaluate the effect
of adding community detection to the SampleRank algorithm and to compare the performance of the
model to others. Then, we evaluated the content-level classification (Section 5.2) with varying levels of
certainty about user and content labels.

We will compare the performance of CRANKto other classifiers that will serve as the baseline
and to the results of other works in the state-of-the-art. Each model will be evaluated on different
scenarios, i.e., different social contexts. The ratio of labeled (i.e., known) users and content had a
significant impact on the performance of the model. Thus, we evaluated each model with different
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ratios of known labels for both users (ratiou) and content (ratioc). In each scenario, a random set of
labels was kept, according to ratiou and ratioc. This process was repeated several times to ensure that
the results were not too biased by the random partition. For each combination of model, dataset, ratiou,
and ratioc, the results were aggregated and the mean accuracy and its standard deviation calculated.
Accuracy was chosen over other metrics because it is commonly used in the field [1].

5.1. User-Level Classification

For the evaluation of user classification, we wanted to test whether Hypothesis 1 (meso features
improve user classification in the absence of micro features) and Hypothesis 4 (mesoe, and community detection
in particular, can improve classification compared to only using mesoi and mesor features) held true. In our
case, Hypothesis 1 was tested by comparing the accuracy of the CRANK model to a simpler model that
labeled each user using the majority label of his/her content. Hypothesis 4 was tested by comparing
the CRANK model to CRANK without community detection.

The following models were compared:

• Average content (AvgContent) (micro): Content was applied the same label as the majority of
content by the same user, and users were labeled according to the majority label of their content.

• Naive majority (AvgNeigh) (mesoi or mesor, depending on the context): Users were labeled with
the majority label in their group of neighbors in the network. Unlabeled content was given the
label of its creator.

• Majority in the community (AvgComm) (mesoe): Users were grouped into communities, and each
user was given the majority label of the users in their community. Content was given the label of
its creator.

• CRANK without community detection (mesor or mesoi, depending on the context): The CRANK
model described in Algorithm 1, but using original edges instead of applying community
detection.

• CRANK (mesoe): Before applying Algorithm 1, the communities between users were extracted
and converted to user edges, i.e., users in the same community were connected by an edge.

The results of the evaluation are shown in Table 3, where the highest value for each row is
presented in bold. It also highlights in grey the highest value when the average content was ignored.

If we focus on the results for the RT Mind dataset, we could conclude that CRANK significantly
improved the classification in all scenarios, especially with lower ratioc values. In other datasets, where
the network of users was sparser and less cohesive, CRANK outperformed all the models, except for
the average of content. This was expected, since meso features in these datasets were rather weak,
and the content mean and median values were close to one. In particular, the difference between
the CRANK model and the baseline in the HCR dataset was relatively small (0.02). That indicated
that there was little penalty to using CRANK even when there were few meso edges between users.
In the OMD dataset, which had low agreement between neighbors, the difference between CRANK
and the baseline was higher, and it did not decrease with higher values of ratiou. This confirmed our
suspicions that the meso features in this dataset were not useful for our purposes.

Regarding Hypothesis 4, we observed that CRANK outperformed its variant without community
detection in most of the cases. The exceptions were cases where most of the user labels were known.
In those cases, the accuracy of both methods was extremely high (above 0.95). This difference could be
explained by interpreting community detection as an aggregate over several users. In general, all the
users in a community shared the same sentiment. However, some members would have a different
label from the majority in their community (i.e., outliers). Often, those outliers were users that were
connected to users of other communities with a different sentiment. That information was lost when
aggregating, so for those outliers, community detection was actually detrimental. The fewer users
that were left unlabeled, the higher the effect of those outliers would be. Aggregating in those cases
presented a higher variance, which combined with the high accuracy values also lowered the mean
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compared to not aggregating. Nevertheless, we could conclude that mesoe features improved user
classification in most cases.

Table 3. User-level classification accuracy for each model.

Dataset ratioc Model ratiou AvgComm AvgContent AvgNeigh CRANK CrankNoComm

RT Mind 0.25 0.25 0.536 0.692 0.540 0.883 0.815
0.50 0.661 0.670 0.651 0.950 0.939
0.75 0.954 0.642 0.791 0.962 0.985

0.50 0.25 0.536 0.860 0.540 0.933 0.828
0.50 0.663 0.843 0.651 0.964 0.961
0.75 0.951 0.861 0.791 0.965 0.985

HCR 0.25 0.25 0.597 0.713 0.597 0.681 0.660
0.50 0.608 0.712 0.607 0.698 0.681
0.75 0.636 0.742 0.636 0.697 0.684

0.50 0.25 0.597 0.807 0.597 0.789 0.789
0.50 0.610 0.816 0.610 0.795 0.791
0.75 0.636 0.814 0.636 0.796 0.767

OMD 0.25 0.25 0.701 0.756 0.699 0.710 0.674
0.50 0.706 0.763 0.704 0.720 0.706
0.75 0.703 0.763 0.699 0.724 0.708

0.50 0.25 0.702 0.811 0.700 0.712 0.684
0.50 0.706 0.811 0.705 0.736 0.724
0.75 0.701 0.819 0.699 0.731 0.731

5.2. Content-Level Classification

For the evaluation of content classification, we wanted to test whether Hypothesis 2 (micro
features improve content classification over pure contextless features), Hypothesis 3 (meso features
improve content classification in the absence of micro features), and Hypothesis 4 (mesoe, and community
detection in particular, can improve classification compared to only using mesoi and mesor features) held true.
To do so, we compared the performance of the following classifiers:

• Simon [40] (contextless): A sentiment analysis model based on semantic similarity. The model
can be trained with different datasets. In our evaluation, we compared with the Simon model
trained on different datasets: STS, Vader, Sentiment140, and a combination of all three.

• Sentiment140 (https://www.sentiment140.com) service (contextless): This is a public sentiment
analysis service, tailored to Twitter. It outputs three labels: positive, negative, and neutral.
This results in lower accuracy for the negative and positive labels. In fact, of all the models tested,
this was the one with the lowest accuracy. If all tweets labeled neutral by the service are ignored,
its accuracy reaches standard levels (around 60%). Unfortunately, this means that around 80% of
tweets have to be ignored.

• Meaningcloud (https://www.meaningcloud.com/) Sentiment Analysis (contextless): An enterprise
service that provides several types of text analysis, including sentiment analysis. It poses the same
restrictions for evaluation as Sentiment140, as it provides positive, negative, and neutral labels.
Fortunately, the subjectivity detection of this service for our datasets was better than that of
Sentiment140.

• Average Content (AvgContent) (micro): Content is applied the same label as the majority of
content by the same user, and users are labeled according to the majority label of their content.

• Naive majority (AvgNeigh) (mesoi or mesor, depending on the context): Users are labeled with
the majority label in their group of neighbors in the network. Unlabeled content is given the label
of its creator.

https://www.sentiment140.com
https://www.meaningcloud.com/
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• Majority in the community (AvgComm) (mesoe): Users are grouped into communities, and each
user is given the majority label of the users in their community. Content is given the label of
its creator.

• CRANK without community detection (mesor or mesoi, depending on the context):
The CRANK model described in Algorithm 1, but using original edges instead of applying
community detection.

• CRANK (mesoe): Before applying Algorithm 1, the communities between users are extracted and
converted to user edges, i.e., users in the same community are connected by an edge.

• Label propagation [38] (Speriosu): Based on the results reported in the original paper for
these datasets.

We compared the accuracy of each of these models for several combinations of known content and
user labels (ratioc and ratiou). Table 4 shows a summary of the mean accuracy for each combination.
We also provide a graph of the mean accuracy and standard deviation of each model (Figure 3–5).

Similarly to the user-classification case, if we focus on the RT Mind dataset, the CRANK algorithm
outperformed all other models by a wide margin. In general, the baseline models that used social
context had higher accuracy in this dataset than any contextlessapproach. This was more obvious
when either more content was known (better micro features) or more users were known (better meso
features). This evidence supported Hypotheses 2 and 3.

In this case, averaging the content of a user yielded poor results for all datasets, due to the low
content count per user. If we look at all the results, we observe once again that the version of CRANK
with community detection had consistently better accuracy, supporting Hypothesis 4. It should be
noted that the Simon model [40] achieved the best performance among the contextless models and the
overall best in the OMD dataset. Unfortunately, the results for that dataset were very similar for all the
models, and the margins were small, so we could not draw any conclusions from that dataset.
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Table 4. Content-level classification accuracy of each model.

Dataset ratiou Algo ratioc AvgComm AvgContent AvgNeigh CRANK CrankNoComm Meaningcloud Sentiment140 Simon_All_Train_Data Simon_Sentiment140 Simon_sts Simon_Vader

RT Mind 0.25 0.25 0.56 0.65 0.56 0.88 0.81 0.51 0.59 0.56 0.56 0.62 0.58
0.50 0.57 0.78 0.58 0.89 0.81 0.54 0.60 0.57 0.57 0.64 0.60
0.75 0.54 0.76 0.54 0.85 0.80 0.51 0.58 0.53 0.53 0.57 0.52

0.50 0.25 0.69 0.65 0.64 0.90 0.90 0.51 0.59 0.56 0.56 0.62 0.58
0.50 0.69 0.78 0.64 0.90 0.90 0.54 0.60 0.57 0.57 0.64 0.60
0.75 0.67 0.76 0.61 0.88 0.89 0.51 0.58 0.53 0.53 0.57 0.52

0.75 0.25 0.89 0.65 0.78 0.91 0.92 0.51 0.59 0.56 0.56 0.62 0.58
0.50 0.88 0.78 0.78 0.91 0.91 0.54 0.60 0.57 0.57 0.64 0.60
0.75 0.85 0.76 0.76 0.88 0.90 0.51 0.58 0.53 0.53 0.57 0.52

HCR 0.25 0.25 0.63 0.64 0.63 0.69 0.67 0.60 0.62 0.65 0.65 0.66 0.57
0.50 0.62 0.64 0.62 0.70 0.70 0.59 0.62 0.65 0.66 0.65 0.57
0.75 0.61 0.65 0.61 0.73 0.71 0.59 0.57 0.63 0.63 0.64 0.56

0.50 0.25 0.63 0.64 0.63 0.80 0.78 0.60 0.62 0.65 0.65 0.66 0.57
0.50 0.62 0.64 0.62 0.80 0.79 0.59 0.62 0.65 0.66 0.65 0.57
0.75 0.61 0.65 0.61 0.80 0.80 0.59 0.57 0.63 0.63 0.64 0.56

0.75 0.25 0.63 0.64 0.63 0.90 0.89 0.60 0.62 0.65 0.65 0.66 0.57
0.50 0.62 0.64 0.62 0.89 0.88 0.59 0.62 0.65 0.66 0.65 0.57
0.75 0.61 0.65 0.61 0.89 0.89 0.59 0.57 0.63 0.63 0.64 0.56

OMD 0.25 0.25 0.64 0.61 0.64 0.64 0.62 0.69 0.63 0.65 0.65 0.70 0.64
0.50 0.64 0.60 0.63 0.64 0.62 0.70 0.64 0.65 0.65 0.69 0.63
0.75 0.64 0.61 0.63 0.65 0.63 0.67 0.62 0.66 0.66 0.70 0.63

0.50 0.25 0.64 0.60 0.64 0.67 0.64 0.69 0.63 0.65 0.65 0.70 0.64
0.50 0.63 0.60 0.63 0.67 0.65 0.70 0.64 0.65 0.65 0.69 0.63
00.75 0.63 0.61 0.63 0.68 0.66 0.67 0.62 0.66 0.66 0.70 0.63

0.75 00.25 0.64 0.61 0.63 0.69 0.67 0.69 0.63 0.65 0.65 0.70 0.64
00.50 0.63 0.60 0.63 0.69 0.68 0.70 0.64 0.65 0.65 0.69 0.63
00.75 0.63 0.61 0.63 0.71 0.70 0.67 0.62 0.66 0.66 0.70 0.63
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Figure 3. Content-level classification mean accuracy and standard deviation in the HCR dataset for
each model at each level of certainty (ratiou and ratioc)

Figure 3. Content-level classification mean accuracy and standard deviation in the HCR dataset for
each model at each level of certainty (ratiou and ratioc).
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Figure 4. Content-level classification mean accuracy and standard deviation in the OMD dataset for
each model at each level of certainty (ratiou and ratioc)

Figure 4. Content-level classification mean accuracy and standard deviation in the OMD dataset for
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5.3. Statistical Analysis

In order to assess the value of the comparison of the models, a statistical test was performed
on the experimental results. More specifically, we used a combination of Friedman’s test with the
corresponding Bonferroni–Dunn post-hoc test, which is oriented toward the comparison of several
classifiers on multiple datasets [41].

First of all, in Section 5.1, we claimed that the version of CRANK with community detection
outperformed the version without it. To assess that claim, we compared all the user and content-level
classification cases for both models. Friedman’s test revealed the difference between both models was
statistically different, with a chi-squared of 104 and a p-value of 2.9e−5. The post-hoc Bonferroni–Dunn
test also passed with a calculated difference of 0.63, which was above a critical difference of 0.27.
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Secondly, we compared all the user-level models, ignoring the Average Content classifier. In that
case, Friedman’s test also rejected the null hypothesis, with a chi-squared of 27.4 and a p-value of
0.0006. In this case, we performed the Bonferroni–Dunn test, with the average of neighbors as the
baseline, and both CRANK and CRANK without communities passed it. The results for average in
community and average of neighbors were not conclusive.

Secondly, we performed a similar comparison for content-level classification. We compared the
following approaches to the Sentiment140 baseline. The calculated critical difference for this case was
3.299. The results were that only CRANK, CRANK without communities, and Simon trained with
the STS dataset were better than the baseline (Table 5). Unfortunately, we could not reject the null
hypothesis for CRANK and Simon STS alone at the desired level of confidence, given the number of
datasets. Nevertheless, if we reduced our test to the scenarios with the RT Mind dataset at different
ratios of ru and rc, the null hypothesis could be rejected with α = 0.1.

Table 5. Ranking from Friedman’s test in content-level classification.
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Pass Baseline No Yes Yes No No No No Yes No
Diff. 0.0 0.81 4.96 4.04 1.52 0.56 0.85 1.19 3.52 −1.0

6. Conclusions and Future Work

In this work, we proposed a model that united features from different levels of social context
(micro, meso, and mesoe). This model was an extension of earlier models that were limited to user-level
classification. Moreover, it employed community detection, which found weak relationships between
users that were not directly connected in the network. We expected the combination to have an
advantage at different levels of certainty about the labels in the context and with varying degrees of
sparsity in the social network. The proposed model was shown to work for both types of classification
in different scenarios.

To evaluate the model, we looked at different datasets. The need for a social context restricted the
number of datasets that could be used in the evaluation. Of the three datasets included, the RT Mind
dataset seemed to be the most appropriate, as it contained a more densely connected network of users.
The results of evaluating CRANK with other baseline models in that dataset provided limited support
for Hypothesis 4 (mesoe features improve user classification). Moreover, the evidence from evaluating
all the datasets supported Hypotheses 2 (micro features improve content classification) and 3 (meso
features improve content classification). By comparing the two versions of CRANK (with and without
community detection) in both user- and content-level classification, we also validated Hypothesis 4
(mesoe features improve user and content classification). Nonetheless, the analysis of the datasets in
Section 4.2 revealed the need for better datasets, which could be enriched with context, i.e., datasets
with inter-connected users and more content per user. Hence, further evaluation would be needed,
once richer datasets become available.

In addition to evaluating more domains and datasets, there are several lines of future research. In
this work, we used a random user and content selection strategy to generate the evaluation datasets. A
random sampling strategy for users and content led to higher sparsity. Since the performance of the
model depended on having a densely connected graph, it would be interesting to evaluate the effect
of different sampling algorithms, such as random walk, breadth-first search, and depth-first search.
In particular, Breadth-First Search (BFS) sampling may be more appropriate for this scenario [42].
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It would also be interesting to analyze different community detection strategies. The simplest
improvement in this regard would be using other community detection algorithms. There are several
methods that produce overlapping partitions, which may help alleviate the negative effect of users in
the edge of two communities. More sophisticated strategies are also possible, such as automatically
deciding to apply community detection based on the network and the ratio of known users or only
adding edges for some users.
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