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Abstract: Understanding radicalization pathways, drivers, and factors is essential for the effective
design of prevention and counter-radicalization programs. Traditionally, the primary methods used
by social scientists to detect these drivers and factors include literature reviews, qualitative interviews,
focus groups, and quantitative methods based on surveys. This article proposes to complement social
science approaches with computational methods to detect these factors automatically by analyzing
the language signals expressed in social networks. To this end, the article categorizes radicalization
drivers and factors following the micro, meso, and macro levels used in the social sciences. It identi-
fies the corresponding language signals and available language resources. Then, a computational
system is developed to monitor these language signals. In addition, this article proposes semantic
technologies since they offer unique exploration, query, and discovery capabilities. The system was
evaluated based on a set of competency questions that show the benefits of this approach.
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1. Introduction

Our society has become more polarized in recent years, with sources of division be-
ing political, economic, and religious. Polarization threatens social cohesion and can be
the source of radicalization and violent extremism. Thus, many countries and interna-
tional organizations have developed counter-radicalization programs and strategies for
radicalization prevention, deradicalization, and disengagement [1].

This research work aims to contribute to counter-radicalization efforts. It has been
developed within the R&D project PARTICIPATION [2], whose purpose is to prevent
extremism, radicalization, and polarization that can lead to violence through more effective
social and education policies and interventions. The design of these policies will be based
on a participatory approach, where radicalization drivers are taken into account to prevent
the radicalization process.

Understanding radicalization pathways, drivers, and factors is essential for the effec-
tive design of prevention and counter-radicalization programs. Traditionally, the primary
methods used by social scientists to detect these drivers and factors include literature
reviews, qualitative interviews, focus groups, and quantitative methods based on surveys.
This article studies the perspective of complementing social science approaches with com-
putational methods to detect these factors automatically by analyzing the language patterns
expressed in social networks. In particular, we aimed to develop a computational system
that helps social scientists understand different types of radicalization. For this purpose,
three research questions were defined to guide us through the research process:

RQ1 What are the main linguistic signals that reveal radicalization factors?

RQ2 How can we computationally operate radicalization factors to monitor radicalization?
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RQ3 How can semantic technology provide fine-grained query capabilities to social scien-
tists to get insights from radicalization processes?

In this way, the contributions of this paper are threefold. First, we present a detailed
study of the process that takes current analysis systems from considering radicalization
drivers to radicalization signals. Such a step is of paramount importance for the field,
since radicalization drivers (e.g., social, psychological, and emotional factors) need to be
modeled appropriately from a computational perspective, thereby obtaining radicalization
signals. Second, to enhance the data enrichment, the second main contribution of this work
is the generation of four novel semantic vocabularies that allow us and the system to model
several radicalization and extremism phenomena from a semantic perspective. Finally,
to concretely enhance the radicalization signals studied, the third contribution of this work
is an intelligent end-to-end engine that monitors radicalization and extreme language on
social media using appropriate Natural Language Processing (NLP) methods in the field of
radicalization analysis.

The remainder of this article is organized as follows. First, in Section 2, we review
the literature to understand the linguistic signals used to detect radicalization drivers and
factors (RQ1). In Section 3, the linked data concepts and vocabularies employed to model
the data semantically in this work are summarized (RQ3). Then, in Section 4, we present the
software methods and architecture designed to provide social scientists with a dashboard
for monitoring radicalization (RQ2 and RQ3). Section 4 also presents the results of the
developed software component and the developed dashboard (RQ2). In Section 5, we
present an evaluation of the query capabilities of the proposed semantic technology (RQ3).
Section 5 includes a discussion comparing the proposed approach with other similar works.
Finally, the conclusions of the research done and new perspectives for research are given in
Section 6.

2. From Radicalization Drivers to Radicalization Signals

Social signals [3] are “communicative or informative signals which, directly or indirectly,
provide information about social facts, that is, about social interactions, social attitudes, social
relations, and social emotions.” Humans produce social signals in diverse modalities [3], such
as words, acoustic features, gestures, posture, head movements, facial expression, gaze,
proxemics, touch, physical contact, and spacial behavior. In this work, we are explicitly
interested in social signals, which can be derived from the texts posted on social networks
and social interactions (e.g., reply, retweet, like, and so on). These signals are known as the
social context, which be defined as “the collection of users, content, relations, and interactions
which describe the environment in which social activity takes place” [4].

When it comes to detecting radicalization signals in texts posted on social networks,
many works have focused on analyzing, detecting, and predicting radicalization [5,6].
Online radicalization analysis aims at improving security agencies’ decision processes by
providing insights about the network structure (e.g., leaders and communities) and the
posted contents (e.g., authorship identification and stylometric and affect analysis) [5].
Detection works [7] focus on detecting radicalization activity. For example, Nouth et al. [8]
proposed a system that classifies tweets as Islamic State of Iraq and Syria (ISIS) supporters
or not. For this purpose, they combined micro and macroanalysis using textual and
social network features. The microanalysis consists of stylistic signals (extracted from the
Dabiq magazine) and psychological, personality, and emotional signals, extracted with the
Linguistic Inquiry and Word Count (LIWC) [9] dictionary. Meso analysis evaluates user
activity, followers/following ratio, and the influence of users extracted from the mentioned
interaction graph. Fernández et al. [6] analyzed the three roots of radicalization (micro,
meso, and macro) to understand the radicalization pathway through the analysis of ISIS
supporters’ antecedents. First, they characterized the micro and meso levels as the posts
created and shared by users. Second, they analyzed the shared web addresses in the
posts at the macro level. Third, they proposed computing the influence of each level by
calculating the similarity of these posts (created or shared) with lexicons of radical language.



Appl. Sci. 2022, 12, 8413 3 of 27

Finally, Araque et al. [10] concluded that emotional signals are adequate for characterizing
radical language.

However, most works address analysis, detection, and prediction as a binary classifi-
cation task that classifies individuals into radicals and not radicals. Instead, in this work,
we are interested in identifying radicalization factors.

Van Brunt et al. [11] suggested that radicalism and extremism can be considered a
continuum. Based on the research desk, the authors provided a taxonomy of risk, protective,
and mobilization factors. Risk factors are thoughts or behaviors that have been present
in radicalization pathways. Most of them are considered radicalization drivers, such as
hardened points of view, marginalization, perceived discrimination, and connection to
extremists. In contrast, protective factors are those that reduce the impacts of risk factors
and should be targeted in counter-radicalization policies. They include social connection,
pluralistic inclusivity, resilience, emotional stability, and professional engagement. Finally,
mobilization factors are those present when an individual transitions from a planned radi-
calization toward implementation. These factors are a direct threat, escalation to action,
increased group pressure, and leakage.

Several models have been defined to describe, identify, and counter the pathway
to violent extremism [12], such as the Pathway to Violence Model [13] and the Warning
Behaviors Model [14].

The Pathway to Violence Model was developed by the United States Secret Service
(USSS) through the analysis of assassins and school shooters. The model proposes six
stages in the radicalization process: grievance, ideation, research and planning, preparation,
breach, and attack. In addition, some works [15,16] have applied psycholinguistic analysis
of mass shooters’ communications to identify recurrent topics of nihilism, ego survival,
revenge fantasy, alienation, entitlement, and envy.

The Warning Behaviors Model was developed by the Federal Bureau of Investiga-
tion (FBI) and proposes patterns of conduct (warning behaviors) that can help law en-
forcement agencies to focus their investigations. The model includes eight behaviors:
pathway, fixation, identification, novel aggression, energy bust leakage, last resort, and di-
rectly communicated threats. From these behaviors, the application of linguistic analysis
has been successful in the identification of leakage, fixation, and identification warning
behaviors [17,18]. Leakage is the communication to a third party to harm a target, including
the planning, research, or implementation of an attack [14,17]. Fixation is any behavior that
indicates that someone is increasingly preoccupied with a person or cause and is usually
accompanied by deterioration in relationships or occupational performance [14]. Identifica-
tion is the psychological desire to be a “pseudocommando” or have a “warrior mentality.”
This includes associations with weapons and military paraphernalia and identification with
previous attackers or assassins.

Cohen et al. [17] identified linguistic markers for these warning behaviors. In particu-
lar, they proposed the use of a dictionary of violent words expanded with Wordnet [19] for
terms such as massacre to detect leakage. Instead, for fixation, they proposed identifying the
targets of this fixation by calculating the relative frequency of entities in the text. Finally,
for identification, they proposed to identify positive adjectives when mentioning ingroup
and negative emotions when mentioning out-group, using software such as LIWC [9].
Grover et al. [18] analyzed the alt-right political movement on the social network Reddit.
This ideological movement is a far-right group concerned with preserving white identity.
They proposed three signals for identifying fixation: increasing perseveration on the person
or cause, increased negative account of object fixation, and increasingly strident opinions
and angry emotional undertones. The first signal was identified using term frequency and
term frequency-inverse document frequency (TF-IDF) to identify the main topics discussed
in the forums (i.e., WhiteEthno, JewOrBlack, OtherRacial, and RacialSlang). As a result,
they created a dictionary of terms associated with racial words. The second and third
signals analyze the presence of negative emotions, anger, sadness, anxiety, the emotional
tone, and texts classified as hate speech or offensive language. For this purpose, they used
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the LIWC [9] dictionary and the software HateSonar [20]. Finally, they proposed to charac-
terize the warning behavior group identification with the proportion of first-person plural
words, third-person plural words, and the ratio of first-person plural and third-person
plural words to first-person singular words.

The same categories proposed by Grover et al. were analyzed by Torregrosa et al. [21]
to analyze the alternative right far-right political group on Twitter, commonly known as the
“alt-right”. In this case, they proposed a mesoanalysis based on social network metrics to
study whether there are correlations between centrality measures and linguistic analysis.
They concluded that user relevance is related to linguistic patterns of extremist discourse.
Moreover, super-spreader users use more words related to far-right dictionaries. This work
used the LIWC [9] dictionary and the software Vader [22] for analyzing linguistic properties
and tone.

Smith et al. [23] researched the detection of psychological within-person changes
through mobilizing interactions in social media. For this purpose, they conducted a pilot
with a sample of Hong Kong residents during the violent protests of 2019. The detection of
mobilizing interactions was based on the analysis of short texts written by the participants
describing the political situation to detect collective action intentions (e.g., “I intend to
encourage the family to sign a petition to stand up for the cause”). The driver of this radi-
calization is a socially grounded grievance that urges us to change the unjust situation via
collective actions. To detect this grievance feeling, the authors detected emotional reactions.
In particular, they used the LIWC dictionary [9] to detect anger and the Moral Foundations
Theory (MFT) [24] dictionary to detect harm. Their results conclude that communication,
including harm, threat, and anger, was mobilizing and increasing support for the under-
taking of collective actions. Based on these results, they conducted a significant study to
research engaging online interactions on Twitter to support the extremist group Daesh.
They detected 65 features associated with expressing support for Daesh. In addition to
LIWC and MFT, they use a vernacular Daesh dictionary since the use of ingroup jargon is a
relevant sign of group identity. In order to understand the radicalization process whose sig-
nal is within-person changes in linguistic style, they carried out a mesoanalysis considering
aspects such as the number of sequential LIWC accounts, followers, and following. They
concluded that changes in the linguistic style and vernacular word use are associated with
engaging in mobilizing interactions. This enables the detection of radicalization processes.
Nevertheless, they did not disclose the feature set or annotated datasets with narratives for
ethical reasons, since there is not yet a gold standard to evaluate its generality.

Torregrosa et al. [25] analyzed the difference in the language used between pro-ISIS
users and random users. Their findings are that ISIS supporters use more third-person
plural pronouns and fewer first and second-person pronouns. In addition, they use more
words related to death, certainty, and anger. They use the LIWC [9] dictionary.

Alizadeh et al. [26] analyzed if psychological and moral variables exist that correlate
with political orientation and extremity. For this purpose, they analyzed Twitter accounts
of both neo-Nazis as right-wing extremists and Antifa as left-wing extremists. Their
study included a validation of the LIWC [9] and MFT [24] dictionaries for extremist-
written tweets. They concluded that left-wing extremists express some language indicating
anxiety between the four political groups (liberals, conservatives, left-extremists, and right-
extremists). In addition, right-wing extremists express more positive emotions and fewer
negative emotions than left-wing extremists. Regarding the MFT, right-wing extremists
use language more indicative of obedience to authority and purity and more language
indicative of fairness and harm avoidance than left-wing extremists.

Lara-Cabrera et al. [27] proposed identifying several vulnerability factors based on
text analysis. They analyzed two personality factors, frustration and introversion, and three
attitudes and beliefs towards the Muslim religion and Western society. The detection
of frustration was based on swear words and sentences with a negative connotation.
Regarding introversion, the proposal was to leverage the sentence length and the use
of ellipses. Finally, they used keywords to count the perception of being discriminated
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against for being Muslim, negative opinions about Western society, and positive ideas
about jihadism.

Several recent language resources provide new possibilities for understanding bet-
ter extremist language. The Grievance Dictionary [28] is a psycholinguistic dictionary
for grievance-fueled threat assessment. The dictionary defines the following categories:
planning, violence, weaponry, help-seeking, hate, frustration, suicide, threat, grievance,
fixation, desperation, deadline, murder, relationship, loneliness, surveillance, soldier, honor,
impostor, jealousy, god, and paranoia. Most categories are correlated to related LIWC cate-
gories, as expected. ExtremeSentiLex [29] is a lexicon to detect extreme sentiments based
on SentiWordNet [30] and SenticNet [31]. It has detected 29% and 33% of extreme positive
posts in the extremist religious forums Ansar1 [32] and TurnToIslam [33], respectively,
in contrast with only 2% and 4% of extreme negative posts.

While radicalization signals are adequate for understanding radicalization better and
its use in surveillance tasks, data processing is not enough. Visualization techniques [34]
allow humans to search for patterns more effectively. In addition, visualization techniques
can be an excellent tool for dissemination and awareness.

Several works have been particularly relevant for the monitoring of hate speech.
Contro l’odio [35] is a web platform for monitoring immigrants’ discrimination and hate
speech in Italy. It provides the results of linguistic analysis in interactive maps. It has
been used in educational courses for high school students and citizens with the aim of
the deconstruction of negative stereotypes. HateMeter [36] is a European project for
monitoring, analyzing, and fighting anti-Muslim hatred online. It has been used to help
Non-governmental organizations (NGOs) and social science research analyze and prevent
hate speech use [37].

Regarding the linguistic analysis of radicalism, the project Trivalent H2020 [38] devel-
oped a dashboard to monitor social media targeted at Law Enforcement Agencies. In the
same way, Beheshti et al. [39] developed a dashboard to enable social network analysts to
understand patterns of behavioral disorders over time.

Finally, Table 1 summarizes the review presented in this section, including the level
type (i.e., micro, meso, macro), the radicalization drivers and factors, the language signals,
the data resources, and the references to the literature related to them.

Table 1. Summary of literature survey regarding language signals for monitoring radicalization.

Type Drivers & Factors Signal Data Resource References

Micro Warning behaviors Linguistic markers, entity recognition,
emotions, hate speech, offensive language

Violent term dictionary,
lexical databases (e.g.,

WordNet), LIWC,
HateSonar

Lone wolf [17]
Far-right [18]

Micro Identity crisis, grievance Negative emotions LIWC and MFT Religious [23],
Separatist [23]

Micro Social psychological factors

Expression of linguistic dimensions (e.g.,
pronouns), personal concerns (e.g., death),

cognitive processs (e.g., certainty),
and affective processes (e.g., anger)

LIWC Religious [25]

Micro Emotional drivers Extreme opinions ExtremeSentiLex Religious [29]

Micro Frustration, introversion,
discrimination, identity Linguistic markers - Religious [27]

Micro Grievance Lingustic markers Grievance dictionary Lone wolf and
others [28]

Micro Psychological factors Psychological indicators, Moral values LIWC, MFT Political [26]

Meso Group membership Use of jargon or vernacular Daesh vernacular dictionary Religious [23]

Meso Group dynamics Social context (sequential accounts,
followers, followed) Twitter Religious [23]
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3. Semantic Modeling

By leveraging the linked data principles, any operator or program can consult the pub-
lished information, make sense of it, enrich it by combining it with other semantic sources,
and even reason about it using the ontologies provided. The benefits of linked data have
been extensively discussed, especially in the field of linguistics [40,41]. Multiple projects
have leveraged linked data for knowledge generation, interoperability, and publication of
results [42,43].

Discussing the full breadth of benefits of semantic modeling and linked data is beyond
the scope of this work. For the purpose of this paper, two things should be noted. First,
a semantic endpoint will be capable of responding to arbitrary but semantically meaningful
queries. One such example might be: “where was #example hashtag twitted from on
January 1st?” In contrast with other technologies, which would be based on strict schemas
(e.g., SQL) or limited query languages (e.g., ElasticSearch or MongoDB), the linked data
endpoints: (1) represent information as knowledge graphs (the RDF model), and (2) enable
information access and manipulation through a set of standard web technologies (HTTP and
SPARQL). Second, domain knowledge (i.e., what information can be expressed, and how
it is represented in the graph) is provided by semantic vocabularies or ontologies. This
section focuses on the specific vocabularies that have been used in this work. The aim is
twofold: (1) to allow other researchers to better understand and query the information
published; and (2) to propose a comprehensive and cohesive model for representation for
this specific domain, most of which could be later reused or improved upon by researchers
working in the same field.

In the spirit of the linked data principles, existing vocabularies have been used when
possible. For instance, the fields in a tweet are mainly modeled using the Semantically-
Interlinked Online Communities (SIOC) Core Ontology, supported by some properties
from Schema.org and Dublin Core Metadata Initiative (DCMI). In particular, we have
reused SIOC [44] to model social media content, DCMI [45] for metadata, DBpedia [46] for
linking entities mentioned in tweets, NLP Interchange Format (NIF) [47] for text annotation,
Onyx [41] for emotion annotation, and Marl [48] for sentiment annotation.

We have also reviewed other vocabularies, such as the radicalization ontology [49].
This ontology includes a central class Message that represents social media messages. This
class is linked to the user of the social network, radicalization indicators (introversion,
frustration and negative feelings, negative ideas about western society, etc.), the focus
(jihadism, discrimination, Islamism, West), mentions (i.e., weapons, tactics, and terrorist
organizations), and intention towards a topic, which details positive and negative emotions
and negative actions. In future work, this ontology could be combined with the ontolo-
gies proposed in this article to provide a fine-grained ontology of radicalization. In fact,
the ontologies proposed in this article provide a first step in the semantic characterization
of psycho-social indicators and moral values.

In addition to that, there were several specific types of annotations that are not modeled
in any of the publicly available vocabularies to the extent of our knowledge. Therefore, this
work has required the creation of new vocabulary. Once again, instead of creating a single
vocabulary with all the missing elements, these pieces have been separated into smaller
individual vocabularies to foster reusability. The following vocabularies have been defined:

• Semantic LIWC (SLIWC) vocabulary [50] is a semantic taxonomy and vocabulary for
annotations using the LIWC dictionary.

• MFT vocabulary [51], a vocabulary to model annotations in accordance with the MFT.
• Narrative vocabulary [52] contains the concepts necessary to annotate NIF or SIOC

elements with a narrative component.

Each vocabulary will be explained in further detail in Sections 3.1–3.3, respectively.
Moreover, their usage combined with The Senpy Ontology (SENPY) vocabulary [53],
a vocabulary to annotate a NIF Context, is exemplified in Section 3.4.
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3.1. Semantic Vocabulary for LIWC (SLIWC)

The widespread use of LIWC for social-psychological analysis has established its
psychometric properties as a de facto standard, both in industry and in academia. LIWC
annotations can be separated into two distinct parts: the annotation model and the specific
dimensions (and sub-dimensions) used in each specific version of the LIWC dictionary.
LIWC’s popularity has led several projects to adapt its annotation model when publishing
their own LIWC-aligned lexicons, as will be seen in Section 3.2. Hence, our goal is to
provide not only a vocabulary that models LIWC annotations, but a model that can be
reused and extended by other vocabularies that model LIWC-aligned vocabularies. The
result is the SLIWC [50], which covers both the annotation model and the dimensions in
different versions of LIWC.

The problem of annotations is hardly limited to LIWC. In fact, there are multiple
competing vocabularies in the space (e.g., NIF). Unfortunately, none of the existing vocab-
ularies is a perfect fit in this case due to the restrictions imposed by the use of JSON-LD
in several parts of the system and the need for a clean JSON schema. Hence, we decided
to design a very minimal annotation model, which can both be integrated with NIF and
generate a friendlier JSON schema. The model has been inspired by previous experience
with Onyx [41]. Most notably, it is also aligned with the provenance ontology [54], which
allows for annotations to be linked to the process and/or agent that generated them. This
is especially useful when dealing with multiple NIF services, all of which may add their
own annotations to a piece of content. A summary of the result is shown in Figure 1.
The main elements are: the annotation activity (AnnotationActivity), the annotation set
(ASet), the annotation (Annotation), and the category (Category).

Figure 1. Main concepts related to annotation in the SLIWC vocabulary.

When a piece of content is annotated, either manually or through an automatic process,
one or more annotation sets will be generated, linking both to the original piece of content
and to the activity that generated the annotation. Each annotation set will contain one or
more annotations. When an annotation set contains more than one annotation, they should
be considered as related and processed together. For instance, an activity may generate an
annotation set with a count of positive and negative words within some piece of content. If
we were to process them individually, we might reach an ambiguous conclusion that the
content is both positive and negative. By including them inside the same annotation set,
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we are signaling that neither of them should be considered individually, and we allow for
other activities to produce further annotation sets that aggregate existing multi-annotation
sets into simpler sets with a single annotation. In our example, a new activity might add a
new annotation set that produces the net count, subtracting the negative words from the
positive ones. An annotation will have a category, depending on the type of dictionary used
and multiple properties. Depending on the type of activity, the annotation may express
how many occurrences (typically, words) were found of the given category in the content
(count) and the ratio of occurrences of that category over the total (ratio). More generally,
annotation can provide a normalized score (score).

The second part of the vocabulary consists of a taxonomy of all the annotation di-
mensions and labels in LIWC. The list of dimensions and labels were extracted from the
LIWC website [55]. Furthermore, the dimensions are structured in a hierarchical manner.
Hence, the dimensions in the vocabulary have been expressed as a Simple Knowledge
Organization System (SKOS) taxonomy [56].

The main dimensions categories measured by LIWC for our work are grouped in sets
depending on the psychological process they are describing. Four of them were taken
into account for this analysis: drives, affective, personal concerns, and social. The
Drives set gives insight into the motivations of the person behind the text. It measures
five parameters, which are affiliation, achievement, power, reward, and risk. Feelings
such as anxiety, anger, sadness, and positive and negative emotions are part of the
Affective Process set. The Personal Concerns set measures how text expresses different
life issues such as work, leisure, home, money, religion, and death. Drives, affective
concerns, and personal concerns are considered the three main psychological variables and
have been used as a reference to analyze radical discourses [57]. The Social Process set
was also included to provide some more information about references to family, friends,
and female and male authority figures.

A total of 110 dimensions categories were identified. Some of the dimensions are sim-
ply hierarchical and cannot be used for annotation (e.g., Summary Variable), some are only
annotation labels (e.g., 1st pers singular), and some serve both purposes (e.g., Function
Word). However, a specific branch in the taxonomy should be mentioned, sliwc:Affect,
under the Word annotation concept. This dimension is dedicated to affective informa-
tion. As of this writing, there are two main sub-dimensions, one for positive emotion
and another one for negative emotion. The second one is further split into three di-
mensions: sad, anxiety, and anger. In addition to adding these dimensions, we have
aligned them with existing affective ontologies. More specifically, they have been mapped
to WordNet-Affect [58], using the existing semantic taxonomy [41]. The equivalencies
are also shown in Figure 2: wnaffect :positive-emotion, wnaffect:negative-emotion,
wnaffect:sadness, wnaffect:anxiety, and wnaffect:anger. A summary of the dimen-
sions in the SLIWC vocabulary, which are more relevant for this work, can be seen in
Figure 2.

3.2. Vocabulary for the Moral Foundation Theory (MFT)

The popularity of LIWC has led to several LIWC-like dictionaries. One of such dictio-
naries is the Moral Foundations Dictionary (MFD) [59], which includes new annotations
for morality. MFT [60] identifies six universal moral foundations that exist across cultures.
Each foundation can be considered a vice or a virtue from a moral point of view. The six
foundations (virtue/vice) that describe political views are:

• Fairness , equality, or reciprocity/cheating: notions of rights and justice.
• Care/harm: compassion, protection of community members.
• Loyalty or ingroup/betrayal: respect for the norms of the group, patriotism, and sacri-

fice for the group.
• Authority or respect/subversion: obedience to authority figures and hierarchical

structures.
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• Purity or sanctity/degradation: promotion of sacred values, chastity, control of
one’s desires.

• Liberty/oppression: feelings of reactance and resentment people feel toward those
who dominate them and restrict their liberty.

Figure 2. SLIWC taxonomy, simplified, focusing on its connection to WordNet-Affect. Dimensions
are represented in different font sizes to emphasize their hierarchical relation.

Moral dimensions are usually classified into individualizing and binding foundations [24].
Individualizing foundations (e.g., care/harm and fairness/cheating) deal with the roles of
individuals within social groups. Binding foundations (e.g., loyalty/betrayal, authority/
subversion, purity/degradation, and liberty/oppression) are related to the formation and
maintenance of social groups.

This article presents a proposal of a semantic vocabulary for morality annotations [51]
which is composed of two main classes: Foundation, which represents an MFT foun-
dation; and Polarity, to represent a polarity within a given foundation. Six entities
of type Foundation have been defined: FairnessCheating, CareHarm, LoyaltyBetrayal,
AuthoritySubversion, SanctityDegradation, and LibertyOppression. Polarity has two
extremes, vice (Vice) and virtue (Virtue), although other classifications are possible
through the use of the Polarity class. The two polarities are defined as opposites of
each other, using the oppositeOf property in both instances. Moreover, a numeric value
can be assigned to express this intensity (polarityValue). Positive values are typically
associated with a virtue class, and negative values correspond to a vice. To tie these two
concepts together, the vocabulary also includes the concept of a MoralValue, which is
associated with a foundation (annotated through hasFoundation) and a polarity (through
hasPolarity). The main elements of the vocabulary can be seen in Figure 3, and the
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annotation categories are detailed in Figure 4. An example of its use for the annotation of a
text is shown in Section 3.4.

Figure 3. The morality ontology.

3.3. Vocabulary for Narrative

Lastly, in this work we require the annotation of the narrative of the tweet, described
by the annotation type narr:Annotation. The ideologies and narratives present in a tweet
are represented using the concepts defined in the narrative ontology [52], specifically
created for this project and shown in Figure 5. The property narr:hasNarrative is used
in this case to point to the narrative to which the text of the tweet refers. Narratives
are represented with the narr:Narrative class. Several narrative types are included in
the ontology as individuals, such as narr:ProReligion, and CounterSeparatism. Each
narrative is connected to an ideology (through narr:hasIdeology), such as Religion,
FarRight, FarLeft, or Separatism. The way in which the narrative type relates to the
ideology is also modeled through the narr:hasNarrativeType property, which can take
the values: Pro (radical narrative supporting radicalism), Counter (counter narrative that
directly dispute and reject narratives), and Alternative (providing a different and positive
story from combating the radical one).

3.4. Examples of Semantic Annotation

To better explain how these ontologies interact, let us consider two examples of
annotation: one for a corpus and another for a lexicon.

Corpora in this work are composed mainly of text messages with different labels,
which are the results of different types of analysis (sentiment, emotion, etc.). Tweets were
annotated using the same model as TweetsKB [61] (a public RDF corpus of anonymized
data for a large collection of annotated tweets). Namely, tweets are represented with the
sioc:Post class, and the SIOC Core Ontology, Schema.org, and DCMI ontologies can then
be used to provide properties and attributes for most of the relevant fields in a tweet. For
instance, the sioc:content attribute is used to provide the text content, sioc:has_creator
for the author user, schema:inLanguage for the language it is written in, schema:mentions
for its hashtags, dc:created for the creation date, and schema:locationCreated for the
location it was posted from.
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Figure 4. The annotation categories for MFT.
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Figure 5. The narrative ontology. For clarity, only the relationships of one narr:Narrative
(narr:CounterFarRight) with narr:NarrativeType and narr:Ideology are shown.

By combining that model with the ontologies mentioned above, the result for a given
fully-annotated tweet would look similar to the diagram shown in Figure 6, which is further
extended in Listing 1.

Figure 6. Example of LIWC-aligned annotations of a Tweet using the morality and narrative ontologies.
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Listing 1. Example of a tweet annotation.

@prefix owl : <http ://www. w3 . org /2002/07/owl#> .
@prefix narr : <ht tp ://www. g s i .upm. es/o n t o l o g i e s / p a r t i c i p a t i o n / n a r r a t i v e /ns#> .
@prefix s l iwc : <http ://www. g s i .upm. es/o n t o l o g i e s / p a r t i c i p a t i o n /s l iwc/ns#> .
@prefix senpy : <http ://www. g s i .upm. es/o n t o l o g i e s /senpy/ns#> .
@prefix mft : <ht tp ://www. g s i .upm. es/o n t o l o g i e s / p a r t i c i p a t i o n /moral i ty/ns#> .
: Tweet1 a s i o c : Post ;

s i o c : content " Anonymized t e x t on the t o p i c of theology . . . " ;
s i o c : author : AnonymizedUser100 ;
s l iwc : hasASet [

s l iwc : conta ins [
a mft : Annotation , s l iwc : Annotation ;
s l iwc : hasCategory mft : HarmVice ;
s l iwc : score 0 . 3 .

] , [
a mft : Annotation , s l iwc : Annotation ;
s l iwc : hasCategory mft : IngroupVirtue ;
s l iwc : score 0 . 5 .

] .
] , [

s l iwc : conta ins [
a narr : Annotation , s l iwc : Annotation ;
s l iwc : hasCategory narr : ProRel ig ion ;
s l iwc : score 0 . 1 .

] .
] , [

s l iwc : conta ins [
a s l iwc : Annotation ;
s l iwc : hasCategory s l iwc : F i l l e r ;
s l iwc : r a t i o 0 . 3 4 ;
s l iwc : count 23 .

] ,
s l iwc : conta ins [

a s l iwc : Annotation ;
s l iwc : hasCategory s l iwc : Adverb ;
s l iwc : r a t i o 0 . 1 5 ;
s l iwc : count 11 .

] .
]

]

As shown in this example, the annotation of the tweet makes use of the moral-
ity ontology for annotating that the tweet contains the moral values ingroup virtue
(mft:IngroupVirtue) and harm vice (mft:HarmVice). In addition, the narrative ontol-
ogy used for annotating that the text was a religious narrative (narr:ProReligion). Finally,
the SLIWC ontology annotates socio-psychological aspects. In particular, it has been used
for annotating a linguistic dimension, the usage of adverbs (sliwc:Adverb), and a spo-
ken or conversational dimension—the use of fillers (blah, you know, I mean, wow, etc.).
The reader can observe that these semantic annotations can be seamlessly combined for
fine-grained annotation.

The annotation of a lexicon is very similar to that of a tweet. In this case, the difference
is that lexical entries are represented using the lemon ontology [62]. An example annotation
of a lexicon can be observed in Listing 2.

Listing 2. Annotation of lexical entry.

@prefix owl : <http ://www. w3 . org /2002/07/owl#> .
@prefix senpy : <http ://www. g s i .upm. es/o n t o l o g i e s /senpy/ns#> .
@prefix s l iwc : <http ://www. g s i .upm. es/o n t o l o g i e s / p a r t i c i p a t i o n /s l iwc/ns#> .
@prefix mft : <ht tp ://www. g s i .upm. es/o n t o l o g i e s / p a r t i c i p a t i o n /moral i ty/ns#> .

_ : compassion a lemon : L e x i c a l e n t r y ;
lemon : sense [

lemon : r e f e r e n c e wn: synset −fear −noun −1;
s l iwc : hasAnnotation [

a s l iwc : Annotation ;
s l iwc : hasCategory mft : IngroupVice ;
s l iwc : score 0 . 1 .

] ;
l e x i n f o : partDfSpeech l e x i n f o : noun .
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4. Methods

To computationally capture and monitor the radicalization signals summarized in
Table 1, this work proposes an intelligent engine that obtains data from social media,
identifies political messages that could be considered radical, and analyzes them to extract
useful information that provides insight into the feelings and motivations of people who
spread such messages. Firstly, the general architecture of the intelligent engine is described
(Section 4.1). Secondly, the source of data and the capturing methodology are explained in
detail (Section 4.2). Then, the NLP technologies used for text processing and analysis are
introduced (Section 4.3). Finally, the visualization dashboard is presented (Section 4.4).

4.1. Software Architecture and Components

The implemented solution is based on a data pipeline that defines a workflow for
processing messages from social networks. The pipeline is formed by a number of se-
quential tasks; each task can be executed by a different component. This section presents
a modular toolkit for processing big linked data, encouraging scalability and reusability.
The high-level architecture of this toolkit is depicted in Figure 7. It integrates existing
open-source tools with others explicitly built for the toolkit.
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Figure 7. Tasks of the data pipeline.

The presented system is based on the big data reference architecture NIST Big Data Ref-
erence Architecture (NBDRA) [63] proposed by NIST. The NBDRA reference architecture
has achieved consensus from academia and industry, being developed by a working group
launched in 2013 with over six hundred participants from industry, academia, and gov-
ernment. It provides a vendor-neutral, technology, and infrastructure agnostic conceptual
model of a big data architecture. It is intended to support data engineers, data scientists,
data architects, software developers, and decision-makers to develop interoperable big data
solutions. In this paper, the pipeline follows the NBDRA data processing steps: collection,
preparation, analytics, visualization, and access.

Following this schema, the main modules of the architecture are orchestration, data
ingestion, pre-processing, analysis, storage, and visualization, which are described below.
In addition, an access facility is provided for processing semantic queries through a SPARQL
Protocol and RDF Query Language (SPARQL) endpoint [64]. Please note that the whole
system is implemented using Python.

The Orchestration module is responsible for managing the interactions of the rest
modules by automating complex data pipelines and handling failures. This module enables
reusability at the data pipeline level. In addition, it enables scalability, since every task of the
workflow can be executed in a big data platform, via a Hadoop job [65], a Spark job [66],
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or a Hive query [67], to name a few. Finally, this module helps to recover from failures
gracefully and rerun only the uncompleted task dependencies in the case of a failure. We
have implemented the orchestration module with Luigi [68], which is used to orchestrate
the different tasks across modules.

The Data Ingestion module involves obtaining data from the structured and unstruc-
tured data sources and transforming these data into linked data formats, using scraping
techniques and APIs, respectively. The objective of this module is to extract the information
from external sources and map it to linked data formats for its processing and storage. The
use of linked data enables reusability of ingestion modules and interoperability and provides
a uniform schema for processing data. The ingestion is implemented using GSICrawler [69],
the module responsible for retrieving data. GSICrawler contains scraping modules based
on Scrapy [70] and other modules that connect to external APIs. At the time of writing,
there are modules for extracting data from Twitter, Facebook, Reddit, TripAdvisor, Amazon,
RSS Feeds, and several specific sites, including some journals in PDF format.

The system captures data from Twitter through the selection and use of keywords to
discover target messages, as is described in Section 4.2. In addition, GSICrawler also lever-
ages the Twitter Application Programming Interface (API) through the Twint package [71],
which obtains the data by parsing the HTML from Twitter’s browser version. In this way,
GSICrawler has been configured to allow the selection of the preferred extraction method.

The Processing and Analysis module collects the different analysis tasks that enrich the
incoming data, such as psychology analysis and moral value estimation through LIWC
and MFT, respectively. The analysis is based on the NIF recommendation, extended for
multimodal data sources. Each analysis task has been modeled as a plugin of SENPY. In
this way, analysis modules can be easily reused.

This module also encompasses data preprocessing, which includes the necessary
normalization and adaptation operations over the captured data. It performs two main
processes: (i) NLP pre-processing and (ii) geolocation of social network posts. The pre-
processing steps are implemented using the gsitk [72] library, which provides functionali-
ties to parse and pre-process different types of texts, including Twitter posts. Regarding the
geolocation of messages, the Google Geocode API [73] translates the location information
to its geographic coordinates. Even though Twitter provides this type of information if the
user permits them to do so, in practice, about 2% of the total tweets have their geographic
coordinates publicly available [74]. It is more common for Twitter users to provide a fixed
location in their user profiles. Although this is not an accurate measure for every tweet, this
location information helps estimate which ideologies are more active in a specific region.

Analyzing the extracted textual data to enrich it, gain further insights, and discover
patterns is crucial for the presented intelligent system. To achieve such analysis, the pre-
sented system uses Senpy [53], a framework to develop, integrate, and evaluate web
services for text analysis. The text analyses performed in this module extracted emotional,
psychological, and moral information from the text (for a detailed explanation of these
linguistic analyses, please consult Section 4.3). For extracting such annotations, we use
the (i) LIWC dictionary and the (ii) Moral Foundations Dictionary (MFD). This module
implements these processes using Senpy plugins, which are modular software additions
that can be inserted into the system to enhance its functionality.

The representation of these data is done using semantic annotations, as discussed in
Section 3. Once the analysis scores are computed in each text, the data are aggregated by
ideology and narrative, although the system retains the original measures.

The Storage module is responsible for storing data in a NoSQL database. We have
selected ElasticSearch [75], since it provides scalability, text search, and a RESTful server
based on a Query DSL language. We use a subset (or dialect) of JSON, JSON-LD [76],
which adds a semantic annotation to plain JSON objects to retain semantics. The system
also stores the semantic data into Fuseki’s SPARQL endpoint [77]. As a SPARQL endpoint,
Fuseki can be accessed using semantic queries.
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The Visualization module enables building dashboards and executing semantic queries.
Visualization is based on Kibana [78], on top of which, an array of components have been
configured to enable faceted search. The dashboard provides an interface where users
can apply filters and understand the analysis. It has different filtering and visualization
functionalities. For example, users can use filters or click on elements within a visualization
to display charts with particular inputs. In addition, the Apache Fuseki [77] interface is
exploited to allow users to perform SPARQL queries, thereby enabling complex searches.

4.2. Data Source Selection

Previous works describe counter and alternative narratives and their impacts on
preventing radicalization [79–81]. Extremist groups disseminate their ideas and reach
a broad audience using social media [82]. Due to this, a clear focus for the proposed
intelligent engine is Twitter [83] messages.

The text of Twitter messages can include keywords (hashtags) that aid in their thematic
classification. We leveraged hashtags to retrieve tweets that support target ideologies and
narratives in this system. Additionally, the presented system considers other characteristics,
such as creation date, author profile, the language of the text, and location. From a
general view, the presented intelligent engine uses all this information, enriching and
contextualizing the original content.

To center our use cases, we defined a schema that categorizes messages into the
following ideologies: religious, separatist, far-right, and far-left. In addition, we consider
three possible narratives for each ideology: pro, counter, and alternative. The system uses
hashtags as a guide to capturing messages that belong to these ideologies and narratives.
Table 2 presents the list of hashtags used to retrieve Twitter messages. Said list has been
compiled based on previous works [36].

Table 2. Hashtags are used to capture messages organized by ideology and narrative.

Religious Far Right Far Left Separatism

is supremacy socialism indyref
iraq invasion cityworkers Brexit

islamicstate GreatReplacement Courage Donbas
alleyesonisis defendEurope antifa VoteLeave

syria Qanon commune separatism
khilafarestored Pizzagate Commune71 PKK

islam nazism ViveLaCommune islamicstate
muslims incel Marx

brotherhood fascism Revolution
Gamergate

AfD
MAGA

Pro

antifeminist

eurotopia diversity AntiAntifa DogsAgainstBrexit
antiterrorism stopHate antisocialism nationalidentity

antiterror antifascist GoodNightLeftSide Framing
peace nonazis Remain

antiterrorist FCKNZS
againstterrorism noafd

stopterrorim

Counter

notinmyname

notanotherbrother hopenothate WhitePrivilege StrongerInAlternative wearethemany LeaveNoOneBehind

4.3. Linguistic Processing

A thorough linguistic study was performed on the captured data as a relevant part of
the developed intelligent engine. In this way, the original data were enriched using a lin-
guistic analysis that contextualized and offered valuable insights. One of the most relevant
processes involves using two relevant linguistic frameworks intimately related to radical-
ization and its presence in text: the (i) Linguistic Inquiry and Word Count (LIWC) [84]
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resource and the (ii) Moral Foundations Theory (MFT) [24]. This selection of resources
followed previous works, as described in Section 2 (see Table 1).

Once each tweet was selected and tagged by ideology and narrative based on its
hashtags, it was pre-processed and analyzed, thereby enriching its original information,
using the semantic models shown in Section 3. Consequently, the geographical location
was extracted from all tweets, which could aid in determining the evolution of the studied
ideologies by country. Indeed, as mentioned above, the text was thoroughly analyzed by
automatic means, which could give insight into the psychological factors of the text, and
the motivations and ideologies of the author.

For the psychological traits, we assessed the analysis provided by the Linguistic
Inquiry and Word Count (LIWC) resource [84]. LIWCwas used in previous words to study
the radicalization phenomena. As an exciting example, it was used to analyze political
posts on Twitter to find a relation between them and the results of a political election [85].
Additionally, Hall et al. [86] studied the quality of the LIWC annotations for ISIS-related
messages, obtaining promising results.

The LIWC algorithm performs a word count that elicits emotions, psychological
meanings, or social concerns in a text. Thus, the process leverages a dictionary that
compiles an exhaustive list of words and their possible inflections, classifying them (e.g.,
anxiety, anger, family, religion). Consequently, every category present in the text is given
a score corresponding to the number of words found that belong to that category. As an
example, if a sentence contains the word “father,” which is classified by the dictionary as
“family” and “male reference,” then both of these categories will have a resulting score of
one. Alternatively, if the word “cousin,” which is also a reference to “family,” also appears
in the text, then the “family” category would obtain a score of two.

The categories measured by LIWC are grouped in sets depending on the psychological
process they are describing. Four of them are taken into account for this analysis: drives,
affective, personal concerns, and social. The “Drives” set gives insight into the motivations
of the person behind the text. It measures five parameters: affiliation, achievement, power,
reward, and risk. Feelings such as anxiety, anger, sadness, or positive and negative emotions
are part of the “Affective Process” set. The “Personal Concerns” set measures how worried
the person behind the text is about different life issues, such as work, leisure, home, money,
religion, and death. Drives, affective concerns, and personal concerns are considered the
three main psychological variables and have been used as a reference to analyze radical
discourses before [57]. The “Social Process” set was also included to provide some more
information about references to family, friends, and and female and male authority figures.

The LIWC dictionary is composed of 2290 words and word stems [9]. Each word or
word-stem defines one or more word category or subdictionary. The LIWC categories are
arranged hierarchically. For example, by definition, all anger words will be categorized as
negative emotion and overall emotion words. The obtained result enriches and contextual-
izes the input textual data, offering a detailed analysis covering emotions, thinking styles,
social concerns, and personal drivers.

Following, the Moral Foundations Theory (MFT) [24] was modeled and included in the
intelligent engine, allowing users to study such a complex phenomenon automatically. The
MFT expresses the psychological basis of morality in terms of innate intuitions, defining
the following five foundations [60,87]. Although recent, MFT is the most established theory
in psychology and the social sciences [88]. It is also widely adopted in computational
social science. It defines a clear taxonomy of values and a dictionary of terms, the Moral
Foundations Dictionary (MFD) [24], an essential resource for NLP applications.

In this task, we adopted the use of the MFD, analyzing the text messages and ex-
tracting their expressed moral values. The MFD is used through the LIWC tool, which
facilitates text processing. In this way, we process the moral value annotations similarly as
described above.

The MFD was developed to operationalize moral values in the text. This dictionary
provides information on the proportions of virtue and vice words for each moral foundation
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on a corpus of text [24]. It comprises 336 words and word stems categorized in the five
moral dimensions. All moral dimensions were extracted from text, and their results were
aggregated to compose a unified view of the data.

For this paper, the intelligent engine aggregated the scores obtained for all the relevant
categories and presented the results according to the corresponding ideology and narrative.
The message’s scores were normalized using the total number of words. In order to
aggregate the multiple messages collected, the arithmetic mean was calculated for all the
LIWC values of the same category for every ideology and narrative. For a given message,
the final score was computed using the following expression:

Score =
1

Nw
∑

Ci∈C
swords∈Ci (1)

with C being the set of possible categories, Ci an element of C, Nw the number of words in
the message, and swords∈Ci the score given to the words that belong to Ci.

4.4. Dashboard

To illustrate the visualization of results in the developed dashboard, an overview
is presented in the following figures. The complete dashboard is available online [89].
Figure 8 shows that the temporal charts comparing the tweets collected per ideology and
narrative in the same graph, which allows users to visualize temporal patterns. As in
the rest of the dashboard, these data can be filtered using a simple interface to study
particular subselections.

Figure 8. Overview of the interface. Part I. Time series.

Additionally, the graphs shown in Figures 9 and 10 are separated into a column for
each monitored ideology. This design decision was made to contrast the analysis results in
a compact dashboard. Figure 9 shows a visualization that summarizes how the polarity of
the messages is distributed by ideologies (separated in columns), narratives (second level
of the colored wheels), and hashtags (outer level of the wheels). Clicking in any of these
elements will filter the data, thereby detailing the visualization.

Similarly, Figure 10 shows an alternative visualization that summarizes LIWC’s core
drives and needs present in the religious and separatism ideologies. The measures are
separated by narrative and are used to explore differences among ideologies and narratives.
Concretely, this kind of chart allows users to detect spikes in code drives and needs, thereby
complementing the rest of the dashboard.
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Figure 9. Overview of the interface. Part II. Pie charts.

Figure 10. Overview of the interface. Part III. Spider charts.

5. Results and Evaluation

This section describes the outcomes of the implemented solution. The toolkit has been
developed to analyze and compare the radical and extremist narratives of the selected
ideologies. Therefore, we provide a SPARQL endpoint to perform complex semantic
queries and a dashboard to visualize the results. First, a set of semantic queries are
introduced. Then, the results are analyzed to narrate the findings and provide a direction
to the discussion of the research work. Finally, we present a discussion where we compare
the presented work with previous literature.

5.1. Analysis of Results

Data analytics requires complex processes for gaining insight into hidden patterns and
correlations in datasets. Typically, a large dataset is required to reveal such patterns. In this
regard, to demonstrate the possibilities of the intelligent engine and its associated data, we
show some statistics that may aid in obtaining a further understanding of the underlying
patterns in the data. Therefore, we have captured and analyzed the tweets listed in Table 3.
This table shows the distribution of tweets according to the ideology and narrative. It is
noticeable in the distribution that there is a difference in the sizes of the extracted data.
The reasons are that some narratives have more variety of hashtags associated with them,
and specific hashtags are more popular than others.

Table 3. Tweets are captured by ideology and narrative.

Religious Separatism Far-Right Far-Left

Pro 80,378 44,646 65,531 31,641

Counter 8721 4423 33,539 679

Alternative 3563 20 8188 9427
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On the other hand, geographic data indicate that 76.89% of the total tweets had a
location field. As we used the MFT and LIWC dictionaries in English and German, tweets
that are not in those languages were filtered out.

5.2. Evaluation

In order to evaluate the monitoring system, a set of competency questions was defined
to check its query capabilities. Ontology questions are a widely-usage method to define
and evaluate an ontology’s requirements in the form of questions the ontology must be
able to answer [90]. Tables 4–7 show these queries, their formulations based on SPARQL
queries, and the obtained results. The queries were designed by a multidisciplinary team
based on the central questions a social scientist is interested in:

1. Which is the most popular term in two different moments in time? A relevant insight into a
community is the topics its addresses. Generally, online discussions can vary between
different topics over time. This question was designed to uncover temporal trends of
the topics discussed in the data. Moreover, we could also be interested in monitoring
the temporal evolution of certain topics.

Table 4. Competency question—Q1.

SPARQL Query Results

Which is the most popular term in two different moments in time?

SELECT ? createdDate ? term (COUNT( ? term ) AS ? count )
WHERE {

? post a s i o c : Post ;
dc : c rea ted ? createdTime ;
schema : mentions [

a s i o c _ t : Tag ;
r d f s : l a b e l ? term ;

]

BIND( xsd : date ( ? createdTime ) as ? createdDate )
}

GROUP BY ? createdDate ? term
ORDER BY ? count

?createdDate ?term ?count

26-02-2022 Ukraine 23,010
03-02-2022 USA 19,926

2. Which are the leading core drivers in a given area? Core drivers are psychological traits that
the proposed system can extract from the analyzed text. Since we studied geolocated
content, it was possible to study specific areas and how they address personal and
ingroup narratives. The study of how a community expresses its core drives can aid
in describing the said community.

Table 5. Competency question—Q2.

Which are the leading personal concerns in a given area?

SELECT ? l o c a t i o n ? term (COUNT( ? term ) AS ? count )
WHERE {

? post a s i o c : Post ;
dc : c rea ted ? createdTime ;
schema : loca t ionCrea ted ? l o c a t i o n ;
schema : mentions [

a s i o c _ t : Tag ;
r d f s : l a b e l ? term ;

]
FILTER ( xsd : date ( ? createdTime ) > " 2021−01−01T00 : 0 0 : 0 1 + 0 1 : 0 0 "^^xsd :

dateTime )
}

GROUP BY ? l o c a t i o n ? term
ORDER BY ? count

?location ?term ?count

Berlin, Ger-
many

Risk 8923

Hamburg, Ger-
many

Achievement 7332

Washington, DC Affiliation 2349
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3. Which is the ideology with a higher percentage of polarized content? Polarization in extremist
or propagandistic content is a common trait. Thus, it is an interesting characteristic
to study. This question is oriented to characterizing the language of each ideology,
profiling the percentage of negative polarization overall.

Table 6. Competency question—Q3.

Which is the ideology with a higher percentage of polarized content?

SELECT ? ideology (AVG( ? counts ) AS ? r a t i o )
WHERE {

? post a s i o c : Post ;
s l iwc : hasASet [

s l iwc : conta ins [
a narr : Annotation ;
s l iwc : hasCatergory [

a narr : Narrat ive ;
narr : hasIdeology ? ideology ;

]
]

]
BIND ( IF ( e x i s t s { ? post s l iwc : hasASet [ s l iwc : conta ins [

s l iwc : hasCategory [ a s l iwc : negemo ] ] ]
} , 1 , 0 ) AS ? counts )

}
GROUP BY ? ideology
ORDER BY DESC( ? r a t i o )

?ideology ?ratio

Separatism 0.5232
Religious 0.4745
Far-left 0.4476
Far-right 0.4463

4. Which core drive is the most prevalent in each ideology? As mentioned, core drives are
an effective way of profiling language use. This question was aimed at profiling the
most important core drivers among the different ideologies considered. This offers an
insight into the motivation of the language used in the messages of each ideology.

Table 7. Competency question—Q4.

Which core drive is the most prevalent in each ideology?

SELECT ? ideology ? drive ( (SUM( ? score ) /COUNT( DISTINCT ? post ) ) AS ? r a t i o )
WHERE {

? post a s i o c : Post ;
s l iwc : hasASet [

s l iwc : conta ins [
a narr : Annotation ;
s l iwc : hasCategory [

a narr : Narrat ive ;
narr : hasIdeology ? ideology ;

]
] ;
s l iwc : conta ins [

a s l iwc : Annotation ;
s l iwc : score ? score ;
s l iwc : hasCategory [

a s l iwc : Category ;
skos : b road erT rans i t i ve s l iwc : dr ives ;
skos : prefLabel ? drive ;

]
]

]
}
GROUP BY ? ideology ? drive
ORDER BY ? ideology DESC( ? r a t i o )

?ideology ?drive ?ratio

Religious Affiliation 0.35
Separatism Achievement 0.35
Far right Power 0.32
Far left Power 0.33

5.3. Discussion

The previous evaluation showed the utility of the presented system and the framework
it enables. In this way, we have demonstrated how the semantic modeling combined with
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a complete NLP and data processing pipeline allows for discovering complex patterns in
relation to radicalization and extremism in social media. It is this semantic modeling that
allows users to define ad hoc queries that can adapt to complicated necessities from social
science actors.

Attending to the previous literature, the Hatemeter system [91] stands as a complete
system that monitors anti-Muslim content in social networks. Hatemeter made use of an
Long Short-Term Memory (LSTM) network to perform text classification in the domain of
anti-Muslim content. Additionally, Hatemeter has a network-oriented interface, exploring
the relations between monitored users. In comparison, the system presented in this paper
is language-oriented, as it explores patterns in the linguistic data. Additionally, our system
makes use of popular lexical resources (LIWC, MFT) to analyze language, offering a
domain-agnostic view of the language and its use.

Another relevant system for monitoring social media is Contro L’Odio [35], which
monitors and contrasts discrimination and hate speech in Italy. This platform also has
several visualizations that allow a user to reduce the complexity of the data. As in our
system, Contro L’Odio offers a geographical visualization that relates locations and their
own language trends.

The platform of the project Trivalent [38] was designed for law enforcement agencies
to monitor social media in the context of jihadist extremism. While Trivalent’s platform
monitors news and online magazines, the presented system has a focus on social media.
Additionally, our system has complete language analysis that, as described, includes several
lexical resources.

As described in Section 4.1, the proposed intelligent engine has a modular architecture
that has been implemented using a micro-services fashion. This, of course, would allow
us to extend the original functionalities with additional modules that can be added to the
data model through the presented semantic modeling. An interesting example will be to
extend the presented system with text classification capabilities, such as radicalization or
extremism detection. In this line of work, previous studies have used deep learning models,
such as word embeddings [10,92] and several neural architectures [93,94]. Recent advances
in NLP learning methods have used the transformer architecture [95], which has been
applied to hate speech and similar content [96]. These mentioned approaches can be easily
added to the intelligent engine due to the presented architecture and its corresponding
semantic modeling.

6. Conclusions

This paper presents the work to develop an intelligent engine to detect radicalization
in youth. Such efforts revolve around the following objectives: (i) the development of
an orchestrated intelligent platform that captures, processes, and stores data from social
networks; (ii) the development of several text analysis methods for contextualizing and
enriching the captured data; (iii) the generation of several semantic vocabularies that
allow the semantic modeling of the captured data and their corresponding analyses; and
(iv) the development of a visualization dashboard that allows users to gain insights into
the produced data, follow trends in the data, and perform complex queries. The efforts
in this work have produced a complete big data system that exploits several linguistic
analysis methods and the full potential of semantic modeling, offering users a complete yet
straightforward graphical interface for interacting with the data.

The mentioned intelligent platform has been developed and deployed for its use in
future work. For example, it can monitor recruitment and propaganda campaigns. Interop-
erability and extensibility are fundamental principles followed during the development
phase. Such a design enables third parties to use the data extracted by our tools rapidly.

Several efforts have been made concerning modeling the data, its analyses, and visual
representations. These novel advances have brought the semantic modeling of a known
resource in the NLP context: the LIWC dictionary. Such representations can be used jointly
with other annotations, thereby facilitating their replication. In addition, in this task,
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the MFT concepts have also been modeled using semantic representations. The advances
in visualization and querying technologies allow domain experts to quickly detect patterns
in the captured data using standard web technologies, facilitating their use.

It is of particular relevance to the work done in relation to RQ1 (What are the main
linguistic signals that reveal radicalization factors?). As detailed in Section 2, a large number
of studies on radicalization drivers have been addressed as computational radicalization
signals. The proposed system covers a number of these approaches, showing its utility in a
real-world scenario.

Additionally, this work presented several novel semantic vocabularies used through-
out the presented system. More concretely, this paper presented the (i) Senpy Ontology
vocabulary (SENPY), (ii) Semantic LIWC (SLIWC) vocabulary, (iii) Morality vocabulary,
and (iv) Narrative vocabulary. In this way, our system is able to semantically model
radicalization and extremist processes with a focus on language.

This work aims at providing a pathway between traditional and computational social
science. Traditionally, the primary data sources for radicalization analysis are focus groups
and interviews with experts, police forces, or convicted terrorists and extremists. As a
result, the sample size is usually small. In contrast, social data analysis allows the analysis
of large quantities of messages and interactions. This work can help social scientists to
complement their studies in several ways. First, our system can be used for analyzing a
specific event in a specific region, which can complement the analysis of specific cases.
In addition, an interesting aspect that can be analyzed is the temporal evolution in the
radicalization processes. Understanding this evolution can help with designing better
counter-radicalization strategies. Finally, automated text analytics can help gain insights
into radicalism’s drivers and roots. To this end, this work provides complementary text
analytics, such as sentiment and emotion analysis, social-psychological analysis, and moral
foundations analysis. Social scientists can benefit from these analyses to better understand
the processes and interactions of radicalization factors.

Regarding future work, we believe that adding new sources of information (e.g.,
Reddit and Facebook) would be an interesting path which would allow users to compare
linguistic patterns across different social media. Additionally, the platform could be ex-
tended to perform radicalization or propaganda detection, thereby further contextualizing
the captured text. We believe that the presented platform, taking into account its semantic
characteristics, will foster research for social sciences.
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MFD Moral Foundations Dictionary
MFT Moral Foundations Theory
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