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Abstract: Whether consciously or inadvertently, our messages can include toxic language which
contributes to the polarization of social networks. Intelligent techniques can help us detect these
expressions and even change them into kinder expressions by applying style transfer techniques.
This work aims to advance detoxification style transfer techniques using deep learning and semantic
similarity technologies. The article explores the advantages of a toxicity-deletion method that uses
linguistic resources in a detoxification system. For this purpose, we propose a method that removes
toxic words from the source sentence using a similarity function with a toxic vocabulary. We present
two models that leverage it, namely, LexiconGST and MultiLexiconGST, which are based on the
Delete –Retrieve–Generate framework. Experimental results show that our models perform well in
the detoxification task compared to other state-of-the-art methods. Finally, this research confirms that
linguistic resources can guide deep learning techniques and improve their performance.
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1. Introduction

Digital social communications have become mainstream, enabling citizens to freely
express their opinions and providing visibility to minority groups. However, some phenom-
ena, such as toxic language, can become severe barriers that limit fair and nondiscriminatory
participation in public forums. Toxic language can be defined as “rude, disrespectful, or
unreasonable language that is likely to make someone leave a discussion.” [1]. Still, it
includes, but is not limited to, other language classification terms, such as hate speech,
vulgarity, sexism, racism, or bullying, to cite a few. Its devastating effects and importance
have pushed governments and international institutions combat its effects using legislative
measures, mainly focused on its detection, to limit its spread. The research community
has made considerable effort to contribute to this effort with two tasks: automatic toxic
language detection [2–4] and detoxifying language models [5,6]. On the contrary, the task
of rephrasing offensive content automatically requires further research. This task has great
potential for practical applications, such as promoting a healthier online environment. By
suggesting alternative, less emotionally charged language, an automatic rephrasing system
could encourage users to reconsider their wording and express their thoughts neutrally.
The main approach followed for text detoxification [7–9] is based on text style transfer.

Text style transfer is “a significant Natural Language Generation (NLG) task whose
objective is to rephrase the text and maintain its content while altering its style” [10].
Applications range from modifying the conversational style of dialogue agents [11] to
masking personal attributes such as gender to protect privacy [12]. Additionally, the task
can adjust the formality of texts [13] or even generate poetry, as shown by Yang et al. [14].
The main limitation to developing effective style transfer systems is the lack of parallel
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corpora containing sentences in one style and their corresponding counterparts in another,
with the original meaning preserved. Consequently, researchers have developed techniques
that bypass the requirement for parallel corpora altogether.

Previous studies in the nonparallel data setting try to adversarially train encoder–decoder
networks that learn disentangled representations of style and content from text [15–17] with a
technique known as “implicit style–content disentanglement” (Section 2). Unfortunately,
these models suffer from (a) the sparsity of their latent representations, which makes
them take longer to converge and harder to train, (b) a lack of precise control over the style
generated, and (c) the need to train from scratch to swap the trade-off between style transfer
and content preservation. Other works approach the task with “explicit style–content
disentanglement” (Section 2), such as Delete–Retrieve–Generate (DRG) [18], to build on the
inductive bias that style attributes are frequently related to a specific set of tokens in text.
Although Delete–Retrieve–Generate (DRG) is a step up in quality over previous research,
its Delete–Generate approaches are prone to (a) disturb crucial context with the accidental
replacement of core context words and (b) miss the replacement of source style words
with target style words, and (c) the encoder–decoder generates nonfluent sentences and
struggles with longer input text given its Long Short-Term Memory (LSTM) nature.

Sudhakar et al. [19] introduced a novel approach that overcomes some of the draw-
backs mentioned above. Their system, called BlindedGST, leverages the attention weights
of an unsupervised pre-trained large language model to identify style attributes and re-
moves the need for an encoder–decoder LSTM with the use of a style conditional generative
Transformer [20] that can handle long text input and generate fluent text from a sentence
whose style words have been removed. The system has been evaluated for sentiment-,
political-, formality-, and gender-detection tasks, leaving out the detoxification task.

In this work, we investigate the following research questions (RQs):
RQ1: Can a current nontoxic specific text style transfer method be applied to the

detoxification task?. As described above, many current methods build on the DRG frame-
work to achieve consistent results among different styles, and we want to validate their
performance on the detoxification task. More specifically, we are interested in the methods
that operate on a nonparallel data setting using only the Delete and Generate steps, i.e., not
the Retrieve step. The two best models in this category (that we are aware of) are Mask and
Infill [21] and BlindedGST [19]. We choose BlindedGST as the baseline, since it has been
evaluated on multiple downstream tasks as explained above. In contrast, Mask and Infill
has only been applied to sentiment transfer, and, therefore, we understand that BlindedGST
is a better starting point since we expect it to generalize better to the detoxification task.
Thus, we evaluated BlindedGST on several toxicity datasets.

RQ2: Can we improve this attention-based method by using linguistic resources?. As
explained above, BlindedGST operates in a two-step process in which it first removes the
style from the sentence and then uses a generator to transfer it to the target style. Therefore,
we want to explore the advantages of a style deletion method that uses linguistic resources
such as a lexicon instead of an attention-based system. For this purpose, we propose a
method that removes toxic words from the source sentence using a similarity function
with a toxic lexicon. Finally, our main contributions are LexiconGST and MultiLexiconGST,
which are evaluated with different lexicons and similarity functions that have led, in most
cases, to better performance than the BlindedGST baseline.

The remainder of this article is organized as follows. Section 2 introduces the related
work. Then, Section 3 describes the proposed model. Next, Sections 4 and 5 describe
the experiments and evaluation of the model, respectively. Lastly, Section 6 discusses the
conclusions of this work.
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2. Related Work

A common approach to tackle the style transfer task involves using a supervised
encoder–decoder model to “translate” the source sentence into the desired target style [13].
When the source and target belong to the same language, one can leverage pre-trained
Language Models (LMs) such as Generative Pre-trained Transformer (GPT) [22] to ac-
complish this task. This technique can be enhanced by fine-tuning the LMs on relatively
small parallel corpora, leading to favourable outputs [23]. Nevertheless, the application of
this method is somewhat limited due to the scarcity of sufficiently large parallel data. In
contrast, most previous research on text style transfer has been carried out using unsuper-
vised algorithms.

Four approaches are considered, which are described below: explicit style–content
disentanglement, implicit style–content disentanglement, without style–content disentan-
glement, and toxic style transfer.

The first approach is known as “explicit style–content disentanglement” [18]. This style
transfer method is relatively straightforward, but highly effective, and involves leaving
the sentence unchanged and modifying only the individual words linked to the desired
style. The first attempt to achieve such a transfer was introduced by the Delete–Retrieve–
Generate [18] framework, where the authors suggest DRG-TemplateBased. First, it removes
the style-related words from the input sentence, for example “nasty”, and retains only
the content-specific information such as “food”. Next, it replaces source-style words with
target-style words with the help of a retrieval mechanism based on sentences similar in
content and a Seq2Seq model to alleviate fluency. Ultimately, the performance depends
on the robustness of the replacement mechanism. Li et al. [18] also propose two models
which are focused on two phases of DRG, known as DeleteOnly and DeleteAndRetrieve
(D&R). Typically, words associated with a particular style are identified based on their
frequency in the corpus. Conversely, Sudhakar et al. [19] propose improving the DRG
model by using a Delete Transformer (DT) and a Generative Style Transformer (GST). They
propose two variants that train the Generative Style Transfomer (GST) in two different
ways: BlindedGST (B-GST) and GuidedGST (G-GST). The first variant, B-GST, consists of
training the model so that it generates an output sentence given only the content and target
style, being blind to specific desired attributes. It is relevant that based on Li’s work [18],
this variant uses a weak retrieval component, so it can be considered a D&G model. In
the second variant, G-GST, the model is guided towards generating a target sentence with
target attributes. In our work, we extend the DRG framework following the previously
presented extensions [18,19] so that the retrieval component is not used, and we focus our
research on improving two components: Delete and Generate.

The second approach that can be followed is “implicit style–content disentanglement”.
Rather than performing a straightforward replacement of specific parts in the text, some
style transfer models attempt to learn the latent representations of content and style from
the input corpus [17]. The model then combines the source text content’s representation
with the target style’s representation to generate the desired text. Fu et al. [17] presented a
representative study in the field in which they used adversarial learning to train the encoder
of an encoder–decoder network where the input text is encoded without style information
(z). The decoder generates texts in different target styles when fed with z. A major concern
is whether the reconstruction loss is enough to keep the semantics of the input. To improve
this approach, other works have proposed a new loss of cycle consistency [24] that also
alleviates the problem of model collapse. Yin et al. [25] focused on complementary methods
to improve this adversarial learning technique, such as comparators to check for content
preservation and style change.

In contrast to previous models, the third approach called “without style–content
disentanglement” is not based on style–content disentanglement. DualRL [26] employs
a distinct methodology in which style transfer occurs directly from the source to the
target. The model is paired with a dual task involving back transfer to the source style
to facilitate training. By incorporating this technique, the model can be trained without
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needing parallel data. He et al. [27] developed the Deep Latent Sequence Model (DLSM),
which performs joint training of models in both primal and dual tasks. This is achieved
by implementing amortized variational inference, a powerful computational technique
that efficiently approximates complex probability distributions. Building on this end-to-
end approach, Lee et al. introduced Stable Style Transformer (SST) [28], which involves
training two sequence-to-sequence transformers for primal and dual tasks. To enhance
the discriminative capabilities of the model, the method incorporates the cross-entropy of
a pre-trained style classifier as an additional loss function. Krishna et al. [29] proposed
the Style Transfer as Paraphrase (STRAP) method, in which a style transfer model is
considered to be a paraphraser that introduces stylistic attributes into a given text. The
authors used a pre-trained general-purpose paraphraser to generate the necessary training
data to transform styled texts into neutral texts, thereby generating pseudoparallel data.
The resulting neutral-to-styled parallel datasets were then used to train seq2seq models.

The fourth approach is known as “toxic style transfer”. Text detoxification is a rather
new downstream task from the text style transfer (TST) task [7–9,30]. The pioneering work
in this field by dos Santos et al. [7] used nonparallel data to train an end-to-end seq2seq
model, which learned to preserve content and transfer style through the combination
of autoencoder loss, style classification loss, and cycle consistency loss. Tran et al. [8]
proposed a pipeline approach to text detoxification. First, a search engine is used to
identify nontoxic sentences similar in content to the input toxic sentence. Next, a masked
language model (MLM) is used to fill in any gaps or missing words that do not match
the identified sentences. Finally, a seq2seq model improves the fluency of the generated
text. Laugier et al. [9] remove the toxic style from the text by fine-tuning T5 as a denoising
autoencoder that learns on nonparallel data by reconstructing original noised sentences.
Dale et al. [30] present CondBERT, a fine-tuned BERT on toxic data that allows the control
of the style of replaced words and better content preservation, as it can perform multi-
word replacements. They also introduce ParaGeDi, which extends the GeDi model [31], a
discriminative generator, by plugin a paraphraser that shares vocabulary with the GeDi,
allowing the model to combine the language distribution of the paraphraser with a style-
conditional language distribution that results in different paraphrases of the input text
depending on the target style. Lastly, Logacheva et al. [32] collected ParaDetox, a large
toxic-to-neutral parallel corpus curated from ParaNMT [33], and fine-tuned BART [34] in
this dataset to obtain state-of-the-art (SOTA) results in the detoxification task.

To conclude, a comparison of our methods within the literature scope is presented.
Specifically, the works most similar to our work are Mask and Infill [21], BlindedGST [19],
and SST [28], which also perform style transfer with a two-step process: Delete and
Generate. For the Generate step, we simply modify BlindedGST’s method to work with
toxic style, but in the Delete step, we present major differences to these methods. First,
we use two different style deletion algorithms simultaneously during training, one for the
neutral style and one for the toxic style, unlike the literature methods, which use the same
algorithm for all styles. However, this neutral style deletion algorithm used in training is
simply the attention-based method presented by Sudhakar et al. [19]. Second, the toxic
style deletion algorithm we present is similar to the method proposed by Mask and Infill,
but instead of using a combination of a frequency-based vocabulary and attention scores,
we use a predefined or regression-based toxic vocabulary and a style similarity function.
Third, the other two works, BlindedGST and SST, are very different in this matter since
they use pre-trained classifier attention scores and an importance score through pre-trained
classifier predictions, respectively. Finally, our methods build on BlindedGST because of
the similarity in the neutral style deletion algorithm and the generation step, while the
novelty lies in the toxic style deletion algorithm.

3. Proposed Approach

This section offers a formalization of the problem to solve and describes how the
proposed models approach it.
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Firstly, the formalization of the problem considers a dataset D formed by sentences
in natural language of different styles. Each example in the dataset is (xi, si), in which xi
is a sentence and si ∈ S is the style of the sentence. We refer to the text in the same style
as the text that shares specific attributes, that is, S = {positive, f ormal, toxic, neutral, . . . }.
We denote c as the set of words that represent the content or information that the sentence
contains, such that Style(c) /∈ S, and a as the collection of words with stylistic information.
Therefore, the goal of text style transfer is to, given a source sentence x with source style
ssrc and a desired target style stgt, output a new sentence y that maintains as much content
c as possible from x but whose style is stgt. In particular, in the detoxification task, we
consider S = {toxic, neutral} where ssrc = toxic and stgt = neutral.

In order to generate this transferred style sentence y where Style(y) = stgt given an
input sentence x with style ssrc, our LexiconGST model tries to learn P(y|x, stgt). We base
our work on the BlindedGST [19] method; hence, the LexiconGST model is a two-step
process: style deletion and style-conditioned generation.

First, we describe the style deletion component, which aims to separate style and con-
tent from the input sentence by modeling the distribution P(c, a|x). The original sentence x
can be fully reconstructed from c and a. For example, given “your stupid contributions are
shit”, then the toxic-related words, “stupid” and “shit”, should be removed. This approach
is founded on the “input reduction” method proposed in the work of Feng et al. [35], which
suggests that the style of a sentence is heavily affected by the contribution of specific
words or sub-phrases associated with such style. Consequently, a style classifier would be
confused about the style of a sentence x whose style is s if the style-related attributes a are
removed from the sentence. To detect these style attributes, we use a weighting algorithm
to measure the contribution to style that each token in x makes.

In the case of neutral style, we measure the contribution of a token using the method of
Sudhakar et al. [19]. A BERT classifier is fine-tuned for toxic sentence classification, and then
it is used to filter out neutral tokens based on the attention weights of a selected attention
head. However, when detecting and removing toxic tokens, we propose an algorithm (see
Algorithm 1) that exploits token embedding similarities with a toxic lexicon. First, we use
the embedding layer from a RoBERTa [36] toxicity classifier because these embeddings
encode some style information. Since we are interested in the style similarity of tokens
rather than semantic similarity, we follow the intuition that this embedding representation
is better for our task than other semantic embeddings. Then, we employ a similarity
function between the sentence’s token embeddings and the lexicon word embeddings and
remove tokens whose similarity is above a predefined threshold.

Unfortunately, due to how word embeddings are generated, some words like “be-
trayed” (word inside one of the toxic lexicons used) and “portrayed” have high embedding
similarity, which will result in the deletion of “portrayed”” from the source sentence as if
it were a toxic style attribute, but in reality it should remain as part of the source content.
Therefore, instead of using the maximum similarity of a token with the words in a lexicon,
we introduce a parameter K that alleviates this issue by averaging the top-K similarities
of a word with a lexicon. This technique follows the intuition that for a given lexicon, in
the case of “ass” (clearly a word to remove), the top similarities are “ass”: 1.0, “dumbass”:
0.81, and “asshole”: 0.80, . . . so the average top-K similarity is still high for “ass” and the
model will correctly delete it from the source text. Still, in the case of “portrayed”, the top
similarities are “betrayed”: 0.75, “stoned”: 0.42, and “demented”: 0.41, so the top-K average
is reduced compared to the maximum and therefore “betrayed” is not removed from the
source sentence as desired. Furthermore, we found that again due to the nature of word
embeddings, very common words like “had” or “they” tend to have a high similarity with
a lot of words and are, in turn, deleted as if they were toxic style attribute words. To
alleviate this phenomenon, we have defined the MultiLexiconGST model. This model
extends LexiconGST and utilizes an additional lexicon of common words and stop words
to ensure that these types of words are not deleted from the source sentence.
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Algorithm 1 Similarity-based Toxic Deletion.

Ensure: Toxic and common words lexicon
1: for every toxic sentence S in D do
2: for every token in S do
3: similarities← cosine_similarity(token, toxic_lexicon)
4: similarities← top_k(similarities)
5: token_sim← average(similarities)
6: if token_sim > threshold and token /∈ common_lexicon then
7: Remove token from S
8: end if
9: end for

10: end for

The next and last step is to generate target-style sentences, which we approach with
a model that capitalizes on the benefits of transfer learning and the Transformer [20] by
using an unsupervised large pre-trained language model. In detail, we use a “decoder-only”
Transformer (where masked attention heads allow the model to look only at tokens to
the left), namely Generative Style Transformer (GST) [19], which is based on the GPT [22].
The inspiration to use such a model comes from the recent state-of-the-art performance
on different downstream tasks shown by these large pre-trained language models when
fine-tuned. Specifically, GST models P(y|c, stgt) by receiving c and stgt to generate y, the
sentence in the target style. Additionally, we use special tokens in the input as shown in
Figure 1 where GST is fed with “<NEU> <CON_START> Stuff is around this <START>”.
Concretely, we use <NEU> (Neutral) or <TOX> (Toxic) to indicate which style to generate,
CON_START points where the content starts, and <START> signals where content ends
and begins to generate. Finally, GST uses a softmax layer on the last Transformer block
to generate, at each time step t, a probability distribution over the vocabulary of the form
P(yt|c, stgt, y1, y2, yt−1).

Figure 1. LexiconGST architecture.

In the following, we present an example that gives further insight into the LexiconGST
and MultiLexiconGST models illustrated in Figure 1 and Algorithm 1, respectively. As
described, LexiconGST first strips toxic words, a, from the original sentence “Stuff is nuts
around this hoe” with the use of the top-K similarity of tokens with a toxic lexicon. Please
note that this similarity is calculated by averaging the top-K cosine similarities between each
input sentence token and all tokens from the lexicon in use. Next, the associated word is
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removed from the sentence if this similarity exceeds a predefined threshold. Then, a neutral
sentence is generated from the toxicity-stripped sentence “Stuff is around this”, c, by using a
style-conditional transformer conditioned on neutral style, stgt. As explained previously,
MultiLexiconGST extends the LexiconGST’s style deletion component by using an additional
lexicon to preserve common or stop words to alleviate the issues presented below.

4. Experimental Design

In this section, we describe the datasets and lexicons used to evaluate our methods
(Section 4.1), as well as define the metrics we use to evaluate them (Section 4.2). In addition,
we specify the learning and inference approaches. Finally, we describe the details of the
implementation of the model in Section 4.3.

4.1. Resources

To train and evaluate the performance of our style transfer model, we used two
datasets that allowed us to compare our results to other works and make our results
significant: (i) the English dataset from the previous Jigsaw [37] competition since it is
widely used among the most recent detoxification literature [9,30]; and the (ii) ParaDetox
dataset [32], which was recently released and designed specifically for the task of detoxifi-
cation. Since the Jigsaw dataset has no parallel (source-to-target) sentences, we generated a
neutral and toxic corpus separately. To construct the toxic corpus, the comments labeled as
toxic were first split into individual sentences as the original comments may be too lengthy.
Subsequently, each sentence was classified using the RoBERTa-based toxicity classifier from
Dale et al. [30], which was trained on English data from the three Jigsaw datasets [37–39].
The toxic half of the dataset consists of sentences classified as toxic by the toxicity classifier,
resulting in around 140,000 sentences (see Table 1). An equal number of nontoxic sentences
were randomly selected from the sentence-separated Jigsaw data to construct the neutral
half of the dataset. The test set was constructed using a similar approach to the Jigsaw
competition, where 10,000 sentences with the highest toxicity scores were selected based
on the toxicity classifier. On the other hand, ParaDetox is a parallel detoxification dataset
collected from the large ParaNMT [33] dataset with the use of a crowd-sourced quality
control pipeline. It consists of over 12,000 toxic sentences, each one having 1 to 3 neutral
paraphrases. To build the toxic corpus, we just used the toxic sentences, and for the neutral
corpus, we merged all available neutral sentences, which resulted in around 20,000 neutral
sentences.

Table 1. Number of instances per style and split of used datasets.

Dataset Style Train Dev Test Total

Toxic 11,351 596 671 12,618ParaDetox [32] Neutral 19,274 491 671 20,436

Toxic 135,390 6648 10,000 152,038Jigsaw [37] Neutral 135,390 6648 10,000 152,038

We used the lexicons shown in Table 2 to experiment with our models, where five
different lexicons were for toxic style deletion, and one lexicon was for the preservation
of common and/or stopwords in MultiLexiconGST. The Abusive, Hurtlex, and Orthrus
lexicons were taken from other works whose whole purpose was to craft such a lexicon.
The other two lexicons, ParaDetox-Lex and Jigsaw-Lex, are a contribution of this work.
We refer to them as dataset-specific lexicons since they were crafted specifically for each
dataset, Jigsaw or Paradetox. To generate these lexicons, we first trained, for each dataset, a
logistic regression toxicity classifier that approximates the weights W and biases B for the
model Y = WX + B, where Y is either toxic or nontoxic and X is a vector representing the
words in a sentence. Then, we interpreted the weights W given by the logistic regressor to
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each word as a toxicity score. Finally, we used a threshold t for this toxicity score wword to
select which words are included in the lexicon if wword > t.

Table 2. Lexicons used in the experiments and their main characteristics.

Lexicon Size Domains Method

Abusive [40] 2961 Abuse, Hate Linguistic
features

Hurtlex [41] 1160
Xenophobia,
Immigrant,
Misogyny,

Insults

WordNet,
Manual

Orthrus [42] 1929 Toxicity Toxic span
Paradetox-lex 503 Toxicity Toxic

Classifier
Jigsaw-Lex 2371 Toxicity Toxic

Classifier
Stopwords [43] 1298 Common words,

Stopwords
Crowdsource

4.2. Metrics

Since we approach the problem in a nonparallel fashion, metrics such as BLEU [44],
METEOR [45], or ROUGE [46] do not have references for their evaluation. Style transfer
models are expected to change the style of a sentence while preserving its content and
fluently producing text. These three factors are often in conflict with each other, so a
composite metric is needed to strike a balance between them. Our evaluation methodology
is based on Krishna et al. [29]. We use the J metric, which is calculated by multiplying three
individual metrics at the sentence level: style accuracy, content preservation, and fluency.
System-level (J) is then obtained by taking the average of sentence-level J scores.

J = ACC · SIM · FL.

Sentence-level style accuracy (ACC) is evaluated using the pre-trained toxicity clas-
sifier from Dale et al. [30]. Content preservation (SIM) is evaluated by comparing the
sentence-level embeddings of the original and transformed texts, calculated using the
model proposed by Wieting et al. [47]. Fluency (FL) is measured using a classifier trained
on the CoLA dataset to determine linguistic acceptability [48].

4.3. Implementation Details

For training, since we used a nonparallel data setting, we used the teacher-forcing
decoding strategy [19] over the generated tokens of GST to minimize the reconstruction
loss. Formally, GST learns to maximize the following function:

L(Θ) = ∑
x,ssrc∈D

log[P(x|c, ssrc; Θ)]

where for an input x, GST learns to reconstruct this input by generating y = x given c and
the source style ssrc. In contrast, at test time, we generated the output sentence with the
use of beam search with a beam width of 5 and a look-left window of 1.

Specifically, we used the PyTorch implementation of the GPT model [22] offered by the Hug-
gingFace Transformers library (https://huggingface.co/openai-gpt, accessed on 22 July 2023).
The model is pre-trained on 7000 books from the BookCorpus dataset (https://huggingface.
co/datasets/bookcorpus, accessed on 22 July 2023). Its architecture accepts sequences of
up to 512 tokens, and has 12 layers and 12 attention heads per block. The dimension for
all internal states is 768, which includes keys, queries, values, and embeddings. Byte Pair
Encoding (BPE) [49] tokenizes input text. More details can be found in the source code
(https://github.com/martinigoyanes/LexiconGST, accessed on 22 July 2023).

https://huggingface.co/openai-gpt
https://huggingface.co/datasets/bookcorpus
https://huggingface.co/datasets/bookcorpus
https://github.com/martinigoyanes/LexiconGST
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5. Results

To analyze the performance of the models, we focused attention on the aggregated
metric J. More specifically, we wanted to evaluate if the general style transfer method
proposed by Sudhakar et al. [19] is valid for the detoxification task and if its model can
be improved by changing its style deletion system from attention-based to lexicon-based.
Additionally, the effects of different similarity functions and lexicons were analyzed. In
this sense, it is important to consider that the evaluation is limited by the accuracy of the
pre-trained toxic and language acceptability classifiers, as well as the performance of the
model that compares sentence embeddings. Lastly, we selected the different thresholds
used in the experiments. To remove toxic words based on their lexicon similarity, we picked
similarity_thres = 0.7 after tuning the parameters. On the contrary, for the threshold that
determines whether a word is included in our dataset-specific lexicon, we chose a value
that produces a lexicon size similar to the lexicons we were working with, i.e., for Jigsaw
toxicity_thres = 0.8 and for ParaDetox toxicity_thres = 0.7.

Firstly, we evaluated LexiconGST and MultiLexiconGST on multiple lexicons and
used different average top-K similarity functions to find that performance depends a lot
on the lexicon and the value of K. However, we discovered that, regardless of the lexicon,
the best K are {1, 3, 5} by performing a grid search on the validation split. Specifically,
Figure 2 shows how similarity functions that consider K > 5 words for average similarity
always lead to a significant decrease in performance in contrast to when K < 5 words are
considered. We also observe from this wide evaluation how the fluency (FL) and source
similarity tend to increase as the style transfer strength (ACC) decreases; our intuition is that
the smaller the change in style, the fewer the words that are changed from the input, which
leads to a more fluent and similar sentence to the input. Secondly, in Table 3, we present
our best-performing models for each lexicon and show that both MultiLexiconGST and
LexiconGST outperform BlindedGST [19]. The proposed dataset-specific lexicons almost
always perform best, while the Hurtlex lexicon performs the worst. More specifically, when
MultiLexiconGST makes use of the dataset-specific lexicons, it yields the best J score since it
is capable of decently changing the style (ACC) while maintaining high fluency (FL) thanks
to the leverage of the extra lexicon Stopwords-en, which we believe allows it to be more
accurate when deleting toxic words. Concretely, the biggest increase in quality (↑ 0.18)
over BlindedGST is in style transfer strength (ACC) for the Jigsaw dataset. In contrast, an
improvement (↑ 0.19) in fluency (FL) makes the difference for the ParaDetox dataset.

In order to further study the impact of the proposed methods and their performance,
we conducted the Friedman statistical test [50]. This test computes a sorted ranking of
approaches, offering an aggregated view of their performance across all datasets. In this
way, a lower ranking indicates a better result for a certain method in comparison to the rest.
Ties are resolved by averaging the ranks obtained. We performed the Friedman test with
α = 0.05, rejecting the null hypothesis.

In Table 4, it can be seen that the best model, as indicated by the Friedman test, is
the MultiLexiconGST using a dataset-specific lexicon. This reinforces the observation that
using domain-oriented resources leads to a performance improvement, and is consistent
with our initial hypotheses. In comparison, BlindedGST is placed at the bottom of the
ranking, which again indicates that introducing relevant linguistic resources effectively
improves the style transfer process.

Finally, we compared our methods with the state-of-the-art (SOTA) models shown
in Table 5. To obtain a fair comparison of the methods, we left out all methods with a
nontrivial “Retrieval” component (Delete–Retrieve–Generate). For example, we did not
consider CondBERT [30] as the authors mention “Reranks” replacement words suggested
by BERT based on the similarity of suggestions with the word to be replaced, and we
consider this a retrieval method. We also left out ParaGeDi [30] since it makes use of a
pre-trained paraphraser model, which we consider to be a large generalized retrieval model.
Both ParaGeDi and CondBERT outperform our system, given that they use an additional
component that enhances their performance. STRAP [29] uses a paraphrase as well, so it
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was not considered. Finally, DLSM [27] uses a very different approach (probabilistic-based
rather than framework-based) from all other methods. However, both methods perform
much worse than MultiLexiconGST: DLSM generates very nonfluent text and STRAP has
very weak style transfer. This collection of State of the Art (SOTA) methods is shown in
Table 5, where we show how our best model, MultiLexiconGST with a dataset-specific
lexicon and an average top-three similarity function, not only outperforms by a wide
margin the baseline BlindedGST but also has the best performance among all known
competitor models. In addition, MultiLexiconGST also generates the most fluent (FL) and
similar sentences to the input (SIM). Lastly, although MultiLexiconGST is behind Mask and
Infill [21] or SST [28] in style transfer strength (ACC), these models perform worse in terms
of fluency (FL). We attribute this to the abrupt addition of tokens associated with the target
style without maintaining fluency.

(a)

(b)

Figure 2. Performance as K increases on the validation set of both Jigsaw and ParaDetox:
(a) ParaDetox. (b) Jigsaw.
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Table 3. Results of the best-performing models for each lexicon on the test splits of the Jigsaw and
Paradetox datasets. Best J results are indicated by bold numbers.

Dataset Model Lexicon K ACC SIM FL J BLEU

Abusive 5 0.70 0.89 0.75 0.47 0.77
Hurtlex 3 0.48 0.92 0.79 0.35 0.82
Orthrus 1 0.78 0.85 0.69 0.47 0.73

Lexicon
GST

Dataset-specific 1 0.81 0.83 0.60 0.42 0.70

Abusive 1 0.80 0.83 0.71 0.48 0.72
Hurtlex 1 0.65 0.89 0.77 0.45 0.78
Orthrus 5 0.63 0.89 0.83 0.47 0.77

Paradetox

MultiLexicon
GST

Dataset-specific 3 0.71 0.89 0.75 0.49 0.77

Abusive 3 0.52 0.85 0.66 0.30 0.75
Hurtlex 1 0.45 0.86 0.61 0.24 0.76
Orthrus 3 0.75 0.80 0.55 0.32 0.69

Lexicon
GST

Dataset-specific 3 0.78 0.77 0.58 0.35 0.69

Abusive 1 0.64 0.80 0.65 0.34 0.72
Hurtlex 1 0.43 0.87 0.70 0.27 0.78
Orthrus 3 0.66 0.82 0.67 0.37 0.74

Jigsaw

MultiLexicon
GST

Dataset-specific 3 0.73 0.79 0.64 0.38 0.71

Table 4. Friedman rank of the best 9 methods.

Model Lexicon Rank

MultiLexiconGST Dataset-specific 1.0
MultiLexiconGST Abusive 3.0
MultiLexiconGST Orthrus 3.0

LexiconGST Orthrus 4.5
LexiconGST Abusive 5.0
LexiconGST Dataset-specific 5.0

MultiLexiconGST Hurtlex 6.75
BlindedGST - 8.25
LexiconGST Hurtlex 8.5

Table 5. SOTA performances of methods that use a Delete and Generate framework. Best J results are
indicated by bold numbers.

Dataset Jigsaw Paradetox

Model ACC SIM FL J ACC SIM FL J

MultiLexiconGST w/K = 3 and
w/Dataset-specific Lexicon 0.73 0.79 0.64 0.38 0.71 0.89 0.75 0.49

Mask and Infill [21] 0.78 0.80 0.49 0.31 0.91 0.82 0.63 0.48
BlindedGST [19] 0.55 0.79 0.61 0.27 0.72 0.89 0.56 0.32

SST [28] 0.80 0.55 0.12 0.05 0.86 0.57 0.19 0.10

6. Conclusions and Future Work

In this paper, we introduce a novel algorithm for toxic style removal and present
two models that leverage it, LexiconGST and MultiLexiconGST, which are based on the
DRG framework. The experimental results show that our models have competitive per-
formance in the detoxification task among the state-of-the-art methods. Specifically, our
proposed methods outperform all SOTA models, which are based on the same framework.
Furthermore, this research also confirms that linguistic resources can guide deep learning
and improve its performance. We have also shown that the hyperparameter K helps the
similarity function to adapt to the characteristics of the different lexicons.

The proposed models focus on the Delete and Generate phases, which constitutes a
limitation of our models. Indeed, including a mechanism that implements a nontrivial
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Retrieve phase can enhance the overall performance of the system. As future work, this can
be addressed by evaluating whether the proposed models can outperform SOTA methods
that use a more complex Retrieve step like CondBERT and ParaGeDi [30].

Furthermore, the proposed methods use lexicons as a source of domain-centered
knowledge sources. Nevertheless, deriving these lexicons and evaluating their quality are
open challenges, which is a limitation of this work. This opens new avenues of research,
oriented to generating and exploiting lexicons to improve the results of the task.

Finally, another line of research that emerges from our work is whether our lexicon-
based approach not only outperforms the attention-based approach of Sudhakar et al. [19]
on the detoxification task, but that our method can be generalized to other downstream
style transfer tasks by simply selecting the appropriate style lexicon.
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