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José Ignacio Fernández-Villamor, Mercedes Garijo
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Abstract: Network security is a branch of network management in which network intrusion detection systems provide
attack detection features by monitorization of traffic data. Rule-based misuse detection systems use a set
of rules or signatures to detect attacks that exploit a particular vulnerability. These rules have to be hand-
coded by experts to properly identify vulnerabilities, which results in misuse detection systems having limited
extensibility. This paper proposes a machine learning layer on top of a rule-based misuse detection system
that provides automatic generation of detection rules, prediction verification and assisted classification of new
data. Our system offers an overall good performance, while adding an heuristic and adaptive approach to
existing rule-based misuse detection systems.

1 INTRODUCTION

Network security is an important branch of
network management, in which network intrusion
detection systems (Mukherjee et al., 1994) pro-
vide attack detection features by monitorization
of traffic data in demilitarized zones. Therefore,
intrusion detection systems are a field of interest
in the provision of network security under the as-
sumption of existence of security vulnerabilities
on hardware and software systems.

Intrusion detection systems can be classified
into anomaly detection systems (Denning, 1987),
which base detection on identification of abnor-
mal user behaviour, and misuse detection systems
(Deri et al., 2003), which base detection on identi-
fication of well-known attack patterns. An exam-
ple of misuse detection system is Snort (Roesch,
1999), the de facto standard open source intrusion
detection system. Snort uses a set of rules to de-
tect attacks that exploit a particular vulnerability.
These rules have to be hand-coded by experts to

properly identify vulnerabilities. Not only does
this require an expertise on the field but it also
implies an effort of analysis of traffic data, which
results in Snort having limited extensibility. This
process implies: knowing which attacks the sys-
tem was not prepared for, classifying these attacks
and, finally, building new detection rules.

This paper proposes a machine learning layer
on top of a rule-based misuse detection system
such as Snort to provide automatic generation
of detection rules, prediction verification and as-
sisted classification of new data. On the compro-
mise of expressing precise detection rules that are
tied to a particular exploit against generating more
general rules, our approach tries to be more untied
by using, e.g., key indicators (Lee et al., 1999)
instead of well-defined message patterns, so that
the system is more suited for future unknown at-
tacks. In other words, the system is aimed at
detecting the nature of traffic data and classify-
ing it into normal or abnormal traffic instead of
focusing on identifying exploits or particular at-



Figure 1: System architecture

tacks. We think this is consistent with the idea
of providing automation and ensuring freshness
in attack detection as an added value to misuse
detection systems, leaving the exploit identifica-
tion task for security experts. The whole mainte-
nance lifecycle of an intrusion detection system is
considered, and a training pattern labeller, based
on estimated accuracy of rules and self-organizing
maps, is proposed to allow assisted classification
of new traffic data.

2 SYSTEM DESCRIPTION

A rule-based intrusion detection system has
a set of detection rules that allows the detection
of a particular set of attacks. To ensure fresh-
ness of detection capabilities new rules have to
be included to detect attacks that the system was
not prepared for previously. This involves three
tasks: knowing which attacks the system was not
prepared for, classifying these attacks and, finally,
building new detection rules.

Our system is aimed at automating all these
tasks as much as possible while being built on top
of a rule-based intrusion detection system. The
architecture is shown on figure 1 and has four ba-
sic modules:

• A classifier, trained to classify samples of traf-
fic data to perform the basic functionality of a
network intrusion detection system.

• A prediction verifier, which validates the pre-
dictions made by the classifier, in order to de-
tect new traffic types and do reinforcement
learning with them.

• A labeller for classification of new data, in-
tended for reducing the effort of classification
of new traffic data by grouping similar sam-
ples into clusters of the same class.

• A data set builder, which prepares a data set
to retrain the classifier.

The system is essencially a rule generator, so
that realtime classification of data is performed
by the rule-based network intrusion detection sys-
tem, whereas our modules only perform off-line
tasks. More specifically, the rule generation pro-
cess starts after a set of traffic data is collected out
of the intrusion detection system and proceeds as
follows:

1. The prediction verifier estimates the validity
of previous predictions of traffic classes and
builds up a data set out of discarded samples,
which require further supervision due to the
system’s inability to classify them properly.

2. The traffic data is supervised by a human
agent by labelling data clusters which are gen-
erated by the labeller.

3. The data set builder constructs a data set out of
samples from previous supervised traffic data
and the newly supervised data.

4. The classifier is trained with the generated
data set, which results in the generation of a
set of rules that are used to refresh the intru-
sion detection system ruleset.

2.1 Machine Learning of Traffic
Data

Several approaches have been considered for ma-
chine learning of attack patterns for intrusion de-
tection systems. Neural networks have been used
to achieve this task (Chavan et al., 2004; Kem-
merer and Vigna, 2005), but have difficulties to
generalize their knowledge and therefore to de-
tect attacks that are not present in the training data
(Bouzida and Cuppens, 2005). Other approaches
have been used, such as statistical models (Ye
et al., 2001; Ye et al., 2003) or Petri nets (Kumar
and Spafford, 1994). None of them can be used
naturally to build detection rules and thus are un-
practical for our purposes.

Decision trees and rule-based systems (Hunt,
1962) have been also used for intrusion detection
(Yu et al., 2007; Chavan et al., 2004) and offer
good performance in terms of prediction rates and
generalization to new attacks (Bouzida and Cup-
pens, 2005). The proposed system uses the rule
learning-based algorithm C4.5 (Quinlan, 1993),



which is essentially an extension of ID3 algorithm
aimed at avoiding overfitting.

Considering a training data set, two thirds of
it are used as a growing data set, while one third
remains as a pruning data set. The growing data
set is used to build an ID3 tree, where an entropy
gain function is used to partition a data set S w.r.t.
an attribute A.

The attribute with maximum entropy gain is
chosen to partition the data set at each node, so
that a tree is built iteratively. Continuous at-
tributes are handled in an equivalent way by cal-
culating thresholds through interpolation of con-
secutive values from the data set for each con-
tinuous attribute and choosing the threshold with
maximum entropy gain.

After the decision tree is built, generation of
rules of inference is straightforward by scanning
all possible paths in the tree from the top node to
its leaves. The left hand side of the rules is a com-
bination of the conditions on each node, while the
right hand side is each leaf’s class. An estimation
of accuracy of each rule is made by calculating
the accuracy on the pruning data set. The result-
ing rules are pruned by removing trailing condi-
tions on the left hand side only when the resulting
estimated accuracy is not lower. Finally, the rules
are sorted in decreasing estimated accuracy order.

2.2 Prediction Verification

By using the mentioned classifier, a set of rules
with an estimation of accuracy is obtained, which
serves as certainty factor in the prediction of
classes of traffic data. At detection time, a par-
ticular rule with an associated estimated accuracy
will fire. At this point, it is possible to force a min-
imum estimated accuracy threshold Ath to accept
a prediction, being this an heuristic that serves to
discern traffic data that was considered at training
time from data that was not. Therefore, setting an
accuracy threshold lets populate a data set with
data that is supposed to be new to the system and
which therefore needs proper classification. As a
result, the estimated accuracy of rules lets inte-
grate prediction verification capabilities into the
system.

2.3 Classification of New Data

A sample is regarded as new if the rule-based clas-
sifier is not able to properly classify it as normal
traffic nor any kind of attack traffic, basing the
decision upon an estimated accuracy threshold.
As a result, this data needs manual supervision
by an external agent for its classification. How-
ever, further help can be provided in this task by
automatically grouping similar traffic data. Our
system uses self-organizing maps to achieve this,
which have proven useful in other works (Bashah
and Shanmugam, 2005; Hoglund et al., 2000).
Self-organizing maps (Kohonen, 1997) use an
euclidean-similarity metric to achieve automatic
clustering of data by defining an overlaying set
of reference vectors on the feature space of the
sample data set. Local-order relations are set on
the reference vectors so that their values are de-
pedent to each other neighbouring vector. The
self-organizing algorithm defines a nonlinear re-
gression of the reference vectors through the data
points, which results in the reference vectors be-
ing scattered among the space according to the
data set’s probability density function. This lets
classifying all data samples that are represented
by the same reference vector in one step and thus
reducing the effort of supervision.

When dimensioning the self-organizing map,
some problems need to be overcome such as
choosing a number of nodes that makes the map
able to adapt to all the data set or enhancing rare
cases to be considered apropriately by the map.
Applying the self-organizing map algorithm to all
the data set might result in the map’s inability to
adapt to euclidean-too-separated values and might
also fail to consider rare cases that are not too
relevant in the probability density function. To
prevent this from happening, visual inspection of
Sammon’s mappings (Sammon, 1969) of differ-
ent maps helps to choose a correct form of the ar-
ray or adapt the probability density function, but
is a manual task that is not desired in our sys-
tem and therefore a different approach is used. In
our case, the system performs a division in several
subsets of the original discarded set to try to ob-
tain subsets with similar features and increase the
self-organizing map’s accuracy. Different heuris-
tics can be used to perform this division, such
as partitioning through certain fields like protocol
type or type of service (Yu et al., 2007), being all



these approaches aimed at reducing information
entropy of the resulting subset. The classifier’s
ruleset is a pruned version of a decision tree that,
as described on section 2.1, is built through in-
formation entropy reduction with the supervised
training data set, and thus is a possible heuristic
for reducing information entropy on the discarded
samples data set.

To achieve the subdivision, samples are
grouped in our system by hierarchical coinci-
dence of the classifier’s rule clauses. More pre-
cisely, each sample fires a particular rule, whose
left-hand side is defined by a list of clauses
(c1,c2, ...,ci), ordered by classification relevance
as a result of the C4.5 algorithm. Therefore, this
allows hierarchical grouping of similar samples
by removing trailing clauses and grouping all the
samples that share the same clauses. A depth
value needs to be set in this case, with a higher
value resulting in obtaining a higher number of
subsets, and a lower value producing bigger ones
with more heterogeneous samples. The result-
ing sequence of clauses is extended with protocol,
type of service and flag fields to build a subset
identifier for each sample.

Finally, the self-organizing map algorithm is
applied on every subset. A 3:2 aspect ratio is used
on the maps’ dimensions in order to favour learn-
ing stability, with an hexagonal topology and a
total number of nodes which is equal to 10% of
the subsets cardinality with a dimensions limit of
30x20.

2.4 Retraining

C4.5 rule-learning algorithm is batch-training-
based. To provide reinforced learning, the ap-
proach which has been used in this system is to
build a new data set with different proportions of
samples. At this point, three types of samples
are found in the system: discarded samples dur-
ing prediction verification, training data set sam-
ples that are detected correctly and training data
set samples that are not detected correctly. The
proportion of samples of each kind and the total
amount of them, in the form of the triple (n+, n−,
ndis), will determine the newly built data set and
thus the classification capabilities of the new clas-
sifier.

3 PERFORMANCE
EVALUATION

The system has been evaluated against
KDD’99 data set (University of California, 1999),
from The Third International Knowledge Discov-
ery and Data Mining Tools Competition. This
data set is made up of almost five million samples
of data connections that are classified and grouped
under a set of traffic classes called normal (or-
dinary, non-malicious traffic), probe (monitoriza-
tion and probing activities), dos (denial of ser-
vice attacks, which often imply flooding activi-
ties), u2r (user to root, which refers to users trying
to acquire root privileges) and r2l (remote to lo-
cal, which refers to remote unauthorized log-in).

A total of 41 attributes define each connec-
tion, with symbolic fields such as type of ser-
vice or type of transport connection and continu-
ous fields such as average packet size or login at-
tempts. Some of these fields are aggregated ones,
e.g., connections to the same host in a 2-second
window, and are included due to its proved rele-
vance in attack detection (Lee et al., 1999). Other
features of the data set are data inconsistency, in
the sense that certain samples with the same fields
belong to different classes, and existence of new
attack types in the testing data set, which allows
evaluation of generalization capabilities of classi-
fiers. Therefore, all these data set features and its
heuristic approach makes this data set an appro-
priate tool to tune our system and evaluate it.

3.1 Classifier Performance

Our rule-based classifier was trained with a sub-
set of the KDD’99 training data set. Performance
on the training set and the testing set is shown on
tables 1 and 2, respectively. Its difficulty to de-
tect certain attacks in the training data set is con-
sequence of its compromise to generalise to new
attacks, which is achieved by the rule-pruning
phase described in section 2.1, with the classi-
fier presenting the known difficulties on this sam-
ple data (Bouzida and Cuppens, 2005). Overall
performance is comparable with other classifiers,
such as KDDCup’99 winner (Pfahringer, 1999),
a boosting-based classifier which offers 92.71%
accuracy.

As described in section 2.2, a prediction ver-
ifier is used to discard potential samples whose



Table 1: Classifier performance on the training data set.
Prediction / real normal probe dos u2r r2l Total

normal 99.95% 1.23% 0.01% 25.00% 8.66% 99.77%
probe 0.01% 98.52% 0.00% 0.00% 0.79% 99.26%
dos 0.02% 0.25% 99.99% 0.00% 0.00% 99.99%
u2r 0.00% 0.00% 0.00% 75.00% 0.00% 100.00%
r2l 0.02% 0.00% 0.00% 0.00% 90.55% 98.29%

Total 99.95% 98.52% 99.99% 75.00% 90.55% 99.94%

Table 2: Classifier performance on the testing data set.
Prediction / real normal probe dos u2r r2l Total

normal 99.49% 17.76% 2.76% 54.29% 90.79% 73.29%
probe 0.26% 70.21% 0.01% 0.00% 3.16% 80.91%
dos 0.22% 12.03% 97.22% 0.00% 0.03% 99.72%
u2r 0.02% 0.00% 0.00% 35.71% 2.62% 5.38%
r2l 0.01% 0.00% 0.00% 10.00% 3.40% 95.52%

Total 99.49% 70.21% 97.22% 35.71% 3.40% 92.36%

predictions might be a priori regarded as unac-
ceptable. This is achieved by using rules’ estima-
tion of accuracy, calculated on the pruning data
set, as the confidence factor. The results of differ-
ent accuracy thresholds Ath are shown on table 3,
which, as expected, lets improve the overall accu-
racy of the classifier. This allows our classifier to
outperform all others, at the cost of marking con-
flicting samples as discarded. By observing the
results, an accuracy threshold of 0.98 seems an
appropriate value by offering an acceptable com-
promise between packet discard ratio and accu-
racy and thus has been used in the rest of experi-
ments in this paper.

Table 3: Effect of accuracy threshold.

Ath Discards Accuracy
0.0 0.00% 92.36%
0.9 1.13% 93.11%
0.95 1.59% 93.19%
0.96 1.59% 93.19%
0.97 1.59% 93.19%
0.98 1.83% 93.21%
0.99 5.73% 94.07%

0.995 5.73% 94.07%
0.999 5.73% 94.07%
0.9999 100.00% –

3.2 Labeller Performance

Discarded samples are collected by the prediction
verifier for further supervision. In our system,
this task is assisted by the sample labeller. The
discarded samples obtained from the classifier are
grouped into a number of subsets according to the
sample fields and rule clauses. Afterwards, the
self-organizing map algorithm is applied on these

subsets, and a number of nodes is obtained, being
this number proportional to the subsets cardinal-
ity. Different rule depth values can be used in the
subdivision of the original discarded samples data
set. Different results were obtained, as shown on
table 4, with higher depth values offering a higher
accuracy. As long as the highest depth value re-
quires classification of only 15% of samples while
offering the highest accuracy, it can be considered
the optimal depth value for the labeller and has
been used in further experiments.

Table 4: Labelling performance.

Depth Subsets Nodes Accuracy
0 74 13.36% 89.03%
2 95 13.89% 90.43%
4 118 14.43% 91.41%
6 150 15.71% 93.19%
8 162 15.94% 95.33%

3.3 Overall Performance

After labelling of discarded packets has been
achieved, the classifier is retrained by building a
new training set. Different parameters are possi-
ble when building the new training set; n+ and n−
determine the proportion of training samples that
were correctly and incorrectly classified, respec-
tively, and ndis determines the proportion of sam-
ples that were discarded during prediction time.
The result of varying these parameters is shown
on table 5. Accuracies A+ and A− are calculated
on the correct and incorrect subsets of the training
data set, while Adis is calculated on the correctly
labelled discarded data set. Overall accuracy A is
calculated on the full testing data set.

By observing the results, the classifier shows



Table 5: Performance after retraining.
n+ n− ndis A+ A− Adis A
0.5 0.4 0.1 99.71% 100.0% 92.55% 92.32%
0.5 0.1 0.4 99.64% 100.0% 94.61% 93.32%
0.3 0.2 0.5 99.47% 100.0% 95.08% 93.41%
0.4 0.1 0.5 99.56% 100.0% 94.94% 93.46%
0.5 0.3 0.2 99.54% 100.0% 93.45% 93.53%
0.3 0.1 0.6 99.57% 100.0% 94.94% 93.63%

an optimal performance with n+ = 0.3 , n− = 0.1
and ndis = 0.6. It is noticeable that there is a
top accuracy that is achievable in the discarded
data set which is determined by the accuracy of
the labeller. Also, apparently the overall accuracy
should have a value between A+, A− and Adis, al-
though this does not happen due to the fact that
the newly built training data was a combination of
correctly and incorrectly classified samples from
the training set and discarded samples from the
testing set, while this last set is built heuristi-
cally and therefore does not necessarily include
the problematic samples which would be useful
for a second learning phase.

4 RELATED WORK

Rule-based systems have been widely used in
previous intrusion detection systems. Their per-
formance in terms of accuracy and speed makes
them appropriate for intrusion detection tasks,
while their internal representation of knowledge
in the form of rules favours human interpretation.

(Wuu and Chen, 2003) uses discrete attributes
and is focused on the generation of attack signa-
tures and thus does not consider prediction verifi-
cation or assistance on classification of new data.

(Yu et al., 2007) uses a different heuristic
for prediction verification based on its boosting-
based classifier, which consists of a set of binary
rule-based classifiers. Each of their binary classi-
fiers has an associated confidence factor which is
combined with the rest of classifiers’ to estimate
prediction confidence. While their confidence
factor shows a good performance, having a set
of binary classifiers implies using many rulesets.
This contrasts with our approach, which contains
an only ruleset and thus can be integrated into an
existing rule-based intrusion detection system.

5 CONCLUSION

Network intrusion detection systems have to
deal with continuous changes in software vul-
nerabilities, attacks and exploits. Our system
reuses a rule-based intrusion detection system
such as Snort to implement an adaptive machine-
learning-based layer on top of it. While assuming
this constraint, our system offers an overall good
performance and adds features such as predic-
tion verification for automatic collecting of prob-
lematic data and assisted classification of training
data, which favours freshness of detection rules
and adds an heuristic and adaptive approach to ex-
isting rule-based misuse intrusion detection sys-
tems.
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