
MIX: A General Purpose
Multiagent Architecture�

Carlos A. Iglesias, Jos�e C. Gonz�alez and Juan R. Velasco

Dep. Ing. Sistemas Telem�aticos, E.T.S.I. Telecomunicaci�on
Universidad Polit�ecnica de Madrid, E{28040 Madrid, Spain

�cif,jcg,juanra�@gsi.dit.upm.es

Abstract. The MIX multiagent architecture has been conceived as a
general purpose distributed framework for the cooperation of multiple
heterogeneous agents. This architecture, starting from previous work in
our group on multiagent systems, has been redesigned and implemen-
ted within a research project investigating a particular class of hybrid
systems: those integrated by connectionist and symbolic components.
This paper describes in some detail the principal concepts of the archi-
tecture: the network model and the agent model. Around these models, a
set of languages and tools have been developed. In particular, an Agent
Description Language (MIX-ADL) has been designed to specify agents
declaratively in a hierarchy of classes.

1 A multiagent architecture for hybridization

Distributed heterogeneous systems are receiving great attention from research-
ers in all the computer-related �elds. These systems involve components with
relevant di�erences regarding their nature (human/arti�cial), role inside an or-
ganisation, capabilities, structure, etc. In this work, we have developed a gen-
eral framework for the interoperation of software systems [11]. This architecture,
starting from a previous work in our group on multiagent systems [7], has been
developed within a research project investigating a particular class of hybrid
systems: those integrated by connectionist and symbolic components.

The obvious complementarity of the symbolic and connectionist approaches
to problem solving has led to a growing interest in these hybrid systems involving
the cooperation of both approaches [15]. This is the focus of the MIX project. An

� This research is funded in part by the Commission of the European Communities
under the ESPRIT Basic Research Project MIX: Modular Integration of Connection-
ist and Symbolic Processing in Knowledge Based Systems, ESPRIT-9119. The MIX
consortium is formed by the following institutions and companies: Institute National
de Recherche en Informatique et en Automatique (INRIA{Lorraine/CRIN{CNRS,
France), Centre Universitaire d'Informatique (Universit�e de Gen�eve, Switzerland),
Institute d'Informatique et de Math�ematiques Appliqu�ees de Grenoble (France),
Kratzer Automatisierung (Germany), Fakult�at f�ur Informatik (Technische Uni-
versit�at M�unchen, Germany) and Dep. Ingenier��a de Sistemas Telem�aticos (Univer-
sidad Polit�ecnica de Madrid, Spain).

overview of the project can be found in [14], and a complete description of the
MIX platform in [13]. To achieve the project goals, a �rst objective was conceived
from the beginning: symbolic-connectionist integration would be pursued within
a distributed framework for the cooperation of multiple heterogeneous agents.

Apart from the usual reasons for building a multiagent architecture, some
conditions were specially taken into account:

{ Modularity: Hybrid systems/models should be developed from basic building
blocks comprising symbolic and connectionist modules as well as other hard-
ware/software systems (e.g., data acquisition systems, statistical modules,
mechanical actuators, etc.)

{ Support for diverse integration schemes: This architecture should support
several integration schemes allowing di�erent levels of coupling (ranging from
loose to tight) among symbolic and connectionist processes.

{ Ease of integration: The overload imposed on researchers to integrate pre-
existing components in this architecture and to organise the interaction of
these components should be reduced to a minimum. In any case, such e�ort
should be fully justi�ed in terms of the inherent bene�ts of this approach.

This presentation of the MIX architecture starts from the de�nition of two
basic entities: the agents and the network through which they interact (see Figure
1). The basic functionalities and interfaces of the network constitutes our net-
work model (Section 2). Although di�erent agent models can be integrated, one
has been adopted as standard for the current implementation (Section 3). Then,
we introduce some features that make this platform specially adequate for sym-
bolic/connectionist hybridization. Section 5, on applications development, shows
how to build a simple cooperating hybrid system in the MIX framework. The
relationship between this and other multiagent systems is covered in Section 6.
Finally, we present some conclusions and our current research and development
directions.

2 The network model

The network model serves to provide the agents with a uniform view of the
network. A layered model has been de�ned, where two kinds of agents have been
considered:

{ Network agents: those which o�er services for maintaining the network.
{ Application agents: those intended to address a particular problem through
cooperation with other agents.

Three layers can be distinguished in the MIX network model (Figure 2):

{ Interface layer: provides the abstraction and encapsulation mechanisms
needed to isolate the agent itself from the net through which it interacts
with other agents. In particular, it o�ers a C++ API for accessing the net-
work and communicating via message-passing. This layer includes primitive

NETWORK

Agent

Agent

Agent

Agent

Agent

Agent

Fig. 1. The MIX multiagent architecture: network and agents

functions for message composition/extraction and delivery/reception with
di�erent synchronisation modes.

{ Message layer: implements the facilities for message composition and con-
tent extraction. A message consists of:

� Addresses of sender and addressee: At this level, agent names are trans-
lated into transport addresses.

� Speech act of the message: This represents the primitive interactions
available or understood by an agent according to a particular protocol:
request a service, answer a message, subscribe to the network, etc. The
complete set of permitted interactions involving any pair of (network or
application) agents constitutes the agent communication language.

� Body: This includes the arguments for the speci�ed speech act. It is
codi�ed by using a particular knowledge representation language.

� Knowledge representation language: The language used to codify the
body of the message can be declared explicitly.

{ Transport layer: is responsible for inter-networking, being implemented on
TCP/IP sockets. Other networking protocols (http, etc.) are being considered
for inclusion in future releases of the platform.

In the following, we will focus on the facilities o�ered by the message layer,
which is the core of the network model, the layer speci�c for inter-agent com-
munication. It interacts with the agent through the interface layer and deliv-
ers/receives messages to/from the network through the transport layer. This
layer o�ers three groups of facilities (modelled as speech acts) to standardise the
interactions between agents:

{ Network facilities: provide the means to log into/out of the network and
to receive information on the dynamic changes of the environment (mainly
agent connections and disconnections). This layer is managed by a network
agent, called the YP (Yellow Pages) agent, which is described below.

Coordination
Facilities

Knowledge
Facilities

Network
Facilities

Messageobject Facilities for message
composition/decomposition

MESSAGE LAYER

INTERFACE

LAYER

TRANSPORT

LAYER

AGENT
TCP/IP

Fig. 2. The Network Model

{ Coordination facilities: provide a limited set of speech acts for inter-agent
communication. It also includes some of the typical coordination mechanisms
of DAI, as Contract Net [20].

{ Knowledge facilities: provide support for ontologies. The current imple-
mentation only deals with a modi�ed version of CKRL [6].

2.1 Network facilities

We distinguish between the services o�ered by this layer, which can be con-
sidered general for a multiagent architecture, and the particular implementation
of these services in the current MIX Network Model. So, we start by enumerating
which services can be o�ered; then, we outline how they are carried out in our
architecture. This level o�ers the following services:

{ Logging-in/logging-out: Primitives are provided to subscribe/unsubscribe to
the network. An agent remains unknown to the rest of the agents, as long as
it is not subscribed to the network.

{ Register/unregister capabilities: These are intended for registering and unre-
gistering agent capabilities, so that other agents can request them.

{ Register/unregister required capabilities: Primitives are provided to state the
capabilities an agent is interested in. This allows the �ltering of the inform-
ation that an agent will receive about its environment.

{ Agent name server: This is needed in order to maintain and consult a data-
base with agent names and transport addresses.

{ Notify logging-in/logging-out: These provide a means of notifying the agents
about the incorporation to or the withdrawal of agents from the net.

{ Trading: This kind of service allows providers to advertise their services and
consumers to match their needs against the available services.

{ Management of agent groups: Maintaining groups of agents is useful for mul-
ticasting of messages. As the groups are dynamically constructed, some ser-
vices are required to subscribe/unsubscribe to/from a group.

{ Security management: Mechanisms are needed in general to encrypt/decrypt
messages and to avoid the interference of intrusive agents.

Di�erent strategies can be considered for o�ering the facilities listed above:

{ No network agent: Each agent has capabilities to register new agents.
When an agent is born, it must have some initial addresses to connect with.
An agent can inform the rest of the known agents of the birth/death of
agents. Every agent has to maintain locally agent names and addresses. We
could consider di�erent strategies: all the agents act as network agents, all
the agents compete against the others to become network agents, etc.

{ Centralised network agent: There is only one network agent which o�ers
all these facilities.

{ Distributed network agents: Instead of one, there is a federation of net-
work agents (as in ODP-Trader [1]). Groups of agents communicate with a
local network agent, and network agents can communicate between them-
selves to obtain/provide information from/to the rest of the network. In this
case, a protocol between network agents is needed.

The MIX network facilities. The approach followed in the current imple-
mentation of the MIX Network Model has been to de�ne one centralised network
agent, called the YP agent. The advantages of this approach are twofold. Firstly,
only one network address is a priori needed. Secondly, maintaining consistency
among the internal databases of the agents is easier.

The idea of a centralised network agent is not too restrictive in practice
regarding the number of agents that it will be able to manage. The MIX archi-
tecture has been designed from a problem solving perspective: only the agents
cooperating in solving the same problem should be registered in the same YP
agent. On the other hand, the functions of this agent in the MIX architecture
are limited to acting as an active information repository. YP informs the agents
on relevant changes in their environment, but inter-agent communications are
established directly between the agents involved, without YP mediation.

The two main consequences of this approach are the following:

{ The possibility of a communication bottleneck in the YP agent is negligible
for the range of applications developed until now (tens of agents).

{ A running set of agents can continue working in case of the failure of the YP
agent. In such a case, the application agents suppose that their environment
will never change.

Nevertheless, a protocol between di�erent YP agents is currently under study
and will be added to a future release of the platform. In this line, thanks to
the object oriented agent model, a �rst version of a federated YP agent has
been derived from the corresponding YP class in an application on intelligent
telecommunications network management.

The YP agent. The YP agent o�ers the following services (i.e., it understands
the following speech acts):

{ Check in: This service is used to log into the network, register capabilities
and register requested capabilities in order to be noti�ed about the agents
o�ering them.

{ Check out: Used to log out from the network, and to notify this fact to the
interested agents.

{ Subscribe to group/Unsubscribe from group: These services allows agents to
subscribe to a public group, and to receive the messages sent to this group.

The YP agent employs a strategy of informing without demand. The YP
agent takes charge of testing if the agents are alive. When an agent crashes, it
might have sent a Check out message or not, so YP should test periodically the
agents to maintain the consistency of its own database. It can also use some
heuristics. For instance, an agent could be considered alive if it has requested
something within some time period. On the contrary, an agent might be idle if it
does not accept connections.

2.2 Coordination facilities

This layer de�nes the set of permitted interactions (speech acts) between applic-
ation agents.

{ Ask for service is used to request a service. There are three possible ways
of synchronisation in which this primitive can be invoked: asynchronous,
synchronous, or deferred.

{ Answer is used for answering service petitions and for sending �nal results.
{ Partial results is used for sending partial results about a service petition.
{ Failure noti�es errors which do not allow the completion of a service.

There are also some primitives that implement a version of the Contract Net
protocol. An agent may be interested in requesting a service from several agents
in order to select the best o�er(s). To do so, it sends a message to the group with
the primitive Ask for service with cost. The agents willing to perform it, must
reply with a cost �gure (via the primitive Answer cost). Cost may have di�erent
interpretations: price charged to the petitioner, estimation of the error made
when performing the service, estimation of resources consumed (e.g., completion
time), etc. The agent which sends the advertisement will select (according to a
prede�ned evaluation function) some agent(s) to perform the service (via Ack)
and will reject the other o�ers (via Nack). Then, the contracted agents can send
back the results by using the primitive Answer, or can report error conditions via
the primitive Failure or incremental/partial results via Partial results.

2.3 Knowledge facilities

Two main functions can be distinguished regarding knowledge facilities:

{ Providing a transparent interface between objects and knowledge descrip-
tions. The MIX platform o�ers a set of tools to manage CKRL descriptions.

{ Providing some primitives to access knowledge bases of other agents (as-
sert/retract a fact, send a query, etc.) These primitives have not been fully
implemented yet. We are now working on the development of a knowledge
based agent integrated in the architecture and implemented in CLIPS [12].

{ Providing mechanisms for the management of ontologies. Agents can interact
because they share ontologies. An ontology is a description of concepts in
a particular knowledge representation language. The body of the messages
exchanged by agents is composed by chaining instances of these concepts.

3 The agent model

The MIX multiagent architecture can be considered heterogeneous in the sense
that agents built according to di�erent models can interact whenever they use the
interface layer of the network model for communication purposes. MIX agents
are autonomous entities capable of pursuing particular goals, o�ering specialised
services to the rest of the world (its environment), and demanding services from
other agents.

The MIX platform allows the easy implementation of agents following a
modi�ed version of the concurrent, object-oriented agent model proposed by
Dom��nguez [7]. The main feature of this model is the way in which agents carry
out services: when an agent receives a service petition and decides to perform
it, the agent creates a concurrent process which executes the service. The agent
only checks the incoming messages and creates the respective processes if needed.
The internal components of an agent, depicted in Figure 3, are the following:

{ Internal database:
� Environment Model: stores the dynamic environment of the agent: YP
agent address, addresses of agents o�ering services that it may need, or
included in interesting public groups, etc.

� Self-Model: stores the information about the agent itself (services o�ered
and required, public and private groups, etc.)

� Process Management: stores low-level information on attached processes.
� Private Objects (described in 3.4).

{ Mailbox: is the place where all the incoming messages are deposited.
{ Control: determines the overall behaviour of the agent. (See Section 3.5.)

To specify the structure of these agents, a specialised language has been
designed: ADL (Agent Description Language). The ADL speci�cation of an agent
includes these elements: services, goals, resources, internal objects and control.
Besides this, ADL allows the organisation of agents in a hierarchy of classes.

3.1 Services

A typical agent o�ers services to other agents. Each agent can execute a set of
actions (by calling library functions or external programs) that may be requested
by other agents. These actions may be executed in a concurrent or non-concurrent
way. The �rst method implies starting a new process for carrying out the task. So,
it allows the agent to continue its internal working (taking care of new incoming
messages and executing new services). The second method blocks the agent,

CONTROL

Destination
Policy

Service
Policy

Network
Listen

AGENT OBJECT

Self-ModelEnvironment Model

Private Objects

DATABASE

COMMUNICATION

Network
Management

Mailbox

Process
Management

Mailbox
Policy

Fig. 3. The agent model

stopping its control loop, as a way to assure a perfect control over the global
agent activity or as a means to improving e�ciency.

Services are demanded and delivered through message passing protocols. One
of the available protocols is Contract Net. To use this protocol, it is necessary
that services have an associated cost function. In this way, agents that receive
a service petition according to this protocol, evaluate the cost of serving this
petition by using a programmed criterion (function), and send back the result to
the agent that demanded the service. The petitioner decides, by analysing these
results, the agent or agents that will get the contract to carry out the service
(contract policy).

According to the communication mechanism, service petitions can be: syn-
chronous, asynchronous or deferred. On the other hand, a service petition can be
addressed to:

{ an individual agent.
{ a public group of agents, i.e. an alias whose composition (variable, depending
on a subscription mechanism) is handled by the YP agent.

{ a private group of agents, i.e. a private alias. Private groups are shorthands
useful for services programming.

{ every agent o�ering the service in the application (broadcasting).

3.2 Goals

Every agent may have their own goals: tasks that are carried out under its own
initiative, not to serve a petition made by another agent. Goals can be implemen-
ted through library functions or external programs but, unlike services, they are
started up at birth. Special functions can be included for execution upon success

or failure of a goal. Regarding the presence or not of particular goals, we can
talk about reactive and proactive agents. Reactive agents have no inherent goal.
They just work on demand, o�ering their services to others. On the contrary,
proactive agents have at least one goal.

3.3 Resources

It is appropriate to distinguish between two di�erent concepts: the environment
and the resources of an agent. We call environment the dynamic knowledge that
any agent has about the services that are o�ered by other agents and their ad-
dresses. This environment is automatically handled by the agent, through com-
munication with its YP agent, as described above.

On the other hand, resources refer to the static, a priori knowledge that the
programmer at the agent level (the ADL programmer) has to specify. Resources
include, among others, the following items:

{ Required services: If an agent has to send service petitions to others, they
have to be declared, along with:
� the contract policy to follow in case of multiple bids (positive answers)
when the Contract Net protocol is used.

� a time-out, after which no more answers are taken into account.
� the number of retries (if no answer has been received before time-out).

{ Required/subscribed groups.
{ Required ontologies.

3.4 Internal objects

Every agent may have its own internal data (internal objects). Such data can be
speci�ed as instances of library classes or as instances of concepts in an ontology.
They are used for information storing between successive calls for any service or
for data exchanging among several services.

3.5 Control

Three aspects of the control component of an agent can be modi�ed in ADL:

{ Mailbox management policy: determines which message will be the �rst one
selected for processing. The standard manager uses a FIFO criterion. This
function can be used to implement a priority scheme.

{ Service policy: is used to implement di�erent criteria regarding the attention
to service petitions. The standard service policy follows an eager algorithm,
that tries to serve every external petition. However, alternative policies are
also possible; for instance, rejecting petitions when the agent's performance
is low (due, for example, to overload) or when they come from outside the
local network where the agent is running.

{ Destination policy: the standard destination function may broadcast a service
petition to every agent known to be o�ering it. The destination function may
be used to restrict this policy to select, for instance, only the nearest agents
or those satisfying special conditions.

4 The MIX platform: Tools for hybridization

Regarding hybridization, this platform o�ers some special facilities to implement
a particular hybrid system by means of loose or tight coupling techniques.

For instance, for prototyping purposes, it can be useful to implement a �rst
version of a hybrid system by using a set of loosely coupled agents. Each one of
them may encapsulate a symbolic or connectionist system o�ering some services.
In this way, we can encapsulate, for instance, a neural network as an agent
o�ering the following services: Training, Set weights, Give output, Give error, etc.

Let's suppose now that, due to reasons of ine�ciency, a tighter level of in-
tegration is needed. To do this, ADL permits the de�nition of a strongly coupled
society, which merges a set of separate agents into just one, thus replacing the ini-
tial communication mechanism between the agents (message-passing) with direct
access to variables in memory. This change is transparent to the service program-
mer, thus facilitating experimentation with di�erent integration levels.

5 Study case: a control application

In the following, the ADL speci�cation of a simple cooperative control application
is developed. Let's suppose that the data acquisition system of an industrial plant
�lters and aggregates signals coming from sensors to deliver a vector of norm-
alised variables (context vector). Taking this vector as input, a control manager
has to propose values for operation variables (operation vector), based on the
suggestions received from di�erent modules that implement di�erent optimisa-
tion techniques (neural, statistical, fuzzy, etc.) These suggestions are previously
sent to a prediction system (a more or less accurate model of the plant), and
evaluated.

An agent-oriented model of this application is shown in �gure 4. The problem
is modelled by using the following set of agents. Collector provides �ltered and
normalised context vectors to the Manager upon demand. This agent asks for
control actions to a set of controllers Controller 1, : : : , Controller n according
to the Contract Net protocol. The contracted controllers elaborate an operation
vector that is sent, along with the context vector, to Predictor for calculating the
context vector at instant t+1.With this information, the controllers ask Evaluator
for an estimation of the e�ectiveness of their respective suggestions according to
a prede�ned criterion. Depending on the results available, the Manager displays
the best operation plan to a human operator. The ADL code of this application
is shown in Appendix A.

YP_Agent

Predictor

Controller

Evaluator

predict_effect

give_sample

n

Controller
2

Controller
1

evaluate_effect

suggest_action

.
.
.

Collector Manager

Fig. 4. An open-loop control application

6 Comparison with other approaches

One of the main contributions of the MIX architecture is the explicit distinction
between agent model and network model. This distinction allows the integration
of di�erent agent models in a uniform way (i.e., our multiagent architecture
is open). Our approach distinguishes between network agents, that provide the
network facilities, and application agents, that can be implemented according to
di�erent models (i.e. agent models such as [3, 4, 16, 17, 19]). In spite of this,
the agent models in many architectures include most of the layers de�ned in our
network model [3].

Our architecture is also related with the architecture in [17], though our model
is not based on cognitive psychology:

{ Both architectures share the usage of a network agent (YP/FA, Facilitator
Agent). In both cases, agent interaction is based on service requests, and a
contract net protocol is o�ered.

{ Our agent model distinguishes between the agent-object and the processes
that are executed to serve petitions and that share some of the knowledge
of the agent. There are some similarities between our agent-object and the
SIAs (Senior Intelligent Agents) and between our service-object and the JIAs
(Junior Intelligent Agents). However, in our architecture only agents are
registered. In this way, the communication load is decreased.

{ The competence energy level of the SIAs could be interpreted as a particular
\destination policy": an agent (FA or JIA) requests a service from the JIA
having the highest energy level. The concept is global in this architecture
(registered in the FAs) but local in our architecture (di�erent agents can have

di�erent destination policies according to other criteria: select the agents in
the same organisation, the cheapest ones, etc.).

{ The degree of parallelism obtained via agent-cloning is lower than the paral-
lelism obtained between an agent and its concurrent services (which can ac-
cess common databases), specially if services are implemented with threads.

The agent model proposed by Dom��nguez has a direct relationship with works
on object oriented concurrent programming. In particular, it employs the same
synchronisation mechanisms that ABCL [28].

Some agent programming languages such as MAIL [21] and MAPL [18] use
a process-oriented concurrent language between a general purpose language (C,
Lisp,...) and the agent programming language. In contrast, ADL is translated
directly to C++, and all the procedures associated to an agent are also written
in C++. An API of the agents library is provided, and several tools to make
transparent the use of knowledge structures (in CKRL).

ADL is also related with AgentSpeak [25]. Though the agent models are quite
di�erent, the agent programming language is quite similar. The main di�erences
are in the absence of plans in ADL, and in the absence of a network model and
agent policies in AgentSpeak.

Regarding the MIX network model, it is related to EMMA [22], I^3 [10]
and HISML[24], though it does not deal with database access nor event-based
interactions.

The message format is similar to the KQML [8] one, facilitating a future
integration of KQML.

7 Conclusions and future work

The multiagent architecture presented in this paper is built around a network
model and an agent model. This separation helps to clarify the relationship
between network agents, existent in most of the multiagent architectures, and
application agents. The network model allows the integration of di�erent agent
models in an open framework.

The agent model of the architecture provides a great degree of parallelism
in task execution. The agent can be seen as the monitor of a blackboard sys-
tem where the di�erent services share the internal objects of the agent, and the
monitor of the blackboard takes charge of creating these services. The agent can
handle two kinds of groups of agents: public groups, managed via subscription,
and private groups, particular to each agent.

The MIX multiagent toolbox consists of several tools for building multiagent
architectures:

{ MSM C++ library: This o�ers the basic low-level functionality of the plat-
form, including all the typical mechanisms of multiagent libraries and general
purpose objects and functions.

{ ADL compiler: This translates the ADL description of a particular set of
agents into a set of independent executable programs (one program per

agent). These agents can cooperate in the same application, possibly together
with other agents compiled in the same or other machines in a distributed
and heterogeneous environment. In this task, it will use the following two
complementary tools listed below.

{ CKRL toolbox: This translates both CKRL descriptions to C++ classes and
objects, and C++ objects to CKRL descriptions.

{ Standard ADL agent de�nitions and CKRL ontologies.

We are currently working on the coordination facilities, extending the co-
operative performatives, and studying the integration of emergent standards as
KQML. Another line of development is the integration of other knowledge rep-
resentation languages such as KIF [9] and COOL[12].

The platform is currently being used by the MIX consortium to test di�er-
ent hybrid models for three applications. The �rst one is the optimisation of a
motor/gear-box combination for a turbo-charged engine. The second one is re-
garding of the control of a roll-mill for a steel company. The last application
pertains to the medical domain: a monitoring system for an intensive care unit.
The hybrid models considered include the integration of neural and symbolic
components. From the symbolic part, the following reasoning paradigms are be-
ing applied: fuzzy, probabilistic, case-based, rule-based and model-based.

The platform is also being applied by our group in other areas, as natural
language processing, intelligent network management and process control in fossil
power plants [23].

8 Acknowledgements

This work would have never been done without the experience accumulated dur-
ing years and the tools developed by Mercedes Garijo and Tom�as Dom��nguez
in their Multiagent System Model, that constitutes the basis for the MIX agent
model. We are also indebted to Jaime Alvarez and Andr�es Escobero (from our
group) and Marc Vuilleumier (from Universit�e de Gen�eve, Switzerland) for their
contribution to the implementation of the platform. Finally, we thank Michael
Wooldridge and two anonymous referees for their careful review of an earlier
version of this chapter.

A Appendix: ADL code for the control application

Here follows the ADL speci�cation of the control application explained in 5.

#DOMAIN "atal-example"
#YP_SERVER "tcp://madrazo.gsi.dit.upm.es:6050"
#COMM_LANGUAGE ckrl
#ONTOLOGY "example.ckrl"

AGENT YP_Agent -> YP_Class
END YP_Agent

AGENT Manager -> Basic_Class
RESOURCES

REQ_LIBRARIES: "manager_funct.C"
REQ_SERVICES:

give_sample;
give_suggestion

CONTRACT_POLICY Eval_Function
REQ_MSG_STRUCT example::error_estim

GOALS
start_control: CONCURRENT Start_Function

END Manager

AGENT Collector -> Basic_Class
RESOURCES

REQ_LIBRARIES: "collec_funct.C"
GOALS

get_data: CONCURRENT Get_Data_Function
SERVICES

give_sample: Give_Sample_Function
ANS_MSG_STRUCT example::Vector

END Collector

AGENT Predictor -> Basic_Class
RESOURCES

REQ_LIBRARIES: "predict_funct.C"
SERVICES

predict_effect: Predict_Effect_Function
REQ_MES_STRUCT example::context_vector;

example::operation_vector
ANS_MES_STRUCT example::context_vector

END Predictor

AGENT Evaluator -> Basic_Class
RESOURCES

REQ_LIBRARIES: "eval_funct.C"
SERVICES

evaluate_effect: Evaulate_Effect_Function
REQ_MES_STRUCT example::context_vector;

example::context_vector
ANS_MES_STRUCT example::evaluation_result

END Evaluator

CLASS Controller_Class -> Basic_Class
RESOURCES

REQ_SERVICES: predict_effect,evaluate_effect
SUBSCRIBE_TO: Learning_Group

SERVICES
give_suggestion: Give_Sugg_Function

REQ_MES_STRUCT example::context_vector
ANS_MES_STRUCT example::operation_vector;

example::evaluation_result
COST Error_Estimation_Function

ANS_MES_STRUCT example::error-estim
END Controller_Class

AGENT Controller_1 -> Controller_Class
RESOURCES

REQ_LIBRARIES: "fuzzy_control.C"
END Controller_1

AGENT Controller_2 -> Controller_Class
RESOURCES

REQ_LIBRARIES: "neural_control.C"
END Controller_2
.....

References

1. Nicholas M. Avouris and Les Gasser, editors. Distributed Arti�cial Intelligence:
Theory and Praxis, volume 5 of Computer and Information Science. Kluwer Aca-
demic Publishers, 1992.

2. M. Barbuceanu and M. S. Fox. The architecture of an agent building shell. In
Wooldridge et al. [26]. (In this volume).

3. R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences with an
architecture for intelligent, reactive agents. In Wooldridge et al. [26]. (In this
volume).

4. Alan H. Bond and Les Gasser, editors. Readings in Distributed Arti�cial Intelli-
gence. Morgan Kaufmann, 1988.

5. K. Causse et al. Final discussion of the Common Knowledge Representation Lan-
guage (CKRL). Deliverable D2.3, MLT Consortium, ESPRIT project 2154, May
1993.

6. Tom�as Dom��nguez. De�nici�on de un Modelo Concurrente Orientado a Objetos
para Sistemas Multiagente. PhD thesis, Dep. Ingenier��a de Sistemas Telem�aticos,
E.T.S.I. Telecomunicaci�on, Universidad Polit�ecnica de Madrid, 1992.

7. T. Finin and R. Fritzson. KQML | a language and protocol for knowledge and
information exchange. In Proceedings of the Thirteenth International Workshop on
Distributed Arti�cial Intelligence, pages 126{136, Lake Quinalt, WA, July 1994.

8. M. Genesereth, R. Fikes, et al. Knowledge Interchange Format, version 3.0. Ref-
erence manual. Technical report, Computer Science Department, Stanford Uni-
versity, 1992.

9. Michael R. Genesereth, Dave Gunning, Rick Hull, Larry Kerschberg, Roger King,
Bob Neches, and Gio Wiederhold. Reference architecture I^3 intelligent integration
of information program. Draft, January 1995.

10. Michael R. Genesereth, Narinder P. Singh, and Mustafa A. Syed. A distributed
and anonymous knowledge sharing approach to software interoperation. In Proceed-
ings of the Third International Conference on Information and Knowledge Man-
agement, CIKM'94, November 1994.

11. Giarratano and Riley. Clips Manuals version 6.0. Software Technology Branch -
Lyndon B. Johnson Space Center, 1993.

12. Jos�e C. Gonz�alez, Juan R. Velasco, Carlos A. Iglesias, Jaime Alvarez, and Andr�es
Escobero. A multiagent architecture for symbolic-connectionist integration. Tech-
nical Report MIX/WP1/UPM/3.0, Dep. Ingenier��a de Sistemas Telem�aticos,
E.T.S.I. Telecomunicaci�on, Universidad Polit�ecnica de Madrid, December 1994.

13. Melanie Hilario, Christian Pellegrini, and Fr�ed�eric Alexandre. Modular integra-
tion of connectionist and symbolic processing in knowledge-based systems. In
Proceedings of the International Symposium on Integrating Knowledge and Neural
Heuristics, pages 123{132, Pensacola, Florida, May 1994.

14. ISO/IEC JTC1/SC 21. Draft recommendation X.9tr: ODP trading function
ISO/IEC DIS 13235. Technical report, May 1995.

15. Larry R. Medsker. Hybrid Intelligent Systems. Kluwer Academic Publishers, 1995.
16. J. P. M�uller. A markovian model for interaction among behavior-based agents. In

Wooldridge et al. [26]. (In this volume).
17. S.-J. Pelletier and J.-F. Arcand. Cognitive based multiagent architecture. In

Wooldridge et al. [26]. (In this volume).
18. Agostino Poggi. DAISY: an object-oriented system for distributed arti�cial intel-

ligence. In Wooldridge and Jennings [27], pages 297{306.
19. A. Sloman and R. Poli. SIM AGENT: A toolkit for exploring agent designs. In

Wooldridge et al. [26]. (In this volume).
20. Reid G. Smith. The contract net protocol: High-level communication and control

in a distributed problem solver. In Bond and Gasser [5], pages 357{366.
21. D. D. Steiner, A. Burt, M. Kolb, and Ch. Lerin. The conceptual framework of

MAI2L. In Pre-Proceedings of MAAMAW'93, Neuchâtel, Switzerland, August
1993.

22. Katia Sycara and Michael Roboam. Distributed Arti�cial Intelligence: Theory and
Praxis, chapter 2. EMMA: An Architecture for Enterprise Modeling and Integra-
tion, pages 197{213. Volume 5 of Avouris and Gasser [2], 1992.

23. Juan R. Velasco, Jos�e C. Gonz�alez, Carlos A. Iglesias, and Luis Magdalena. Mul-
tiagent based control systems: a hybrid approach to distributed process control. In
A.E.K. Sahraoui and J.A. de la Puente, editors, Preprints of the 13th IFAC Work-
shop on Distributed Computer Control Systems, DCCS-95, pages 7{12, Toulouse,
France, September 1995.

24. Sankar Virdhagriswaran. Heterogeneous information systems integration - an agent
messaging based approach. In Proceedings of the Third International Conference
on Information and Knowledge Management (CIKM'94), November 1994.

25. D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a concurrent agent-
oriented language. In M. Wooldridge and N. R. Jennings, editors, Intelligent
Agents: Theories, Architectures, and Languages (LNAI Volume 890), pages 386{
402. Springer-Verlag: Heidelberg, Germany, January 1995.

26. M. Wooldridge, J. P. M�uller, and M. Tambe, editors. Intelligent Agents Volume II
| Proceedings of the 1995 Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-95), volume ??? of Lecture Notes in Arti�cial Intelligence. Springer-
Verlag, 1996. (In this volume).

27. Michael Wooldridge and Nicholas Jennings, editors. Agent theories, architectures,
and languages, Amsterdam, The Netherlands, August 1994. ECAI.

28. Akinori Yonezawa and Etsuya Shibayama. Object-oriented concurrent program-
ming in ABCL/1. In Bond and Gasser [5], pages 434{445.

This article was processed using the LATEX macro package with LLNCS style

