
Combining Domain Driven Design and Mashups
for Service Development

Carlos A. Iglesias, José I. Fernández-Villamor, David del Pozo, Luca Garulli and
Boni Garcı́a

Abstract This chapter presents the Romulus project approach to Service Devel-
opment using Java web technologies. Romulus aims at improving productivity in
service development by providing a tool-supported model to conceive Java Web
Applications. This model follows a Domain Driven Design approach, which states
that the primary focus of software projects should be the core domain and domain
logic. Romulus proposes a tool-supported model, Roma Metaframework, that pro-
vides an abstraction layer on top on existing web frameworks and automates the
application generation from the domain model.This metaframework follows an ob-
ject centric orientation, and complements Domain Driven Design by identifying the
most common cross-cutting concerns (security, service, view, ...) in web applica-
tions. The metaframework uses annotations for enriching the domain model with
these cross-cutting concerns, so-called aspects. In addition, the chapter presents the
usage of mashup technology in the metaframework for service composition, using a
web mashup editor MyCocktail. This approach is applied to a scenario of the Mobile
Phone Service Portability case study for the development of a new service.

Carlos A. Iglesias
Informática Gesfor, Av. Manoteras, 32 - 28040 Madrid (Spain), e-mail: cif@germinus.com

José Ignacio Fernández-Villamor
Universidad Politécnica de Madrid, ETSI Telecomunicación, Ciudad Universitaria s/n - 28050
Madrid (Spain), e-mail: jifv@gsi.dit.upm.es

David del Pozo
Informática Gesfor, Av. Manoteras, 32 - 28040 Madrid (Spain), e-mail: dpozo@grupogesfor.com

Luca Garulli
AssetData S.r.l., Via Rhodesia, 34 - 00144 Rome (Italy), e-mail: luca.garulli@assetdata.it

Boni Garcı́a
Universidad Politécnica de Madrid, ETSI Telecomunicación, Ciudad Universitaria s/n - 28050
Madrid (Spain), e-mail: bgarcia@dit.upm.es

1



2 Carlos A. Iglesias et al.

1 Introduction

Web software development is one of the most active areas and fastest growing in-
dustries in software and services development in Europe, and, in particular, Java
Enterprise Edition is the mainstream European technology option for one million
European developers. Since web development is not still a mature area, the pro-
liferation of frameworks and components has both increased the required skills of
web engineers, and has affected considerably their productivity. For that reason, the
evolution of existing Java based web applications and services is a very hard and
time-consuming task.

Currently, the wide range of technologies and frameworks available for Java Web
Development gives it a wide range of attributes when compared to other solutions
that have emerged, such as Ruby on Rails. Nevertheless, this is also one of its main
shortcomings, as developers spend a substantial amount of time learning new tech-
nologies and frameworks and new versions of these frameworks, which in turn de-
creases productivity. In addition, simple tasks require too much coding. New solu-
tions such as Ruby on Rails have shown that web development can be easier, based
on important concepts, such as (1) conventions over configuration, (2) providing
a framework that automates up to 80 per cent of the most common tasks and (3)
a simple and modular MVC model for developing applications. Romulus aims to
learn from the lessons of Ruby on Rails and provide a productive solution based on
Java. Romulus is pushing to improve Java web development in several directions
such as improving the productivity with the provision of a Domain Driven Design
(DDD) Roma Metaframework and IDE integration, and involving soft goals in the
development process such as providing web and security testing facilities; and re-
search on how mashup technology can improve web development.

This chapter presents the DDD Roma Metaframework for improving productivity
in service development. Roma Metaframework follows an object centric approach
for conceiving services and applications. Then, the chapter presents how services
and mashups have been modeled in Roma Metaframework, with the purpose of
composing or customizing existing services, or developing new ones.

The chapter is structured as follows. First, Sect. 2 collects the Mobile Phone
Service Portability (MPSP) case study. In particular we are interesting in the invita-
tion service, which is used throughout the chapter to show how Romulus addresses
service development. Then, Sect. 3 outlines the main steps to develop a service in
Romulus. Sect. 4 overviews the main DDD principles and their application. Next,
Sect. 5 describes the design and model of Roma Metaframework, a tool supported
environment developed in Romulus. Sect. 6 details how Roma has taken advantage
of mashup technology for service composition providing a uniform view for En-
terprise and Web mashups. Finally, Sect. 7 and 8 conclude with comparison with
existing related work and the main conclusions of the chapter.



Combining Domain Driven Design and Mashups for Service Development 3

2 Case study

One of the most common complaints from business development and marketing
units is that engineering units fail in providing a suitable “time-to-market” solution
when developing new services. The MPSP includes two scenarios, TELCO BG O5
and TELCO S 03 that deal with this topic: how can we speed up service develop-
ment?

The scenario described in TELCO S 03, here reproduced, is detailed in this sec-
tion.

Case Study: New Service for Promotions
The innovation department of the telecom company decides to launch a

new service which offers their customers a promotion to see free pay-per view
movies. Customers can send up to 10 invitations to their friends of a social
network to watch one free movie per invitation. Customers should select both
the friends as the movies, and can add a message to the invitation. Friends can
accept the invitation, which includes providing some marketing info. Once the
friends accept the invitation, the customer is also allowed to see the movie.
The service will provide a set of reports about the success of the promotion
based on the collected marketing data.

In order to analyze this scenario in detail, a use case diagram is shown in Fig. 1,
which collects the usage scenarios as well as the actors identified, which are speci-
fied in Table 1.

Fig. 1 Use case Diagram of the Invitation Service

For the purpose of this chapter, we are going to develop in detail just one of these
use cases, the use case Invite Friend, which is described in Table 2 and Fig. 2.



4 Carlos A. Iglesias et al.

Field Description
Inviter: Customer of the Telco company who participates in the Invitation Service.
Invitee: Friends from the Inviter who receive the invitation to participate in the service.

Although it is not explicitly stated in the service description, it is assumed that
the Invitees are not customers of the telco company yet.

Marketing: Staff from the telco company responsible for launching the service and analyz-
ing its impact.

Table 1 Actors dictionary

Field Description
Unique ID: UC IS 01
Use Case
Name:

Invite Friend

Related to: TELCO S 03
Summary:
Actors: Inviter, Invitee
Preconditions: The Inviter is a customer of the telco company.
Triggers: The telco sends a message presenting the promotion and giving access to

the Inviter application
Steps:

1. Inviter receives the promotional message from the telco company.
2. In case Inviter is interested in the promotion, Inviter accesses to a web

application where he can select his friends and movies to send the invi-
tation.

3. The system checks the invitation and recipient info, the maximum invi-
tations allowed in the promotion, and if the email of invitee is correct.

4. In case any Invitee confirms the invitation, the inviter receives a free
access to a movie.

Alternatives:
1. If Inviter is not interested in the promotion, after receiving the promo-

tion, the service does not start.
2. If the recipient address is wrong, the system notifies Inviter.
3. If Inviter sends more than 10 invitations, the Inviter receives a message

pointing out that he has reached the allowed limit.
4. It can be assumed that the promotion code expires after some period. If

an invitee accepts the invitation after the expiration deadline, the service
will notify inviter and invitee about this issue, without contacting the
Billing WS.

Postconditions: If the use case succeeds, the following postconditions are met:

1. Inviter has free access to so many movies as invitees have accepted the
promotion.

2. Invitees accepting the promotion have free access to the movie selected
by the Inviter.

3. Telco company has collected marketing data from Invitees.

Additional ma-
terial:

See Fig. 2.

Table 2 Use case Invite Friend



Combining Domain Driven Design and Mashups for Service Development 5

Fig. 2 Activity Diagram of Invitation Service

3 The Romulus approach

Romulus (Domain Driven Design and Mashup Oriented Development based on
Open Source Java Metaframework for Pragmatic, Reliable and Secure Web De-
velopment) [42] is a European R&D project whose aim is improving productivity,
reliability and security of Java Web Applications. With this purpose, the Romulus
consortium has combined industrial partners, such as Informática Gesfor (Spain),
Asset Data (Italy), IMola Informatica (Italy) and Liferay (Germany), as well as aca-
demic partners such as Universidad Politécnica de Madrid (Spain), NUIG-DERI
(Ireland) and ICI (Romania).

This chapter presents Roma Metaframework (Sect. 5) and MyCocktail, the Ro-
mulus Mashup Builder tool 6.2, developed within the project Romulus.

Romulus is focused on the definition of a tool-supported lightweight process
that simplifies Java web development. The process for developing applications and
services is outlined in Fig. 3.

The first step in Romulus is the definition of a domain model, which is built using
DDD principles. Before building the domain model, the bounded context of the
model is identified using service oriented principles. The overall service landscape is



6 Carlos A. Iglesias et al.

Fig. 3 Romulus Approach to Service development

determined and scoped. Then, the domain model is created to identify and document
the key entities and the common domain vocabulary, shared among all the domain
stakeholders.

The second step consists of transforming the domain model in annotating the do-
main model using attribute oriented programming. This step is supported by Roma
Metaframework, which provides an abstraction layer for integrating cross-cutting
concerns (aspects) in the service. This allows to isolate the domain model from the
cross-cutting concerns. An additional advantage of the metaframework is that it pro-
vides a generic interface to some of the most popular web frameworks, which also
isolates the application from a particular technology.

The third step involves coding, adding Roma modules that implement the Roma
aspects, and execute and test the application. This step may include the development
of services using Enterprise Mashup or Web Mashup facilities.

The main benefit of this approach is that Roma provides a uniform, consistent
and stable environment to the developer, reducing the technological complexity. In
this way, the developer can focus on modeling and understanding complex domains.
In addition, the concept of metaframework reduces the risk of technological selec-
tions, since applications and services can evolve to other technologies without mod-
ifying the original application, and only a module for that new technology should
be developed or used in case it is already available.



Combining Domain Driven Design and Mashups for Service Development 7

4 Domain Driven Design

4.1 Overview

The term Domain Driven Design (DDD) was coined by Eric Evans in his homony-
mous book [15]. The basic idea of DDD is that engineers should focus not in the
technology they use, but in the understanding of the application model. Under-
standing the system to be developed is the main problem for succeeding in soft-
ware projects. Traditional software engineering has put emphasis on analysis mod-
els based on UML notation, while Agile methodologies have focused on the code
itself. DDD proposes a trade-off solution: its model driven approach is based on
agreeing on a common language which describes the model and can be assisted by
graphical notations. In addition, this model should be maintained very close to its
implementation. Its main characteristics are:

• An ubiquitous language [15] should be used throughout the development. An
ubiquitous language is a language that is shared between technicians and domain
experts. DDD encourages the usage of this common vocabulary and terminology
for building the domain model, which can be extended and understood by techni-
cians and domain experts without extra-translations, resulting in richer semantic
models. Although graphical models with notations such as UML can help in the
communication, the primary description of the model should be explicit with
natural language using the ubiquitous language.

• The model should be a rich semantic model, where objects have behavior and
enforced rules, instead of just a database schema. The purpose is that domain ex-
perts should be able to feed the model with their deep knowledge of the business.

• The model should be bound to its implementation. Instead of maintaining an anal-
ysis model disconnected from its code, DDD proposes to describe the model in a
way that the mapping with the code is straightforward. In order to maintain this
close mapping, DDD organizes the application in a layered architecture, which
offers the building blocks of the domain. In addition, DDD promotes the usage
of design patterns (value objects, repositories, etc.) and refactoring techniques.

Romulus follows a full DDD approach to applications and service development.

Context identification

The goal of this preliminary task is the identification of the bounded context of
the domain model, in order to define explicitly the context in which the model is
applicable as well as the relationships of the domain model with external systems.
With this purpose, a service oriented approach is followed, and the service landscape
is determined. A Service Engineering Methodology such as the one by Bayer [6] can
be used with this end. Nevertheless, the lack of a rich domain modeling can lead to



8 Carlos A. Iglesias et al.

a Fat Service Layer [38] or an Anemic Domain Model [38, 17], with duplicated
objects and business logic is distributed among multiple objects.

The need of including domain modeling in service modeling has also been
pointed out previously. Boroumand [7] declares “service-orientation and object-
orientation are not the same. Each is distinct with its own goals and approaches.
However, by understanding that one has roots in the other, we can leverage es-
tablished practices and techniques and incorporate them”. Her proposal extends
MSOAM (Mainstream SOA Methodology) [1] with RUP (Rational Unified Pro-
cess) [28].

Domain Model Design

The purpose of this activity is the design of the domain model, using a common
vocabulary (ubiquitous language) which facilitates the communication among tech-
nical and business stakeholders.

The activity starts with the development of an initial design based on users’ in-
dications. This initial class diagram should include all the elements required to de-
velop the task on progress.

Then, the initial design is refactored through the application of DDD patterns
and best practices, and keeping the original functionality. Next, a set of steps are
exposed in order to refactor the initial domain model.

1. Analyzing associations: An association establishes a relationship among two or
more objects. The model has to be as simple as possible and avoiding complicate
associations is a good mechanism to achieve this. Some ideas to simplify asso-
ciations are: imposing a direction; adding a qualifier, reducing multiplicity; and
eliminating non-essential associations.

2. Entities, value objects and services: The model must be clear, distinguishing be-
tween entities and value objects. An entity is a fundamental concept: it requires
an unique attribute to identify it because its state can change during software
execution. Meanwhile, a value object only describes a characteristic of the do-
main. A value object has no identity and can be shared. In some cases, making it
immutable improves implementation features.
Finally, in a domain model there are services. These represent processes that are
not responsible of any entity or value object in particular. But sometimes services
are overused and functions that correspond to the business logic of an object are
implemented as a service. A good practice to avoid this situation is to use a verb
to name the service.

3. Using aggregations: An aggregation is made up of a set of associated objects,
but only one of those (the root) can be referenced by objects that are outside the
aggregation. The objects involved in an aggregation acts as a unit, facilitating the
management of complex associations between objects.

4. Selecting repositories: Another pattern to get a good domain model is the use
of repositories. A repository manages the storage of a concrete type of objects.
It implies the implementation of typical operations over a database like adding,



Combining Domain Driven Design and Mashups for Service Development 9

editing and removing elements and querying facilities. Repositories are domain
objects associated with an aggregate that manage the data storage and retrieval,
abstracting persistence mechanisms required to perform these operations.

5. Using factories to create objects: Another issue to consider is the object creation
and the possibility of using factories for this purpose. A factory defines the cre-
ation process of an object. Using a factory is useful only when the object to create
is complex. In the rest of cases its use can complicate the process and it is better
to use a simple constructor.
A factory for a value object is not the same thing as a factory for an entity. In the
first case, the factory has to completely define the process of creation, because
value objects are immutable and they need to be fully described since their cre-
ation. Meanwhile, the state of an entity can change during software execution,
and its factory only has to define some characteristics of it. Especially, we cannot
forget its identifying attributes.

6. Validating the model: At this point, using several scenarios to confirm that the
model fits the requirements is a good practice to go ahead with security. We must
ensure that tasks to develop in this iteration can be implemented.

7. Dividing the model into modules: In the development of an enterprise applica-
tion, the collaboration of many people that work in parallel is required, being
necessary to divide the domain model into a set of modules. In order to maintain
the integrity of the system, each module has to be defined with a bounded con-
text. There has to be a continuous integration and it is also advisable to represent
the relationships among the models involved in the system in a map context.

4.2 Case study

The case study involves the interaction of several external services, including a
movie renting facility, a social network, a billing service and a SMS messaging
service. Based on Fig. 2, several services can be identified that interact with the
envisioned Invitation service, as shown in Fig. 4.

Fig. 4 Service landscape of the Invitation Service



10 Carlos A. Iglesias et al.

The invitation service should provide two different user interfaces, one for the
Inviter and another one for the Invitees. The interactions of the Invitation Service
with the services identified are shown in Fig. 5.

Fig. 5 Interaction Diagram for the Inviter Application

Once the service landscape for the considered bounded context has been ana-
lyzed, the next step is the domain design of the service. In this step, domain elements
of the service model are identified (therefore creating an ubiquitous language) and
modeled. This will produce the domain model of the bounded context.

The service model that can be seen in Fig. 4 involves several concepts that com-
prise the ubiquitous language of the domain model:

• Promotion. This is a promotion set by the telco company. It is associated with a
set of invitations. Initially, one invitation is sent to a user, who can create more
invitations up to a maximum number that is set in the promotion.

• Invitation. This is the invitation that a user receives from another user. It is asso-
ciated with a movie. It also has a creation date, which determines expiration, and
a state, that represents if the invitation has been rejected or accepted.

• Movie. This represents the movie that can be watched by invitees.
• SMS. This represents the messages that are sent to each user and which contain

the invitations. They are sent by a user to another user.
• User. A user is the Invitation Service user that can potentially send and receive

invitations.
• Statistics. These are the statistics that can be retrieved from the Invitation Service,

and which are thus associated with a promotion.

The next step is identifying entities and value objects. On the one hand, entities
are objects that have an identity, and therefore require an internal ID to identify
them. On the other hand, value objects are identified by the value of their attributes.



Combining Domain Driven Design and Mashups for Service Development 11

In our domain model, movies, invitations, users, and promotions are entities, which
require an identifier in order to differentiate them. Therefore, two different movies
might have the same title, as well as two users could have the same name, while
being different objects. Statistics are value objects, since it is not necessary to track
the particular object with an identifier. Similarly, SMSs are value objects, as they
act only as temporary objects that are built in order to interact with the Messaging
Service.

Services were already identified previously, and typically consist of cross-cutting
operations that cannot be included in any particular class. The entities’ lifecycle de-
termines the domain model as well. The Invitation Service covers the promotions’
lifecycle, the Social Network Service covers the users’ lifecycle, and the Movie
Renting Service covers movies’ lifecycle. Invitations’ lifecycle needs to be man-
aged as well, so an InvitationFactory and an InvitationRepository should be defined,
which would allow invitations creation and storage, respectively. However, this is
not necessary in the Romulus Framework, as persistent objects are managed through
a Persistence Aspect, which abstracts these common operations. Finally, SMSs and
statistics are value objects and therefore do not require factories or repositories to
manage their lifecycle.

After creating an ubiquitous language, identifying entities and value objects, and
defining services, factories and repositories, the resulting domain model can be seen
in Fig. 6.

Fig. 6 Domain Model for the Invitation Service



12 Carlos A. Iglesias et al.

5 Roma metaframework

5.1 Roma overview

Romulus proposes that developers should be focused on understanding and devel-
oping a domain model as presented in the previous section. Then, thanks to the
usage of Roma Metaframework, services and applications can be developed in a
straightforward way.

Roma Metaframework [41, 50] is the main result of the project Romulus, and
is available as an open source project. Roma provides a full approach to Java Web
based development. It is based on three design decisions: (1) POJO orientation, (2)
metaframework notion and (3) Attribute Oriented Programming for enriching the
domain.

First of all, Roma follows a full POJO (Plain Old Java Object) orientation. PO-
JOs [16, 45] are just simple Java objects which encapsulate the business logic. In
Roma, everything is programmed as a POJO. For example, at the interface level,
each screen is modeled as a POJO, and each component (menu, button, area, ...)
in the screen is also modeled as a POJO. At the service level, invoking a web ser-
vices is done by calling a method or exposing a web service is done by annotating a
method. The main benefits of this approach are [45]:

• Reduction of complexity, thanks to the separation of concerns, the developer can
focus only on implementing the domain model with POJOs, without worrying
about other aspects such as persistence, transactions, or web flow.

• Improvement in productivity. The developer can develop and test the service as
traditional objects.

• Better portability, since the domain implementation is not tight to a specific im-
plementation technology, such as EJB (Enterprise Java Beans).

Second, Roma is based on the notion of a metaframework. POJOs are simple and
good for testing, but they do not provide support for many of the common needs
when developing a service, such as registering services, invoking other services,
presenting a user interface, administering users, persisting or maintaining the ses-
sion through the service lifetime. Web frameworks such as Struts [21], Struts2 [9],
Spring [54] or Hibernate [57] come in for solving these needs. Nevertheless, web
languages and frameworks [26] lack of consolidation, since the current generation of
web languages and frameworks reflects the frenetic pace of technological develop-
ment in the area. The main undesired consequences of this constant evolution are the
(i) increasing complexity of of web applications combining different web technolo-
gies [10]; (ii) the need to migrate between framework versions [48] with impacts
directly on the application reusability and (iii) the high required skills to develop a
full web application using several web frameworks. The Roma metaframework con-
cept tries to overcome these problems by providing an abstraction layer on top of the
most popular web frameworks. The metaframework has identified the most common
aspects of the existing web frameworks, and has defined interfaces for these aspects.



Combining Domain Driven Design and Mashups for Service Development 13

Then, frameworks can be used by implementing adaptors to these metaframework
interfaces, following the plugin design pattern [44].

Finally, Roma separates application’s business logic from the infrastructure spe-
cific concerns through the usage of annotations. Attribute Oriented Programming
(A@P) [49, 53, 47] is a code-level marking technique. Developers can mark code
elements (e.g. classes, methods, fields) using annotations to indicate that they have
application specific or domain specific semantics. This approach has been followed
in several languages, such as Java [18] or C# [24]. For example, a developer may
mark a method with a logging annotation to indicate that the associated calls to
this method should be logged. These annotations are preprocessed by an annotation
processor that generates the final detailed code. In this example, the generator may
insert logging code in the methods annotated with the logging annotation.

In order to combine these approaches, Roma proposes to implement the domain
model using POJOs. Since “cross-cutting concerns” are not present in the domain
model, they are modeled through metaframework aspects. Aspects represent inde-
pendent views of the application that affect different logical or domain units. Roma
uses annotations to associate aspects with POJOs. Then, the metaframework pro-
vides modules which implement one or more aspects, or provide some common
functionality. In this way, applications are defined in a technologically independent
way according to the different aspects. Then, different modules can be plugged in
or out later on. The metaframework will allow that the implementation of the appli-
cation remains untouched.

To sum up, in a Roma application the domain concepts are defined through PO-
JOs. Annotations are included in these POJOs to define aspect details. Finally, mod-
ules are selected to implement these aspects.

Roma brings a number of benefits. First, it provides a a stable framework based
on automatic code generation techniques. Second, the manual migration process
between frameworks can be avoided thanks to the metaframework notion, saving
the company investments. Finally, Roma reduces considerably the need to master
different web frameworks and their evolution.

5.2 Roma Metaframework Model

The domain model is the center of Roma Metaframework Model. Roma Metaframe-
work has identified and implemented defines a set of cross-cutting concerns (as-
pects) that can be needed for developing a web application. Other aspects can be
easily integrated thanks to its pluggable architecture.

The main elements of Roma metaframework model are (Fig. 7):

• Domain Model. The domain model, as presented before, follows a DDD ap-
proach and is implemented with POJOs.

• Aspects. Each aspect of the metaframework defines a common functionality
needed for developing an enterprise application. Each aspect defines a set of in-
terfaces and has a set of associated annotations. An enriched domain model is an



14 Carlos A. Iglesias et al.

Fig. 7 Simplified Roma Metaframework Model

annotated domain model with annotation aspects, which can use aspect interfaces
for its business method implementation. Annotations can be defined using stan-
dard Java annotations [18] or Roma XML Annotations. Roma XML annotations
have been defined in order to allow to keep the domain model separated from the
infrastructure’s needs, and improving reusability. In any case, both annotation
mechanisms can be used.

• Modules. Modules may implement or use one or more aspect interfaces, provid-
ing an implementation of some functionality. Each aspect can have more than
one module that implements or uses it.

Next, a summary of the main aspects defined in Roma Metaframework is pre-
sented, in order to provide a better understanding of its applicability.

View aspect. This aspect is the basis for the automatic generation of a graphi-
cal interface for an application, based on an abstract interface layer, which can be
mapped on different interface technologies (frameworks). This aspect defines sev-
eral annotations in order to define the layout (ViewClass, ViewField and ViewAc-
tion) of the POJO components. Based on this specification or additional configura-
tion, Roma selects a graphical renderer for each POJO and its fields and methods.
Roma provides modules for rendering with Java Server Pages technology [5] and
the Echo2 [14] framework. This is one example of the benefits of the metaframe-
work concept. The interface of the application can be changed without modifying
the application code, just changing the module it uses.

Validation aspect. It provides validation facilities for POJOs fields. Roma pro-
vides the annotation ValidationField which provides attributes for defining if the



Combining Domain Driven Design and Mashups for Service Development 15

field is mandatory (attribute required), allowed length (attributes min and max) or
required string patterns (attribute match).

Internationalization aspect. This aspect enables to present the application in dif-
ferent languages, according to the current location. I18N Aspect is implemented as
a part of the core module and is based on Java resource bundles.

Authentication aspect. Authentication is the process of verifying that someone is
who claims to be. Therefore, this aspect is useful to control users access to some
application functionalities that require a security access. Authentication aspect is
based on the users module, that provides user management and profiling facilities.
There are three modules for implementing this aspect using token, LDAP or pass-
word authentication methods.

Security aspect. This aspect allows the developer to define the users’ permissions
on POJOs at class, field or action level. It provides annotations with this purpose
(SecurityClass, SecurityField and SecurityAction). Developers can restrict these per-
missions (read, write and execution) based on user roles or access control lists.

Flow aspect. The flow aspect is used to define the execution flow of the applica-
tion. Implementation of this aspect is based on core module which presents a Java
annotation, called FlowAction, that allows developers to define next classes to be
executed and another class in case of error.

Session aspect. This aspect collects all the business logic for managing user ses-
sion, and is used by the modules that implement the View Aspect.

Workflow aspect. This aspect provides a generic interface to a workflow engine.
Roma provides their own web-based workflow engine, so called Tevere, which has
been developed using Roma Metaframework.

Logging aspect. This aspect facilitates the use of logs to control the execution
of the application and defines the LoggingAction annotation. The logging aspect is
implemented by the admin module.

Monitoring aspect. With this aspect, business objects can be monitored exter-
nally, being accessible outside the application. The annotations MonitoringClass,
MonitoringField and MonitoringAction are used to define classes, fields and ac-
tions to be monitored. Monitoring aspect can be implemented with JMX [39] or
MX4J [34] modules.

Persistence aspect. This aspect is used to store Java objects and retrieve them
from a database. Roma provides modules base don the frameworks JPOX [27] and
Datanucleus [12] technology. The persistence aspect is based on JDO (Java Data
Objects) [52]. and provides interfaces for most common persistence tasks, such as
creation, updating, query or deletion of objects.

Reporting aspect. This aspect automates the generation of reports from the PO-
JOs annotations. View annotations are used to generate a template that can be
customized in order to obtain the desired result. This aspect is implemented by
Reporting-JR module, which is based on JasperReports library [25].

Service aspect. The purpose of the service aspect is to facilitate the usage of ser-
vices from a POJO. The Service aspect provides facilities for exposing a POJO as
a web service and creating a client for a web service, The aspects provides an an-
notation (ServiceClass) for exposing an interface as a service as well as interfaces



16 Carlos A. Iglesias et al.

for service invocation. There are three modules implementing this aspect, in order
to provide support to Web Services standards (Apache CXF module) [4], REST ser-
vices (RESTful module) and integration with JavaScript client-side services based
on DWR [13].

Registry aspect. The registry aspect provides a registry interface and annota-
tion (RegistryClass) for WSDL [11] services and REST services described with
WADL [19]. There is module implementation based on WSO2 registry [56].

Enterprise Aspect. The enterprise aspect exposes Roma Services in an Enter-
prise Service Bus (ESB). The aspect provides two annotations: EnterpriseClass and
BPELClass. The EnterpriseClass annotation exposes a service in an ESB previously
annotated with the service aspect. The BPELClass indicates that the service should
be exposed in the ESB through a BPEL [2] delegation process. The current module
implementation is based on OpenESB [35].

Scripting aspect. This aspects adds server-side scripting capabilities to Roma
applications, which leverages the facility to develop and modify functionalities with
scripting languages, such as JavaScript.

Semantic aspect. This aspect provides facilities for taking advantage of semantic
web facilities. The aspect defines annotations (SemanticClass, SemanticField) for
exposing a POJO as RDF. A Jena [32] based module provides an implementation of
this aspect.

These aspects provide a uniform modeling paradigm to the developers, who do
not need to integrate, understand, and evolve each of the frameworks that provide
the needed facilities.

Further details of these aspects and the usage of the Roma Metaframework can
be found in the Roma Handbook [50].

5.3 Case Study

The implementation phase takes advantage of Romulus’ DDD-based approach to
software development by providing a simple mapping between design and imple-
mentation elements. Domain classes and design aspects have their corresponding
Java classes or annotations that implement the model that was defined in the design
phase.

In Romulus, each element in the domain model is implemented as a POJO, while
cross-cutting aspects are implemented through the use of Java annotations. A set
of annotations are defined for each of the available aspects considered in Romulus.
The resulting annotated POJO is an enriched model of the domain model that was
defined in the design phase.

Therefore, by following our case study, the following Java classes should be de-
fined: Promotion, Statistics, Invitation, SMS, User, and Movie. Each of these Java
classes are POJOs that include the different private attributes and public accessors,
which can be seen in Fig. 6. Also, methods that implement the business logic of
each POJO need to be implemented.



Combining Domain Driven Design and Mashups for Service Development 17

Java annotations are added to this basic POJO structure, and enrich the model by
defining secondary aspects. The Java classes that were mentioned previously might
require configuration for the different aspects, so a set of annotations need to be
added to each POJO. Romulus will set sensitive defaults for each aspect, but further
configuration is often needed. Namely, we should expect to include annotations re-
garding the view aspect. Most times, not all the defined fields have to be shown to
the users. For each field that defaults do not apply, a ViewField annotation should
be set. Similarly, methods’ visibility can be customized by including a ViewAction
annotation.

We will focus on implementing the business logic and user interface of the invita-
tions, thus illustrating the usage of Romulus’ view aspect (for UI implementation),
validation aspect (for the definition of model constraints).

The Invitation class is shown in Fig. 8.
In that code fragment, attributes are defined for the Invitation class according

to the model defined in the design phase. Notice that creationDate is automatically
assigned with the current date whenever an invitation is created. Additionally, meth-
ods are defined for each business logic action. For instance, the getMovies method
queries an external service to obtain the movies that are available in the system.

Also, annotations for Roma Validation and View aspects have been set:

• The ViewField annotation is employed to hide fields that should not be visible
when showing an invitation object on the presentation layer.

• ValidationField annotations are used to indicate that the value for the state field
is constrained to a couple of values, as long as invitations can only be pending or
accepted, and that other fields are required. Also, a validation method has been
added to perform further checks before persisting an invitation.

In addition, note that no persistence annotations need to be set, as the Persistence
Aspect (which allows storing and querying for objects in the database) abstracts all
mappings between class definitions and the database schema.

This class is enough to produce the output that is shown in Fig. 9. The user inter-
face that is shown in that picture makes use of two different presentation frameworks
(Janiculum and Echo2). Switching between them requires changing a configuration
option, and serves as example of the flexibility of the metaframework approach. As-
pects are therefore a powerful mechanism in Romulus that allow keeping a clean
POJO implementation while adding important details that extend to other concerns,
such as presentation, validation, persistence or security.

6 Mashups in Romulus

6.1 Overview

Mashups [59] are web applications that combine existing data sources to create new
applications in order to provide a value added to these data. Mashups may play an



18 Carlos A. Iglesias et al.

public class Invitation {
@ViewField(visible=false)
@ValidationField(required=true)
private String id;

@ViewField(visible=false)
@ValidationField(match="(pending|accepted)")
private String state = "pending";

@ViewField(visible=false)
private Date creationDate = new Date();

@ViewField(visible=false)
@ValidationField(required=true)
private User inviter;

@ValidationField(required=true)
private User invitee;

@ViewField(visible=false)
@ValidationField(required=true)
private Promotion promotion;

@ValidationField(required=true)
private Movie movie;

@ViewField(render = ViewConstants.RENDER_TEXTAREA)
private String invitationText;

@ViewField(selectionField = "entity.movie", render = "select",
description = "Select movie")

public Movie[] getMovies() {
Map<String,Object> paramMovie = new HashMap<String,Object>();
paramMovie.put(InvokeServiceCommand.SERVICE_URL, "http://www.movies.com/");
paramMovie.put(InvokeServiceCommand.OPERATION_NAME, "getMovies");
InvokeServiceCommand isc = new InvokeServiceCommand();
return (Movie[]) isc.execute(new CommandContext(paramMovie));

}

@ViewField(selectionField = "entity.invitee",
render = "select", description = "Select friend")

public User[] getInvitees() {
// Invoke Social network Web Service as in getMovies()

}

@ViewAction(visible = false)
public void validate() throws ValidationException {

if (!Promotion.availableInvitations(inviter)) {
throw new ValidationException(this, "inviter",

"No invitations left", null);
}

}

@ViewAction(visible = false)
public void generatePromoCode() {

// Generate Discount Coupon
}

@ViewAction(visible = false)
public void notifyBilling() {

// Invoke billing web service as in getMovies()
}

@ViewField(visible = false)
public void sendInvitation() {

// Invoke SMS web service as in getMovies()
}
/* Public getters and setters are ommitted */

}

Fig. 8 Sample implementation of Invitation with Roma Annotations



Combining Domain Driven Design and Mashups for Service Development 19

Fig. 9 Invitation Service’s user interface

important tool in service engineering [30], since they provides a flexible and easy to
use way for service composition on web.

The architecture of mashup web applications [33] is composed of three parts:

• The content provider: the source of the data, the data providers often ex-
pose their content through web-protocols such as REST, Web Services, and
RSS/Atom. To obtain data, mashups can use a technique known as screen scrap-
ing which consists in extracting data from the display output of another program
that is intended to be display to a human user so it is usually neither documented
nor structured for convenient parsing.

• The mashup site: part where the mashup logic resides but it is not necessarily
where it is executed. Mashups can be implemented using traditional server-side
dynamic content generation technologies like Java Servlets, CGI, PHP or ASP
and alternatively, mashed content can be generated directly within the client’s
browser through client-side scripting (JavaScript) or applets. Mashups can also
use a combination of both server and client-side logic to achieve their data ag-
gregation.



20 Carlos A. Iglesias et al.

• The client web browser: the user interface of the mashup where the mashup is
rendered graphically and where user interaction takes place. As described above,
mashups often use client-side logic to assemble and compose the mashed content.

Developers can build a mashup using the conventional web programming tech-
nologies. However, in the last years many dedicated mashup tools have been re-
leased, like Google Mashup Editor, Microsoft Popfly, Yahoo Pipes [58] or In-
tel Mash Maker [22]. These tools enable quick development and allow creating
mashups in an easy way, some of them even can be used by end users in order to
compose their own mashups. The Romulus project provides its own mashup builder,
which is called MyCocktail. is fully integrated with Roma Metaframework to re-
trieve the data exposed by the application through the services to build mashups.

6.2 MyCocktail

MyCocktail [43], the Romulus Mashup Builder, is a web application which provides
a graphical user interface for building mashups easily, allowing the user to develop
mashups faster and, thus, increasing the productivity.

This tool allows users to combine information obtained from different services.
This information can be modified with operators and later presented with a wide
variety of renderers. The whole process is developed with a graphical user interface
and it is as easy as to drag and drop some components and combine them. This helps
to reduce considerably the time for developing a mashup.

MyCocktail allows designers and programmers to use services without dealing
with the low-level details. Users only have to fill a simple form and the tool pro-
cesses it and makes the requests to the different services.

MyCocktail is based on Afrous [40] and provides three kinds of components
which should be combined to build a mashup:

• Services: Several RESTful services can be invoked: del.icio.us (tags, posts, etc.),
Yahoo Web Search, Google AJAX Search, Flickr Public Photo Feed, Twitter,
Amazon, etc. These are the default services but MyCocktail allows to get data
from any REST service which provides a JSONP response using the JSONP
operator. MyCocktail also automatically imports the REST services of the Roma
Metaframework which are annotated by the developer. The integration between
the Roma Metaframework and MyCocktail is made with WADL [19] as format
to interchange information about the services created in the applications made
with the Roma Metaframework.

• Operators: The information obtained can be processed with the operators. For
example, it is possible to sort, filter or group the information by a given parame-
ter.

• Renderers: the information can be represented in different renderers:



Combining Domain Driven Design and Mashups for Service Development 21

– HTML renderers: these renderers generate HTML elements (image, link or
table tags). One renderer can be displayed into others, while the output of a
renderer can be used as input of another renderer.

– Statistic renderers: two kinds of statics diagrams can be generated: pie chart
and bar chart.

– Google Maps renderer: a renderer that shows elements on a map.
– Timeline renderer: a renderer that shows a time line with elements sorted by

date.

MyCocktail (Fig. 10) provides an action panel for designing the mashup flow.
Services, operators and renderers may be dragged and dropped onto this action panel
for its combination while designing a mashup. All the operators, services and ren-
derers are represented in the panel as a form with some fields. By submitting the
form, the result of each operator is shown in the lower part of them. The output of
one component is usually used as input of another one to combine them.

Fig. 10 MyCocktail Mashup Builder Structure

6.3 Mashups in Roma

Once we have presented the mashup technology and the MyCocktail tool, this sec-
tion presents how Roma Metaframework can benefit from using mashup technology.
This section describes two scenarios.

The first scenario consists of mashup combining data sources, external web ser-
vices, enterprise web services , and Roma services and is shown in Fig. 11.



22 Carlos A. Iglesias et al.

Fig. 11 MyCocktail Module Architecture

As presented before, the Service Aspect allows a Roma Application to expose
the methods of an interface as web services, which can be registered in a Service
Registry using the Registry Aspect. The Registry aspect has been extended in or-
der to be able to register services developed with MyCocktail and described with
WADL. In addition, MyCocktail has been integrated as a module in Roma using the
Service and Registry aspects. The main purpose is that MyCocktail can auto dis-
cover the registered services. In this way, MyCocktail mashup facilities can be used
for combining Roma Services. Furthermore, since MyCocktail registers its services
in the Registry, Roma Applications can use directly the mashups developed with
MyCocktail.

In addition, Roma provides an Enterprise aspect that exposes a service in an en-
terprise bus. The service can be exposed as a delegated BPEL process. The purpose
of this aspect is the integration of Enterprise Mashups in Roma. Enterprise mashups
are different from web mashups since they are server side and combine business pro-
cesses. The integration between Roma and Enterprise and web mashups is shown in
Fig. 11, First, Roma can expose services in the registry using the service and reg-
istry aspects. In addition, the Enterprise aspect can be used to publish a service in
an ESB. Then, MyCocktail mashup builder discovers all the services of the registry.

As a conclusion, Roma applications can be easily integrated with Enterprise and
Web Mashups without requiring to modify its architecture or technology. The usage
of mashups can leverage the service development effort. For example, Enterprise
mashups based on BPEL orchestration has been used in a project management tools
developed with Roma, while the control dashboard has been developed with web
mashups.

The second scenario consists of the server-side mashup execution in Roma
Metaframework (Fig. 12).

Thanks to the Roma Scripting aspect, Roma POJOs can implement methods with
scripting languages such as JavaScript. Since MyCocktail exports the mashups in



Combining Domain Driven Design and Mashups for Service Development 23

341

Fig. 12 Server side execution of Mashups in Roma

JavaScript, some mashup processes can be moved to the server side. The main ad-
vantages of this approach are:

• Security reasons. The mashup can contain sensible business logic that should be
hidden. In addition, this can provide secure access to other server resources, such
as legacy applications, intranet services and ESB.

• The mashup can have direct access to server resources without the need to expose
them. For example, the mashups can query directly the persistence layer.

6.4 Case Study: Development of movie selection with MyCocktail

The selection of the movie (second step in Fig. 5) will be implemented through a
mashup. This mashup should retrieve the movies registered in the promotion (Movie
Renting Service). The information provided by this service is not too extensive, so
we will obtain these data from an external service which provides the plot, reviews,
runtime, etc. and mix these data with the existent information of the movie. All the
information will be showed to the users translated to their preferred language to help
them choosing the movie to recommend to their friends.

The steps followed for building this mashup are shown in Fig. 13.
The first step consists of retrieving the movie data using the aforementioned ser-

vice. The service returns all the available movies offered in the promotion, and the
tool shows the results in a tree-like mode.

The second step involves invoking an external service to retrieve the information
of the movies. This search should be made over each recovered movie. The Iterate
operator provides this functionality, and allows to design an internal flow for its ap-
plication over a collection of elements. In our case, the flow applied to each element
of the collection is based on a movie search operation based on their titles. Thus, the
information of all the movies is retrieved as a whole.

In order to translate the movie reviews, there is an available translator opera-
tor, which can be configured with the origin and target languages. This translator
operator is applied in the internal flow of the Iterator operator.



24 Carlos A. Iglesias et al.

Fig. 13 MyCocktail mashup architecture for movie selection

Finally, when the mashup operations are concluded, the resulting mashup can
be represented with some graphical gadgets (pie chart, ...) and then exported as a
Google widget, a Netvibes widget, JavaScript or HTML.

As a conclusion, mashup technology provides benefits in development and main-
tenance tasks. Roma provides several alternatives for its seamless integration pre-
sented in this section.

7 Related work

This chapter has proposed an agile service development model based on Roma
Metaframework following a DDD approach. In addition, the chapter has shown how
this approach can benefit from enterprise and web mashup technologies. In this sec-
tion, we review other approaches also focused on improving productivity in web
development.



Combining Domain Driven Design and Mashups for Service Development 25

7.1 Agile Web Frameworks

Agile web frameworks started with Ruby On Rails [20, 23], which defined a new
approach to web development, based on a single web framework. Most of the agile
web frameworks follow a DDD approach to domain modeling. Some of the most
popular agile web frameworks are Grails, Trails, Ruby on Rails and OpenXava,
which are introduced below.

Grails [46] is a Java-based Rails-like development framework that was built in
response to Ruby on Rails. As a result, their principles are the same and Grails is
heavily Rails inspired. To provide Java integration while providing a dynamic ori-
ented language, Grails is based on the Groovy language, a dynamic object-oriented
scripting language for the Java virtual machine and with Java-like syntax.

Trails [51] is a web development framework that is inspired in Ruby on Rails and
Naked Objects [29]. Its target is offering domain driven design by providing a full-
stack web application framework. As a result, Trails takes advantage of the stability
and maturity of a closed set of already existing frameworks. Trails enhancements to
the direct use of the frameworks are tight integration and automatic code generation
for common tasks.

Ruby on Rails [20] is a framework that is aimed at agile development of web
applications. It was mainly developed by David Heinemeier Hansson and was ex-
tracted out of Basecamp, a production-ready commercial web application. Ruby on
Rails’ community argues that this extraction is the best proof of the framework’s
suitability for the development of web applications. Nowadays, Ruby on Rails have
gain great popularity. Some of their mains characteristics are metaprogramming,
migration facilities and the active records.

OpenXava [36] is an agile framework that follows a POJO orientation. It is de-
veloped by Javier Paniza and is integrated with JPA and portal technologies.

The main difference of Roma metaframework is the notion itself of metaframe-
work. The metaframework offers a common application programming interface to
a set of pluggable Java frameworks to transparently provide persistence, presenta-
tion or internationalization services. In addition, the Roma target is POJO-based
development with a minimum coupling with pluggable underlying frameworks and,
following the model driven architecture paradigm, provide framework-specific code
generation for eventual fine tuning of code. Another differential characteristic is the
integration of mashup technology in Roma. Roma provides a mashup repository and
registry to provide server-side facilities.

7.2 Mashups for service composition

Mashup technology is considered a promising technolgoy for closing the gap in
Service-to-User interaction in Service Oriented Architecturas (SOA) [?], since
mashups provide a user-centric and participative approach to service composi-
tion [?].



26 Carlos A. Iglesias et al.

Regarding service composition approaches, BPEL [2] has shown effective for
service orchestration, although it is primarily targeted at professional developers.
Given its complexity, several proposals have emerged [37] for its extension for
REST services. Other approaches have integrated BPEL in their mashup develop-
ment environments, such as LiquidApps [?], providing a visual representation of the
underlying processes. The approach followed on Romulus has been targeted at tech-
nical users, which have to develop complex applications on Java platforms. In order
to reduce BPEL complexity, Romulus provides BPEL integration through the En-
terprise Aspect in Roma and its integration with MyCocktail Mashup tool through
the Registry Aspect.

Maximilien et al. [31] address service composition with mashups by defining
a domain specific language, that is processed for generating the targetted platform.
This work points out one of the challenges of mashup technology, its interoperability
between mashup editors, which is still an open issue.

Liu et al. [30] proposes to extend SOA with mashup concepts. The proposed
architecture integrates a service component in the mashup component. MyCocktail
follows a similar approach, since it integrates a service component that are registered
in a REST registry using WADL. Our approach has been tested in the integration
of enterprise mashups with the Enterprise Aspect and with Semantic DERI Pipes
Mashups [55], thanks to the Semantic Aspect.

Model driven approaches have been used in order to automate web engineering
processes. For instance, a web specific modeling language (WebML) is used for
composing web services [8] or web applications [?, 3]. WebML conceives data in-
tensive web applications with two models: data model, which describes the schema
of data resources, and schema model, which describes how data resources are as-
sembled into information units and pages. WebML is supported by a graphical en-
vironment and supported by an IDE tool. Roma follows a different approach based
on a rich object model, while navigation is expressed in the Flow Aspect.

8 Conclusions

This chapter has presented the problems in web development due to the frenetic evo-
lution of web frameworks. In order to simplify maitenance and development activi-
ties, Romulus proposes to follow a DDD approach and define a rich domain model.
This domain model allows the interaction throughout the project among business
domain experts and engineers. In this way, business domain experts can contribute
in testing activities, as well as in the evolution of the domain model. Since the do-
main model is close to the code, the evolution of the code is straightforward with
the domain model.

Romulus provides Roma metaframework that provides a layer of abstraction on
top of existing web frameworks. As shown in the article, the metaframework pro-
vides a large set of functionalities, including semantic integration, automatic user
interface generation, and integration with web and enterprise mashups.



Combining Domain Driven Design and Mashups for Service Development 27

The chapter has shown several architectures for integrating mashup technology
with Roma metaframework.

The chapter has illustrated the main concepts of Romulus through the develop-
ment of a case study for the development of invitation service.

Acknowledgements Our work has partly been supported by the European Commission under
Grant No. 217031, FP7/ICT-2007.1.2, project Romulus – “Domain Driven Design and Mashup
Oriented Development based on Open Source Java Metaframework for Pragmatic, Reliable and
Secure Web Development”

References

1. SOA Priciples of Service Design. Prentice Hall, 2007.
2. S. Askary C. Barreto B. Bloch F. Curbera M. Ford Y. Goland A. Guizar N. Kartha C. Liu R.

Khalaf D. Koenig M. Marin V. Mehta S. Thatte D. van der Rijn P. Yendluri A. Yiu A. Alves,
A. Arkin. Web services business process execution language (BPEL) version 2.0. Technical
report, Committee Specification, OASIS, jan 2007.

3. Roberto Acerbis, Aldo Bongio, Marco Brambilla, Stefano Butti, Stefano Ceri, and Piero Fra-
ternali. Web applications design and development with webml and webratio 5.0. In Richard F.
Paige and Bertrand Meyer, editors, TOOLS (46), volume 11 of Lecture Notes in Business In-
formation Processing, pages 392–411. Springer, 2008.

4. Apache CXF Project. Apache CXF web site. an open source service framework. available at
http://echo.nextapp.com/site/echo2.

5. Karl Avedal, Ari Halberstadt, Danny Ayers, Timothy Briggs, Carl Burnham, Ray Haynes,
Hen, Stefan Zeiger, and Mac Holden. Professional JSP. Wrox Press Ltd., Birmingham, UK,
UK, 2000.

6. Joachim Bayer, Michael Eisenbarth, Theresa Lehner, and Kai Petersen. Service engineering
methodology. In Semantic Service Provisioning, chapter 8, pages 185–201. 2008.

7. Solmaz Boroumand. Working with SOA and RUP. SOA Magazine, (XVI), 2008.
8. Marco Brambilla, Stefano Ceri, Sara Comai, Piero Fraternali, and Ioana Manolescu. Model-

driven specification of web services composition and integration with data-intensive web ap-
plications. IEEE Data Eng. Bull., 25(4):53–59, 2002.

9. Don Brown, Chad Davis, and Scott Stanlick. Struts 2 in Action (In Action). Manning Publi-
cations Co., Greenwich, CT, USA, 2008.

10. Richard Cardone, Danny Soroker, and Alpana Tiwari. Using xforms to simplify web program-
ming. In WWW ’05: Proceedings of the 14th international conference on World Wide Web,
pages 215–224, New York, NY, USA, 2005. ACM.

11. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description lan-
guage (WSDL) 1.1. W3c note, World Wide Web Consortium, March 2001.

12. DataNucleus Project. DataNucleus web site. available at http://www.datanucleus.org.
13. DWR Project. DWR (Direct Web Remoting)web site. available at

http://directwebremoting.org/dwr/index.html.
14. Echo2 Project. Echo2 web site. available at http://echo.nextapp.com/site/echo2.
15. Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-

Wesley, 2004.
16. Martin Fowler. POJO (Plain Old Java Object). Martin Fowler, available at

http://martinfowler.com/bliki/POJO.html, 2000.
17. Martin Fowler. Anemic domain model. Martin Fowler, available at

http://martinfowler.com/bliki/AnemicDomainModel.html, 2003.



28 Carlos A. Iglesias et al.

18. James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. The Java Language Specification.
Addison-Wesley, Upper Saddle River, NJ, 3. edition, 2005.

19. Marc J. Hadley. Web Application Description Language (WADL). Available at
https://wadl.dev.java.net/wadl20090202.pdf. feb 2009.

20. Steve Holzner. Beginning Ruby on Rails (Wrox Beginning Guides). Wrox Press Ltd., Birm-
ingham, UK, UK, 2006.

21. Ted N. Husted, Cedric Dumoulin, George Franciscus, and David Winterfeldt. Struts in Action
— Building Web Applications with the Leading Java Framework. Manning Publications, 2003.

22. IBM. Intel mash maker. Available at http://mashmaker.intel.com.
23. José Ignacio Fernández-Villamor, Laura Dı́az-Casillas, and Carlos Á. Iglesias. A comparison

model for agile web frameworks. In EATIS ’08: Proceedings of the 2008 Euro American
Conference on Telematics and Information Systems, pages 1–8, New York, NY, USA, 2008.
ACM.

24. ECMA International. Standard ECMA-334 - C# Language Specification. 4 edition, June 2006.
25. JasperReports Project. JasperReports web site. available at

http://jasperforge.org/projects/jasperreports.
26. Mehdi Jazayeri. Some trends in web application development. In FOSE ’07: 2007 Future of

Software Engineering, pages 199–213, Washington, DC, USA, 2007. IEEE Computer Society.
27. JPOX Project. JPOX (java persistent objects) web site. available at http://www.jpox.org.
28. Philippe Kruchten. Rational Unified Process. An Introduction. Addison-Wesley, 2004.
29. Konstantin Läufer. A stroll through domain-driven development with naked objects. Comput-

ing in Science and Engineering, 10:76–83, 2008.
30. Xuanzhe Liu, Yi Hui, Wei Sun, and Haiqi Liang. Towards service composition based on

mashup. In IEEE SCW, pages 332–339. IEEE Computer Society, 2007.
31. E. Michael Maximilien, Ajith Ranabahu, and Karthik Gomadam. An online platform for web

apis and service mashups. IEEE Internet Computing, 12:32–43, 2008.
32. B. McBride. Jena: a semantic web toolkit. IEEE Internet Computing, 6(6):55–59, 2002.
33. Duane Merrill. Mashups: The new breed of Web app. Available at

http://www.ibm.com/developerworks/xml/library/x-mashups.html. aug 2006.
34. MX4J Project. Open source JMX for enterprise computing (MX4J) web site. available at

http://mx4j.sourceforge.net/.
35. OpenESB. OpenESB project, available at https://open-esb.dev.java.net/. Available at

https://open-esb.dev.java.net/.
36. openxava. openxava project, available at http://www.openxava.org/web/guest/home. Available

at http://www.openxava.org/web/guest/home.
37. Cesare Pautasso. Restful web service composition with bpel for rest. Data Knowl. Eng.,

68(9):851–866, 2009.
38. Srini Penchikala. Domain driven design and development in practice. InfoQueue, jun 2008.
39. J. Steven Perry. Java Management Extensions. O’Reilly, Beijing, 1. edition, 2002.
40. Afrous Project. Afrous project web site, 2009. Available at ttp://www.afrous.com/.
41. Roma Metaframework project. Romulus web site. available at

http://www.romaframework.org/.
42. Romulus project. Romulus web site. available at http://www.ict-romulus.eu/.
43. Romulus Project. Mycocktail web site, 2009. Available at http://www.ict-

romulus.eu/web/mycocktail.
44. David Rice and Matt Foemmel. Plugin Design pattern, page 499. Addison-Wesley, 2002.
45. Chris Richardson. POJOs in Action: Developing Enterprise Applications with Lightweight

Frameworks. Manning Publications Co., Greenwich, CT, USA, 2006.
46. Graeme Rocher. The Definitive Guide to Grails (Definitive Guide). Apress, Berkely, CA,

USA, 2006.
47. Romain Rouvoy. Leveraging component-oriented programming with attribute-oriented pro-

gramming. In In Proccedings of WCOP 2006, 2006.
48. Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage changes from in-

stantiation code. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 471–480, New York, NY, USA, 2008. ACM.



Combining Domain Driven Design and Mashups for Service Development 29

49. Don Schwarz. Peeking inside the box: Attribute oriented programming in java. ONJava.com,
O’Reilly, 2004.

50. Emanuele Tagliaferri, Giordano Maestro, Luca Garulli, Luca Molino, Luigi Dell’Aquila, and
Marco de Stefano. Roma MetaFramework Handbook v2.1. Romulus Project, 2.1 edition, dec
2009.

51. Trails. Trails project, available at http://www.trailsframework.org/. Available at
http://www.trailsframework.org/e.

52. Sameer Tyagi, Michael Vorburger, Keiron McCammon, and Heiko Bobzin. Core Java Data
Objects. Prentice Hall PTR / Sun Microsystems Press, 2004.

53. Hiroshi Wada and Shingo Takada. Leveraging metamodeling and attribute-oriented program-
ming to build a model-driven framework for domain specific languages. In In Proc. of the 8th
JSSST Conference on Systems Programming and its Applications, 2005.

54. Craig Walls and Ryan Breidenbach. Spring in Action. Manning, 2005.
55. Adam Westerski. Integrated environment for visual data-level mashup development. In 10th

International Conference on Web Information Systems Engineering (WISE), pages 481–487,
2009.

56. WSO2. Wso2 registry, available at http://wso2.com/products/governance-registry/. Available
at http://wso2.com/products/governance-registry/.

57. Ming Xue and Changjun Zhu. Design and implementation of the hibernate persistence layer
data report system based on j2ee. In PACCS, pages 232–235. IEEE Computer Society, 2009.

58. Yahoo. Yahoo pipes. Available at http://pipes.yahoo.com.
59. Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Understanding mashup devel-

opment. 2008.


