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Abstract. Social networks have a great impact in our lives. While they
started to improve and aid communication, nowadays they are used
both in professional and personal spheres, and their popularity has made
them attractive for developing a number of business models. Agent-based
Social Simulation (ABSS) is one of the techniques that has been used for
analysing and simulating social networks with the aim of understanding
and even forecasting their dynamics. Nevertheless, most available ABSS
platforms do not provide specific facilities for modelling, simulating and
visualising social networks. This article aims at bridging this gap by
introducing an ABSS platform specifically designed for modelling social
networks. The main contributions of this paper are: (1) a review and
characterisation of existing ABSS platforms; (2) the design of an ABSS
platform for social network modelling and simulation; and (3) the devel-
opment of a number of behaviour models for evaluating the platform
for information, rumours and emotion propagation. Finally, the article
is complemented by a free and open source simulator.

1 Introduction

Social Networks (SNs) have a great impact in our lives. While they started to
improve and aid communication, nowadays they are used both in professional
and personal spheres, affecting different aspects ranging economic [11] to health
outcomes [22].

The emergence of social computing [45] has raised the interest in the design,
analysis and forecasting of social systems. To this end, Social Computing is a
cross-disciplinary field with theoretical underpinnings including both computa-
tional and social sciences, as well as research from areas such as social psychol-
ogy, human computer interaction, Social Network Analysis (SNA), anthropology,
sociology, organization theory, and computing theory.

One of the fields where ABSS has been applied is the analysis and simula-
tion of social networks, in applications such as viral marketing [40], innovation
diffusion [20], rumour propagation [23]. In fact, some authors [33] propose that
the use of social media in agent based simulations can leverage the input data
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problem in ABSS, since capturing data from individuals is an expensive and
difficult task in longitudinal studies.

Nevertheless, there is a lack of ABSS platforms that provide support for
social network modelling. Thus, we aim at bridging this gap by designing and
developing an ABSS in Python specifically designed for social networks which
benefits from the wide number of available Python libraries for network analysis
and machine learning.

The remainder of the article is organised as follows. First, we review existing
ABSS platforms to justify why they are not suitable for our problem in Sect. 2,
as well as applications of ABSS to social network analysis. Based on this, we
present a set of requirements for the desired platform in Sect. 3. Then, the pro-
posed model, architecture and simulation workflow are presented in Sect. 4. The
platform has been evaluated through the development of a library of models
which is described in Sect. 5. We conclude with Sect. 6 and provide an outlook
of future work.

2 Review of ABSS Platforms for Modelling SNs

In recent years numerous ABSS have been developed, as shown by Railsback
et al. [34] and Nikolay et al. [31]. Based on this latter work that reviews 55
ABSS platforms, we have reviewed ABSS platforms to evaluate their suitability
for modelling social networks, attending to the following aspects: (i) type of
platform (general purpose or domain specific), (ii) programming language, (iii)
expertise in its application to SNs, (iv) whether the framework provides SNA
facilities and (v) whether the license is Open Source (OS). Table 1 summarizes
the platforms and the reviewed aspects.

From the initial list provided in [31] we have filtered out platforms that are
under a commercial license (e.g. cougaar), not actively developed (e.g. ABLE),
focused on training (e.g. AgentSheets), or otherwise not directly focused on
simulation (e.g. ECJ or Jade). The resulting set of platforms is Common-Pool
Resources and Multi-Agent Systems (Cormas) [7], Madkit [14], Mason [24],
NetLogo [35], Repast [32], SeSam [16] and Swarm [27]. Based on our literature
research, we have added some additional platforms: UbikSim [9], EscapeSim [41],
HashKat [38], Mesa [28], Krowdix [6] and Multi-Agent Scalable Runtime plat-
form for Simulation (MASeRaTi) [2].

Cormas [7] is a general ABSS platform dedicated to natural and common
resource management. There is a work [36] that models a social network of
innovation diffusion in the medical domain. Madkit [14] is a general multiagent
platform which relies on organization concepts and includes simulation facilities.
Kodia et al. [21] describe a model where investors are tied by relationships such
as friendship, trust and privacy. Mason [24] is a popular multiagent simulation.
There is an extension socialnets that provides simple network statistics and a
bridge to the Java Graph library Jung.1 Some authors [40] have used Mason for

1 http://jung.sourceforge.net/.

http://jung.sourceforge.net/
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Table 1. Review of ABSS platforms

Name Domain Language SNs SNA OS

Cormas Generic VisualWorks ✓ ✗ ✓

NetLogo Generic NetLogo, Scala & Java ✓ ✗ ✓

Swarm Generic Objective-C, Java ✓ ✗ ✓

MadKit Generic Java ✓ ✗ ✓

MASON Generic Java ✓ ✗ ✓

Repast Generic Java ✓ ✓ ✓

SeSam Generic Java ✗ ✗ ✓

MASeRaTi Generic Java ✗ ✗ ✓

Mesa Generic Python ✗ ✗ ✓

UbikSim AmI Java ✗ ✗ ✓

EscapeSim Evacuation Java ✗ ✗ ✓

HashKat Social networks C++ ✓ ✓ ✓

Krowdix Social networks Java ✓ ✓ ✗

Soil Social networks Python ✓ ✓ ✓

modelling viral marketing in Twitter. To this end, authors usually complement
Mason with other libraries and tools e.g. GraphStream2 for synthetic network
generation and dynamic network visualisation, iGraph3 for centrality and net-
work measures, and Gephi4 for detailed analysis of the network. NetLogo [35] is
a multiagent programming and simulation environment. It includes facilities for
network representations although not for network analysis. An outdated exten-
sion to NetLogo is described in [5], where the network analysis and visualisation
tool Pajek5 is integrated. In addition, there are some available models of social
networks (e.g. Social circles [15]), but they do not provide facilities for analysing
or building new models. Repast [32] is an agent based simulation platform that
provides a large library of simulation models. Repast has been extended for
SNA [19]. The library Repast Social Network Analysis (ReSoNetA) adds net-
work functionality to RepastJ. It provides a number of network metrics (cen-
trality, prestige and authority) based on the graph Java library Jung as well as
visualisation facilities. This library exploits Repast’s built-in facilities for net-
work modelling. In addition, other works such as van Maanen [25] have used
Repast for modelling social influence in Twitter. SeSam [16] provides a generic
environment for agent based simulations but it has not been applied for social
network modelling. Swarm [27] is a well known agent-based simulator that has
been applied to social network problems such as open source project dynam-
ics [27].

2 http://graphstream-project.org/.
3 http://igraph.org/.
4 https://gephi.org/.
5 http://mrvar.fdv.uni-lj.si/pajek/.

http://graphstream-project.org/
http://igraph.org/
https://gephi.org/
http://mrvar.fdv.uni-lj.si/pajek/
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While the previous ABSS platforms were designed for its application to a wide
variety of domains, other platforms, such as UbikSim [9] and EscapeSim [41] has
been specifically designed for a particular domain, such as Ambient Intelligence
(AmI) and evacuation.

HashKat [38] is a C++ ABSS platform specifically designed for the study
and simulation of social networks. It includes facilities for network growth and
information diffusion, based on a kinetic Monte Carlo model. It exports infor-
mation to be processed by machine learning libraries such as NetworkX6 or R’s
iGraph and network visualisation with Gephi.

Mesa [28] is an ABSS platform that aims at providing a Python alternative
to traditional Netlogo, MASON or Repast. It enables in-browser visualisation
and takes advantage of Python ecosystem. Krowdix [6] is a Java ABSS for social
networks but it is not open source. It uses JUNG for network functions and
JFreeChart7 for visualisation. The simulation model considers users, their rela-
tionships, user groups and interchanged contents. It has been applied to Twitter
and Facebook. MASeRaTi [2] is a distributed and scalable ABSS that uses the
Belief-Desire-Intention (BDI) framework lightjason [3], that extends the agent-
oriented programming language AgentSpeak.

To summarise, except for HashKat and Krodix, ABSS platforms do not pro-
vide support for the analysis of social networks, although some platforms have
already been used for this purpose. Moreover, most ABSS platforms are pro-
grammed in Java. MASeRaTi follows a different approach where agents can be
programmed based on a BDI model. Main challenges for applying existing plat-
forms to social networks come from their underlying models, frequently tied to
spatial models.

3 ABSS Requirements for Social Networks

Based on the previously presented review of ABSS platforms and their applica-
tion to SN analysis and simulation, we have identified the requirements listed
below, which are structured in network and agent model.

Network model. The network level groups all the functionalities related to the
structural aspects of the social network. The following requirements have been
identified:

– Generation of synthetic graphs. Even though accessing real social network
graphs is critical, real datasets have a number of disadvantages [39]. First,
sharing large social graphs is challenging, since they should be anonymised
and there are limitations in the way they can be shared (for example, only
tweet ids can be shared in Twitter, which requires collecting the dataset with
API restrictions and difficulties in reproducing the original dataset since some
tweets could be no longer available). Second, the availability of a small num-
ber of social graphs can limit the statistical confidence in the experimentation

6 https://networkx.github.io/.
7 http://www.jfree.org/jfreechart/.

https://networkx.github.io/
http://www.jfree.org/jfreechart/
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results. Finally, obtaining real datasets suitable for the desired experimenta-
tion can be difficult and require a great effort. Thus, synthetic graph gen-
erated by measurement-calibrated graph models [39] so that graph models
are fitted to a real social graph, and the simulation are realistic. The plat-
form should provide implementation of classical social graph models [39] (e.g.
Barabasi-Albert model [4], Random Walk [44], etc.) and should be extensible
to innovative models.

– Graph traversing and visualisation. The platform should provide functional-
ities for traversing social graphs and visualising social structure, in order to
be applied to diffusion models [13].

– SNA functionalities. Several functionalities should be available for the analy-
sis of the social graph, such as calculation of social metrics (e.g. centrality,
betweenness, etc.) as well as algorithms for community detection.

– Export and import of network model. There should be facilities for import-
ing and exporting social graphs, based on popular formats such as Graph
Modelling Language (GML) [18], GraphML [8] and Graph Exchange XML
Format (GEXF) [12].

Agent model. The agent level models the agent characteristics, their state,
how agent state evolves in every simulation step. Following the modelling steps
proposed by Macal and North [26], we outline the requirements for social net-
work modelling. Platform should allow users to: (i) define agent type definition
and attributes (e.g. sentiment, frequency of tweeting, number of followers, etc.);
(ii) define interactions with the environment, that represent external factors to
agent decision, such as news or market evolution; and (iii) specify methods to
update agent state based on their interaction with other agents and the envi-
ronment. This include the capability to update the agent social network (i.e.
creation or modification of social links).

Non functional requirements. Regarding non functional requirements, sev-
eral aspects have been considered. First of all, the programming language is an
important decision. In order to provide a homogeneous programming environ-
ment, network and machine learning libraries should be available. Both Java and
Python fulfill these requirements, as we have introduced previously. As previ-
ously outlined, it is very important that ABSS provide interactive experimenta-
tion facilities that enable researchers to run and define their experiments. In this
regard, most platforms ABSS platforms such as Mason or Repast provide con-
figurable and extensible configuration facilities [43]. Scalability has been recently
addressed by a number of researchers [1,2]. The ability to distribute agents
across machines or big data processing infrastructures can be required for the
simulation of large scale social networks. Finally, extensibility and reusability
of simulation models should be encouraged [37], so that researchers can bene-
fit from a library of tested simulation models that can be used, extended and
adapted to model new behaviours.
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4 Soil Platform

4.1 Design Decisions

The first design decision is the selection of Python [30], given its increased popu-
larity, its very gradual learning curve, readability, clear syntax and availability of
libraries for network processing and machine learning. In addition, we consider
the interactive analysis of the IPython interface8 very beneficial for simulation.
From the reviewed platforms, only one platform is available in Python, Mesa,
but it does not provide network facilities yet and is still in constant evolution.
Hence, we evaluated different options to extend Mesa for this scenario. Another
alternative was to extend nxsim9, a Python library that provides a basic ABSS
framework, based on Simpy [29]. We eventually chose nxsim due to its simplicity
and robustness.

Regarding the network model, we have opted for NetworkX, which is the de-
facto standard library for SNA analysis of small to medium networks. For mas-
sive networks, the transition to NetworkKit [42] is straight forward. NetworkX
provides functionalities for manipulating and representing graphs, generators of
classical and popular graph models, and graph algorithms for analysing graph
properties. In addition, NetworkX is interoperable with a great number of graph
formats, including GML, GraphML JSON and GEXF.

For network visualization, we have selected Gephi, an open-sourced software
for network and graph interactive analysis. Gephi is able to render in 3D and
real-time large and complex networks. In addition, both NetworkX and Gephi
support the format GraphML, so a graph generated with NetworkX can be
explored with Gephi in every simulation step. Finally, configurability will be
achieved with configuration files.

4.2 Simulation Model for Social Networks

We propose a simulation model of SNs consisting of users represented by agents
and a network that represents the social links between users. Agent are char-
acterised by their state (e.g. infected) and the behaviours they can carry out
in every simulation step, usually depending on the user state. Each behaviour
defines the actions carried out (e.g. tweeting, following a user, etc.) and how the
agent state evolves, depending on external factors (e.g. news about a topic) or
social factors (e.g. opinion of their friends). Probabilities defined in the configu-
ration control the frequency of actions in every behaviour.

This simulation model has been implemented in the architecture shown in
Fig. 1 and consists of four main components.

The NetworkSimulation class is in charge of the network simulator engine.
It provides forward-time simulation of events in a network based on nxsim and
Simpy. Based on configuration parameters, a graph is generated with NetworkX

8 https://ipython.org/.
9 https://pypi.python.org/pypi/nxsim.

https://ipython.org/
https://pypi.python.org/pypi/nxsim


240 J.M. Sánchez et al.

Fig. 1. Simulation components

and an agent class is populated to each network node. The main parameters
are the network type, number of nodes, maximum simulation time, number of
simulations and timeout between each simulation step.

The BaseAgentBehaviour class is the basic agent behaviour that should be
extended for each social network simulation model. It provides a basic function-
ality for generation of a JSON file with the status of the agents for its analysis
with machine libraries such as Scikit-Learn.

The SoilSimulator class is in charge of running the simulation pipeline defined
in Sect. 4.3, which consists in running the simulation and generating a visualisa-
tion file in GEXF which can be visualised with Gephi. In addition, interactive
analysis can be done through IPython notebooks.

Settings groups the general settings for simulations and the settings of the
different models available in Soil’s simulation model library.

4.3 Simulation Workflow

An overview of the system’s flow is shown in Fig. 2. The simulation workflow
consists of three steps: configuration, simulation and visualization.

Fig. 2. Social simulator’s workflow
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In the first step, the main parameters of the simulation are configured in the
settings.py file. The main parameters are: network graph type, number of agents,
agent type, maximum time of simulation and time step length. In addition, the
parameters of the behaviour model should be configured (e.g. initial states or
probability of an agent action). Agent behaviours should be selected from the
provided library or developed extending the BaseAgentBehaviour class.

Once the simulation is configured, the next step is the simulation, that can be
done step by step or a number of steps. The class BaseAgentBehaviour stores the
status of every agent in every simulation step into a JSON file to be exported once
the simulation is finished. This allows us to automatise the process of generating
the .gexf file.

Finally, users can carry out further analysis with the JSON file as well as
visualize the evolution the simulation with the generated .gexf file with the tool
Gephi, as shown in Fig. 5.

5 Test Cases

We have evaluated Soil in the development of a number of simulation mod-
els. In these experiments, we have used the Barabasi-Albert network generation
model [4].

The models included in the library deal with viral marketing in Twitter [40],
infection (SISa [17]), sentiment correlation the social network Weibo [10], Bass
model [35] and Independent Correlation Model [35] of information diffusion in
social networks.

In order to illustrate the functionalities of Soil, we review the Viral Marketing
model [40], which is based on rumour propagation models. In it, agents have four
potential states: neutral, infected, vaccinated and cured. This model includes the
fact that infected users who made a mistake believing in the rumour will not be

Fig. 3. Code snippet of an infected behaviour
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Fig. 4. Agent evolution Fig. 5. Network visualization

in favour of spreading their mistakes through the network. A example of how
behaviours are programmed is shown in Fig. 3. This behaviour shows that an
infected agent first selects its neutral neighbours and infects them with a given
probability. Figures 4 and 5 show the evolution of agent states and network
visualisation, respectively.

6 Conclusions and Outlook

While generic ABSS provide a suitable framework, we think that further research
on ABSS platforms for specific domains is needed. In this paper we have reviewed
the existing frameworks and the requirements for modelling and simulation of
social networks.

Soil is a modern ABSS for social networks developed in Python that benefits
from the Python ecosystem. It has been applied to a number of social network
simulation models, ranging from rumour propagation to emotion propagation
and information diffusion. Additionally, it is fully open source, cross-platform
and produces outputs compatible with SNA packages and network visualisation
tools. The platform has been designed for research purposes, and has focused
on simplicity of developing new simulation models. Soil allows the generation
of dynamic networks and its animation thanks to the use of Gephi. In spite of
the growing development of the Python ecosystem, there are still some function-
alities, such as Exponential Random Graph Model (ERGMs) which are better
supported in other environments such as R with the statnet10 package, which
provides a wide range of functionality for the statistical analysis of social net-
works. In particular, these models are very interesting for fitting models given a
network data set. As future work, we aim at evaluating and integrating imple-
mentations such as ergm11.

10 http://statnetproject.org.
11 https://github.com/jcatw/ergm.

http://statnetproject.org
https://github.com/jcatw/ergm
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Lastly, Soil is work in progress. We aim at improving the experimentation
and visualisation facilities provided by the platform, and improve the platform
through its application in more use cases and through the collaboration with
other research groups.
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