
TRABAJO DE FIN DE GRADO

T́ıtulo: Desarrollo de Sistema de entrega de contenido habilitado con

Beacons para pacientes con Alzheimer equipados con Google

Glass

T́ıtulo (inglés): Development of a Beacon enabled Content Delivery System

for Alzheimer’s patients equipped with Google Glass

Autor: Daniel Paniagua Caro

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Carlos Ángel Iglesias Fernández

Secretario: Álvaro Carrera Barroso

Suplente: Juan Fernando Sánchez Rada

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE GRADO

DEVELOPMENT OF A BEACON ENABLED

CONTENT DELIVERY SYSTEM FOR

ALZHEIMER’S PATIENTS EQUIPPED

WITH GOOGLE GLASS

Daniel Paniagua Caro

Enero de 2016

Resumen

Esta memoria es el resultado de un proyecto cuyo objetivo es desarrollar e implementar

un sistema de distribución inteligente de contenidos para pacientes de Alzheimer, que les

ayudará a ser más independientes y mejorar su memoria. Para lograr esto vamos a utilizar

dos técnicas de estimulación cognitiva imágenes mentales y orientación de la realidad.

El escenario se desarrolla en un hogar inteligente, que se basa en la proximidad propor-

cionada por Estimote beacons y donde el paciente debe estar equipado con Google Glass.

En función de su ubicación, aśı como su perfil semántico el sistema seleccionará y entregará

el contenido a los portadores de las Google Glass. Por otra parte, los cuidadores y familiares

pueden gestionar la información que se le muestra a los pacientes a través de un servidor

de administración de contenido. Además, se pueden definir reglas adaptables que utilizan

tecnoloǵıas semánticas en este servidor.

El sistema ha sido validado en varios escenarios de e-Health para pacientes con Alzheimer.

En esos escenarios el sistema permite al paciente tener tanto una orientación temporal como

espacial, el paciente podrá detectar objetos cercanos y las gafas le mostrará información

sobre los familiares que se encuentren cerca. En este caso las gafas también usará imágenes

autorreferenciales donde se le mostrarán fotos antiguas en las que aparezca junto a ese

miembro de la familia. Otro escenario evaluado es aquel en el que la aplicación ayuda al

paciente a recordar tareas diarias y proporcionar advertencias sobre posibles riesgos poten-

ciales. El último escenario evaluado es el caso de incontinencia, donde el paciente recibirá

un mensaje avisando que debe ir al baño si no ha ido durante un peŕıodo de tiempo que

los cuidadores o familiares previamente han indicado en el servidor de automatización de

tareas utilizando reglas semánticas, y la familia recibirá un correo electrónico notificando

la situación.

Se presentan finalmente las conclusiones extráıdas de este trabajo aśı como las posibles

ĺıneas de acción para mejorar el trabajo en el futuro.

Palabras clave: Google Glass, Alzheimer, Beacons, GDK, Live Card

V

Abstract

This thesis collects the result of a project whose objective is to develop and deploy a smart

context aware content delivery system for Alzheimer’s patients, which helps them increase

their independence and improve their memory. To achieve this we will use two cognitive

stimulation techniques reality orientation board and mental imagery.

The scenario unfolds in a intelligent home, which is based on proximity aware Estimote

beacons and where the patient should be equipped with Google Glass. Based on their

location as well as their semantic profile, they system will select and deliver content to their

Google Glass wearables. Furthermore, the caregivers and family can manage the information

to be shown to Alzheimer’s patients through a Content Management Server. In addition,

they can define adaptable rules using semantic technologies from Task Automation Server.

The system has be validated in various e-Health scenarios for Alzheimer’s patients. In

these the system enables temporal and spatial orientation, the patient can detect nearby

items and the Glass displays information about their relatives if they are in the proximities.

Furthermore, it shows self-referential imagery using old pictures where the patient is next

to the family member. The application also help the patient to remember routine task

and provide warning about potential risks. The last scenario evaluated is incontinence case,

where the patient receives message that should go to the bathroom if he has not gone during

the period of time indicated by caregivers using semantic rules in the server, and family

receive an email notifying the situation.

Finally, we present the conclusions of the work and the possible future work that could

be done in order to improve the project.

Keywords: Google Glass, Alzheimer, Beacons, GDK, Live Card

VII

Agradecimientos

A mis padres

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 3

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Google Glass . 5

2.1.1 Mirror API . 7

2.1.1.1 Static Cards . 7

2.1.2 Glass Development Kit (GDK) . 7

2.1.2.1 Immersions . 8

2.1.2.2 Live Cards . 8

2.1.2.2.1 Low Frequency . 9

2.1.2.2.2 High Frequency 9

XI

2.1.3 Hybrid Glassware . 9

2.2 Beacon . 10

2.2.1 Beacon Hardware . 10

2.2.2 How do beacon work? . 11

2.2.3 Protocols and SDKs . 12

2.2.3.1 iBeacon . 12

2.2.3.2 Eddystone . 12

2.2.3.3 Estimote Indoor Location SDK 13

2.2.3.4 Estimote Android SDK . 14

2.2.4 Estimote Cloud . 14

2.3 Rule Automation . 15

2.3.1 N3 . 15

2.3.2 EYE . 16

2.3.3 EWE Ontology . 17

2.3.3.1 EWE Ontology main classes 17

2.3.4 MySQL . 18

3 Architecture 19

3.1 Alternative architectures . 19

3.2 Overview . 21

3.3 Content Management Server . 22

3.3.1 Database . 23

3.3.2 Graphic Interface . 25

3.4 Task Automation Server . 27

3.5 GDK app . 29

3.5.1 Structure . 29

3.5.1.1 Ranging . 29

3.5.1.2 Content personalization . 30

3.5.1.3 Controller . 33

3.5.1.4 Live Card . 35

3.5.2 Accessing the app . 35

3.5.3 User interface and user control . 36

3.6 Summary . 36

4 Case study 37

4.1 Problem and scenario . 37

4.2 Temporal orientation case . 38

4.3 Spatial orientation case . 39

4.4 Relatives case . 40

4.5 Warnings case . 41

4.6 Incontinence case . 42

5 Conclusions and future work 43

5.1 Conclusions . 43

5.2 Achieved goals . 44

5.3 Problems faced . 44

5.4 Future work . 45

Bibliography 46

List of Figures

2.1 An overhead view of Glass. 6

2.2 Timeline . 6

2.3 Static card timeline . 7

2.4 Immersion timeline . 8

2.5 Live card timeline . 8

2.6 Live card low frequency process . 9

2.7 Live card high frequency process . 9

2.8 Hybrid glassware timeline . 9

2.9 Estimote Beacon . 10

3.1 Mirror API architecture. 20

3.2 GDK architecture. 20

3.3 Architecture. 22

3.4 CMS interconnection with GDK . 23

3.5 Login web page. 25

3.6 Home page. 26

3.7 Form items. 26

3.8 Form relatives. 27

3.9 Form warnings. 27

3.10 Task automation server interaction with GDK 27

3.11 Task automation web . 28

XV

3.12 Create rule . 28

3.13 Ranging module. 30

3.14 Content personalization module. 32

3.15 Content personalization interaction with Task Automation Server. 32

3.16 Controller module. 34

3.17 Live card module. 35

3.18 Interface Google Glass. 36

4.1 Temporal orientation case. 38

4.2 Spatial orientation case. 39

4.3 Relatives case. 40

4.4 Warnings case. 41

4.5 Incontinence case. 42

CHAPTER1
Introduction

1.1 Context

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that gradually destroys

one’s ability to learn, reason, and carry out daily activities. Most people who develop AD

do so after the age of 65, but people under this age can also develop it. In 2015, 46.8 million

people worldwide suffer from AD [17], and that number is expected to increase drastically

in the coming years, reaching 74.7 million in 2030 and 131.5 million in 2050. The total

worldwide cost of dementia in 2015 are estimated at $818 billion, an increase of 35.4%

compared with $604 billion in 2010. The ability to live independently can be compromised

in people with dementia, and it a reason commonly for nursing home placement. This is a

high cost to families, delaying nursing home placement only one month as a result $4 billion

savings, according to a study [6]. Therefore, it is necessary to find ways to improve memory

or to develop strategies that will help people compensate for memory loss and live at home

or in the community longer.

1

CHAPTER 1. INTRODUCTION

In our project we wanted to develop a system to help Alzheimer’s patients. First of all,

we have keep it in mind that AD has different stages, it is important to plan appropriate

care. Although, doctors can diagnose a disease with five, six or seven levels, we will provide

an overview of the the three stage AD model:

Mild or Early stage, in this stage a person may function independently. They have

frequent recent memory loss, such as forgetting familiar words or the location of everyday

objects. They need reminders for daily activities.

Moderate or Middle stage, it is typically the longest stage. They suffer change in the

personality and behavioral. Moreover, the memory loss is pervasive and persistent, including

forgetfulness of events or about personal history and inability to recognize friends and family.

They need structure, reminders, and assistance with the activities of daily living.

Severe or Late stage, individuals lose the ability to remember, communicate, or process

information. Generally they may still say words or phrases, but communicating pain be-

comes difficult. Physical abilities also continue to worsen. Behavior changes, hallucinations,

and delirium are increased. In this stage, the person will need round the clock intensive

support and care.

We will follow two different strategies that are focused on the first two states. On the one

hand, increasing the independence of patients with simple reminders or practices that could

not be done without the help of relatives or nurses. We have relied on the guidance for the

care of Alzheimer’s patients [26]. On the other hand, we wanted to improve memory and one

possible strategy that has shown benefit to healthy adults in the cognitive aging literature

is using mental imagery at the time of encoding. Mental imagery and cognitive training can

lead to considerable improvements in memory, which they are reliable and can be maintained

over time. Furthermore, researches [6] have demonstrated that self-referential imagery is

a technique which has particular benefit. However, there are no studies showing improved

memory encoding in patients with AD using mental imagery. Given that healthy older

adults show such robust improvement, these techniques could achieve a slight improvement

in the memory of Alzheimer’s patients. In our project we use mental images to try to

achieve this improvement.

2

1.2. PROJECT GOALS

1.2 Project goals

The main goal of this project is to develop and deploy a smart context aware content

delivery system for Google Glass users, based on their location as well as their semantic

profile, they system will select and deliver content to their Google Glass wearables.

This main goal includes some tasks such as:

• Development of the Google Glass’s application to display information using beacons.

• Define adaptable rules for users based on semantic technologies.

• Design and develop a content manager that allows users to manage the content of

Google Glass patient’s.

• Evaluate the architecture in a practical case of e-Health.

1.3 Structure of this document

In this section we will provide a brief overview of the chapters of this document. It has

been structured as follows:

Chapter 1 presents the problem that we aim to solve, and describes the structure of

this document. Chapter 2 describes the available technologies that we have used during the

progress of the project. Chapter 3 explains the complete architecture, built it in different

modules that are deeply explained in the chapter. Chapter 4 provides an overview of the

use cases. Chapter 5 sums up the conclusions obtained as a result of the project and gives

some future work that could be done to improve the features.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

In this chapter we explain the different technologies that we have used during the

progress of the project. Starting from a description the Google Glass device and its

development features in section 2.1. To finish, the Beacon device and its development

tools in section 2.2.

2.1 Google Glass

Google Glass [22]: is a wearable computer developed by Google, its operating system is

based on a version of Android and it support as well as Bluetooth and Wi-Fi connectivity.

The device looks like a pair of eyeglasses but it offers an augmented reality experience. To

achieve this, the Glass is supported by some of the following components: speakers, GPS,

small screen to display information using an optical head-mounted, front camera to take

photos or record a video for scholars and allows users to interact with Glass, wearers can

utilize natural language voice commands using the microphone or via gestures using the

touchpad located on the right side of the Google Glass.

5

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.1: An overhead view of Glass.

In spite of the Google Glass is similar to a smartphone, its user experience is dramatically

different. Consequently Glass user interface has to change too and Google has designed the

Timeline, which is the main user interface that is comprised of 640x360 pixel cards that you

can swipe forward and backward to view chronological list of cards because timeline and

the home card, which is a default card that the Glass shows you when your turn it on.

Figure 2.2: Timeline

In other words, timeline is a line of cards and we can design different types of cards

essentially static cards, live cards and immersions. These cards are used by different types

of applications, which on Glass are called Glassware and we found 3 types: Mirror API,

Glass Development Kit and Hybrid that we will be explained in the following sections in

more detail.

6

2.1. GOOGLE GLASS

2.1.1 Mirror API

The Mirror API [21] allows you to build web-based services that interact with Google Glass.

Mirror API provides functionality over a cloud-based API and does not require running code

on Glass and you can write the code in a variety of programming languages, such as Java,

PHP and Python. Furthermore, Mirror API has many services fall into a few categories

of API. Mirror API features allow us to insert, modify and delete static cards. Moreover,

it also allow you to observe the user’s location in timeline items, request their last known

location. In addition, you can insert, modify and delete static cards, or push it to Google

Glass [12].

2.1.1.1 Static Cards

Static cards are used to display information relevant to the user at time of delivery, this

information does not change at all or does not change frequently. The static cards reside

to the right of the Glass clock by default, when Glassware inserts it into the timeline all

previous static cards shift to the right too, in the next figure we can see [14].

Figure 2.3: Static card timeline

2.1.2 Glass Development Kit (GDK)

Another option to build Glassware is Glass Development Kit (GDK), which is an add-on

to Android SDK that runs directly on Glass as independent apps. It’s worth mentioning

that the GDK is currently in an early release that is subject to changes, withdrawals, and

additions at any time. GDK give us two ways to design Glassware that we will be explained

in the next section.

7

CHAPTER 2. ENABLING TECHNOLOGIES

2.1.2.1 Immersions

Immersions are Glassware that are independent of the timeline experience, which run on

Glass as independent apps. When the application runs and takes over the current screen,

you can not continue to navigate the timeline, but rather, giving you complete control over

the user experience from the time Glass launches the immersion [10].

In contrast to Mirror API, you have to write the code in the native programming lan-

guage. However, Immersions give you more ways to consume user input and create user

interfaces. This allows you to create the most custom experience, but involves the most

work.

Figure 2.4: Immersion timeline

2.1.2.2 Live Cards

Live Cards are akin to static card, except they show real-time information that are relevant

at current time or at a future time rather than a point in the past. Moreover, live cards

can change in real time. In the timeline they appear in the present section, left of the Glass

clock. Unlike immersions you can always swipe through the timeline to other cards. Live

cards are great for when users are actively engaged in a task, but want to periodically check

Glass for supplemental information, such as a display that shows the running status of an

action, an animated map during navigation, or a music player [11]. In addition, you have

again two options to render these cards:

Figure 2.5: Live card timeline

8

2.1. GOOGLE GLASS

2.1.2.2.1 Low Frequency Low frequency is a simple way to create live cards with simple

content, the card is rendered using Remote View, which is limited to a small set of Android

views and can only update the display once every few seconds. A background service is

responsible for this updating.

Figure 2.6: Live card low frequency process

2.1.2.2.2 High Frequency High frequency rendering lets you draw directly on the back-

ing Surface of the live card. You can draw anything and you can update the card many

times a second. The system gives you the actual backing surface of the live card that you

draw directly onto using 2D views and layouts or even complex 3D graphics with OpenGL.

Figure 2.7: Live card high frequency process

2.1.3 Hybrid Glassware

Hybrid Glassware uses both Mirror API and GDK. Mirror API Glassware can invoke GDK

Glassware through a menu item. This model can be used to leverage existing web properties

that you can launch fuller experiences that you can run directly on your Glass [13].

Figure 2.8: Hybrid glassware timeline

9

CHAPTER 2. ENABLING TECHNOLOGIES

2.2 Beacon

Beacon is a small computer which transmits radio signals via Bluetooth low energy (BLE).

In the market we can found different types of beacons, in our case we have used Estimote

Beacons [7]. Smart devices use beacon’s signal to estimate the distance by measuring

received signal strength. Estimote Beacons have a range of up to 70 meters radio waves

that smart devices can pick up it. Nevertheless, in real world conditions the signal can

be diffracted, interfered with, or absorbed by obstacles. Metal and water will have the

strongest effect, moreover the human body if made of water, conversely wood, synthetic

materials and glass will have the lowest effect, for all these reasons the real range is of

about 40-50 meters. All I have to add is that beacon is blinking, it is not broadcasting

continuously. The signal detection is more reliable when the more frequent blinks.

2.2.1 Beacon Hardware

Estimote Beacons have installed a piece of low level software called Estimote firmware, that

handles tasks like processing sensor data or encrypting a beacon’s ID for improved security.

Under the silicone covering, beacons have 32-bit ARM Cortex M0 CPU with 256kB of

flash with a built-in 2.4GHz radio supporting both BLE as well as 2.4GHz operation [24].

Current version of Estimote Beacons have 1000mAh CR2477 coin battery, which can last

more than 3 years on default settings and about 6 months on maximum power settings.

Figure 2.9: Estimote Beacon

Beacons include both a temperature sensor and an accelerometer. Moreover, we can

found the antenna on the thinner side of the beacon, which is a short wire sticking out

of the CPU. It’s twisted and looks like a zigzag [2]. Moreover, the antenna broadcasting

electromagnetic waves. Where the radio wave’s center frequency is 2.4 GHz and the electro-

magnetic field around a straight wire is shaped like a donut. However, the best field would

be a perfectly spherical field, because the waves propagate in every direction with the same

strength, unlike our field that leaving out sort of blank areas. But in reality this field is not

10

2.2. BEACON

possible in real world conditions. Consequently, beacon placement and orientation play an

important role for optimal signal propagation. Estimote experiments have determined that

the most effective placement is vertical, with the little dot facing upwards [25].

2.2.2 How do beacon work?

As we have explained before, beacons use BLE, meaning they enable broadcasting only small

amounts of data. The maximum payload of a Bluetooth 4.2 packet is 257 bytes. It’s not

enough to embed media content and that’s why beacons only broadcast their identifiers and

information about signal power, essential for a nearby smartphone to calculate proximity.

Smart devices do not scan continuously for beacons. As mentioned above, beacons are

blinking. Advertising interval describes the amount between each blink. For this reason,

smart devices scan for beacons with a given frequency as well, and it may depend on the

smart device state. For instance, if its state is active, scans will be happening very often,

while if its state is locked for a few minutes, it will start preserving its battery by limiting

the number of Bluetooth scans.

Advertising interval has the value ranges between 100 and 2000 ms, and It is set to 950

ms by default. This interval can be adjusted with Estimote SDK, Cloud or app.

Another important feature of the beacons is the broadcasting power. It is the power

with which the beacon broadcast its signal. A beacon’s range derives directly from the

broadcasting power. It is measured in dBm and the value ranges between -30 and +4 dBm.

Just as with Advertising Interval, Broadcasting Power on beacons can be changed with

Estimote SDK, Cloud or app.

Calculating proximity

The predictor of distance is based on Received Signal Strength Indicator (RSSI), It is

the strength of the beacon’s signal as seen on the receiving device. Furthermore, If we want

to calculate the distance, we need to know the Measured Power, which indicates what is

the average RSSI received at 1 meter distance. Therefore, smart devices can estimate the

distance to the beacon by comparing the actual signal level with the expected signal level

at 1 meter.

11

CHAPTER 2. ENABLING TECHNOLOGIES

2.2.3 Protocols and SDKs

Beacons can use different protocols and SDKs that they help us to achieve bigger yield in

beacon applications. We will explain what Estimote Beacons can use below.

2.2.3.1 iBeacon

iBeacon is a Bluetooth 4.0 communication protocol, which has developed by Apple and It

has official support for iOS devices only [9]. Estimote Beacon broadcast packets of data,

which contains information about signal strength and universally unique identifier, iBeacon

ID, it is 20 bytes long and slits into three parts.

• UUID (16 bytes) is standard identifying system which allows a unique number to

be generated for a device. The purpose of the ID is to distinguish iBeacons in your

network, from all other beacons in networks outside your control. most commonly

represented as a string.

• Major (2 bytes) and Minor (2 bytes) are number assigned to your iBeacons, in order

to identify them with higher accuracy than using UUID alone. They are unsigned

integer values between 1 and 65535, 0 is a reserved value.

We can define different beacon regions [3] using a specific combination of UUID, Major

or Minor. These values can be changed with Estimote SDK, Cloud or app, just as with

Advertising Interval and Broadcasting Power. There are two methods provided by iBeacon

to interact with regions and beacons within these regions.

• Monitoring is the action triggered on entering or exiting region’s range of one or

more beacons. It works in the foreground, background, and even if the app is not

running.

• Ranging actively scans for any nearby beacons and provides proximity estimations

every second. It works only when the app is active in the foreground.

2.2.3.2 Eddystone

Eddystone is an open Bluetooth 4.0 communication protocol. It allows developers to create

applications for iOS and Android devices [8]. Eddystone supports multiple data packet

types although Estimote Beacons can only broadcast one type of packet at a time. We will

describe them below.

12

2.2. BEACON

• Eddystone-UID packet contains an identifier of a beacon, which is 16 bytes long

and is divided into two parts:

– Namespace (10 bytes) is intended to ensure ID uniqueness across multiple Ed-

dystone implementers and may be used to filter on-device scanning for beacons.

It has a default namespace set to: EDD1EBEAC04E5DEFA017. If you want to

use a different ID, the Eddystone specification recommends taking the first 10

bytes of an SHA-1 hash of your domain name, or generate a version 4 UUID then

remove bytes 5 to 10.

– Instance (6 bytes) is unique within the namespace and represented as a string up

to 12 characters long. It is used to differentiate between your individual beacons.

• Eddystone-URL frames a broadcast a single field that contains a URL. The size

of the field depends on the length of the URL compressed encoding format used.

The URL can be used to providing access to a web page, which contains relevant

information.

• Eddystone-TLM contains the telemetry data about beacons operation. These data

are useful for monitoring the health and operation of a fleet of beacons.

– Battery voltage, which is the current battery charge in millivolts.

– Beacon temperature is the temperature in degrees Celsius sensed by the beacon.

– Number of packets sent since the beacon was last powered-up or rebooted.

– Beacon uptime, for example, time since last power-up or reboot.

2.2.3.3 Estimote Indoor Location SDK

Estimote Indoor Location SDK [23] is a set of tools, which enables real-time beacon-based

mapping and indoor location. The way to create the application is attaching at least one

Estimote Beacons per wall, then the location’s map is automatically uploaded to Estimote

Cloud. It allows users for:

• Embed a built-in Location View, you can create a map of your location with your

current position marked on it.

• The Location View is configurable, which allows one to customize its appearance,

show and hide labels or leave a trace of your movement.

• Set up a location manually, you can use the coordinates to draw your own room.

13

CHAPTER 2. ENABLING TECHNOLOGIES

• Get raw positioning data , your coordinates and orientation.

• Save and load locations to and from Estimote Cloud.

2.2.3.4 Estimote Android SDK

In our project we have used the Estimote SDK for Android [19]. It is a library that allows

users to interact with our Estimote beacons. Android 4.3 or above and device with BLE

are required to use this library. The SDK enables you to:

• Beacon ranging, your device is being triggered continuously and gets you a list of

beacons discovered.

• Beacon monitoring, your device is triggered whenever you cross the boundary of the

previously defined region in your beacons.

• Eddystone scanning, as explained above there are different types Eddystone packages

which can be scanned.

• Nearables discovery, it allows using stickers which is akin to tiny beacon, but we have

not used in this project.

• Beacon characteristic reading and writing: broadcasting power, advertising interval,

proximity UUID, major and minor values.

• Easy way to meet all requirements for beacon detection: runtime permissions or

acquiring all rights.

2.2.4 Estimote Cloud

Estimote Cloud [20] is a web-based platform that helps you better control your beacon

network. It allows you to remote management options and geolocation. Moreover, Estimote

Cloud have specifications as App Templates which enables users to generate themselves

apps powered by the Estimote stack from predefined templates. Estimote Cloud is also the

backend responsible for:

• Cloud API, which enables you accessing your beacon fleet data in a programmatic,

machine-friendly way.

14

2.3. RULE AUTOMATION

• Cloud-Based authentication protecting beacons from unauthorized access. You need

to be logged in to your Estimote Account and Estimote Cloud needs to authenticate

you as the owner.

• Segure UUID, preventing piggybacking on your beacon network. It causes rotation of

the beacon’s ID so it’s broadcasting unpredictable, encrypted values.

• Analytics help track beacon activity across your apps. You can measure interaction

with beacon regions or individual beacons, number of visits and unique visitors.

2.3 Rule Automation

In this project, we are going to use a Semantic Rule Task Automation Engine that uses

the EWE ontology [5] for rule specification, and has been implemented by Sergio Muñoz

López [16]. In the following sections we are going to provide an introduction to the main

technologies of the semantic task automation engine used in this project: N3 (Sect. 2.3.1),

EYE (Sect. 2.3.2 and EWE (Sect. 2.3.3).

2.3.1 N3

This is a language which is a compact and readable alternative to RDF’s XML syntax, but

also is extended to allow greater expressiveness. It has subsets, one of which is RDF 1.0

equivalent, and one of which is RDF plus a form of RDF rules. This language has been

developed in the context of the Semantic Web Interest Group.

The aims of the language are:

• To optimize expression of data and logic in the same language.

• To allow RDF to be expressed.

• To allow rules to be integrated smoothly with RDF.

• To allow quoting so that statements about statements can be made.

• To be as readable, natural, and symmetrical as possible.

The language achieves these with the following features:

• URI abbreviation using prefixes which are bound to a namespace (using @prefix) a

bit like in XML.

15

CHAPTER 2. ENABLING TECHNOLOGIES

• Repetition of another object for the same subject and predicate using a comma ”,”.

• Repetition of another predicate for the same subject using a semicolon ”;”.

• Bnode syntax with a certain properties just put the properties between [and].

• Formulae allowing N3 graphs to be quoted within N3 graphs using and .

• Variables and quantification to allow rules, etc to be expressed.

• A simple and consistent grammar.

2.3.2 EYE

Euler Yet another proof Engine (EYE) [15] is is a high-performance reasoning engine that

uses an optimized resolution principle, supporting forward and backward reasoning and

Euler path detection to avoid loops in an inference graph. It is written in Prolog and sup-

ports, among others, all built-in predicates defined in the Prolog ISO standard. Backward

reasoning with new variables in the head of a rule and list predicates are a useful plus when

dealing with OWL ontologies, so is more expressive than RDFox or FuXi, whilst being more

performant than other N3 reasoners.

Internally, EYE [16] translates the supported rule language, N3, to Prolog Coherent

Logic intermediate code and runs it on YAP (Yet Another Prolog) engine, a high perfor-

mance Prolog compiler for demand-driven indexing. The inference engine supports mono-

tonic abduction-deduction-induction reasoning cycle. EYE can be configured with many

options of reasoning, such as not providing false model, output filtering, and can also pro-

vide useful information of reasoning, for example, proof explanation, debugging logs, and

warning logs. The inference engine can be added new features by using user-defined plugins.

16

2.3. RULE AUTOMATION

2.3.3 EWE Ontology

Evented Web Ontology (EWE) is a standardized data schema (also referred as “ontology” or

”vocabulary”) designed to describe elements within Task Automation Services [4] enabling

rule interoperability. Referring to the EWE definition, the goals of the EWE ontology to

achieve are:

• Provide a common model to represent TAS’s rules so that it enables rule interoper-

ability.

• Enable to publish raw data from Task Automation Services (Rules and Channels)

online and in compliance with current and future Internet trends.

• Provide a base vocabulary for building domain specific vocabularies e.g. Twitter Task

Ontology or Evernote Task Ontology.

2.3.3.1 EWE Ontology main classes

The ontology has four main classes: Channel, Event, Action and Rule. They are briefly

explained following.

• Channel: It defines individuals which either generates Events, provide Actions, or

both. In this context, Channel can define a Web service or a device thus these last

ones provides Events and Actions [1].

• Event: This class defines a particular occurrence of a process. Events are instanta-

neous: they have no duration over time. Event individuals are generated by a certain

Channel, and they are triggered by the occurrence of the process which defines them.

Events usually provide further details that can be used within Rules to customize Ac-

tions: they are modelled as output-parameters. Events also let users describe under

which conditions should they be triggered. These are the configuration parameters,

modelled as input-parameters. Event definitions are not bound to certain Channels

since different services may generate the same events.

• Action: This class defines an operation or process provided by a Channel. Actions

provides effects whose nature depend on itself. These include producing logs, modi-

fying states on a server or even switching on a light in a physical location. By means

of input-parameters actions can be configured to react according to the data collected

from an Event. These data are the output-parameters.

17

CHAPTER 2. ENABLING TECHNOLOGIES

• Rule: The class Rule defines an “Event-Condition-Action” (ECA) rule. This rule

is triggered, and means the execution of an Action. Rules defines particular inter-

connections between instances of the Event and Action classes; those include the

configuration parameters set for both of them: output from Events to input of Ac-

tions.

2.3.4 MySQL

MySQL [18] is an open source relational database management system (RDBMS) based

on Structured Query Language (SQL). MySQL runs on virtually all platforms, including

Linux, UNIX, and Windows. Although it can be used in a wide range of applications,

MySQL is most often associated with web-based applications and online publishing and is

an important component of an open source enterprise stack called LAMP. LAMP is a Web

development platform that uses Linux as the operating system, Apache as the Web server,

MySQL as the relational database management system and PHP as the object-oriented

scripting language.

18

CHAPTER3
Architecture

In this section, we will explain the architecture of this project. In the first place,

we will evaluate several alternative design architectures. In the second place, we will

explain an overview of the full architecture of the project itself, structured into different

modules that are deeply explained at the end.

3.1 Alternative architectures

In the previous chapter we described the different ways to build applications on Google

Glass. On the whole, we can build web-based services that interact with Google Glass or

Glassware that run directly on them as independent apps.

19

CHAPTER 3. ARCHITECTURE

On the one hand, we can use the Mirror API. A number of applications are installed

and operate exclusively on a remote server. It can be used if you need:

• Platform Independence, develop outside the Glass on a server in any supported lan-

guage.

• Built-in functionality.

• Common infrastructure.

Figure 3.1: Mirror API architecture.

On the other hand, GDK Glassware applications are installed on the Glass device it-

self. Since Mirror API apps can only update the timeline when an Internet connection is

established, the GDK allows you to create applications that don’t require wireless access.

Figure 3.2: GDK architecture.

Since we want to create an application that does not require continuous Internet con-

nection, we need to use GDK to create applications. The benefits of this is a greater

independence, the application does not need neither network connection or google services

to run. In addition, content delivery is faster than Mirror API.

As we explained in Chapter 2, GDK gives us two ways to design Glassware: immersion

and live cards. In our project we want real-time interaction with users and free navigation

through the timeline while the application works. Therefore, live cards are well suited for

these characteristics, because when using them, the timeline has still control over the user

experience, so swiping forward or backward on a live card navigates the timeline instead

acting on the live card itself. In addition, they allow real-time updates to the user interface.

20

3.2. OVERVIEW

There are two types of live cards, specifically we will use high frequency rendering instead

of low-frequency rendering, because we want the highest speed warning alerts falls and it

allows updating the live card many times a second.

Since users are caregivers in our scenario, it is desirable that they could customize the

content delivered by the application to the patients. Nevertheless, the proposed architecture

only enables them to change that information directly on the glasses. Consequently, we will

design and implement an content management server to manage contents through a web

interface.

In addition, we extend the described functionality with a model for task automation,

which allows users to define adaptive rules based on semantic technologies.

3.2 Overview

The overall architecture of this project is composed of the following modules:

• Content Management Server: We need software module to manage the content

of Google Glass users.

• Task Automation Server: [16] This server will execute tasks on behalf of a user,

based on the defined automation rules.

• GDK app: The Google Glass native application that the patient will use as a memory

tool. This module is split into 4 sub-modules:

– Ranging

– Content personalization

– Controller

– Live Card

21

CHAPTER 3. ARCHITECTURE

Figure 3.3: Architecture.

3.3 Content Management Server

One of the applications of beacons is to provide contextual information about the object

the user is next to. For this purpose, a number of content management systems (CMS) have

been developed for providing information about products in a retail scenario. In our case,

we are going to develop a CMS for managing the information to be shown to Alzheimer’s

patients with the aim of improving its memory about relatives and objects or providing

warning about potential risks. CMS has been implemented using different technologies:

HTML5, CSS, JavaScript and PHP.

22

3.3. CONTENT MANAGEMENT SERVER

3.3.1 Database

Google Glass does not provide an interface for storing images, so we have decided to use

MySQL to store and access images. MySQL allows us to use blob data type, consequently

we can work with the images. The caregivers or family access to the CMS where they create

the data which the patient uses in the Glass. The data in the database are downloaded by

the Glass using JSON, as shown below.

Figure 3.4: CMS interconnection with GDK

A schema representing the structure of the different tables inside this database is shown

in Table 3.1, Table 3.2 and Table 3.3.

Field Type Null Key Default Extra

minor int(11) unsigned No Pri Null Auto increment

major int(11) No 1

description varchar(50) No null

activatedWhen varchar(50) No null

image blob No null

pathImage varchar(100) No noPicture

Table 3.1: Warnings table.

23

CHAPTER 3. ARCHITECTURE

Field Type Null Key Default Extra

minor int(11) unsigned No Pri Null Auto increment

major int(11) No 2

name varchar(50) No null

relationship varchar(50) No null

profilePicture blob No null

pathProfilePicture varchar(100) No noPicture

oldPicture1 blob No null

pathOldPicture1 varchar(100) No noPicture

description1 varchar(50) No null

oldPicture2 blob No null

pathOldPicture2 varchar(100) No noPicture

description2 varchar(50) No null

oldPicture3 blob No null

pathOldPicture3 varchar(100) No noPicture

description3 varchar(50) No null

Table 3.2: Relatives table.

24

3.3. CONTENT MANAGEMENT SERVER

Field Type Null Key Default Extra

minor int(11) unsigned No Pri Null Auto increment

major int(11) No 3

name varchar(50) No null

image blob No null

pathImage varchar(100) No noPicture

Table 3.3: Items table.

3.3.2 Graphic Interface

In the following photos we can see the user interface from the beginning section, where

the user has to enter their credentials to the different sections where the user manages the

content.

This is the section where the user need to login to access the web content.

Figure 3.5: Login web page.

When the user has logged in, he will be redirected to homepage and there he can access

all sections. It is shown in Figure 3.6.

25

CHAPTER 3. ARCHITECTURE

Figure 3.6: Home page.

Then, users can register items as shown in Figure 3.7. Each registered item is assigned a

beacon, then it should be placed in the item. He must fill the form where he needs indicate

the name and attach a photo of the item.

Figure 3.7: Form items.

Another interesting feature of the application is its ability to improve the ability of

patients to remember their relatives. With this purpose, cards of relatives can be created

so that they are shown when they are with their relatives. For this, their relatives should

wear a personalized beacon. The form to edit relative information is shown in Figure 3.8.

26

3.4. TASK AUTOMATION SERVER

Figure 3.8: Form relatives.

Finally, patients can also receive warnings in case of risk. This risk can be detected

in some cases such as falls based on Google Glass sensors. The following figure shows in

Fig. 3.9.

Figure 3.9: Form warnings.

3.4 Task Automation Server

The task automation server [16] provides a web service to create rules. The first step to

create it is the authentication. In this page the user can edit a created rule or create a new.

In the following picture we can see the interface to create rules.

Figure 3.10: Task automation server interaction with GDK

27

CHAPTER 3. ARCHITECTURE

Figure 3.11: Task automation web

The web allows the user to select between different available channels. This selection

is made by dragging the box representing the corresponding channel and dropping it into

the available container, then he must chose the action. This simple interface allows users

to create their own rules without knowing anything about programming.

Figure 3.12: Create rule

We will describe how to create a rule programing, where we send an email to the family

if the patient does not go to the bathroom in 180 minutes. In the first place, we have to

differentiate between event and action. The event is “When the patient does not go to the

bathroom in 180 minutes” and its channel is the presence detection. In the second place,

the action is “send email to the family” and its channel is Gmail. We can see this example

below.

28

3.5. GDK APP

Listing 3.1: Rule example

@prefix math: <http://www.w3.org/2000/10/swap/math#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/#> .

@prefix ewe-gmail: <http://gsi.dit.upm.es/ontologies/ewe-gmail/ns/#> .

@prefix ewe-presence: <http://gsi.dit.upm.es/ontologies/ewe-connected-

home-presence/ns/#> .

{

?event rdf:type ewe-presence:PresenceNoDetetedAtTime

?event ewe:sensorID ?sensorID

?sensorID string:equalIgnoringCase ’1a2b3c’ .

?event!ewe:time math:greaterThan 180

}

=>

{

ewe-gmail:Gmail rdf:type ewe-gmail:SendMsg ;

ov:message ‘‘I have not gone to the bathroom in 180 minutes ’’.

}.

3.5 GDK app

3.5.1 Structure

In the following section I will explain how the app is structured and what are the modules,

methods and algorithms used in the Glass to achieve our goals.

3.5.1.1 Ranging

This module is responsible for detecting all the beacon in range. The library that we use to

achieve this is Estimote SDK for Android. Specifically we use beacon ranging, and the star-

tRanging method of the BeaconManager class to determine relative proximity of beacons in

the region. In addition, we use the setRangingListener method of the BeaconManager class

because we want update every second a list of currently found beacons with an estimated

proximity to each of them. It works in the foreground.

29

CHAPTER 3. ARCHITECTURE

Listing 3.2: Code fragment example

beaconManager.setRangingListener(new BeaconManager.RangingListener()

{

@Override

public void onBeaconsDiscovered(Region region, final List<Beacon> beacons

) {

mapEstimoteBeacons(beacons);

}

Figure 3.13: Ranging module.

3.5.1.2 Content personalization

This module is divided in two parts. On the one hand, we manage the content to be displayed

depending on beacon identifiers. Ranging module provides us list of beacon identifiers. As

we explained in the previous chapter, beacons have three identifiers but we only will use

two: major and minor. Major will be used to identify the type of beacon and the minor

will be used to specify exactly what it is. The table below clarify this.

30

3.5. GDK APP

Major Minor

1 Warnings
1 stove

2 fall

2 Relatives
1 son

2 wife

3 Items
1 shoes

2 shirt

4 Places

1 kitchen

2 living room

3 dining room

4 bathroom

5 hall

6 yard

7 garage

8 bedroom

We have defined four types of beacons: warnings, items, people and places. The first

three can be updated by adding new elements in those categories, but in the category places

we have predefined values that are shown in the table. This category is small enough to be

defined with the elements we have described.

31

CHAPTER 3. ARCHITECTURE

Figure 3.14: Content personalization module.

On the other hand, this module is responsible for sending the request with the parame-

ters required by the rule that we have defined on the task automation server. The content

personalization module saves in a global variable the time that has elapsed since no detected

the beacon of specific place. In the following example we can see one of the defined rules,

this rule has as parameter this elapsed time since no presence is detected in the place that

is also sent as a parameter.

Listing 3.3: Input example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/#> .

@prefix ewe-presence: <http://gsi.dit.upm.es/ontologies/ewe-connected

-home-presence/ns/#> .

ewe-presence:PresenceSensor rdf:type ewe-presence:

PresenceNoDetetedAtTime;

ewe-presence:PresenceSensor ewe:sensorID #SensorPlaceID# ;

ewe-presence:elapsedTime #Time# .

Figure 3.15: Content personalization interaction with Task Automation Server.

32

3.5. GDK APP

Task automation server sends a JSON response. That Gmail and Live Card are the

used channels, these were previously selected in the server.

[caption={Response}, label={lst: response}],

{

"success": 1,

"actions": [

{

"channel":"Live card",

"action":"Show",

"parameter":"null"

},

{

"channel": "Gmail",

"action": "Send",

"parameter": "Example of message "

}

]

}

3.5.1.3 Controller

This module is responsible for receiving the personalized list of currently found beacons,

which is sent by the content personalization module.Controller module sends the appropriate

view to the live card. The view that we show to the user depends of the priority of beacons

found at this moment. In the following table we can see the assigned priorities.

Type view Priority

Warning Maximum

Relatives Medium

Items Low

Greeting None

Table 3.4: Items table.

33

CHAPTER 3. ARCHITECTURE

Therefore, if our glass detects a beacon type warning, it will ignore other types of

beacons that can be found at this time. Consequently we can only see the warning view in

that scenario. But we should not forget that in our scenario more than one beacon of the

same type can coexist. In this case, the device displays the data of the beacon that has the

highest priority and is closer to the user.

Figure 3.16: Controller module.

We have observed that fluctuations in the beacons occur much frequently, the distance

is constantly changing. If we are in a place where there are several beacon of the same

type, as a result of fluctuations the view changes so quickly that it is inconvenient for the

user. To achieve a stable view, we have established a safety time in each priority level. In

this small safety time, the controller checks whether the user’s position has changed with

respect to the beacon or otherwise if there was a fluctuation.

This module is also responsible for responding to possible events derived from the use

of rules, the content personalization module sends us the data channels will manage. In our

case we will use three channels: gmail, twitter and live card. The content personalization

module also send us the action to perform. These can be display view on the screen, send

34

3.5. GDK APP

message or tweet. When the live card is used and we have to display view, it has the same

priority that warning beacons.

3.5.1.4 Live Card

We render live cards with high frequency, the system gives us the actual backing surface

of the live card that we draw directly onto using 2D views. Firstly we have created the

class LiveCardRenderer that implements DirectRenderingCallback, it allows to create a

background thread to update the card in response to beacon detection. Secondly, we display

graphics with canvas library. For this purpose, we use several methods such as drawLine,

drawColor, drawTex and drawBitmap.

Figure 3.17: Live card module.

3.5.2 Accessing the app

The user can access the app in two different ways:

• Voice menu: Google Glass counts with a built-in voice menu that will be displayed

if the user says ”ok glass”. Inside that menu our app is shown and is accessible by

saying ”Memory tool”.

• Tactile menu: A menu will appear if the user taps on the touchpad while being in

the home card, our app will be one of the options.

35

CHAPTER 3. ARCHITECTURE

3.5.3 User interface and user control

In order to make easy to use the patient, once the application is launched, it displays the

information automatically based on proximity aware beacons. The wearers can open the

menu tap on the card, but the unique action that they can use is finish the activity. In the

following pictures we can see examples the different views that we can see depending on the

context.

(a) Time view. (b) Items view. (c) Warning view.

(d) Relative view.

Figure 3.18: Interface Google Glass.

3.6 Summary

In this chapter we have explained the features and objects that this project has along with

their communication and relationship.

To sum up, this project counts with a Google Glass application that is able to receive

contextual events coming from beacons and to generate accordingly actions. Furthermore,

we have a Content Management Service where the caregivers and family are be able to

manage the content of Google Glass users. In addition, they can use Task Automation

Server to define rules based on semantic technologies that can be adapted.

36

CHAPTER4
Case study

In this chapter we are going to describe different use cases. This description will cover

the main Memory Tool features, and its main purpose is to completely understand the

functionalities of this project, and how to use it.

4.1 Problem and scenario

Alzheimer’s is a brain disease that causes a slow decline in memory, thinking and reasoning

skills. As we explained in the chapter 1, symptoms may also vary depending on the stage

of the illness. There is currently no cure for Alzheimer’s disease, or treatment to stop its

progression or reverse the symptoms. Medications may help on a short-term basis to slow

cognitive decline and non drug treatments can help with some symptoms.

With our application we want to increase the independence of patients and improve their

memory. To achieve this we will use two cognitive stimulation techniques, on the one hand

we will employ reality orientation board, it is used to display both personal and orientation

information, the therapy focuses on repeatedly reminding patients of information in order

to create continuity between different bits of information mental imagery. On the other

hand, we will use mental imagery to improve memory. In the following sections, we will

37

CHAPTER 4. CASE STUDY

describe all the use cases which cover all this techniques.

4.2 Temporal orientation case

Reality orientation is based upon the belief that continual, repetitive reminders will keep

the patient stimulated and lead to an increase in temporal orientation.

In temporal orientation case, the patient turns on Google Glass and it will display on

screen information of the hour, the day of the week, number, month and year so that the

patient can see it without the need to ask. This information will show the patient when the

device does not detect any beacon or only detects place beacons.

(a) Trigger when.

(b) Scenario. (c) Temporal orientation view.

Figure 4.1: Temporal orientation case.

38

4.3. SPATIAL ORIENTATION CASE

4.3 Spatial orientation case

We want to help the patient to find the objects needed to perform daily activities. For

example, he could find clothes to wear.

n this case the caregiver or family member must register items on the server. The first

step to take is the authentication on the web. Then he must go to the item section and

fill the form shown in figure 3.7. Each item has associated a beacon that should be placed

on the item. When all objects are registered and placed in the appropriate places, and the

information has been updated by the Glass, it is ready to use. The patient receives the

location information of nearby items, this will happen as long as a higher priority beacon

is not detected.

(a) Trigger when.

(b) Scenario. (c) Temporal orientation view.

Figure 4.2: Spatial orientation case.

39

CHAPTER 4. CASE STUDY

4.4 Relatives case

We want to display information about nearby relatives. In addition, we will stimulate the

memory through mental imagery, showing photos of relative and events from the patient’s

past.

As we explained in the previous case, the patient need a caregiver or family member has

registered previous information, that case is information from relatives and he will must fill

the form shown in figure 3.8. He must fill the name, relationship, attach a profile photo and

several old photos where he appears next to the patient and indicates a description of them.

Then the family member must have the beacon, that regularly transmits the number that

identifies him. When the patient meets a relative and the Glass does not detect warning

beacon, it will show information relative who previously filling in the web. Old photos will

not be shown all at once, the Glass will display one by one with their description and it will

change after a few seconds.

(a) Trigger when.

(b) Scenario. (c) Temporal orientation view.

Figure 4.3: Relatives case.

40

4.5. WARNINGS CASE

4.5 Warnings case

In this case we want to help the patient to remember routine task and provide warning

about potential risks. For instance, turn off the stove, lock the door or notify some uneven

area.

Firstly, the caregiver or family member has to register this warning in the web. In the

warning section he must to fill the form shown in figure 3.9. In warning form he must fill

the description, attach a descriptive photo and indicates when it show a notification (enter

or leave area). Secondly, he has to be placed in the appropriate places the beacons. Finally,

when the Glass enters or leaves an area of a warning beacon, it will display the associated

warning.

(a) Trigger when.

(b) Scenario. (c) Temporal orientation view.

Figure 4.4: Warnings case.

41

CHAPTER 4. CASE STUDY

4.6 Incontinence case

Incontinence is generally primary reason why many caregivers decide to seek nursing home

placement. Urinary incontinence may be controlled for some time by trying to monitor times

of urinating. Once a schedule has been established, the patient may be able to anticipate

incontinent episodes using our application.

In this case the caregiver or family member must fill the form shown in figure 3.12 to

be authenticated in the task automation web. Once authenticated, he may navigate to the

Rules page. This page shows a list of the rules created by the user. In this page he can edit

a created rule or create a new one. In this case he must to create a rule, that when in the

bathroom no presence is detected during the time he considers appropriate, a web service

must to trigger two actions: send emails and display live card. Thus, the patient receives

the message that should go to the bathroom if he has not gone during the period of time

indicated on the web. Furthermore, the family will receive an email notifying the situation.

(a) Trigger when.

(b) Scenario. (c) Temporal orientation view.

Figure 4.5: Incontinence case.

42

CHAPTER5
Conclusions and future work

In this chapter we will gather the conclusions obtained as a result of the project, as

well as possible future work that can be done for further development of this project.

5.1 Conclusions

All in all, in this project we have developed and deployed a system to help people compensate

for memory loss and improve it. We have used and to develop reality orientation board and

mental imagery techniques. Alzheimer’s patients should be equipped with Google Glass

and the system is based on proximity aware beacons. The application enables temporal and

spatial orientation, the patient can detect nearby items and the Glass displays information

about their relatives if they are in the proximities. Furthermore, it shows self-referential

imagery using old pictures where the patient is next to the family member. The application

also help the patient to remember routine task and provide warning about potential risks.

We have developed a Content Management Server, it has been implemented using differ-

ent technologies: HTML5, CSS, JavaScript, PHP and MySQL. In this server the caregivers

or the family can manage these data they can register items, warnings and relative profiles.

Each them have associated a beacon that should be placed on the right place.

43

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

The system also allows the user to automate tasks using a Task Automation Server [16],

where he is able to create and edit semantic rules. Our system has implemented rules for

them it uses semantic technologies (N3, EYE and RDF). One example rule is when the

system sends an email to the family if the patient have not gone to the bathroom after a

certain time, the family can chose this time in the server.

5.2 Achieved goals

Developing a Google Glass application to display information using beacons, this was

the main goal of the project, the system is able to show contextual information based

on proximity aware Estimote Beacons.

Define adaptable rules for users based on semantic technologies, as we have de-

scribed in the previous section, these semantic technologies have been used to define

adaptable rules for the caregivers and family.

Design and develop a content manager that allows users to manage the content

of Google Glass patient’s, we have developed a Content Management Server for man-

aging the information to be shown to Alzheimer’s patients with the aim of improving

its memory about relatives and objects or providing warning about potential risks.

Evaluate the architecture in a practical case of e-Health, we have evaluated five dif-

ferent practical scenarios that have used different techniques increasing the indepen-

dence of patients and improve their memory.

5.3 Problems faced

Google Glass device: this device is still under development, this fact means that it is

still a limited hardware, therefore problems such as overheating or processing delays

are unavoidable.

High frequency live card: the interface design using high frequency prevents us from

using html to design the cards, as a result the design has been much slower and hard

to having to use the canvas library.

44

5.4. FUTURE WORK

Beacons accuracy: We have observed that fluctuations in the beacons occur much fre-

quently, the distance is constantly changing. We have faced this problem creating a

small safety time, where the system checks whether the user’s position has changed

with respect to the beacon or otherwise if there was a fluctuation.

5.4 Future work

Here we expose some recommendations that could be made in order to improve the features

and characteristics of the work:

• We can use nearables and stickers which are much smaller beacons. While original

beacons were designed for venues and static locations, stickers are great for making

individual objects smart.

• The Google Glass interface could be improved by using animations or including videos.

In addition, we can add the use of voice to communicate notifications.

• Create a map using Estimote Indoor Location SDK, to improve the spatial orientation

of the patient.

• Implement monitoring to improve detection when the patient comes in and out of the

zones.

• Adapt the application for use in smart watches, these would be more comfortable to

wear for patients.

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

46

Bibliography

[1] Oscar Araque. Design and implementation of an event rules web editor, July 2014.

[2] Wojtek Borowicz. How do beacons work? the physics of bea-

con tech. http://blog.estimote.com/post/106913675010/

how-do-beacons-work-the-physics-of-beacon-tech, 2015. Accessed Decem-

ber 13, 2015.

[3] Wojtek Borowicz. What is a beacon region? https://community.estimote.com/hc/

en-us/articles/203776266-What-is-a-beacon-region-, 2015. Accessed December

15, 2015.

[4] Miguel Coronado and Carlos Angel Iglesias. Task automation services: Automation for the

masses. IEEE Internet Computing, 20(1):52–58, 2016.

[5] Miguel Coronado, Carlos Angel Iglesias, and Emilio Serrano. Modelling rules for automating

the evented web by semantic technologies. Expert Syst. Appl., 42(21):7979–7990, 2015.

[6] Irene Piryatinsky Andrew E. Budson-Brandon A. Ally Erin Hussey, John G. Smolinsky. Using

mental imagery to improve memory in patients with Alzheimer’s disease: Trouble generating

or remembering the mind’s eye? 2012.

[7] Estimote. Beacon tech overview. http://developer.estimote.com/, 2015. Accessed

December 13, 2015.

[8] Estimote. What is Eddystone? http://developer.estimote.com/eddystone/, 2015.

Accessed December 15, 2015.

[9] Estimote. What is iBeacon? http://developer.estimote.com/ibeacon/, 2015. Ac-

cessed December 15, 2015.

[10] Google. Immersions. https://developers.google.com/glass/develop/gdk/

immersions, 2015. Accessed December 11, 2015.

[11] Google. Live cards. https://developers.google.com/glass/develop/gdk/

live-cards, 2015. Accessed December 12, 2015.

[12] Google. The Mirror API. https://developers.google.com/glass/develop/

mirror/, 2015. Accessed December 11, 2015.

[13] Google. Platform overview. https://developers.google.com/glass/develop/

overview, 2015. Accessed December 17, 2015.

47

http://blog.estimote.com/post/106913675010/how-do-beacons-work-the-physics-of-beacon-tech
http://blog.estimote.com/post/106913675010/how-do-beacons-work-the-physics-of-beacon-tech
https://community.estimote.com/hc/en-us/articles/203776266-What-is-a-beacon-region-
https://community.estimote.com/hc/en-us/articles/203776266-What-is-a-beacon-region-
http://developer.estimote.com/
http://developer.estimote.com/eddystone/
http://developer.estimote.com/ibeacon/
https://developers.google.com/glass/develop/gdk/immersions
https://developers.google.com/glass/develop/gdk/immersions
https://developers.google.com/glass/develop/gdk/live-cards
https://developers.google.com/glass/develop/gdk/live-cards
https://developers.google.com/glass/develop/mirror/
https://developers.google.com/glass/develop/mirror/
https://developers.google.com/glass/develop/overview
https://developers.google.com/glass/develop/overview

BIBLIOGRAPHY

[14] Google. Static cards. https://developers.google.com/glass/develop/mirror/

static-cards, 2015. Accessed December 11, 2015.

[15] J.DeRoo. Euler yet another proof engine. http://eulersharp.sourceforge.net, 2013.

Accessed December 26, 2015.

[16] Sergio Muñoz López. Development of a task automation platform for beacon enabled smart

homes. 2016.

[17] Maëlenn Guerchet Gemma-Claire Ali Yu-Tzu Wu Matthew Prina Martin Prince, Anders Wimo.

World Alzheimer report 2015 the global impact of dementia. 2015.

[18] MySQL AB. MySQL 5.0 Reference Manual, 2006.

[19] Lukasz Pobereżnik. Estimote SDK for Android. https://github.com/Estimote/

Android-SDK, 2015. Accessed December 17, 2015.

[20] Ola Puchta. Estimote cloud. https://community.estimote.com/hc/en-us/

articles/203854516-What-is-Estimote-Cloud-, 2015. Accessed December 14, 2015.

[21] Eric Redmond. Programming Google Glass. Pragmatic Bookshelf, 2013.

[22] Eric Redmond. Programming Google Glass: Build Great Glassware Apps with the Mirror API

and GDK. Second edition, 2015.

[23] Witek Socha. Indoor location. https://community.estimote.com/hc/en-us/

articles/203493626-What-s-Estimote-Indoor-Location-, 2015. Accessed De-

cember 17, 2015.

[24] Witek Socha. Technical specification of Estimote beacons and stick-

ers. https://community.estimote.com/hc/en-us/articles/

204092986-Technical-specification-of-Estimote-Beacons-and-Stickers,

2015. Accessed December 11, 2015.

[25] Agnieszka Steczkiewicz. Best practices for installing Estimote bea-

cons. https://community.estimote.com/hc/en-us/articles/

202041266-Best-practices-for-installing-Estimote-Beacons, 2015. Ac-

cessed December 13, 2015.

[26] Vanesa Sánchez-Valladares Jaramillo-Ana Balbás Repila Vı́ctor Isidro Carretero, Cynthia

Pérez Muñano. Gúıa práctica para familiares de enfermos de alzheimer. 2011.

48

https://developers.google.com/glass/develop/mirror/static-cards
https://developers.google.com/glass/develop/mirror/static-cards
http://eulersharp.sourceforge.net
https://github.com/Estimote/Android-SDK
https://github.com/Estimote/Android-SDK
https://community.estimote.com/hc/en-us/articles/203854516-What-is-Estimote-Cloud-
https://community.estimote.com/hc/en-us/articles/203854516-What-is-Estimote-Cloud-
https://community.estimote.com/hc/en-us/articles/203493626-What-s-Estimote-Indoor-Location-
https://community.estimote.com/hc/en-us/articles/203493626-What-s-Estimote-Indoor-Location-
https://community.estimote.com/hc/en-us/articles/204092986-Technical-specification-of-Estimote-Beacons-and-Stickers
https://community.estimote.com/hc/en-us/articles/204092986-Technical-specification-of-Estimote-Beacons-and-Stickers
https://community.estimote.com/hc/en-us/articles/202041266-Best-practices-for-installing-Estimote-Beacons
https://community.estimote.com/hc/en-us/articles/202041266-Best-practices-for-installing-Estimote-Beacons

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Google Glass
	Mirror API
	Static Cards

	Glass Development Kit (GDK)
	Immersions
	Live Cards
	Low Frequency
	High Frequency

	Hybrid Glassware

	Beacon
	Beacon Hardware
	How do beacon work?
	Protocols and SDKs
	iBeacon
	Eddystone
	Estimote Indoor Location SDK
	Estimote Android SDK

	Estimote Cloud

	Rule Automation
	N3
	EYE
	EWE Ontology
	EWE Ontology main classes

	MySQL

	Architecture
	Alternative architectures
	Overview
	Content Management Server
	Database
	Graphic Interface

	Task Automation Server
	GDK app
	Structure
	Ranging
	Content personalization
	Controller
	Live Card

	Accessing the app
	User interface and user control

	Summary

	Case study
	Problem and scenario
	Temporal orientation case
	Spatial orientation case
	Relatives case
	Warnings case
	Incontinence case

	Conclusions and future work
	Conclusions
	Achieved goals
	Problems faced
	Future work

	Bibliography

