
MASTER UNIVERSITARIO DE INGENIERÍA DE

TELECOMUNICACIÓN

TRABAJO FIN DE MASTER

Prototype and Evaluation of a Conversational Bot based on
Recurrent Neural Networks using TensorFlow

Diego San Cristóbal Bastardo
2018

TRABAJO DE FIN DE MASTER

T́ıtulo: Prototipo y Evaluación de Bot Conversacional basado en

Redes Neuronales Recurrentes usando TensorFlow

T́ıtulo (inglés): Prototype and Evaluation of a Conversational Bot based on

Recurrent Neural Networks using TensorFlow

Autor: Diego San Cristóbal Bastardo

Tutor: Óscar Araque Iborra

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE MASTER

Prototype and Evaluation of a Conversational Bot based on
Recurrent Neural Networks using TensorFlow

Febrero 2018

Resumen

La inteligencia artificial es una disciplina cient́ıfica de carácter multidisciplinar que tiene

como objetivo la comprensión de la inteligencia aśı como la construcción de entidades in-

teligentes. Debido a dicho caracter multidisciplinar, la inteligencia artificial está experi-

mentando un gran auge pues permite abordar multitud de problemas distintos obteniendo

buenos resultados.

Concretamente, uno de los campos de la inteligencia artifcial que más desarrollo está

experimentando es el del aprendizaje automático o machine learning. Este subcampo se

encarga del desarrollo de programas capaces de generalizar comportamientos a partir de

una información suministrada en forma de ejemplos. Dentro de esta rama destacan espe-

cialmente las redes neuronales que constituyen un paradigma inspirado en las neuronas del

sistema nervioso de los animales.

Por otro lado, uno de los grandes objetivos de la inteligencia artificial es dotar a las

máquinas de la capacidad de comprender y generar lenguaje natural, permitiendo la comu-

nicación entre humanos y máquinas. El Natural Language Processing (NLP) es el campo de

la ciencia encargado del estudio de dicho proceso. Por tanto, el propósito de este proyecto

es el de analizar el problema de la comunicación humano-máquina mediante lenguaje nat-

ural, aśı como el desarrollo de una solución utilizando técnicas del campo de la inteligencia

artificial.

Para la consecución de tal objetivo, se ha desarrollado un prototipo basado en redes

neuronales. Para ello, se han analizado diferentes herramientas y tecnoloǵıas que brindan la

capacidad de realizar este tipo de desarrollos. Además, se han estudiado diferentes fuentes

de información para la formación del conjunto de datos necesario para que el prototipo

pudiese desempeñar el proceso de aprendizaje.

Por último, se han realizado diferentes experimentos con diferentes conjuntos de datos

y se han analizado los resultados obtenidos.

Palabras clave: Inteligencia artificial, aprendizaje automático, redes neuronales, deep

learning, algoritmos de aprendizaje.

VII

Abstract

Artificial intelligence is a multidisciplinary scientific discipline that aims to understand

intelligence as well as the construction of intelligent entities. Due to this multidisciplinary

character, artificial intelligence is experiencing a great boom because it allows to address a

multitude of different problems obtaining good results.

Specifically, one of the fields of artificial intelligence that is suffering more development

is machine learning. This sub-field is responsible for the development of programs capable

of generalizing behaviors from information provided in the form of examples. Within this

branch, especially stand out neural networks that constitute a paradigm inspired by the

neurons of the animals nervous system.

On the other hand, one of the main objectives of artificial intelligence is to equip ma-

chines with the ability to understand and generate natural language, allowing communi-

cation between humans and machines in an easier way. The Natural Language Processing

(NLP) is the field of science responsible for the study of this process. Therefore, the pur-

pose of this project is to analyze the problem of human-machine communication through

natural language, as well as the development of a solution using techniques from the field

of artificial intelligence.

To achieve this goal, a prototype based on neural networks has been developed. For this

purpose, different tools and technologies that provide the capacity to carry out this type of

development have been analyzed. In addition, different sources of information have been

studied for structuring the data set necessary for the prototype to perform the learning

process.

Finally, different experiments have been carried out with different data sets and the

results obtained have been analyzed.

Keywords: Artificial intelligence, machine learning, neural networks, deep learning,

learning algorithms.

IX

Agradecimientos

A mi tutor Óscar Araque, por su inestimable ayudada con este proyecto y por haberme

brindado la posibilidad de utilizar la infraestructura del departamento.

A mis padres, hermano y amigos por preocuparse y apoyarme siempre durante todo este

largo camino.

A Laura, por siempre estar ah́ı para animarme en este último reto.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

1 Introduction 1

1.1 Context . 1

1.1.1 Artificial intelligence nowadays . 2

1.2 Project goals . 3

1.3 Structure of this document . 3

2 Theoretical Background 5

2.1 Artificial Intelligence . 5

2.2 Machine Learning . 7

2.2.1 Supervised Learning . 7

2.2.2 Semi-Supervised Learning . 8

2.2.3 Unsupervised Learning . 8

2.2.4 More used Machine Learning algorithms 8

2.3 Deep Learning . 9

3 Neural Networks 11

3.1 Introduction . 11

3.2 Common Characteristics . 11

3.3 The Neuron . 12

3.3.1 Neural Networks Topologies . 15

3.3.2 Single Layer Neural Network . 17

3.3.3 Multi Layer Neural Network . 18

XIII

3.3.4 Recurrent Neural Network . 18

3.3.5 Common Notation . 20

3.4 Learning Process . 21

3.4.1 Cost Functions . 22

3.4.2 Optimizer Functions . 23

3.4.3 Which optimizer should be used? . 25

3.4.4 Problems with the use of gradients in learning 25

3.5 LSTM Networks . 26

3.5.1 Introduction . 26

3.5.1.1 The Problem of Long-Term Dependencies 26

3.5.2 Main ideas behind the LSTM architecture 27

3.5.3 Gated Recurrent Unit . 34

3.5.4 Summary . 36

3.6 Technologies . 36

4 The Problem 41

4.1 Background . 41

4.2 Neural Machine Translation . 42

4.2.1 Seq2Seq . 42

4.2.2 Padding . 44

4.2.3 Bucketing . 45

4.3 Word Embedding . 45

4.3.1 Classic Neural Language Model . 48

4.3.2 Word2Vec . 49

4.4 Attention Mechanism . 51

4.5 From NMT to Conversational Bot . 54

5 The Solution: A conversational bot 55

5.1 The Data . 55

5.2 Preprocessing Data . 56

5.2.1 Structuring the data . 58

5.3 NMT Tensorflow . 60

5.3.1 Structure . 60

5.3.2 Training TF-NMT . 64

5.3.3 Inference. Generating conversations 65

5.4 Open NMT . 67

5.4.1 Structure . 67

5.4.2 Training Open NMT . 73

5.4.3 Inference. Generating Conversations 74

5.5 Metrics . 74

5.5.1 Perplexity . 74

5.5.2 Bleu . 75

5.6 Results: Conversations . 76

5.6.1 Different Trainings . 76

5.6.1.1 Cornell Trainings . 76

5.6.1.2 Open Subtitles trainings 78

5.6.1.3 5 million OS question/answer trainings 80

5.6.1.4 14 million OS question/answer training 82

6 Conclusions 85

6.1 General Difficulties . 85

6.2 Particular Difficulties . 86

6.2.1 TensorFlow Implementation . 87

6.2.2 “I don’t know” problem . 88

6.3 Future lines of work . 89

6.4 Final Conclusions . 89

Bibliography 90

List of Figures

3.1 Neuron Model . 12

3.2 ReLU function . 14

3.3 Logistic function . 14

3.4 tanh . 15

3.5 Fully-connected topology . 16

3.6 Linear link topology . 16

3.7 Default topology . 16

3.8 Single layer topology . 17

3.9 Multi layer topology . 18

3.10 Recurrent network topology . 19

3.11 Recurrent neuron structure . 19

3.12 Feedforward Neural Network General Notation 20

3.13 RNN long term dependencies A . 27

3.14 RNN long term dependencies B . 27

3.15 Detailed RNN unit . 28

3.16 Detailed LSTM unit . 28

3.17 LSTM cell state . 29

3.18 LSTM forget gate . 30

3.19 LSTM new candidates . 30

3.20 LSTM combination of two gates . 31

3.21 LSTM final step . 32

3.22 LSTM with peepholes . 32

3.23 LSTM mixed gates . 33

3.24 Difference between RNN unit and LSTM unit 34

3.25 GRU unit . 35

4.1 Vauquois Triangle . 42

4.2 Seq2Seq Model . 43

4.3 Encoder Generating Context . 43

4.4 Embeddings Simple Representation . 46

XVII

4.5 Word Embeddings NN . 47

4.6 Classic neural language model. One hidden layer NN 48

4.7 Word2Vec architecture . 49

4.8 Softmax approximations table . 50

4.9 Attention Model . 51

4.10 Detailed Attention Model . 52

4.11 LSTM network with attention model . 53

4.12 Alignment in translation . 54

5.1 Preprocessed OpenSubtitles . 57

5.2 Cornell Dataset . 57

5.3 14 million OpenSubtitles . 58

5.4 Process Scheme . 59

5.5 Greedy Decoder . 66

5.6 Embeddings Open NMT . 67

5.7 Encoder Open NMT . 69

5.8 Decoder Open NMT . 70

5.9 Attention Open NMT Scheme . 71

5.10 Non-projective Example [38] . 72

5.11 Perplexity Obtained by Epoch . 75

CHAPTER1
Introduction

1.1 Context

Artificial Intelligence is a scientific field which is very useful in many other scientific and

non-scientific fields and is reaching more and more importance each day.

Historically, the first attempts to use logical means to produce knowledge, appeared

during the thirteenth century, and an example of this is the theoretical basis that Ramón

Llul developed and that served to lay the foundations of the Ars Magna Generails, a logical

machine considered as one of the first approaches to artificial intelligence.

In 1847, George Boole develops and establishes the foundations of the propositional

logic. Shortly after, in 1879, Gottlob Frege presents the first system of predicate logic. This

caused a significant advance in the field of logic.

Later, in 1936, the mathematician Alan Turing published a study called “On computable

numbers, with an application to the Entscheidungsproblem”. This study involved the reso-

lution of a challenge in the symbolic logic that consisted in finding a general algorithm that

would decide whether a calculation formula of first order is or not a theorem. Turing, at

the same time and independently of Alonzo Church, demonstrated that it was impossible

to develop such an algorithm. This allowed him to revolutionize the world of mathematical

logic by presenting what is known as the Turing machine, which was capable of simulating

the logic of any computer algorithm.

1

CHAPTER 1. INTRODUCTION

In 1950, again Alan Turing, publishes the article “Computing machinery and intelli-

gence” where the Turing test is presented, a test to determine if a machine is capable of

exhibiting intelligent behavior in a similar way to humans.

However, the conception of the artificial intelligence (AI) term did not occur until 1956

during the Dartmouth conference organized and proposed by John McCarthy, Marvin L.

Minsky, Nathaniel Rochester and Claude E. Shannon. Later, there is a great development

in different areas of AI, from programming languages (such as PROLOG) to intelligent

systems (such as SHRDLU), through models of knowledge representation (such as semantic

networks developed in 1963).

During this period of exponential development of technologies and algorithms focused

on the AI, one of the great milestones occurred in 1997, when Gari Kaspárov (at that

time world chess champion) lost a chess game with a IBM’s computer called “Deep Blue”

[43, 16].

Currently, AI has become a technique that uses the scientific method. This allows that,

for a hypothesis to be accepted, it must be subjected to rigorous empirical experiments and

the results must be statistically analyzed for their importance [12]. In addition, today it is

possible to replicate the experiments thanks to the technological advances that have allowed

the creation of repositories of data and repositories of code that allow their sharing.

1.1.1 Artificial intelligence nowadays

After its brief introduction about what Artificial Intelligence is and its historical context,

we can affirm that AI has a multidisciplinary character that affects very specific aspects

of mathematics, science, information sciences and Medicine. This multidisciplinary nature,

together with advances in computational technology, that allows greater speed in the per-

formance of calculations, is causing an increment in the use of the new AI techniques, since

it allows to address problems and find solutions much more faster. AI is currently solving

problems in the following areas [41]:

• Natural Language

– Generation

– Classification

– Translation

• Perception

– Computer Vision

• Reasoning

2

1.2. PROJECT GOALS

• Math

• Robotics

• Games

• Engineering

• Medicine

– Diagnosis

– Image Analysis

These are some of the fields in which AI is currently having a greater presence. However, it

also begins to have a presence in disciplines that are more artistic such as design, fashion

or even painting.

From those fields, there are one that is reaching more importance each day which is

generation and understanding of natural language. Providing machines with the ability to

understand and generate information in natural language is currently a main objective for

the field of machine learning. It will produce a mass approach of artificial intelligence to

users.

1.2 Project goals

The main objectives of this project are the following:

• Study the use of the artificial intelligence, specifically the use of neural networks, as

a solution to common problems and , especially, to solve the problem of generating

conversations using natural language .

• Selection and study of a specific machine learning algorithm able to solve mentioned

problem.

• Development of a solution using current technologies and study the results of the

mentioned solution.

1.3 Structure of this document

In this section is provided a brief overview of the chapters included in this document. The

structure is as follows:

3

CHAPTER 1. INTRODUCTION

• Chapter 1 - Introduction: A general description of the field of study of the thesis

is made with a justification of it. The objectives and methodologies followed are also

indicated.

• Chapter 2 - Theoretical Background:The theoretical foundations of artificial in-

telligence are established. The main algorithms of machine learning will be analyzed

and it will be indicated which of them will be chosen for the development of the

solution.

• Chapter 3 - Neural Networks: This section will give a general overview of neural

networks and, in particular, will explain Recurrent Neural Networks deeply. LSTM

units will also be widely explained and how they are combined with recurrent networks.

Finally there will be an approach to existing technologies.

• Chapter 4 - The Problem: This chapter has the objective of presenting the problem

that this project tries to solve, giving a general view of it and explaining general

techniques and tools that can be used to solve it.

• Chapter 5 - The Solution: Here is presented the particular solution that this

project gives to the previous problem. It explains the implementations used and

presents the results obtained.

• Chapter 5 - Conclusions: It constitutes the final chapter were the conclusions are

presented. Firstly, the difficulties encountered are commented. Then the conclusions

obtained from the results and finally, there is section of possible future work.

4

CHAPTER2
Theoretical Background

2.1 Artificial Intelligence

Artificial intelligence (from now on AI) is a scientific field which tries to understand what

is the meaning of intelligence and to build entities that have it. This is a wide area of

knowledge because it includes multiple disciplines.

If we search for the definition of intelligence in a dictionary we can find many meanings,

but it this case only some of them have been selected:

1. The ability of understanding

2. The ability of resolving problems

3. Knowledge, understanding

4. Sense in which a proposition, saying or expression can be taken

5. Ability, skill and experience

6. Purely spiritual substance

As we can observe, there are varied definitions. In addition, if the word goes together with

the adjective “artificial” it is even harder to give an accurate definition.

There are four approaches to define AI[43]:

5

CHAPTER 2. THEORETICAL BACKGROUND

• Systems that think as humans

• Systems that think rationally

• Systems that act like humans

• Systems that act rationally

These approaches has been defined by many authors as it follows below:

Systems that think as humans: In this kind of systems the important thing is how to

achieve the reasoning and not the result of this reasoning. The proposal here, is to develop

systems that reason in the same way as people. Cognitive science use this point of view.

“The exciting new effort to make computers think . . . machines with minds, in the full

and literal sense” (Haugeland, 1985)

Systems that think rationally: In this case, the definition also focuses on reasoning,

but here we start from the premise that there is a rational way of reasoning. Logic allows

the formalization of reasoning and is used for this purpose.

“The study of mental faculties through the use of computational models” (Charniak and

McDermott, 1985)

Systems that act like humans: The model to follow for the evaluation of programs,

corresponds to human behavior. The Turing Test (1950) also uses this point of view. The

system Eliza, a conversational boy is an example of this.

“The art of creating machines that perform functions that require intelligence when

performed by people” (Kurzweil, 1990)

Systems that act rationally: Again the objective is the results, but but in this case

they are evaluated in a objectively way. For example, the goal of a program, in a game like

chess, will be to win. To fulfill this objective it is indifferent the way to calculate the result

In addition to the definitions mentioned above we can find another classification of

artificial intelligence according to the researching objectives in this field:

Weak artificial intelligence: It is considered that computers can simulate reasoning.

The supporters of weak artificial intelligence believe that it will never be possible to build

conscious computers, and that a program is a simulation of a cognitive process but not a

cognitive process in itself.

Strong artificial intelligence: In this case, it is considered that a computer can have

a mind and mental state, therefore, some day it will be possible to build one with all the

capabilities of the human mind. This computer will be able to reason, imagine, etc.

6

2.2. MACHINE LEARNING

2.2 Machine Learning

Machine learning is a branch of artificial intelligence focused on the field of computer science

and it was in 1959 when Arthur Samuel defined it as the field of study that offers computers

the possibility of learning without being explicitly programmed.

Machine learning is a central part in AI since the ability to learn is strongly related to

intelligence. Currently this area of AI is playing an increasingly important role because it

provides support to technology areas such as information extraction, information retrieval,

adaptive user interfaces, intelligent agents, robotics, etc.[30]

There are different learning techniques inside the machine learning concept:

Descriptive Learning: Learning will be based on finding patterns among the data.

As its objective is to find patterns, this type of learning has its main field of action in data

mining.

Inductive Learning: In this case we have a type of predictive learning, as it is sug-

gested by its name. The algorithms that use this type of learning are intended to make

predictions of new cases, producing a function that analyzes the behavior of the available

data.

Probabilistic Approaches: In this approach, the Bayesian learning algorithms stand

out.

Numeric Approaches: Where we can find algorithms such as: artificial neural net-

works and vector support machines

Symbolic Approaches: Within this category there are algorithms such as: version

space, inductive decision trees, induction of rules and inductive logic programming.

Others Approaches: In this category we find other types of algorithms that do not

fit well in previous ones such as genetic algorithms or learning by reinforcement

Now that the different approaches and techniques have been described, we can begin

to explain the different types of learning that exist and that coexist with the previous

classifications.

2.2.1 Supervised Learning

In this case, the machine learning algorithm will be fed with correct input data and the

expected results. This happens during the training phase.

It is a type of predictive learning where the objective is to achieve a function f : X → Y

that is able to predict the value of an attribute Y from the values of X. This is achieved by

providing the algorithm with the examples of the form (x, y)|y = f(x)

7

CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 Semi-Supervised Learning

In this type of learning the aim is also to achieve a function like the supervised one and also

starting from a set of data. However, only a part of the data that is given to the algorithm

is labeled, that is, only some samples will have an associated Y value and the rest will have

an unknown value. This forces the algorithm to improve the prediction but this makes the

algorithm to provide worse results.

2.2.3 Unsupervised Learning

In this last type the expected results are not provided to the algorithm and only the data

is provided. This means that the algorithm will not have any type of knowledge to com-

pare its results. As expected, its results are generally worse than the previous two types,

however it fulfills a very important functionality that is to classify unknown data, helping

its understanding.

2.2.4 More used Machine Learning algorithms

At this point, we have a general idea of machine learning functionality as well as the

approaches used to solve the problems. Therefore, the following will briefly explain the

most used machine learning algorithms.

• Supervised and classification-oriented machine learning algorithms

– Support Vector Machine (SVM): This is a kind of algorithm that performs rep-

resentations of the different examples in the space and separates them by classes.

– Discriminant analysis: Its main objective is to give a description of the differences

among sets of objects.

– Näıve Bayes classifier: This algorithm is based on Bayes’ theorem to constitute

a probabilistic classifier capable of predicting possible results from models.

– KNN (K-Nearest Neighbor): Generates groups from the input elements. When

in it has new input data, it calculates the distance to the different existing groups

and assigns it to one of the new groups.

• Regression supervised learning algorithms

– Linear regression: Algorithm that generates a linear equation that is the best

adapted to a set of input data. This equation allows to predict other values.

– Decision trees: the algorithm generates diagrams from a set of data that serve

to represent and classify series of common conditions in the data.

8

2.3. DEEP LEARNING

– Support Vector Regression (SVR): Relative of the SVM, this algorithm uses

linear regressions to make the classifications.

• Unsupervised clustering learning algorithms

– K-means: The set of observations is partitioned into K groups that have a cen-

troid. The addition of new data implies the calculation of new centroids, so that

the groups can change in each iteration.

– Hidden Markov model: This case is more used when it is assumed that the system

to be analyzed is a Markov process.

• Searching Algorithms

– Genetic Algorithms: A family of algorithms that perform heuristic search pro-

cesses. They are based on natural processes such as reproduction to find solutions

to problems.

• Multi-application

– Neural Networks: This type of architecture is based on brain structures to gen-

erate models of a large number of units that imitates neuronal functioning. They

can be classified in supervised regression or unsupervised grouping

In the specific case of this project, the solution has been based on the use of neural networks

so they will be explained in depth later.

2.3 Deep Learning

The term Deep Learning, also known as deep structured learning, is part of the machine

learning family based on the learning of data representations. It is possibly the future of

machine learning because it is expected to take the non-supervised learning direction.

As mentioned above, in this case the algorithms are able to learn without the need of

human supervision, that is, they are able to find the semantics inherent to the data they

process and are able to draw conclusions from them. However, there are some advantages

of the supervised learning that the unsupervised will hardly reach as the fact of getting a

nearly perfect decision boundary due to the specific definition of the classes.

In this case, the architectures used try to simulate the patterns of biological nervous

systems such as deep neural networks, deep belief networks or recurrent neural networks.

Therefore, we could classify deep learning algorithms as those machine learning algo-

rithms that:

9

CHAPTER 2. THEORETICAL BACKGROUND

• Use a cascade of multiple layers made up of non-linear processing units. Each layer

uses the output of the previous layer as input

• Learning can be both supervised and unsupervised

• They are able to learn multiple levels of representation that correspond to different

levels of abstraction

• They use descend gradients to train by back-propagation.

10

CHAPTER3
Neural Networks

3.1 Introduction

Artificial neural networks are a type of machine learning algorithms used to address prob-

lems where there have been a process of collecting data previously and this data is available.

This type of algorithms are usually considered as non-linear approximations of the func-

tionality of human brain, that is, these networks base their functionality on the process of

transmitting information among neurons. However, they do not intend to simulate these

procedures accurately.

3.2 Common Characteristics

The common characteristics that we find among them are the following [9]:

• Non-linearity: a neuron is basic and non-linear element; consequently, a neural net-

work is formed by the interconnection of neurons that will also be non-linear.

• Input-output transformation: the learning process of a neural network involves the

modification of internal parameters of the different neurons that conform the network.

In addition, information tends to change inside the network

• Adaptability: These types of networks are designed to be altered with simple modifi-

11

CHAPTER 3. NEURAL NETWORKS

cations of their configuration parameters. This means that a neural network that has

been designed to work in a given experiment can be modified to work in a similar but

not identical environment.

• Indicative response: in the context of pattern recognition, a neural network can be

designed to provide information not only of the selected pattern, but also of the degree

of confidence in the decision made. This information can be used later to reject old

patterns.

• Contextual information: learning and knowledge are represented by the activation

state of the neural network. Each neuron is affected by the activity of the rest of the

neurons with which it is connected.

• Fault Tolerance: The massive interconnection of neurons provides this ability, since

the death of some of them or their malfunctioning should not greatly affect the final

response. This always assuming a relatively large size of neural network.

• Uniformity in analysis and design: architecture, designs and nomenclature are in a

state prior to standardization. This is manifested in the use of the same notation

in the different areas in which they are used. This characteristic favors universaliz-

ing knowledge and offers the ability to work with modular architectures where each

module has been designed by different researchers.

3.3 The Neuron

Artificial neural networks are complex systems built on the basis of simple units called

neurons. The neuron is the basic and fundamental processing unit of a neural network and

it can be observed in the next figure:

Figure 3.1: Neuron Model

12

3.3. THE NEURON

In the scheme it can be observed the next elements:

• Input signals: constitute the base input information to the neuron. They can consti-

tute the first input of information to the network or they can come from the output of

other neurons. The neuron will manage many input values as if they were one, which

is called the global input.

• Fixed input: known as bias, it is responsible for balancing the input value.

• Synaptic connections: set of connections each of them characterized by their synaptic

weight.

• Transfer function: Sum the result of the multiplication of each input signal by the

weight of the synaptic connection.

• Activation function: It is responsible of limiting the output between certain values.

It is a non-linear transformation.

Mathematically, the neuron is represented in the following way:

yk = ϕ(vk + b) = ϕ(b+
m∑
j=1

wkj ∗ xj) (3.1)

The activation function ϕ can have different forms and it is selected depending on the

experiment:

1. Step function:

ϕ(v) =


1 vk ≥ 0

0 vk ≤ 0

(3.2)

2. Piecewise linear function: It can be used to reflect the increase of the activation

potential that occurs when the input increases.

ϕ(v) =


1 vk ≥ 0.5

v 0.5 > vk > −0.5

0 vk ≤ −0.5

(3.3)

3. ReLu function: It is a piecewise linear function analogous to half wave rectification

function. It constitutes the standard of the activation functions.

13

CHAPTER 3. NEURAL NETWORKS

Figure 3.2: ReLU function

4. Sigmoid function: it is a strictly increasing type of function that has an asymptotic be-

havior and is commonly used for the modeling of many natural processes and learning

curves:

ϕ(v) =
1

1 + e−at
(3.4)

In the previous equation the slope of the sigmoid is determined by the parameter a.

Figure 3.3: Logistic function

5. Softmax function: It constitutes a generalization of the logistic function and is used

to compress a K-dimensional vector z of arbitrary values in a K-dimensional vector

σ(z) of real values belonging to [0,1]. It is a very useful function when there are many

possible labeled outputs:

σ(v) =
ezj∑K
k=1 e

zk
(3.5)

6. Hyperbolic tangent function: It is a case of sigmoid function usually used

14

3.3. THE NEURON

Figure 3.4: tanh

Finally, the output that we find in the scheme will constitute the input for the next

neuron. There is an output function, although the identity function is usually taken in such

a way that the output is the activation state of the neuron by itself. However, there are

neural networks in which the activation state is sometimes transformed to a binary output.

Now that we know the structure and functionality of the different parts of a neuron, we

can begin to explain the arrangement of these in a neural network.

3.3.1 Neural Networks Topologies

Neural networks are typically conform by a series of layers of neurons that are linked together

by synapses. On the other hand, artificial neurons, as independent units, are not very

effective for the treatment of information and, for this reason, they are grouped into larger

structures which are called networks.

The distribution of neurons within the network is done in levels or layers where each of

them has a certain number of these units. We can distinguish three types of layers:

• Input layer: the layer that receives the input information from outside.

• Output layer: the layer that outputs the information from the network to outside.

• Hidden layer: These are the intermediate layers that are used to process information

and communicate with other layers. The number of them is a design decision.

As it has been told, the neurons that constitute each layer are connected to neurons of

other layers and these connections can be the following:

• Fully connected: Each neuron of a layer will be linked with all the neurons of the

next layer. It is the most used type of connection topology and is used in all types of

connections from the Perceptron to BAM networks.

15

CHAPTER 3. NEURAL NETWORKS

Figure 3.5: Fully-connected topology

• Linear Link: It consists of joining each neuron with another neuron of the other layer.

This type of union is used less than the previous one and its objective is usually to

join the input layer with the processing layer. It is also commonly used in competitive

learning networks.

Figure 3.6: Linear link topology

• Default: This type of connection appears in networks that have the property of adding

or removing neurons from their layers and also deleting connections.

Figure 3.7: Default topology

16

3.3. THE NEURON

• Lateral Connections: This type of connections occur between neurons of the same

layer and are very common in single-layer networks.

In addition to these types of connections, we can also define an order in the layers, this

means, the order of layers through which the processed information is going to advance.

Thus, we have two basic topologies which are feedforward and feedback networks. Further-

more, networks that admit its neurons to have connections to themselves constitute other

kind called recurrent networks.

Once we know the types of possible connections between neurons we can go on to define

the different types of neural networks that we find based on the number of layers as well as

the type of connections that exists between them.

3.3.2 Single Layer Neural Network

The simplest type of topology is the single layer neural networks where, as its name suggests,

we only have one layer. It must be mentioned that the input layer is not taken in count in

the number of layers since it is the layer that receives the information. That is why they

are called single layer networks. In the following image we can see the structure of a single

layer.

Figure 3.8: Single layer topology

As the input layer connects to the output layer but this does not happen in the opposite

direction, we can affirm that it is a feed-forward network.

17

CHAPTER 3. NEURAL NETWORKS

3.3.3 Multi Layer Neural Network

In this case we find neural networks that have one or more hidden layers between the

input layer and the output layer. These layers, as mentioned before, are the layers with the

highest processing load. For example, in the case of convolutional neural networks for image

processing, these hidden layers are the ones that process the convolutions while the input

and output networks only resize the information. In the following image we can appreciate

a multilayer network:

Figure 3.9: Multi layer topology

In the specific case of this figure 3.9 we can see that there is only one hidden layer,

but there can be many more. The fact that each neuron in each layer is connected to all

the neurons and only in one direction give us the hint that we are facing a fully-connected

feed-forward network.

3.3.4 Recurrent Neural Network

These networks differ from the previous ones because they have at least one feedback con-

nection as we can see below.

18

3.3. THE NEURON

Figure 3.10: Recurrent network topology

This has been the family of networks chosen to develop the solution and, therefore, it

is going to be explained in more detail.

Watching at figure 3.10 we can think that the architecture of those neurons differs from

the one explained in 3.1. In this case we can imagine these units as it follows:

Figure 3.11: Recurrent neuron structure

This means that each neuron can be considered as a time sequence of neurons connected

or as multiple copies of the same network, each passing a message to a successor.

These networks were born with the objective of imitating the way of humans think.

When a human is performing a task, he understands each part of it and moves forward

without forgetting what he learned in the previous steps. This type of networks try to

19

CHAPTER 3. NEURAL NETWORKS

simulate this behavior allowing the information to persist thanks to the use of loops [39, 26].

This chain-like nature reveals that recurrent neural networks are intimately related to

sequences and lists. They’re the natural architecture of neural network to use for such data.

3.3.5 Common Notation

At this point, it is necessary to give an example of a possible notation in order to under-

stand how the previous explanations fit with what have been explained yet and the next

explanations. The following notation is extracted from Michael Nielsen’s book [37]

Figure 3.12: Feedforward Neural Network General Notation

As we can observe in the figure, it is a general feedforward neural network that will serve

to explain how outputs of one layer are related with inputs of next layer. Attending to the

notation of the figure we can define aij as the activation or output of the jth neuron in the

ith layer. Therefore the a1j is the jth element in the input vector. Hence we can affirm that

the input for a layer, related with the previous layer, would be:

aij = σ(
∑
k

(wijk · ai−1k) + bij) (3.6)

Here we can appreciate:

1. σ as the activation function.

2. wijk as the weight from the kth neuron of the (i − 1)th layer to the jth neuron of the

ith layer.

3. bij is the bias of the jth neuron in the ith layer.

The term affected by σ can be also expressed as zij , simplifying the equation.

20

3.4. LEARNING PROCESS

3.4 Learning Process

Going back to neural networks in general, we must emphasize the way of learning. The way

in which they interact with the environment is called learning paradigm. These paradigms

specify both the type of the input data and the way in which it works with this data. The

paradigms were briefly explained in the section 2.2.1 and they are the supervised learning,

the semi-supervised and the unsupervised.

In the specific case of this project, supervised learning has been used. It is worth

deepening that, in the case of neural networks, we can find different types of supervised

learning.

Error correction learning: It consists of adjusting the learning parameters according

to the difference between the desired values and those obtained in the output, that is, based

on the error obtained at the output. An example of this type of algorithm is the Perceptron

learning rule, which is used in neural networks. This is a very simple rule in which for each

neuron of the output layer the deviation is calculated with respect to the target output.

This constitutes the error which will be used to modify the synaptic weights of the preceding

neuron.

Another known algorithm is the LMS Error that also uses the deviation with respect to

the target output, but takes in count all the predecessor neurons that the output neuron

has. This allows to quantify the global error, at any time of the training, facilitating the

learning process because the more information the network has about the error the faster

it can learn.

These are usually used in combination with the backpropagation algorithm, config-

uring the most popular tool in training neural networks. This algorithm has two phases.

The first one propagates the processed input through the network, layer by layer and finally

obtaining an output. This output is compared with the desired output and the error is

computed as it has been explained just before.

The second phase has the duty of back propagate the error through the previous hidden

layers. However not all the neurons receive the entire error but they receive a part propor-

tional to the contribution they made during the generation of the output. This process, in

combination with gradient techniques explained in 3.4.2 is repeated in each layer allowing

them to modify their parameters in order to reduce that error.

Learning by reinforcement: It is a slower type of learning than the previous one

and bases its operation on the idea of not indicating exactly the expected output during

training. In this kind of learning the function of the supervisor is limited to indicate if the

output obtained is adjusted to the desired using a reinforcement signal (success = 1 and

21

CHAPTER 3. NEURAL NETWORKS

failure = -1). As a function of this, the weights are adjusted by a probability mechanism.

The supervisor is more similar to a critic than a teacher.

This type of learning might seem to generate worse results, but is the basic concept of

adversarial generative networks (GAN) where this supervisor is, at the same time, another

neural network that does know the expected outputs and learns at the same time than its

adversary. This competition between both networks increases the capacity for learning.

Stochastic learning: This learning consists basically of randomly changing the values

of the weights of the network and evaluating their effect on the results. In this type of

networks, an analogy is made between the network and a physical solid with energy state.

By physical laws the solid would always tend towards a state of minimal energy. In a similar

way, the weights of the network would tend to obtain the values that better output produce.

The energy of the network is usually calculated by the function of Liapunov. If the energy

after the change is smaller, the change is accepted, otherwise, is not accepted.

Within this type of learning, Boltzman’s learning, which is based on thermodynamic

considerations and information theory, stands out. The neurons continue to operate in a bi-

nary way as in the general case of stochastic learning where the active state will be repressed

with a 1 and the inactive with a -1. In this case we also find an energy function whose value

depends on the active or inactive states of the individual neurons. During the operation the

machine selects a neuron in a random way and changes its status. Subsequently, evaluates

the energy function and the pseudo temperature.

Competitive Learning: In this type of learning there is a competition between neu-

rons in the output layer that compete to generate the best result. This type of learning

is very useful in the detection of different patterns within the same data set because each

neuron, due to competition, will get specialized in the detection of a specific pattern.

As it has been seen in the previous section, the process of learning, in a neural network,

consist on modify its synaptic weights through an iterative process that allows it to improve

the obtained results. There are many types of possible algorithms, however the most used

is the error correction algorithm. The correction of the error is performed by a family of

functions called optimizer functions. There are many different of them and we are going to

explore them in the next section.

3.4.1 Cost Functions

The cost functions has the objective of giving a measure of how good is a neural network

in the process of generating outputs in relation with the expected ones. It is computed as

a single value because it works as a measure.

22

3.4. LEARNING PROCESS

The general form of cost functions is as follows:

C(W,B, Sr, Er) (3.7)

where W represents the weights of the network, B the biases, Sr the input of a single

training sample and Er represents the desired output. The backpropagation algorithm will

use this function to compute the error of the output layer:

δLj =
∂C

∂aLj
σ

′
(zij) (3.8)

The most used cost function in neural networks and the one which will also be used in

this project is the cross-entropy function:

CCE = −
∑

[Erj ln(aLj + (1− Erj)ln(1− aLj)] (3.9)

There are also other important kinds of cost function as the quadratic, the exponen-

tial or the Hellinger distance for positive values.

3.4.2 Optimizer Functions

As it has been explained immediately above, this section is going to make a deep review of

the different optimizer functions .

Gradient descent: It is the basic optimization algorithm. Its operation consists in

the sequential search of the minimum of the error function. The search direction of the

minimum, like in the mathematical gradient, will be indicated by the negative of the vector

that result of applying the gradient to the objective function [42].

θ = θ − µ5θ J(θ;xi; yi) (3.10)

There are three variants of gradient descent, which differ in how much data we use to

compute the gradient of the objective function:

• Batch gradient descent: Is the vanilla gradient descent and computes the gradient

of the cost function with relation to the parameters θ. As it calculates the gradients for

the whole dataset only to perform one update it becomes too slow for huge datasets.

Batch gradient descent is guaranteed to converge to the global minimum for convex

error surfaces and to a local minimum for non-convex surfaces

• Stochastic gradient descent (SGD): This kind of gradient performs a parameter

update for each training example xi and label yi. The formula written in the general

explanation is the formula of this particular case 3.10.

23

CHAPTER 3. NEURAL NETWORKS

• Mini-batch gradient descent: In this case, this gradient takes the best of both

previous gradients and performs an update for every mini-batch of n training examples.

θ = θ − µ5θ J(θ;x(i:i+n); y(i:i+n)) (3.11)

Adaptive Gradient Algorithm (AdaGrad): Adagrad is an algorithm for gradient-

based optimization that adapts the learning rate to the parameters, performing larger

updates for infrequent and smaller updates for frequent parameters. That maintains a

per-parameter learning rate that improves performance on problems with sparse gradients

(e.g. natural language and computer vision problems)[42].

Adadelta: is an extension of Adagrad that seeks to reduce its aggressive, monotonically

decreasing learning rate. Instead of accumulating all past squared gradients, Adadelta

restricts the window of accumulated past gradients to some fixed size w.

Root Mean Square Propagation (RMSProp): that also maintains per-parameter

learning rates that are adapted based on the average of recent magnitudes of the gradients

for the weight (e.g. how quickly it is changing). This means the algorithm does well on

online and non-stationary problems (e.g. noisy).

Adam: Adam is an optimization algorithm that can be used instead of the classical

stochastic gradient descent procedure to update network weights iterative based in training

data. It computes adaptive learning rates for each parameter. In addition to storing an ex-

ponentially decaying average of past squared gradients vt Adam also keeps an exponentially

decaying average of past gradients mt, similar to the momentum:

mt = β1mt−1 + (1− β1)gtvt = β2vt−1 + (1− β2)g2t (3.12)

Adam realizes the benefits of both AdaGrad and RMSProp. Instead of adapting the param-

eter learning rates based on the average first moment (the mean) as in RMSProp, Adam

also makes use of the average of the second moments of the gradients (the uncentered vari-

ance). Specifically, the algorithm calculates an exponential moving average of the gradient

and the squared gradient, and the parameters beta1 and beta2 control the decay rates of

these moving averages [7].

AdaMax: The vt factor in the Adam update rule scales the gradient inversely propor-

tionally to the l2 norm of the past gradients. If we generalize this update to the lp norm

we can observe that larger values of p generally become unstable and that is why l1 and

l2 norms are commonly used. However l∀ exhibits stable behaviour This is the difference

between Adam and AdaMax [42].

24

3.4. LEARNING PROCESS

Nadam: This optimizer combines Adam and NAG (Nesterov accelerated gradient).

The main difference with Adam is that NAG allows us to performe a more accurate step in

the gradient direction by updating parameters with the momentum step before computing

the gradient.

As it was introduced in the Error correction learning in 3.4, this optimizer functions

commonly use the backpropagation algorithm to adjust the weight of the neurons after

computing the gradient of the loss function.

3.4.3 Which optimizer should be used?

This is a common question at the beginning of a project and it does not have a sure answer

until you use some of the above possibilities. At first, it is interesting to study the kind

of data is going to be used in the experiment. If it is sparse data the best results will be

reached by one of the adaptive learning rate methods, that also have the benefit that it is

not necessary to tune the learning rate but likely achieve the best results with the default

value.

RMSprop, Adadelta, and Adam are very similar algorithms that do well in similar

circumstances. In [28] it is shown that its bias-correction helps Adam slightly outperform

RMSprop towards the end of optimization as gradients become sparser. Insofar, Adam

might be the best overall choice. However, SGD usually achieves to find a minimun, but it

might take too much longer than with some others optimizers.

In this project, some of them have been used and we will see the different results later.

3.4.4 Problems with the use of gradients in learning

There are two big problems when using gradient based methods for learning which are

vanishing gradient and exploding gradient.

Vanishing gradient is a problem found in training artificial neural networks with

gradient methods and back propagation. In such methods, each neural weight receive and

update in each iteration of training. This update is proportional to the gradient of the error

function. The problem appears because sometimes the gradient will be decreasing each

iteration and it is possible that reaches some values that prevent the weight from changing

its value. In the worst case, this may completely stop the network from training. We can

find a common example in the application of the hyperbolic tangent with back propagation

where the range of the tanh is (-1,1). The gradient will decrease exponentially and the

training will become very slow [36].

Exploding gradient: In this case we find a different behaviour where the norm of the

gradient starts to increase exponentially during the training due to the explosions of the

25

CHAPTER 3. NEURAL NETWORKS

long term components. It is a behavior contrary to the vanishing gradient.

3.5 LSTM Networks

3.5.1 Introduction

At this point, we know we are going to use recurrent neural networks with different optimizer

functions in order to see which gives better results. There are other many variables that

affect the quality of the results such the pre-processing of the data, the size of the neural

network, the learning direction, etc.

In the special case of this project, where the main objective is to build a conversational

bot, we find other important problem that appears when using recurrent neural networks.

This problem is known as the problem of long-term dependencies and it had its influence

in the decision of what kind of neurons will be used in the solution.

3.5.1.1 The Problem of Long-Term Dependencies

One of the appeals of RNNs is the idea that they are able to connect previous information

with the current task due to its recurrent nature. This nature was the key to select them to

develop the solution because taking in count previous information is a vital point in order

to maintain a coherent conversation. The problem is that RNNs are not always capable of

doing this.

Sometimes, we only need to look at recent information to perform the current task. As

we are working with some kind of language modelling, we can imagine a language model

trying to predict the next word based on the previous ones. In some cases the relevant

information is going to be near to next prediction but sometimes it’s not. For example

imagine the sentence “the clouds are in the sky” and the algorithm is about to predict the

word “sky”. It’s obvious that we don’t need any further context more than the sentence by

itself. In this cases, where the gap between the relevant information and the place that it

is needed is small, this kind of network can perform the process of learning using the recent

past information.

26

3.5. LSTM NETWORKS

Figure 3.13: RNN long term dependencies A

But there are cases where is needed a further context, such as conversations where we

use information given at the beginning like the genre or the nationality. Consider a similar

example to the previous one where a person says “I grew up in Spain. . . I can speak fluent

Spanish”. If both sentence are near in the time is possible to suggest the word Spanish

which is the name of the language spoken in Spain but the gap between both sentences can

have much more information which is not relevant. Unfortunately, as the gap grows, RNNs

become unable to learn to connect information [5].

Figure 3.14: RNN long term dependencies B

A human could carefully pick some parameter in order to avoid this problem with simple

examples but not for difficult ones. Thankfully we can use LSTMs to solve the problem.

3.5.2 Main ideas behind the LSTM architecture

Long Short Term Memory, usually known as LSTMs are a special kind of RNN which

are capable of learning long-term dependencies. They were presented by Hochreiter and

Schmidhuber in 1997 [24], and they were refined by many other authors and researchers.

27

CHAPTER 3. NEURAL NETWORKS

Now they are widely used because they are specially designed to avoid the problem explained

above.

As it has been explained in 3.3.4, all recurrent nets have the form of a chain composed

by repeating modules as we can see below [39].

Figure 3.15: Detailed RNN unit

This image is a more detailed one than the presented on 3.11 In this example we have a

simple RNN structure with a single layer where we have a tanh activation function. In the

case of a LSTM, it has also the chain structure but with other special layers.

Figure 3.16: Detailed LSTM unit

This diagram is going to be explained in depth in the next epigraph, but it is important

to know that each of the yellow boxes represents a layer of the neural network. In the next

section there is going to be an step-by-step explanation of how a LSTM unit works.

The key in the LSTM functionality is the cell state which is the horizontal black line

28

3.5. LSTM NETWORKS

that goes through the top of the diagram. This state runs straight down the entire chain

and it suffers some simple interactions as linear operators. It is important to mention that

operations represented as pink circles are element-wise operations.

Figure 3.17: LSTM cell state

This line constitutes the main way for the information to flow in the RNN chain and

the LSTM does have the ability to add or remove information using some kind of structure

called gates. The information go through these gates depending on a sigmoid layer and a

pointwise multiplication operation. We can observe this in the top left corner of the unit.

The sigmoid layer “decides” how its information affects the main state cell information

flow with outputs between zero and one describing how much of each component should be

let through. Obviously a value of zero means that nothing is going through and a value of

one means everything goes through.

First of all, a LSTM unit is going to decide which information is going to be thrown

away from the cell state. This is made by the sigmoid layer, also known as “forget gate

layer”. It takes ht−1 from the previous unit and xt which constitutes the new information

for the current task. The sigmoid layer outputs a number between zero and one for each

number coming in Ct−1. If we perform a pointwise multiplication with all ones it will mean

to preserve all the information and viceversa, if we have a vector of zeros, it will “forget” all

the previous information. Continuing with the previous dialogue example, if we change the

genre of the subject in the new input data xt , the result of the sigmoid would be probably

all zeros because it will have to decide answers without taking in count the previous genre

information.

29

CHAPTER 3. NEURAL NETWORKS

Figure 3.18: LSTM forget gate

So we have an output from the sigmoid layer which consists on the multiplication of a

weight matrix Wf with the input data at current time step t and the hidden state of the

previous time step coming from the previous unit.

ft = σ(Wf · [ht−1, xt] + bf) (3.13)

The next step is about the decision of what new information will be stored in the cell

state. One that will update information and other that will add new information. This

is performed by two layers, the sigmoid one will decide which values will be updated and

the tanh one will create a vector of new candidates C
′
t. If we continue thinking on the

genre example, in this step we would want the LSTM unit to add the new genre as new

information and to forget the previous one.

Figure 3.19: LSTM new candidates

In this case both layers will have two matrices of weights (Wi and Wc) which will be

30

3.5. LSTM NETWORKS

multiplied but its respective inputs.

it = σ(Wi · [ht−1, xt] + bi) (3.14)

C
′
t = tanh(Wc · [ht−1, xt] + bc) (3.15)

So now we have the information we want to forget, the information we want to update

and the information we want to add. These will update the cell state from Ct−1 to Ct.

In order to get this, as it has been said before, the LSTM multiplies Ct−1 by ft in order

to forget some information. Then add it ◦ C
′
t which represents a vector of new candidates

values.

Figure 3.20: LSTM combination of two gates

C ′t = ft ◦ Ct−1 + it ◦ C ′t (3.16)

Now the vector of information that represents the cell state is completely updated and

is almost ready to be the output. But first, it suffers another transformation that filter the

information that is going to be used in the next LSTM unit. It goes through a sigmoid

layer that decides which parts of the cell state will constitute the output. Then a tanh layer

will push values between -1 and 1. The output of this step is then multiplied by the output

coming from the sigmoid. Doing this the LSTM will only output the parts we decide to. We

can imagine the function of this last step if we imagine that the network performs changes

in order to get relevant information of the subject to use the correct form of the verb.

31

CHAPTER 3. NEURAL NETWORKS

Figure 3.21: LSTM final step

ot = σ(Wo · [ht−1, xt] + bo) (3.17)

ht = ot ◦ tanh(Ct) (3.18)

As expected, this is the common implementation of a LSTM but there are many other

possibilities. In fact, almost each new paper involving LSTMs uses a slightly different

version. Because of this, it’s worth to mention some of them.

One popular variant was introduced by Gers and Schmidhuber in 2000 [20] and it has

the curiosity of adding peephole connections.

Figure 3.22: LSTM with peepholes

ot = σ(Wo · [Ct, ht−1, xt] + bo) (3.19)

it = σ(Wi · [Ct−1, ht−1, xt] + bi) (3.20)

32

3.5. LSTM NETWORKS

ft = σ(Wf · [Ct−1, ht−1, xt] + bf) (3.21)

The presence of the peepholes is not always the same. In fact, depending on the paper, some

authors will select some peepholes and delete the others. The importance of this schema is

that different layers are allowed to look at the cell state so the decisions of what to forget

or what to add are taken together.

Another variations is to combine forget and input gates. In this case, these two task are

not performed separated but together. The philosophy is to forget only when we are going

to input new information in its place and vice versa. This kind of schema looks like the

next figure.

Figure 3.23: LSTM mixed gates

Ct = ft ◦ Ct−1 + (1− ft) ◦ C
′
t (3.22)

At this moment we have explained step by step how LSTM works. All the matrices men-

tioned and presented on the formulas constitutes matrices of weights, that is, matrices of

learnable parameters which will go changing with the backpropagation and they will go

learning what to forget, add or update.

These are only a few LSTM variants which are common in different projects. There are

lots of others like Depth gated RNNs by Yao,et al. (2015) [51].

Obviously, maybe the question of which of them to use come up but this is answered in

Greff, et al. (2015) [22] . This paper, after analyzing many of them, reaches the conclusion

that they are all about the same and have, more less, the same results in a variety of

contexts. However, is not a bad idea to prove some of them in an experiment in order to

know which has a better performance.

But this is not the only thing that LSTM allows. They also represent a solution to the

vanishing gradient problem because they preserve the error that can be back-propagated

33

CHAPTER 3. NEURAL NETWORKS

through time and layers. By maintaining more constant error, LSTM allow recurrent net-

works to continue learning over many time steps.

In the next image we can appreciate the differences between a normal unit in a recurrent

network (left) and a LSTM unit (right).

Figure 3.24: Difference between RNN unit and LSTM unit

As we can easily observe, the complexity is much higher and this has its effect in com-

putational costs but it is worth using them because all the advantages mentioned before.

3.5.3 Gated Recurrent Unit

This kind of unit, also called GRU, was proposed by Cho et al. (2014) [11] to make possible

the fact that any recurrent unit could capture dependencies of different time scales in a

adaptively way. The architecture of a GRU unit is similar to the LSTM and also has gate

units that control the how information flows in the unit. The activation hjt of the GRU unit

can be defined at a time t as a linear interpolation between the previous activation hjt−1

and the candidate activation h
′j
t :

hjt = (1− zjt)h
j
t−1 + zjth

′j
t (3.23)

The zjt represents an update gate which decides how much the unit updates its activation.

Similar as it was previously explained, the update gate can be expressed as it follows:

zjt = φ(Wz · xt +Wz · ht−1)j (3.24)

34

3.5. LSTM NETWORKS

We can appreciate that this linear sum is a similar procedure to compute the new state in

LSTM unit. However, GRU unit does not have mechanisms to control the degree to which

its state is exposed, but exposes the entire state each time.

The candidate h
′j
t is computed in a similar way to that of the traditional recurrent unit:

h
′j
t = tanh(W · xt + U(rt ◦ ht−1))j (3.25)

Where rt represents a vector of reset gates and the operator is an element-wise multi-

plication. When some of the gates in the set rt are close to 0, the reset gate makes the unit

work as it was reading the first symbol in an input sequence, that is, as it was forgetting

the previous state, like in an LSTM unit.

Figure 3.25: GRU unit

As we can see, the structure is very similar to the one of the LSTM unit, but it is

simpler. A GRU has two gates, the update gate z and the reset one, r. This last gate

determines how to combine new input with the previous information in the unit, and the

update gate determines how much information to update, or in other words, how much

previous memory to keep. The rest of the differences are:

• GRUs units have two gates and LSTMs have three.

• GRUs don’t have and internal memory independent from the hidden state. They do

not have the output gate presented in LSTM.

• Here, the responsibility of the reset gate which is present in LSTM is split up into

both r and z.

• When computing the output is not necessary to compute a second non-linearity.

35

CHAPTER 3. NEURAL NETWORKS

Obviously the benefits of using GRU instead of LSTM are the faster computing with

GRU due to the smaller matrices U and W. Nevertheless, with big amounts of data LSTM

may lead to better results.

3.5.4 Summary

So as a final summary of this section we can think about Recurrent Neural Networks as a

kind of networks compose by units that is able to “remember” information by modelling

the data they are exposed to.

We have seen that they produce dynamic models in order to yield accurate classifica-

tions dependent of the context of the examples. This is allowed by the hidden state that

determines the previous classification in a serie. In each step, last hidden state is combined

with the new one to generate a new hidden state and a new classification. Is in this way

how they are context aware.

To get this propose in more complex context where the related information can be

separated by a big gap of time, the network needs to recall different short-term memories at

different times. Some of these “memories” will have been forged recently and maybe others

were forged many steps before. Here the LSTM units have the aim of correctly associate

this “memories” with new inputs.

Due to this, recurrent networks have the capacity to predict. They grasp the structure

of data over time and they use it to predict the next element. These new elements might

be next letter in a word or next words in a sentence. For all these reasons explained before,

recurrent networks with LSTM have been selected to develop the solution of

this project.

3.6 Technologies

Now that we have seen all the background context and the theory behind the neural networks

and the kind of units, connections and layers, it is necessary to explain how they are going

to be implemented.

Nowadays, there are some programming languages and some that allows anybody to

implement neural networks. Let’s make a short overview of the most representing libraries

and languages.

Torch

Torch is a scientific computing framework with wide support for machine learning al-

gorithms that puts GPUs first. It is based on LUA which is a fast and efficient scripting

languages what makes of it an efficient and easy to use option. Some of it features are:

36

3.6. TECHNOLOGIES

• Powerful N-dimensional array

• Neural network models

• Fast and efficient GPU support

It was very popular but it has been losing presence in projects and papers due to the

appearance of new libraries. Despite of this, some big companies continue using it in some

projects as Facebook or Google.

Theano

Theano is a Python library that allows to define, optimize, and evaluate mathemati-

cal expressions involving multi-dimensional arrays efficiently. It is primarily developed by

academics and has been powering large-scale computationally scientific investigations since

2007. Some of its features are:

• Despite of run on top of Python, it has its own data structure which are tightly inte-

grated with Numpy, which is a fundamental Python package for scientific computing.

• Transparent use of the GPU.

• Efficient symbolic differentiation because of the capability of derivate functions with

many inputs.

Unfortunately, Theano was used less and less and has been abandoned.

TensorFlow

TensorFlow is an open source software library for numerical computation using data

flow graphs. It was develop by Google (specially Google Brain) and it was released on the

last semester of 2015. As it has been said, TensorFlow uses graphs where nodes repre-

sent mathematical operations, while edges represent the multidimensional arrays (tensors)

communicated between them. Some of its features are:

• Flexible architecture that allows to deploy computation to one or more CPUs or GPUs

with a single API.

• Fast and efficient

• It can use TPU which are a kind of CPU specifically oriented to compute with tensor

on tensorflow.

This library also offers a desktop visualizer of the graphs and some parameters during the

process of training. It is call TensorBoard and it can help to see in “real time” how the

algorithms are evolving with the information.

37

CHAPTER 3. NEURAL NETWORKS

Nowadays it is probably one of the most used libraries for neural networks, maybe due

to the fact that it have been designed specifically to solve this kind of problems. Google’s

backing also makes that the community of developers grow quickly.

Pytorch

Pytorch is deep learning framework based on Python. It offers two high-level features:

• Tensor computation with strong GPU acceleration.

• Deep Neural Networks built on a tape-based autograd system.

This package allows to reuse most common Python libraries as numpy, scipy or Cython. It

also uses tensors and graphs that can be computed both on CPU or GPU.

One special characteristic that makes a difference with the previous libraries is that it

uses a technique called Reverse-mode auto-differentiation, which allows to change the way

the network behaves arbitrarily with zero lag. This is not unique in PyTorch but it’s the

fastest implementation.

Other special characteristic that improves the situation is that is deeply integrated into

Python and only in Python and leaves the asynchronous execution. This allows a faster

debugging in case it is necessary.

CNTK

The Microsoft Cognitive Toolkit - CNTK – is a unified open source deep-learning toolkit

develop by Microsoft. It can be included as a library in your Python, C# or C++ pro-

grams, or used as a standalone machine learning tool through its own model description

language (BrainScript). CNTK can be used both in 64x Windows or Linux and, nowadays,

is the third most popular tool only behind Tensorflow and Caffe, which is another deep

learning framework developed by Berkeley AI Research. Some of the features we can find

in Microsoft’s are:

• CNTK is in general much faster than Tensorflow.

• CNTK can be easily scaled over thousands of GPUs

• Inference: it has a C#/.NET/Java inference support that makes it easy to integrate

into user applications

Sadly, despite of it is a good framework, the community behind other options is bigger and

it makes easier to find documentation about some typical problems.

Keras

Keras is a high-level API for neural networks. It is based on Python and is capable of

running on top of TensorFlow, CNTK or Theano. The idea behind Keras was to enable

fast experimentation. This give the users some capabilities that we can explore below:

38

3.6. TECHNOLOGIES

• User friendliness: The API was developed for humans not for machines and the user

experience is in the center of this idea, minimizing the number of user actions required

for common use cases.

• Modularity: Fully-configurable modules that can be combined with little restrictions.

In particular, layers, cost functions, optimizer, activation functions, etc, are standalone

modules ready to combine and create new models. In addition, is very simple to add

new modules or extend the ones existing.

• Python: the modules are described in Python which makes them compact and easier

to debug.

On the other hand, if there is not too much interest in how the layers are connected,

how activation function works, etc, Keras is a good option because the connections between

the modules are a kind of transparent for users. In addition, the process of setting up small

and medium experiments is pretty simple, so is a good choice for proving.

In this case, it has been decided to use both TensorFlow and PyTorch. The decision

came up because both technologies are booming and they have bigger communities than

others, with many people contributing and developing examples and projects. There are

also big forums where people discuss about typical problems in some kinds of experiments

and they contribute with particular solutions.

Keras has been also used in the process of learning how coding neural networks is and

to develop previous and simpler examples than the one that concerns this project.

39

CHAPTER 3. NEURAL NETWORKS

40

CHAPTER4
The Problem

This chapter describes the main characteristics of the problem that this project aims to

resolve.

4.1 Background

As it has been explained in the initial abstract and in the introduction, the use of neural

networks is rising in many scientific and non-scientific fields. Some of those fields are natural

language processing (NLP) and machine translation.

Natural language processing is a field of computer science, artificial intelligence and

linguistics that studies the interactions between machines and human language. It is focus

on investigate efficient mechanisms to allow humans to communicate with machines using

natural languages.

On the other hand, machine translation is an area of linguistic computation which

investigates the use of software to translate both text and speech from one natural language

to other.

With the advance of neural networks, specially on the image recognition field with convo-

lutional networks, researches started to use them trying to solve some problems related with

the previous explained areas. Hence, following this way, the first neural machine translation

algorithm appeared and they are giving very good results currently. There are also other

possibilities to perform translation process like rule-based or phrase-based translation but

41

CHAPTER 4. THE PROBLEM

they do not reach as good results as neural translation is reaching. This encourages Google

and other big companies to deploy its neural machine translation solutions, becoming the

base of current online translators.

Despite of this is a project about a conversational bot, it is very interesting to know

how neural machine translation (from now NMT) works because this kind of algorithms

are easily extrapolated to the case of conversational bots with little changes. Hence, NMT

algorithms are going to be explained deeply in the next epigraph.

4.2 Neural Machine Translation

This approach can be classified by a Vauquois Triangle which can be observed in the fol-

lowing image

Figure 4.1: Vauquois Triangle

This is divided in two parts that are:

• Analysis: This part is commonly called encoding and generates a sequence of vectors

with a representation of the words in the input. Later this vector will be explained in

detail.

• Transfer: Also known as decoding, generates the target form.

These two parts conform two different modules in the architecture of the network. Both

modules constitute the pair encoder-decoder and they are going to be explained now.

4.2.1 Seq2Seq

The Sequence to Sequence model is an architecture that have been introduced and explained

in multiple articles [45, 10].

42

4.2. NEURAL MACHINE TRANSLATION

Figure 4.2: Seq2Seq Model

In this architecture it can be observed two different structure which are the encoder and

the decoder. They are both two RNNs and, in this particular case, each unit is a LSTM, so

we can imagine each of the coloured squares as a LSTM unit as it has been seen in 3.5.2.

Despite of they have the same architecture, they behave totally different and in many cases

they perform opposite task. In one hand, the enconder is going to take sequences of input

information (sentences in this case) and will process one symbol (in this case they are words)

at each timestep. It will translate this sequence of symbols into a vector of characteristics

where the important information of the input is going to be encoded. In the next picture

we can observe a simple representation of this phenomenon.

Figure 4.3: Encoder Generating Context

Each timestep a new word is processed so it is giving or removing information from the

vector that represents the context. This process is the one which was explained step by

43

CHAPTER 4. THE PROBLEM

step at 3.5.2.

Therefore, the last hidden state (in the last green square) will have the summary of the

sequence’s information. This constitute what is called thought vector and it is passed to

the decoder when the tag “<eos>” (end of sequence) appears [47]. Then, from this thought

vector, the decoder generates another sequence, producing a symbol (again on word) each

timestep. In this case the generation of the symbols is influenced by previous context but

also by the previous generated symbols and it will also finish with an <eos> tag [45].

The strength of this model lies in its simplicity and generality. Because of this, the

seq2seq model can be used in many task as machine translation, question/answering and

conversations by doing little changes in its architecture.

One problem in this model is the use of a dictionary of the most used words in a language.

Probably this dictionary will have more than 50.000 entries, so the decoder will have to run

the activation function over a large number of words for each word in the output, trying to

map it to the most probable one. This may cause a slow down of the training process.

Despite of these problems, there are some techniques that try to reduce the impact and

that will be explained below.

4.2.2 Padding

This is a technique used before learning and it converts the variable length sequences into

fixed length sequences by padding. The padding process add as many <PAD> symbols to

the original sentence as it is necessary to reach the fixed length. Other symbols are also

used:

• EOS: end of sequence.

• GO: start encoding.

• UNK: unknown word. When the word is not in the vocabulary.

Those other symbols both fulfill their mission and influence in the padding. So if we

have the pair of sentences of the image 4.2 [How are you?, I am fine] and a fixed length of

8, the sequences of symbols will be:

[“How”,“are”,“you”,“?”,PAD,PAD,PAD,PAD,EOS]

[GO,“I”,“am”,“fine”,“.”,EOS,PAD,PAD]

By doing this, we can solve the problem for an experiment where we have short sentences,

so the fixed length is not going to be very big. However, this solution is not enough for

experiments where the lengths are sparse and exist a huge difference among them.

44

4.3. WORD EMBEDDING

4.2.3 Bucketing

As it has been introduce above in section 4.2.2, it exist the possibility of facing problems

where sentences have sparse lengths where the addition of many padding symbols may

overshadow the real information in the sentence (short sentences with tens of padding

symbols).

In order to solve this, the bucketing process form groups of different lengths and put

them into the same bucket, building an array of buckets each of them having a pair of

lengths. Imagine next array of buckets:

(5,10),(10,15),(15,20),(20,25)

If the input is compose by a question of length 4 and a 5 symbols length answer, the

bucketing process will pad the question with only a symbol and the answer with 5 symbols

(5,10). This make the model change in each iteration to be compatible with the sequence

length, independently of it is training or predicting. Despite of this changes, models share

the same parameters and, thanks to that, its functionality does not change. However, this

technique is not mandatory when using RNN due to the fact that they can deal with variable

length sequences.

4.3 Word Embedding

In section 4.2.1, and specially in figure 4.3, it has been a slightly introduction to the em-

bedding concept, but in this section we will continue the explanation in more depth.

In essence, word embeddings are a type of word representation that allows to represent

words with similar meanings in a similar way. Despite of the idea seems to be easy and clear,

the technique behind it may be considered one of the key breakthroughs of deep learning on

challenging natural language processing problems [21]. Generating word embeddings with

a very deep architecture is too computationally expensive for a large vocabulary. This is

probably the main reason why it took until 2013 for word embeddings to appear in the NLP

stage.

In fact, word embeddings are a group of techniques that allows to represent words as

vectors in a vector space. The values of each vector where each word is mapped, are learned

as it would be in a neural network.

Each word is mapped to a vector of real values that have often tens or hundreds of

dimensions [4]. This dimensions will represent different aspects of the word, making possible

that words that are used in similar ways will have similar representations. By doing this,

we will get almost all the dictionary words represented with only a combination of hundred

of features, which is much smaller than a 50.000 entries dictionary.

45

CHAPTER 4. THE PROBLEM

We can imagine that with colour, shapes and sizes constituting a 3 dimensions world.

Figure 4.4: Embeddings Simple Representation

This idea comes from linguistic studies showing that words with similar context will

have similar meanings [23].

To go on deeply in the explanation, it is necessary to assume some notation. We assume

that the training corpus has sequences of T training words w1, w2..., wT . With all the words

(or only a determined number of them) of the corpus we create a dictionary V which is a

vector of size |V |. Then, each word is associate with its input embedding (vw) which will

have d dimensions. The output embedding will be (v′w). Finally we have also a objective

function Jθ related with parameters θ. Word embedding models are often evaluated using

perplexity, which is a cross-entropy measure taken from language modelling [2, 8].

It exist a strong relation between word embeddings models and language models. There-

fore, it is important to know that language models computes the probability of a word wi by

applying the chain rule with the n− 1 previous words. Applying this rule with the Markov

assumption, the product of a entire sentence can be approximated by the product of the

probabilities of each word when given the n previous:

p(w1, w2..., wT) =
∏
i

p(wi|wi−1, ..., wi−n+1) (4.1)

If it is used a neural network to compute that probability, with a softmax layer, we

obtain:

p(w1, w2..., wT) =
eh

>v′wt∑
wi∈V e

h>v′wi

(4.2)

46

4.3. WORD EMBEDDING

Figure 4.5: Word Embeddings NN

We can observe in 4.5 that h is the output vector of the last hidden layer. Hence, the

term h>v′wt
represents the probability of the word wt to be selected normalized by the sum

of the probabilities of all the words in the dictionary 4.2. This is because v′w is a weight

matrix whose rows are the v′w representation of all words w. Therefore, v′wt
is the row-vector

that compose the representation of wt. By doing this we obtain an adaptation of the output

vector to a probability distribution over the words in the dictionary. This last step conform

which is known as softmax-layer.

Using this layer, the model tries to maximize the probability of predicting the correct

word in each time step. So, in an ideal model it would try to maximize the average loga-

rithmic probability of the whole corpus, but in real models it is done with the n previous

words:

Jθ =
1

T

T∑
t=1

log p(wt|wt−1, wt−2..., wt−n+1) (4.3)

There exists different techniques to perform what have just been explained. Some of

them are:

• Classic neural language model

• C&W model

• Word2Vec

• GloVe

47

CHAPTER 4. THE PROBLEM

It is going to be explained Word2Vec because is the technique used by TensorFlow and

PyTorch and Classic Neural Language Model because is necessary to understand which are

the main problems of using deep learning in word embedding.

4.3.1 Classic Neural Language Model

This model was proposed by Bengio et al. [4] in 2003 and consists of a feed forward neural

network with only one hidden layer as we can observe in the next figure.

Figure 4.6: Classic neural language model. One hidden layer NN

As it has been explained just before the objective function of this model is a generaliza-

tion of 4.3:

Jθ =
1

T

T∑
t=1

log f(wt|wt−1, wt−2..., wt−n+1) (4.4)

In order to get that, Bengio et al. propose the next blocks for his model:

• Embedding Layer: This layer generates word embeddings by multiplying an index

with a word embedding matrix (bottom part of 4.6)

• Intermediate Layer: It can be one or more producing an internal representation of the

input.

48

4.3. WORD EMBEDDING

• Softmax Layer: final layer that produces a probability distribution over all the words

in V .

We can add two observations to those parts of the model. One of them refers to the fact

that the intermediate layers can be replace by LSTMs as it is mentioned in [25] and [27].

However, in [25], it is even propose to use CNN instead of LSTM because it generates better

results.

Finally, it is important to mention that the softmax layer acts as the bottleneck of the

network because the computational cost of computing softmax is proportional to the size

of V, that is, proportional to the number of words. Obviously, in experiments as machine

translation or conversational models, the number of words has to be huge to increase the

coverage of possible answers and translations.

4.3.2 Word2Vec

This is probably the most popular method nowadays. It was proposed by Mikolov et al.

[35] at Google in 2013 to make the process of embedding more efficient by eliminating the

expensive hidden layer. This is due to two architectures that can be observed in 4.7

Figure 4.7: Word2Vec architecture

Continuous bag of words(CBOW): This architecture allows the algorithm to predict

next word by using the previous n words but also the next n. This nature give them the

49

CHAPTER 4. THE PROBLEM

idea of calling it continuous because its order is not very important. The objective function

in this case is slightly different to 4.3 due to the fact that it is taking in count the next n

words:

Jθ =
1

T

T∑
t=1

log p(wt|wt−n, wt−n−1..., wt−1, wt+1, ...wt+n) (4.5)

Skip-gram: In this part, instead of using the surrounding words to predict the centre

word (CBOW), the algorithm uses the centre word to predict the surrounding words as we

can see in 4.7. If we recall 4.2, we can simply modify it to apply it to the surrounding words

instead to the previous words. For this purpose, and to follow Mikolov’s paper notation,

we will rename the centre word as wI and the surrounding ones as wO:

p(wO|wI) =
exp(h>v′wO

)∑
wi∈V exp(h

>v′wi
)

(4.6)

Next step is to eliminate the influence of h, because in this architecture it does not exist

hidden layers, and to change it by the embedding in the input:

p(wO|wI) =
exp(v>wt

v′wO
)∑

wi∈V exp(v
>
wIv

′
wi

)
(4.7)

At this point, with this architecture, we have reduce the computational load of the hidden

layer. Nevertheless, we continue performing a complete softmax function which is an slow

option with a big size of V . There exists many softmax approximations that can be applied

and they are group in two categories which are Softmax-based approaches and Sampling-

based approaches. Next figure list them and its pros and cons.

Figure 4.8: Softmax approximations table

50

4.4. ATTENTION MECHANISM

As it can be observed standard softmax gives the worst speed results. However, the

complexity of these techniques and the great variety of them are beyond the scope of this

project.

4.4 Attention Mechanism

In this point we know that recurrent Neural networks using LSTMs have the ability to work

with longer sequences. However, since the LSTM networks appeared, there have been many

attempts to augment this networks with new properties, many of them trying to improve

its performance with long sequences. Nowadays four directions stand out as particularly

exciting:

• Neural Programmers

• Adaptive Computation Time

• Neural Turing Machines

• Attentional Interfaces

This four approaches are very interesting, but in this case only Attentional Interfaces

are going to be explained because is the technique used in this project.

The main idea behind this approach is to simulate human and some animals behaviour.

When an animal is processing an image it focuses on specific parts of the visual to choose

the adequate response. Humans have the same behaviour, even when we are translating a

word or an audio recording. We pay more attention to a segment of the audio or to some of

the words that we are trying to translate. Therefore, the idea is to get the same on neural

networks, putting them to focus on a subset of all the information they are managing.

This process is taken by the attention model:

Figure 4.9: Attention Model

51

CHAPTER 4. THE PROBLEM

It has n arguments as input (y1, ..., yn) and a context C. Its output is Z which is an

arithmetic mean of the yi whose weights are chosen according to the relevance of each yi

given the context C.

In a translation example, the inputs would be the hi hidden states of the different LSTM

units processing the input sentence.

Internally, the attention model can be represented as it follows:

Figure 4.10: Detailed Attention Model

Firs of all we have C which is the context and the inputs yi (that in our case they are

hi). Each LSTM unit is processing a word of the input sentence and it is generating a

hidden state which are those hi. The context will come from the previous hiddent state in

the output layer h′i (see 4.11)

Then, the model computes mi using a tanh layer that performs an aggregation of the

values yi with C in an independent way, this is, yj does not influence in any other of the

inputs yi:

mi = tanh(WcmC +Wymyi) (4.8)

The it computes each the weight of each of the inputs by using a softmax function. The

softmax will produce a mapping between the weights and a probability density function. If

one of the mi is much bigger than the rest, the ouput of the softmax will be similar to the

output that an argmax function would give, this is an array of 0s whit a 1 in the position

of the bigger m. So the softmax can be thought as the max of the relevance of the words

according to the context.

52

4.4. ATTENTION MECHANISM

Finally, Z is computed as a weighted arithmetic mean of all the yi [3]:

z =
∑
i

siyi (4.9)

Figure 4.11: LSTM network with attention model

As we can observe in the figure 4.11, each time the decoder produces a word, it deter-

mines the contribution of each hidden state 4.9. Usually only the hidden state generated

from a single word is the one that is going to influence in the translation.

Finally, this process can be seen as an alignment [3], because the network usually focus

in a single word to produce an output word each time step. The image 4.12 shows how

the attention focuses in different words with a colour map. The whit squares represent the

biggest weights obtained during the generation of the output word.

53

CHAPTER 4. THE PROBLEM

Figure 4.12: Alignment in translation

4.5 From NMT to Conversational Bot

Until this point, in this chapter, we have introduce how neural machine translation algorithm

works, explaining the models behind the process and the different techniques uses both for

reducing computational costs and improving the results.

It does not exist any model that performs the process of learning to talk as a human.

It is clear that, if a neural network has to learn to talk in a language understandable to

humans, it has to use NLP. In addition, when neural networks perform machine translation

they are not aware they are doing that. This is, they learn how to translate by setting

relationships between words and semantic constructions using learnable parameters.

So if we give the appropriate information to the neural network it could learn this

“relations” between sentences in the same language, imitating the process of translation

between a question and a response instead of between two sentence in different languages.

Therefore, the main idea would consist of feeding the encoder with sentences and provide

the network with the responses for this sentences, in order to provide the network with the

information it should produce.

54

CHAPTER5
The Solution: A conversational bot

5.1 The Data

As it has been introduced in 4.5 the idea is to reuse the NMT algorithm to build a con-

versational bot. For that purpose, it is necessary a big amount of human conversations to

provide the neural network with the enough information to learn.

There are some possible options where to get conversational information between hu-

mans, for example Twitter or forums. However, in both cases we have the problem of

the orthography of the users. This could seem not very important but abbreviations or

malformed words are very common in both environments and it can influence directly in

dictionaries and in the process of learning. In addition, is often difficult to follow a conver-

sation in Twitter due to the participation of many people and the mentions. On the other

hand, conversations in forums have big user interventions and, many times, talking about

so specif topics which would affect the objective of getting open domain conversations.

The third option evaluated was the use of films subtitles. This can constitute a enor-

mous source of conversations with many topics involved and it does not have orthography

problems and usually not very extensive interventions. In addition, it is relatively easy

to find free subtitles datasets with enough information to train an experiments with these

characteristics. All these reasons were decisive to choose this kind of information as base

data.

55

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

Once it was decided, it was the turn of what kind of subtitles choose and in what

language. The biggest free corpus found was in English and apart from the language, there

were three options.

• The firs option was OpenSubtitles corpus (Jörg Tiedemann, 2009 [46]). This is an

English free subtitles corpus in XML with more than 2 million sentences. It can be

found here[1]. It exist a 338 millions english sentences corpus but it is not free.

• The second option was Cornell Movie Dialogs Corpus [18]. It contains 220.579 con-

versational exchanges between 10.292 pairs of movie characters. It can be found here

[17].

• The third option is a variation from the 338 million OpenSubtitles dataset. The

variation consist in a subset where following properties were extracted:

1. First sentence ends with question mark.

2. Second sentence has no question mark.

3. Second sentence follows in the movie the first sentence by less than 20 seconds.

This generates a 14 million sentences corpus with a structure of question and answer.

The problem is that there is no certitude that the answers are actually answering the

questions, due to those 20 seconds of possible distance between them.

5.2 Preprocessing Data

Once the kind of data has been selected, it must be preprocess in order to get the neural

network producing accurate forecasts. This task can be separated in two big process which

are transformation and normalization.

Transformation involves manipulating raw data inputs to get single type of input and

normalization is a transformation of a single data input to distribute the data evenly and

scale it into an acceptable range for the network.

The knowledge of the domain is important in order to know what we want to get for

choosing the better way of preprocessing. If it is correctly done, preprocessing can highlight

underlying features which could increase the ability of learning associations among input

and output data.

In this particular case, the process of transformation consists in deleting all the strange

characters from the datasets [14]. When writing, many punctuation symbols are together

with words and they give such a subtle nuance of information that they are not useful from

a neural network point of view. In addition, many of this characters are completely stuck

56

5.2. PREPROCESSING DATA

with words and they difficult the process of creating a vocabulary (quickly! and quickly are

not the same word for the algorithm). Therefore, parentheses, semicolons, brackets, coding

characters, hyphens, etc, have to be deleted from the corpus.

In the case of Cornell Dataset and the 14 million sentences OpenSubtilte corpus they

are already preprocessed. However is not the case of the 2 million sentences dataset.

This particular dataset comes separated in years and films genre and in XML.The first

was to put all the different files together in a file using a simple script.

As it is obvious, due to the XML tags, it was necessary to preprocess all the subtitles to

get clear data. For that purpose, it was used a Python script specially coded for deleting

all the strange chars. After preprocessing the result was the next:

Figure 5.1: Preprocessed OpenSubtitles

It can be observed that basic punctuation symbols as commas, stay in the data. This is

because basic punctuation, as question marks, are useful to get well formed responses from

the neural network. However, these symbols have been separated from the words in order

to not affect in the dictionary creation process.

In the case of Cornell, we can appreciate in figure 5.2 that is already preprocessed.

Figure 5.2: Cornell Dataset

Finally, in the 14 million sentences dataset, we find the data structured in questions and

possible answers on the same line:

57

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

Figure 5.3: 14 million OpenSubtitles

With respect to the normalization, in this case that we are dealing with sentences, the

process of padding, mentioned on 4.2.2, constitute a normalization process by itself because

makes the sentences fit some standard length ranges.

5.2.1 Structuring the data

The NMT algorithm uses 2 data-sets. The one called source and the one called target.

Source data-set contains sentences in one language and the target data-set the same but in

a language different from the source one. The translation process occurs from the source

data-set to the target data-set.

The structure is simple, each line (sentence) of the target data-set is the translation of

the same line in the source data-set. So in a case between English and French, if line 1 in

the source data-set is “Hello, I am Diego”, the line 1 in the target data-set would be “Salut,

Je suis Diego”.

However, in the case of a conversation is not as clear as in the translation. In this case

it have been decide to suppose that there are only 2 interlocutors (A and B) and that the

information has a dialogue structure, this is,

A→ B → A→ B → ...B

. The problem is that there are not certitude that the information of the data-set follows that

structure. In film dialogues may participate many interlocutors and they can be answering

different things at the same time or maybe one actor has to say more than one sentence

in a row. This may influence in the learning process because if the mentioned cases often

appear they will generate fake relations between sentences.

One possible solution is to add the name of the character who says each sentence,

making the process of identifying the interlocutor easier. Nevertheless, we do not have this

information on data-sets so ABA structure has been assumed to be true.

58

5.2. PREPROCESSING DATA

With the aim of getting that structure, 2 million OpenSubtitles and Cornell datasets

have been copied and separated in source dataset and target dataset. Then, the first

sentence of the target dataset has been deleted in both cases, obtaining with this method

the structure mentioned above:

Figure 5.4: Process Scheme

In the case of the 14 million datasets is not necessary to move a row down the target

dataset because in the same line we have the question (up to the punctuation mark) and

the answers, so is enough to separate the questions in the source dataset and the answers

in the target dataset. Because of this reason, this dataset constitutes the candidate option

to get the better results. However, the structure of questions-answer has a limitation which

is that, after training, is practically impossible that the network could answer one human

question with another question. This is due to the fact that the network, changing its learn-

able parameters is unconsciously establishing relations between inputs and tagged outputs.

Therefore, this network will perform a good job of answering questions but maybe not as

good job as other possibilities in an open domain conversation. The results of the different

datasets will be evaluated later.

After doing this preprocessing we have to divide the sets in three groups as it follows:

• Training Dataset: The sample of data used to fit the model

• Validation Dataset: Smaller sample of data used to provide an evaluation of model

fit on the training dataset while tuning the model hyperparameters.

• Test Dataset: Sample of data which is used to provide an ubiased evaluation of model

fit on the training dataset.

The datasets mentioned before (OpenSubtitles, Cornell, etc) constitute the training

datasets by itself. But after preprocessing them we can obtain the other datasets by

dividing the previous ones into smaller sample sets.

59

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

Obviously, it is necessary to maintain the ABAB structure on the question/answer

structure. Therefore, the easiest way to obtain those data-sets is by dividing first into

source and target, as has been explained before, and then extract two subsets from

each of them.

It is important to mention that both the source validation set and the target validation

set has to be complementary, this means that there have to be always an “answer” B

in target for a “question” A in source, and they have to be of the same size.

5.3 NMT Tensorflow

This is a TensorFlow implementation of a neural machine translation system. It was de-

veloped by Thang Luong and Eugene Brevdo, both researchers scientists at Google Brain,

and it is include as a part of a bigger project that has the aim of bringing people closer to

the neural networks and specially to the NMT systems.

For this purpose they have developed a TensorFlow solution based on seq2seq model

4.2.1 with a well explained code with the latest research ideas and with important notes

about the background of NMT. They achieve this goal by:

• Using an attention wrapper API [6] developed in TensorFLow 1.2.

• Providing tips and tricks for building a good NMT model by replicating the Google’s

NMT system [50]

With the aim of teaching people, they provide two datasets:

• Small example: English-Vietnamese

• Large example: German-English

Once we have done an approximation to the project we are going to explain this imple-

mentation more deeply.

5.3.1 Structure

The general project can be divided some modules that have a well defined functionality:

Embedding: This module constitute a layer that needs a vocabulary V to work. It

is designed to work with two vocabularies (the source language vocabulary and the target

language vocabulary). For that purpose we need to generate two vocabularies with the .src

and .tgt extensions to allow the code to distinguish between source and target. In the case

of conversational bot, both files have to be identical.

60

5.3. NMT TENSORFLOW

This fact generates a computational problem which is that, despite we have the same

vocabulary for source and target, the code is designed for translation so it will generate two

words embeddings of the same vocabulary, one for the source and one for the target. This

produces an unnecessary increase in the use of memory. The embedding weights 4.3 are

usually learned during the training.

Embedding

embedding encoder = va r i ab l e s c op e . g e t v a r i a b l e (

‘ ‘ embedding encoder ’ ’ , [s r c v o c ab s i z e , embedding s ize] , . . .)

Look up embedding :

encode r input s : [max time , b a t ch s i z e]

encoder emb inp : [max time , ba t ch s i z e , embedding s ize]

encoder emb inp = embedding ops . embedding lookup (

embedding encoder , encode r input s)

We can observe that making little changes we can develop an embedding-decoder. The

code gives the option to use pretrained word representations, that can be collect in some

forums, by the activation of two flags.

By using the –sos and –eos flags we can specified which are the start of sequence and

end of sequence symbols. If we do not specify them <s> and </s> will be used.

Encoder: The embeddings obtained in the previous module are used as inputs in this

module which consists of a multi-layer RNN. This RNN can share the weights with the one

that conform the decoder, reducing computational costs, but if they have different weights

the algorithm will obtain better results.

Build RNN c e l l

e n c o d e r c e l l = t f . nn . r n n c e l l . BasicLSTMCell (num units)

Run Dynamic RNN

encoder outputs : [max time , ba t ch s i z e , num units]

encode r s t a t e : [ba t ch s i z e , num units]

encoder outputs , en code r s t a t e = t f . nn . dynamic rnn (

en c od e r c e l l , encoder emb inp ,

s equence l ength=source s equence l eng th , t ime major=True)

This example is using a basic LSTM cell but we can change the type by using the

flag –unit type and select other types as GRU. num units parameter will determine the

number of neurons in the encoder layer and will constitute an argument in the creation of

the encoder. The batch-size parameter defines the number of samples that are going to be

propagated through the network allowing to use mini-batch gradient descent. This means

that the network will train with n sentences from the total dataset each iteration.

61

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

On the other hand, with the sequence-length parameter we fix a length and with the

time-major a shape for the input data.

Decoder: This module is also form by a multi-layer RNN and also have access to the

embeddings obtained at the beginning. The encoder will be initialized with the last hidden

state of the encoder as it follows:

Build RNN c e l l

d e c o d e r c e l l = t f . nn . r n n c e l l . BasicLSTMCell (num units)

he lpe r = t f . c on t r i b . seq2seq . Tra in ingHelper (

decoder emb inp , decoder l engths , t ime major=True)

Decoder

decoder = t f . c on t r ib . seq2seq . BasicDecoder (

d e c od e r c e l l , he lper , encode r s ta t e ,

ou tput l aye r=p r o j e c t i o n l a y e r)

Dynamic decoding

outputs , = t f . c on t r ib . seq2seq . dynamic decode (decoder , . . .)

l o g i t s = outputs . rnn output

First we specified the kind of the decoder cell and how many of them will constitute

the layer. Later, in the decoder initialization we put as argument these units and in the

encoder state the last hidden state of the encoder.

Finally the output layer is the projection layer. This layer is formed by a dense matrix

that performs the transformation from the hidden states to logit vectors of dimension V. In

these logit vectors each position represents a word of the vocabulary and in this projection

layer is where the sofmax- layer explained in 4.5 is computed.

Loss: At this point, the code computes the training loss by using the softmax mentioned

above:

c r o s s en t = t f . nn . s p a r s e s o f tmax c r o s s e n t r o py w i t h l o g i t s (

l a b e l s=decoder outputs , l o g i t s=l o g i t s)

t r a i n l o s s = (t f . reduce sum (c r o s s en t ∗ t a r g e t we i gh t s) /

ba t ch s i z e)

It uses the cross-entropy method to compute the loss. This is, the softmax classifier is

hence minimizing the cross-entropy between the estimated probabilities and the “true”

distribution.

The target-weights argument is a zero-one matrix of the same size than the decoder-

outputs and has the mission of padding positions with 0. This positions are outside of the

fixed length.

Gradient and optimization: This module is the one that computes the backpropa-

gation using for that the training loss computed just before:

62

5.3. NMT TENSORFLOW

params = t f . t r a i n a b l e v a r i a b l e s ()

g r ad i en t s = t f . g r ad i en t s (t r a i n l o s s , params)

c l i pp ed g r ad i en t s , = t f . c l i p by g l oba l no rm (

grad i ent s , max gradient norm)

As we can observe, the function “gradients” will try to reduce the value of the parameter

“train loss” by modifying the “params”. By clipping the gradients we are limiting the values

they can obtain and preventing them to get too large. With this technique we avoid the

problem of exploding gradients mentioned in 3.4.4

Finally we have to choose which optimizer to use. As it was explained in 3.4.2 there are

many options but a common choice is the Adam optimizer:

opt imize r = t f . t r a i n . AdamOptimizer (l e a r n i n g r a t e)

update s tep = opt imize r . app ly g rad i en t s (

z ip (c l i pp ed g r ad i en t s , params))

Usually the values of the “learning rate” parameter are between 0.0001 and 0.001. This

parameter, as an intuitive explanation, determines how quickly the network abandons old

beliefs for new ones. If it is very small the network will think it is an outlier when a strange

sample comes and if it is big the network will change its “mind” quickly and it can star

thinking that strange samples are the right ones.

Attention Wrapper: This wrapper is based on the work on memory networks by

Weston et al.,2015 [48]. In this particular case, the wrapper use the current target hidden

state as a “query” to decide which is the part of the memory it should read. For this reason

this is considered as a read-only memory:

a t t e n t i o n s t a t e s : [ba t ch s i z e , max time , num units]

a t t e n t i o n s t a t e s = t f . t ranspose (encoder outputs , [1 , 0 , 2])

attent ion mechanism = t f . c on t r ib . seq2seq . LuongAttention (

num units , a t t e n t i o n s t a t e s ,

memory sequence length=sou r c e s equenc e l eng th)

As we can observe, in the attention states we introduce the encoder outputs which are the

set of all source hidden states at the top layer. Defining the attention mechanism we pass

the attention states and the source sequence length. This last parameter ensures that the

attention weights will be properly normalized. This wrapper will be used to define de kind

of the decoder cell as we have seen above:

63

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

d e c o d e r c e l l = t f . c on t r i b . seq2seq . AttentionWrapper (

d e c od e r c e l l , attention mechanism ,

a t t e n t i o n l a y e r s i z e=num units)

By doing this we have not add any new module but we have add a the attention functionality

to the decoder cells.

5.3.2 Training TF-NMT

This NMT system needs to be feed with different datasets depending on which is its desti-

nation, the source part or for the target part.

We have to divide the datasets mentioned in 5.1 as it was explained on 5.2.1:

• Traininig Dataset

• Validation Dataset

• Test Dataset

In order to make the NMT train it is necessary to select a minimum number of param-

eters as we can see below:

python −m nmt . nmt \
−−a t t en t i on=sca l ed l uong \
−−s r c=v i −−tg t=en \
−−vocab pr e f i x=/tmp/nmt data/vocab \
−−t r a i n p r e f i x=/tmp/nmt data/ t r a i n \
−−dev p r e f i x=/tmp/nmt data/ t s t2012 \
−−t e s t p r e f i x=/tmp/nmt data/ t s t2013 \
−−ou t d i r=/tmp/nmt attent ion model \
−−num tra in s t eps=12000 \
−−s t e p s p e r s t a t s =100 \
−−num layers=2 \
−−num units=128

As we can see there is a difference between the source datasets and the target ones.

They can be called in the same way but they have to have a different suffix (src and tgt).

There is also another flag to indicate the path of the vocab, which can be obtained by

using multiple methods. In this case, there has been coded a solution using one list and

a dictionary, the list for checking the appearance of words and the dictionary for counting

the number of appearances. So the code go through every word in the text checking if it is

in the checking list. If it is, the code adds a unit to the value of that word that is working

as key at the same time. After finishing the text, the dictionary is sorted and the X words

which more appearance values are selected to compose the dictionary.

64

5.3. NMT TENSORFLOW

In this case the validation data is include in the dev prefix flag.

The number of layer of both the encoder and decoder is in the flag num layers and

the number of neurons by layer in the num units flag. It is necessary taking in count the

available resources we have to perform an experiment in order to select the number of this

two flags. These kind of networks are fully connected and increasing too much the number

of layers or units may produce a huge usage of memory.

The training command showed in the box above is only one combination of the multiples

commands that can be used. In the class nmt.py we can find a huge amount of parameters

that can be used allowing to choose from the kind of optimizer (–optimizer) to the number

of buckets for bucketing (–num buckets). This big amount of parameters gives a huge

flexibility to the implementation allowing us to reproduces nearly infinite experiments only

limited by hardware and time.

5.3.3 Inference. Generating conversations

Once the NMT model have been trained, we can obtain answers to previously unseen

source sentences. For that nature, this process is known as inference (testing) and it is

not the same that training. In this case the code only has access to the source sentence

(encoder inputs)[34]:

1. The source sentence is encoded as it would be encoded during the training process.

This produce a hidden state that in the last part of the encoder it is known as encoder

state and it is used as input of the decoder part.

2. The process of decoding starts when the decoder receives the symbol <s> which means

the end of the sequence. This symbol, as explained before, can be selected with the

use of some configuration parameters (–tgt sos id)

3. Then, as in the process of training, the decoder output is treated as a set of logits,

which allows to decide which word is more probable (the one with the higher logit

value in each step).

4. This process continues until the decoder generates the </s> which would be the one

with the higher logit value as an answer to <s> as we can see in the following process

in the image below:

65

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

Figure 5.5: Greedy Decoder

We can observe that the generated response to the input “I am a student” will be

“Ok me too”.

The main difference with the training process occurs during step 3 because the decoder

is not fed with the correct target word in each step but with the previous generated word

predicted by the model.

In the case of infer process the code of the decoder will be slightly different to the

training decoder:

he lpe r = t f . c on t r i b . seq2seq . GreedyEmbeddingHelper (

embedding decoder ,

t f . f i l l ([b a t ch s i z e] , t g t s o s i d) , t g t e o s i d)

decoder = t f . c on t r ib . seq2seq . BasicDecoder (

d e c od e r c e l l , he lper , encode r s ta t e ,

ou tput l aye r=p r o j e c t i o n l a y e r)

outputs , = t f . c on t r ib . seq2seq . dynamic decode (

decoder , maximum iterations=maximum iterations)

t r a n s l a t i o n s = outputs . sample id

The main difference is in the helper, which is a GreedyEmbeddingHelper instead of a Train-

ingHelper. This is becase, as it has been just mentioned, the decoder in this process does

66

5.4. OPEN NMT

not have the target word as input in each time step.

Once the model is trained, if we want to test how good the answers are we can obtain

answer by passing the code an inference file and a path where to save the outputs:

python −m nmt . nmt \
−−ou t d i r=/tmp/nmt model \
−− i n f e r e n c e i n p u t f i l e=/tmp/ my i n f e r f i l e . v i \
−− i n f e r e n c e o u t p u t f i l e=/tmp/nmt model/ ou tpu t i n f e r

The content of the infer file can be copied from one of the test datasets. It is important

to mention that the code saves checkpoints when it finishes an epoch of training. Each

checkpoint has a copy of the learnable parameters at that point allowing to perform inference

processes during training.

5.4 Open NMT

Open NMT is an open source project for neural machine translation and neural sequence

modeling. It was launched in December 2016 and has become a collection of many im-

plementations oriented both in academical aspects and industry aspects. It was originally

developed by Yoon Kim and harvardnlp team [29].

There are different implementations of the seq2seq model in different languages as Lua,

Torch or Pytorch. In this case PyTorch have been finally selected due to a problem with

the TensorFlow implementation that will be explained in 6.2.1

5.4.1 Structure

The structure of this framework is slightly different with respect to the TensorFlow one.

Core Modules: This general module works as an interface and provide tools for gener-

ate embedding for the encoder and the decoder. This tools also include some features that

allow to improve the process of learning as the ones we can find on the article “Linguistic

Input features Improve Neural Machine Translation” [44].

Figure 5.6: Embeddings Open NMT

67

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

It allows to set many configuration parameters as the size of the dictionary of embed-

dings, the size of the vocabulary, the use of pretrained vectors, etc.

In this implementation the code is able to generate its own vocabulary from the datasets

thanks to the class preprocess.py

de f bu i ld save vocab (t r a i n da t a s e t , opt) :

f i e l d s = onmt . i o . bu i ld vocab (t r a i n da t a s e t , opt . data type ,

opt . share vocab ,

opt . s r c v o c ab s i z e ,

opt . s rc words min f requency ,

opt . t g t vo c ab s i z e ,

opt . tg t words min f requency)

This class also makes a preprocess to the datasets, so with the objective of standardizing the

task of preprocessing it has been code an small bash script that must be execute before the

training. This script is going to automatize the process of giving the paths of the different

datasets to the shell.

python prep roce s s . py \
−t r a i n s r c /workspace/data/ u t f t r a i n . enc \
−t r a i n t g t /workspace/data/ u t f t r a i n . dec \
−v a l i d s r c /workspace/data/ ut f dev . enc \
−v a l i d t g t /workspace/data/ ut f dev . dec \
−save data /workspace/data/bot

Model: It is a trainable object that implements a trainable interface to declare both the

encoder and decoder. Specifically, it can be found in the class onm.Models.NMTModel

together with the class DecoderState which an interface that groups the decoder states

(hidden states) which is necessary for using beam search.

In the NMTModel class it can be found different schemes of encoders and decoder,

include recurrent and no recurrent models. In the case of encoders interface is the En-

coderBase that provides the next common scheme:

68

5.4. OPEN NMT

Figure 5.7: Encoder Open NMT

The RNN encoder using RNN units can be found in a class call RNNEncoder and it

gives the possibility of modifying parameters as the type of unit (LSTM, GRU, SRU), the

bidirectionally of the encoder, the number of layers, etc.

c l a s s RNNEncoder(EncoderBase) :

de f i n i t (s e l f , rnn type , b i d i r e c t i o n a l , num layers ,

h idden s i z e , dropout =0.0 , embeddings=None) :

super (RNNEncoder , s e l f) . i n i t ()

. . .

s e l f . rnn = ge t a t t r (nn , rnn type) (

i n pu t s i z e=embeddings . embedding s ize ,

h i dd en s i z e=h idden s i z e ,

num layers=num layers ,

dropout=dropout ,

b i d i r e c t i o n a l=b i d i r e c t i o n a l)

In the case of the decoder the structure is similar to the encoder, but the interface gives

more complexity as can be observed in the next figure:

69

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

Figure 5.8: Decoder Open NMT

There are two RNN implementations but the useful one in this experiment is the

StdRNNDecoder that is a standar fully batched RNN decoder with attention. It uses

CuDNN and is based on the approach from “Neural Machine Translation By Jointly Learn-

ing To Align and Translate” [3].

c l a s s StdRNNDecoder (RNNDecoderBase) :

de f run fo rward pas s (s e l f , input , context , s ta te , c on t ex t l eng th s=None) :

. . .

rnn output , hidden = s e l f . rnn (emb , s t a t e . hidden)

Result Check

input l en , input batch , = input . s i z e ()

output len , output batch , = rnn output . s i z e ()

aeq (input l en , output l en)

aeq (input batch , output batch)

END Result Check

. . .

Ca lcu la t e the a t t en t i on .

attn outputs , a t t n s c o r e s = s e l f . attn (

rnn output . t ranspose (0 , 1) . cont iguous () ,

context . t ranspose (0 , 1) ,

c on t ex t l eng th s=con t ex t l eng th s

)

70

5.4. OPEN NMT

In the case of the Attention it is a global attention by default and it uses a query

vector. It is performed in a similar way to what was explained in 4.4, this is, it constitutes

a unit mapping a query q of size dim and a source matrix H of size n ∗ dim, to an output

of size dim

Figure 5.9: Attention Open NMT Scheme

Independently of the model used, all of them computes the output as:

c =

SeqLength∑
j=1

ajHj (5.1)

The term aj represents the softmax of a score function and then it is applied a projec-

tion layer to [q, c]. However, the models can compute the attention in a different way by

changing some configuration parameters (–global attention). Selecting dot/general or mlp

will produce a different way of computing the attention score:

• Luong Attention

– dot: score(Hj , q) = HT
j q

– general:score(Hj , q) = HT
j Waq

• Bahdanau Attention

– mlp: score(Hj , q) = vTa tanh(Waq + Uahj)

In addition, it also incorporates the structured attention which consist of an implemen-

tation of the matrix-tree theorem for computing marginals of non-projective dependency

parsing. This is explore in the paper “Learning Structured Text Representations” [33]. In

the next figure we can observe a non-projective dependency:

71

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

Figure 5.10: Non-projective Example [38]

This kind of relations allows the attention mechanism to focus more on some parts,

allowing to improve the learning of the relations between words.

Loss: Similarly as in the TensorFlow implementation, this class gives an interface to

compute the loss function by computing multiple loss computations as the monolithic loss

(the forward loss for the batch) and the sharded loss which uses a technique of making

shards of the state dictionary a relieve memory required for generation buffers. Users can

also implement their own loss computation strategies by making subclasses.

. . .

de f sharded compute los s (s e l f , batch , output , attns ,

cur trunc , t r un c s i z e , s h a r d s i z e) :

b a t ch s t a t s = onmt . S t a t i s t i c s ()

range = (cur trunc , cu r t runc + t r un c s i z e)

s ha rd s t a t e = s e l f . make shard s ta te (batch , output , range , a t tns

)

f o r shard in shards (sha rd s ta t e , s h a r d s i z e) :

l o s s , s t a t s = s e l f . compute lo s s (batch , ∗∗ shard)

l o s s . d iv (batch . b a t ch s i z e) . backward ()

ba t ch s t a t s . update (s t a t s)

re turn ba t ch s t a t s

. . .

Optim: This is the controller class for optimization. It constitutes a thin wrapper

that implements the necessary methods for training RNNs such as grad manipulations. By

modifying some parameters, this class allows to change the optimization method (–optim)

and the update of learning rate.

72

5.4. OPEN NMT

de f upda t e l e a rn i n g r a t e (s e l f , ppl , epoch) :

. . .

i f s e l f . s t a r t d e c ay a t i s not None and epoch >= s e l f . s t a r t d e c a y a t :

s e l f . s t a r t d e cay = True

i f s e l f . l a s t p p l i s not None and ppl > s e l f . l a s t p p l :

s e l f . s t a r t d e cay = True

i f s e l f . s t a r t d e cay :

s e l f . l r = s e l f . l r ∗ s e l f . l r d e c ay

p r in t (‘ ‘ Decaying l e a rn i ng ra t e to %g ’ ’ % s e l f . l r)

s e l f . l a s t p p l = ppl

s e l f . opt imize r . param groups [0] [’ l r ’] = s e l f . l r

5.4.2 Training Open NMT

The commands necessary to start the training are very similar to the example of TensorFlow.

In fact, a big part of this implementation served as inspiration for the devlopment of the

TensorFlow’s one.

In this case, with this implementation have been trained many more examples, so it has

been coded a bash script [19] in order to simplify the task of start the training process:

python t r a i n . py \
−data . . / data/bot \
−save model . . / data/model/bot−model \
− l a y e r s 2 \
−r nn s i z e 256 \
−word vec s i z e 256 \
−gpuid 0

These are the basic commands to start to train and their names give enough informa-

tion to understand their meaning. This implementation, by using the preprocess.sh script

mentioned before, generates some PyTorch arrays and a vocabulary and save them into

save data directory. Later, with the train.sh script it uses this preprocessed data. Is in this

script where the different options (otimizers, attention mechanisims, number of layers, etc)

have been selected.

On the other hand, the -gpuid parameters allows to indicate which gpu it can use and

it is useful in the case of multiple gpus.

73

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

5.4.3 Inference. Generating Conversations

In this case has been also coded a script for testing as in the previous section 5.4.2. In this

case the name of the script is infer.sh and its content is as follows:

python t r a n s l a t e . py \
−model $1 \
−s r c . . / data/ u t f t e s t . enc \
−output . . / data/ preds . txt \
−r ep lace unk \
−verbose

During the training process, the NMT generates models that are saved into the path

selected in -saved model. These models are saved when each epoch finishes and they have

all the learnable parameters as they were in that moment. They have in their names the

perplexity value, so we select the best one as the argument for the train.sh script. We also

need to feed the inference method with some test sentences.

After executing this script the NMT will generate a response for each of those test

questions replacing the <unk> tags.

5.5 Metrics

Both implementations uses the same metrics in order to calculate how good are their pre-

dictions in comparison with the expected results. There are different kinds of metrics but

two of them are the most popular in conversational generators world. These are perplexity

and bleu.

5.5.1 Perplexity

The perplexity term, in information theory, refers to a measurement of how good is a

probability model predicting a new sample.

The perplexity is defined as 2H(p) where H(p) is the entropy of the distribution p(X)

over all x ∈ X:

H(p) = −
∑
x

p(x)log2p(x) (5.2)

In the case of determining the perplexity of a model it is used B(q) instead of H(p), which

is an estimate of the average power of the model q(X) to produce a representation of a set

of x ∈ X. In this case it would be as follows:

B(q) = − 1

N

N∑
i=1

log2q(xi) (5.3)

74

5.5. METRICS

In this particular case, N represents the number of samples which is the total number

of words as the implementation works with unigrams. Intuitively, assuming 2B(q) (it could

be also eB(q) depending on the example),we can observe the next extreme cases:

• The minimum value would be when q(xi = 1 for all i. This means that each sample

is predicted with the highest confidence and this make the perplexity equals to 1 due

to 20.

• The maximum value would be when q(xi = 0 for all i. This means that each sample

is predicted with the lowest confidence, making the perplexity 2+∞ = +∞

However, the last formula assumes that each sample appears only one time in the N test

samples considered. Taking in count that in our case a word could appear in sentence more

than one time it is necessary to adapt this expression:

B(q) = −
N∑
i=1

p̃(x)log2q(xi) (5.4)

p̃(x) =
n

N
(5.5)

The next figure correspond to checkpoints of a training and we can observe how the score

of perplexity is decreasing each epoch:

Figure 5.11: Perplexity Obtained by Epoch

The decreasing of the perplexity also decrease with each epoch. This is due to the fact

that in the first epochs of the training is when the RNN is improving faster.

5.5.2 Bleu

Bleu is an algorithm specially designed to evaluate the quality of a text which it has been

generated by machine translation between two languages (“the closer a machine translation

is to a professional human translation, the better it is” [40])

For each word in the candidate translation, bleu takes the maximum number of appear-

ances in any of the reference translations (mmax). Then, it counts mw which is the number

of times that the questioned word appears in the candidate sentence. This value is clipped

to mmax and this will be the new value of mw. Later, these clipped counts are summed

75

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

over all distinct words in the candidate. This sum is then divided by the total number of

words in the candidate translation.

In practice, instead of words, n-grams are used because they obtain better results when

human evaluates them. The higher correlation was found to be four-gram [13].

However, in the case of generating conversational models, bleu seems to work worse

than perplexity and almost all experiments and papers about this topic use perplexity as

the main metric.

5.6 Results: Conversations

5.6.1 Different Trainings

It have been performed many kind of trainings trying always to reach the best results

possible with the available resources.

We can classify them depending on the source data used:

• Cornell trainings: 3 small trainings with small topologies.

• Open Subtitles trainings: 2 medium trainings with medium size topologies.

• 5 million OS question/answer trainings: 7 big trainings with medium a large size

topologies.

• 14 million OS question/answer training: Biggest training with large size topologies.

All the prediction files can be found in [15]

5.6.1.1 Cornell Trainings

In this processes of training it has been used the Cornell dataset whose characteristics were

mentioned on 5.1.

The main parameters modification were:

1. Training 1: 1 layer encoder, 1 layer decoder, 128 units per layer and 128 word embed-

dings.

2. Training 2: 1 layer encoder, 1 layer decoder, 512 units per layer and 128 word embed-

digns.

3. Training 3: 1 layer encoder, 1 layer decoder, 512 units per layer and 256 word embed-

dings.

76

5.6. RESULTS: CONVERSATIONS

These trainings were the first and they have the objective of show how an increase in

the number of units and in the number of word embeddings leads to better results.

Obviously, the best perplexity, was achieved in traing 3 in epoch 13 with a value of

119.9. In the first training it was 150.69, and in the second 123.84, both also in epoch 13.

We can observe how the increase in the number of units achieves significant better score.

On the other hand, the increase in the number of word embeddings also leads to a better

result but the difference is not as significant as between traning 1 and 2.

However, a perplexity of 119.9 is not very good and responses have many <unk> tags

and many “I don’t know” responses. In this case, the <unk> tags are due more to the fact

that the topologies of the networks are small and they have a lower learning capacity.

Below we can observe some of the best answers of each of the trainings:

Training 1:

SENT 21 : Nothing . Good night .

PRED 21 : Good night .

SENT 175 : Wait wait wait . Hold up . Hold up . Look .

PRED 175 : What?

SENT 75 : Hi honey .

PRED 75 : Hi .

Training 2:

SENT 23 : Doing what?

PRED 23 : I don ’ t know .

SENT 79 : Who i s she Daddy?

PRED 79 : I don ’ t know .

SENT 113 : You ok?

PRED 113 : Yeah .

Training 3:

SENT 6 : Where did he keep h i s money?

PRED 6 : I don ’ t know .

SENT 28 : Can you g ive me one good reason why I should ?

PRED 28 : No .

SENT 46 : Rea l ly ?

PRED 46 : Yeah .

77

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

As we can observe, responses (PRED) are very poor. Sometimes, they are good answers

for the particular question but in general the “I don’t know problem” mentioned in 6.2.2 is

very common due to the small topology of the network.

On the other hand, despite the perplexity is better in training 3, the responses are not

much better from a human point of view.

5.6.1.2 Open Subtitles trainings

In these particular case, the objective of these 2 trainings were to show the same intuition

than in 5.6.1.1 but using a bigger dataset in order to obtain better results. The character-

istics of this dataset have been also mentioned in 5.1

The main parameters modification were:

1. Training 1: 2 layers encoder/decoder, 500 units per layer and 500 word embeddings.

2. Training 2: 2 layers encoder/decoder, 1024 units per layer and 1000 word embeddigns.

The perplexity obtained by the first training was 58.17 in the epoch 13. The second

training achieved a perplexity of 34.89 in the 13 epoch. We can observe that these perplexity

scores are much better than in 5.6.1.1. In these case it is because both dataset and topologies

are much larger so the networks have the capability of learning more and better. Here, we

can also observe that increase number of units and number of word embeddings leads to

better results, but it this case the difference between both perplexities is bigger than in the

Cornell cases. The explanation is that we are increasing the number of units by a factor of

2 but there are also the double of layer so the connections in a fully connected topology are

more than the double. In addition, the combinations of word embeddings are exponential

so a difference between 500 and 1000 offers much more possibilities than between 128 and

256.

Below we can observe some of the best answers of each of the trainings:

Training 1:

SENT 1 : Jesus .

PRED 1 : What ?

SENT 25 : Perhaps under the c i r cumstances , I should be c a l l i n g you

Captain .

PRED 25 : Yes , s i r .

SENT 195 : The extra bedrooms were f o r the ch i l d r en , which were never

used .

PRED 195 : I t was a long time ago .

78

5.6. RESULTS: CONVERSATIONS

SENT 2151 : After three months o f t ry ing , Pam sa id i t wasn ’ t working and

they were gonna get a donor from a sperm bank .

PRED 2151 : She didn ’ t even know that .

SENT 2193 : Go play dominoes .

PRED 2193 : Go !

SENT 35457 : i s the l i t t l e death that br ing s t o t a l o b l i t e r a t i o n . Flesh

dropping o f f . Fear i s the l i t t l e death ! I must not f e a r .

PRED 35457 : I w i l l k i l l you .

SENT 50739 : I i l come l a t e r

PRED 50739 : I i l s e e you l a t e r

In the next block we can observe two continue conversatiosn that have some sense.

SENT 2205 : He s happy , they re happy , we re happy .

PRED 2205 : We re happy .

SENT 2207 : Just l eave i t a lone , a l l r i g h t ?

PRED 2207 : Okay .

SENT 2209 : Just l eave i t a lone .

PRED 2209 : I m sor ry .

SENT 2211 : I m s e r i o u s .

PRED 2211 : I m sor ry .

−−

SENT 35309 : who have long held a prophecy that a man would come ,

PRED 35309 : and a man who would not be a man .

SENT 35311 : a messiah ,

PRED 35311 : a l e ade r o f the world .

Training 2:

SENT 4001 : See you next week , Mrs . <unk> .

PRED 4001 : Thank you .

SENT 4033 : Wanna get a dr ink ?

PRED 4033 : Sure .

SENT 4057 : Door Closes

PRED 4057 : Door Opens

SENT 4269 : I merely b e l i e v e in the law .

79

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

PRED 4269 : I b e l i e v e in you .

SENT 4411 : Why don t you hold that on

PRED 4411 : Cause I l ove you

SENT 4505 : He says San Franc i sco i s l i k e an a n t h i l l at the f oo t o f a

br idge .

PRED 4505 : He says there i s no way out o f here .

SENT 4551 : Like jumping in to a founta in in Rome .

PRED 4551 : That ’ s why we re here .

SENT 6091 : Three boys , a g i r l , f our w i l l go .

PRED 6091 : One , two , three .

In example “See you next week , Mrs. <unk>.” , we can observe the problem of not

having a word in the dictionary. Probably the name did not appear enough times to be in

the dictionary and the network does not know it.

We can also observe how it has learnt the relations in the example of the numbers. It

receives numbers and “thinks” that an answer with numbers could be ok.

In general we can observe that using a bigger dataset with a larger topologies produces

better answers.

5.6.1.3 5 million OS question/answer trainings

This dataset has been the base of the biggest number of trainings. They have been performed

7 types of training:

1. Training 1: 2 layers encoder/decoder, 512 units per layer and 500 word embeddings.

Best perplexity = 88.63

2. Training 2: 2 layers encoder/decoder, 2048 units per layer, 1000 word embeddigns

and general attention . Best perplexity = 60.41

3. Training 3: 2 layers encoder/decoder, 2048 units per layer, 1000 word embeddigns

and dot attention. Best perplexity = 60.45

4. Training 4: 2 layers encoder/decoder, 2048 units per layer, 1000 word embeddigns

and mlp attention. Best perplexity = 60.46

5. Training 5: 3 layers encoder/decoder, 512 units per layer, 1000 word embeddigns.

Best perplexity = 63.68

80

5.6. RESULTS: CONVERSATIONS

6. Trainign 6: 3 layers encoder/decoder, 512 units per layer, 1000 word embeddigns and

bidirectional. Best perplexity = 63.68

7. Training 7: 3 layers encoder/decoder, 1024 units per layer, 1000 word embeddigns

and bidirectional. Best perplexity = 57.57

In this case, the general size of the trainings is bigger than in 5.6.1.2. These trainings

have the objective of showing the influence of other training parameter as attention or

bidirectionality.

In general we can observe that the kind of attention does not influence almost anything

because using any of the three options leads to almost same results.

In the case of 3 layers examples we can confirm the intuition mentioned before which is

that the parameters whit more influence in the result are the number of layers and units

and the relation between them.

With respect to the values of the perplexities, they are bigger than in 5.6.1.2 due to two

reasons:

• The main one is that this dataset is preprocessed in order to have only questions

and answers. In addition many of “I don’t know” type answers have been deleted.

Hence, the network is not going to learn those kind of answers as easy as in the

previous experiments. That produces a more variety of responses but this makes the

perplexity to increase because the answers are going to be more different between

them. On the other hand, deleting those kind of easy answers, produces that the

network has some tendency to answer using part of the question.

• As the second reason, in those trainings the learning rate has been changed in each of

them trying to avoid “I don’t know” answers and answers using parts of the question.

One possible explanation to the problem of answering with part of the question could

be the next:

If we imagine a simple question as “how are you?<eos>”, in the moment of generate the

first word the information that the network uses is the tag of end of sequence, the internal

representation of the question and the attention values. We can consider that the tag is not

giving any information so the result will be generated using the internal representation and

the attention values. So if the answer begins with the word “how” this could be because the

attention mechanism is focusing in the first word trying to ”understand” what the question

is about. It has also the information coming from the internal representation but maybe

it is dominated by the attention mechanism. So, perhaps, this problem comes from a bad

combination of the internal information and the attention information. But it is just a guess

and to prove it could take another entire project.

81

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

In this case we are not going to see any example because they are going to be shown in

the last training which is based on a larger version of the same dataset.

5.6.1.4 14 million OS question/answer training

In this particular case only one training has been done due to the huge amount of time

necessary for training (more than 3 weeks).

The parameters used to train were: 2 layers encoder/decoder, 2048 units, 1000 word

embeddings, bidirectional,

Obviously this is the example with the smallest perplexity and the one that gives better

answers. Let’s see some of them:

SENT 5 : Can you j u s t l e t me out , man?

PRED 5 : I need to t a l k to you .

SENT 89 : And why don ’ t you think I can f i nd a woman f o r myse l f ?

PRED 89 : Because you ’ re a woman .

SENT 343 : What does that mean?

PRED 343 : I t means I don ’ t want to go to j a i l .

SENT 451 : So you know who I am?

PRED 451 : I know who you are .

SENT 841 : Nikki , what happened to my r e l a x i n g Eastern Be l l music ?

PRED 841 : I got i t r i g h t here .

SENT 981 : What was your duty as c r im ina l i n v e s t i g a t o r ?

PRED 981 : To a r r e s t c r im ina l s

SENT 1085 : Why are you s c o l d i ng him unne c e s s a r i l y ?

PRED 1085 : He i s l y i ng to you .

SENT 1175 : You ’ re a f r a i d o f that s i s s y ?

PRED 1175 : I ’m not a f r a i d o f anything .

SENT 1365 : Well , how would they uncover what happened to Nancy Sloan ,

un l e s s someone from the <unk> t o ld them?

PRED 1365 : We need to know what they know .

SENT 2087 : What does the Prophet Mohammed say ?

PRED 2087 : He says that he i s a murderer

SENT 2277 : Can I t e l l you something ?

PRED 2277 : You can t e l l me anything .

82

5.6. RESULTS: CONVERSATIONS

SENT 2315 : What do you want , g i r l ?

PRED 2315 : I want you to t e l l me the truth .

SENT 2451 : Uh, Long Beach , why?

PRED 2451 : Well , I wanted to t a l k to you about something .

SENT 2835 : Pardon , s i r ?

PRED 2835 : I thought I heard something .

SENT 2881 : Now why would you nominate us f o r an award without even

mentioning i t f i r s t ?

PRED 2881 : Because I thought i t would make you f e e l b e t t e r .

SENT 3175 : Why not ?

PRED 3175 : Because I don ’ t want you to get hurt .

SENT 4891 : Why didn ’ t you t e l l us that he i s an advocate ?

PRED 4891 : He i s a advocate ?

SENT 5069 : So , Jack , i f you didn ’ t come here to k i l l me , why are you

here ?

PRED 5069 : I want to t a l k to you .

SENT 5447 : Why would you do that ?

PRED 5447 : Because I l ove you .

SENT 5791 : But i f space i s l i k e a f a b r i c that can s t r e t c h and bend?

PRED 5791 : That ’ s exac t l y what i t i s .

SENT 7489 : What time was th i s , Mr Harr i s ?

PRED 7489 : Quarter past s i x .

SENT 10913 : You ’ re c a l l i n g him a l i a r ?

PRED 10913 : I ’m not c a l l i n g him a l i a r .

SENT 11503 : WHO DOESN’T LIKE PIZZA?

PRED 11503 : I DON’T LIKE PIZZA

As we can observe, these answers are much more complex that in any other of the

previous examples and in some cases they are even ingenious answers. We can observe in

the question of the time how the network generates an answer with a time. This kind of

answer is the only possible one for such a question and it shows how the networks has learnt

the relation between questions asking for time and answer giving a particular time.

83

CHAPTER 5. THE SOLUTION: A CONVERSATIONAL BOT

We can also appreciate how the network uses capital letter when the question was also

in capital letters. It is interesting because it can be used to let a network know that this

could mean that the interlocutor is shouting.

However, these answers are not the most common, and the simple answers (I don’t

know, what do you mean, I’m sorry, etc) have too much presence in many answers.

So after performing such a training and watching the results, we can imagine how difficult

is to get a conversational neural network having a fluid and open domain conversation.

84

CHAPTER6
Conclusions

6.1 General Difficulties

As general difficulties encountered during the development of the project, we can mention

the following:

• Structure of the data: Data , as has been explained on 5.1 and 5.2, has a vital

importance in the task of reaching good results in any kind of neural network ex-

periment. In this particular case, the data has been preprocessed and structured in

order to get good results. Nevertheless, there are always strange characters that have

strange codifications and are hard to clean. This characters can appear many times

in the data and can influence the results (they can be selected as candidates for vo-

cabulary for example). Cleaning and adapting the data to the experiment can take

long time. In addition, many of these possible problems are usually detected after the

training process when observing strange results. This produce a lot of waste of time.

• CPU and GPU: These kind of experiments can be executed both in CPU and GPU.

However, the capabilities of the GPU in these task far exceed those of the CPU.

The problem is that not all the GPUs are compatible with the different frameworks.

Nowadays, only some versions of Nvidia GPUs are able to work with. In my particular

case, I started working with my CPU due to the fact that my PC has an AMD GPU

and this caused that small trainings took ages. Fortunately, thanks to my tutor, I got

85

CHAPTER 6. CONCLUSIONS

a connection with a GSI server where I was able to use a Nvidia Titan X with Pascal.

This reduced in several orders the time invested in each training.

• GPU memory: Despite the use of a powerful GPU, there are many trainings that

are impossible to perform due to the lack of GPU memory. This particular GPU has a

memory of 12GB GDDR5X but it can be not enough. Some research experiments use

tens and even hundreds of millions of sentences with big network architectures. With

a Titan X, an experiment with 2 layers (both in encoder and decoder), 4096 units per

layer and the dataset of 14 million sentences will produce an “out-of-memory” error.

So those huge experiments are performed by using multi-GPU where the work can be

divided between them.

• Debugging: TensorFlow and PyTorch are frameworks formed by wrappers over other

programming languages. This may cause a lot of problems when debugging some

errors, complicating the fact of finding the solution.

• Time: Without a doubt, time is the most limiting factor in this type of experiments.

It is directly affected by all the aspects mentioned above, and in turn, it especially

affects the training process. The smallest trainings performed have taken nearly 3

days of calculations. On the other hand, the biggest one took more than 3 weeks

and, despite of this, its results have not been as good as I thought. The aspects

that produce more increase of calculation time are the size of the dataset and the

architecture of the network. Due to the batch nature of the processes, an increase

in the size of the dataset, maintaining the network size, will produce a proportional

increase in the time. Nevertheless, this is no the case of the architecture. If the size of

the dataset is maintained constant and we increase the number of layers, the number

of units, the size of the vocabulary or all at the same time, the time will grow in a

non proportional way. That is because all of this aspects are related (for example the

fully connected nature) and it is difficult to estimate the time impact of the changes

before starting to train. As it has been explained, the use of multi-gpus could help

by significantly reducing time. This fact acts as an important limitation because is

not very productive to wait such a time until see the results. In addition, sometimes

results are not very good and you can not predict it a priori, so some experiments

become a huge waste of time.

6.2 Particular Difficulties

In this case, these difficulties does not have to be common with other neural network

experiments and are more related with the fact of using NMT for generating conversations.

86

6.2. PARTICULAR DIFFICULTIES

6.2.1 TensorFlow Implementation

The first idea was to use TensorFlow NMT implementation to build the conversational bot.

At firs it was used the Open Subtitle corpus of 2 million sentences and after waiting days

between trainings all of them produce bad results.

The responses generated by the NMT were plenty of <unk> tags regardless of the size

of the vocabulary that was used. Usually, when the <unk> tags appear is because the

source word which influence in the word that should appear instead of the tag is not in the

vocabulary, so the NMT unknowns the word and this produces that the <unk> reaches

more significance than other possible words.

It was thought that it could be due to strange characters that appear in the dataset even

when they were preprocessed. All of them were preprocessed many times, deleting all kind

of characters include common chars as dots or commas. It was thought that maybe dots

or commas were encoded with strange characters and they were influencing in the results

because they appear in almost all the sentences. But the responses continued with lots of

<unk> tags.

Other option was to leave dots and commas and let them to be in the first positions in

the vocabulary. This was done with the idea of given the NMT the possibility of recognize

this characters but nothing changed. In the meantime, the trainings performed were getting

more and more bigger, with more layers and more units trying to solve this problem, but

nothing changed.

The datased was changed and the Cornell dataset was selected because it was already

preprocessed. However, the responses continued plenty of <unk> and it was impossible to

debugging, in part due to the wrapper architecture of TensorFlow.

After investigate the problem, many topics had been opened on forums in those days

asking to solve similar problems and it seemed to be due to changes in the code added to

improve the translation process. In that moment, more than half of the time available for

the project had passed, so after were discussing it with my tutor, we decide to change to

the PyTorch implementation offered by Open NMT.

With this implementations, same experiments gave much better results. If the train-

ings are big enough, only some <unk> appear which is normal because all the words in

the dataset are not in the vocabulary. So that was the main reason of changing to this

implementation.

In essence, changing technology did not involve major changes because TensorFlow and

PyTorch are two very similar libraries with an operation that , in practice, is identical.

87

CHAPTER 6. CONCLUSIONS

6.2.2 “I don’t know” problem

This is a common problem and it particularly affects conversational bots in open domain

conversations.

After training a model, many of the responses to diverse questions tend to be responses

of the style of “I don’t know” or “What do you mean?”. There are more repetitive structures

like “I’m going to...” or “Yes” and so on. This problem appear because this kind of responses

are very common in the training data and they give an answer for multiple possible questions

[31].

Therefore, when the neural network is learning the relations between questions/answer,

it learns that common responses lead it to good error results. That is because an “I don’t

know” generated response compared with the possible labeled reference answers is going

to give a low error. So, once the network reaches this point it is difficult that a change

in its parameter leads it to responses that generate a smaller error, even if we tune the

learning rate during the training. This behavior can be compare to the fact of reaching

a local minimum in a function. If the network reaches this state, the gradient functions

will indicate to always return to the same point because it is the best point around the

multidimensional function.

This responses are apparently not a good action to take, since i closes the conversation

down. They can be good particular answers but they do not allow to continue a conversation.

In addition, this responses in the case of facing two trained models will become stuck in an

infinite loop of repetitive responses.

There are some papers that face this problem by adding techniques of reinforcement

learning that have been applied in MDP and POMDP dialogue systems. They introduce

a neural reinforcement learning generation method, which which can optimize long-term

rewards designed by developers. Therefore, some rewards are given to good conversations

and, defining heuristic approximations, the conversational agents will optimize these long-

term rewards, behavior that leads them not to always use “I don’t know answers”. So, by

defining a reward policy the agent learns to optimize it by using policy gradient methods

[32].

Unfortunately these improvements are very recent and have not yet been incorporated

into open source implementations, so the problem of “I do not know” answers is still difficult

to solve.

88

6.3. FUTURE LINES OF WORK

6.3 Future lines of work

As future work, the main option is the use of several GPU. The frameworks and libraries

used during the project are prepared to be used with several GPUs by using the multi-gpu

system. This allows to divide the workload by numerating (-gpuid) the GPUs that are able

to work with.

At present, the GSI server has three Nvidia Titan X that can be used in parallel. This

could allow to considerably reduce training time and, at the same time, it will allow to

perform larger experiments which will probably reach better results.

On the other hand, it is also possible to explore the exact reason of why the network tend

to answer with part of the question when using question/answer structured dataset. Finding

out the reason will allow the network to be nearer of maintaining a ”good” conversation.

6.4 Final Conclusions

The generation and understanding of natural language is still an objective that has a long

way to advance to get a state where a machine is able to maintain a perfect open domain

conversation with a human.

Nowadays there are some projects that have reached good results, getting models able

to have general conversations with a medium level of complexity. But the absolutely un-

derstanding between machines and human using natural language is still far.

However, advances in electronics are leading to the production of increasingly powerful

GPUs. This, at the same time, allows to perform larger experiments in less time so these ad-

vances are directly increasing the speed at which advances in the NLP with neural networks

occur. New models and techniques that improve current systems are constantly appearing,

therefore, we are moving exponentially towards a complete solution of this problem.

All of this, without any doubt, makes this deep learning field one of the most exciting

and with higher expectations of progress in the coming years, because Artificial Intelligence

is not only a matter of the future but is also a matter of the present.

89

CHAPTER 6. CONCLUSIONS

90

Bibliography

[1] OpenSubtitles corpus, the open parallel corpus. http://opus.nlpl.eu/OpenSubtitles.

php.

[2] Pytorch tutorials pytorch. http://pytorch.org/tutorials/beginner/nlp/word_

embeddings_tutorial.html.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic

language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[5] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[6] Eugene Brevdo. Attention/Decoder Wrapper. https://github.com/tensorflow/

tensorflow/tree/master/tensorflow/contrib/seq2seq/python/ops.

[7] Dr. Jason Brownlee. Machine Learning Mastery. https://machinelearningmastery.

com/adam-optimization-algorithm-for-deep-learning/.

[8] Dr. Jason Brownlee. Machine Learning Mastery machine learning blog. https://

machinelearningmastery.com/what-are-word-embeddings/.

[9] Edgar Nelson Sánchez Camperos and Alma Yolanda Alańıs Garćıa. Redes neuronales: conceptos

fundamentales y aplicaciones a control automático. Pearson Educación, 2006.

[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-

decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[11] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[12] Paul R Cohen. Empirical methods for artificial intelligence, volume 139. MIT press Cambridge,

MA, 1995.

[13] Deborah Coughlin. Correlating automated and human assessments of machine translation

quality. In Proceedings of MT summit IX, pages 63–70, 2003.

[14] Diego San Cristóbal. Clases Auxiliares. https://github.com/DiegoSCB/

Clases-auxiliares.

91

http://opus.nlpl.eu/OpenSubtitles.php
http://opus.nlpl.eu/OpenSubtitles.php
http://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
http://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/seq2seq/python/ops
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/seq2seq/python/ops
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/what-are-word-embeddings/
https://machinelearningmastery.com/what-are-word-embeddings/
https://github.com/DiegoSCB/Clases-auxiliares
https://github.com/DiegoSCB/Clases-auxiliares

BIBLIOGRAPHY

[15] Diego San Cristóbal. Prediction Results. https://github.com/DiegoSCB/

predicciones.

[16] Pedro Ponce Cruz and Alejandro Herrera. Inteligencia artificial con aplicaciones a la ingenieŕıa.

Marcombo, 2011.

[17] Cristian Danescu-Niculescu-Mizil. Cornell Movie Dialogs Corpus. http://opus.nlpl.eu/

OpenSubtitles.php.

[18] Cristian Danescu-Niculescu-Mizil and Lillian Lee. Chameleons in imagined conversations: A

new approach to understanding coordination of linguistic style in dialogs. In Proceedings of the

Workshop on Cognitive Modeling and Computational Linguistics, ACL 2011, 2011.

[19] Óscar Araque Diego San Cristóbal. Training Scripts. https://github.com/DiegoSCB/

initial-bot-OpenNMT.

[20] Felix A Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In Neural Networks,

2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on,

volume 3, pages 189–194. IEEE, 2000.

[21] Yoav Goldberg. Neural network methods for natural language processing. Synthesis Lectures

on Human Language Technologies, 10(1):1–309, 2017.

[22] Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen Schmidhuber.

Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems,

2017.

[23] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[25] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring

the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

[26] Andrej Karpathyl. Andrej Karpathy blog. http://karpathy.github.io/2015/05/21/

rnn-effectiveness/.

[27] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural

language models. In AAAI, pages 2741–2749, 2016.

[28] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[29] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. Opennmt:

Open-source toolkit for neural machine translation. In Proc. ACL, 2017.

[30] Raymond Kosala and Hendrik Blockeel. Web mining research: A survey. ACM Sigkdd Explo-

rations Newsletter, 2(1):1–15, 2000.

[31] Satwik Kottur, Xiaoyu Wang, and Vitor R Carvalho. Exploring personalized neural conversa-

tional models.

92

https://github.com/DiegoSCB/predicciones
https://github.com/DiegoSCB/predicciones
http://opus.nlpl.eu/OpenSubtitles.php
http://opus.nlpl.eu/OpenSubtitles.php
https://github.com/DiegoSCB/initial-bot-OpenNMT
https://github.com/DiegoSCB/initial-bot-OpenNMT
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

BIBLIOGRAPHY

[32] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep

reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

[33] Yang Liu and Mirella Lapata. Learning structured text representations. arXiv preprint

arXiv:1705.09207, 2017.

[34] Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq)

tutorial. https://github.com/tensorflow/nmt, 2017.

[35] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[36] Michael Nielsenl. Neural Networks and Deep Learning. http://

neuralnetworksanddeeplearning.com/chap5.html.

[37] Michael Nielsenl. Neural Networks and Deep Learning Book. http://

neuralnetworksanddeeplearning.com/chap1.html.

[38] Joakim Nivre. Non-projective dependency parsing in expected linear time. In Proceedings of

the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP: Volume 1-Volume 1, pages 351–359.

Association for Computational Linguistics, 2009.

[39] Christopher Olahl. colah’s blog. http://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

[40] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic

evaluation of machine translation. In Proceedings of the 40th annual meeting on association for

computational linguistics, pages 311–318. Association for Computational Linguistics, 2002.

[41] Elaine Rich and Kevin Knight. Artificial intelligence. McGraw-Hill, New, 1991.

[42] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.

[43] Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach. Artificial Intelli-

gence. Prentice-Hall, Egnlewood Cliffs, 25:27, 1995.

[44] Rico Sennrich and Barry Haddow. Linguistic input features improve neural machine translation.

arXiv preprint arXiv:1606.02892, 2016.

[45] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[46] Jörg Tiedemann. News from OPUS - A collection of multilingual parallel corpora with tools

and interfaces. In N. Nicolov, K. Bontcheva, G. Angelova, and R. Mitkov, editors, Recent

Advances in Natural Language Processing, volume V, pages 237–248. John Benjamins, Amster-

dam/Philadelphia, Borovets, Bulgaria, 2009.

[47] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint arXiv:1506.05869,

2015.

93

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

BIBLIOGRAPHY

[48] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint

arXiv:1410.3916, 2014.

[49] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann, 2016.

[50] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,

Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,

Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason

Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jef-

frey Dean. Google’s neural machine translation system: Bridging the gap between human and

machine translation. CoRR, abs/1609.08144, 2016.

[51] Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin Duh, and Chris Dyer. Depth-gated

recurrent neural networks. arXiv preprint, 2015.

94

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Artificial intelligence nowadays

	Project goals
	Structure of this document

	Theoretical Background
	Artificial Intelligence
	Machine Learning
	Supervised Learning
	Semi-Supervised Learning
	Unsupervised Learning
	More used Machine Learning algorithms

	Deep Learning

	Neural Networks
	Introduction
	Common Characteristics
	The Neuron
	Neural Networks Topologies
	Single Layer Neural Network
	Multi Layer Neural Network
	Recurrent Neural Network
	Common Notation

	Learning Process
	Cost Functions
	Optimizer Functions
	Which optimizer should be used?
	Problems with the use of gradients in learning

	LSTM Networks
	Introduction
	The Problem of Long-Term Dependencies

	Main ideas behind the LSTM architecture
	Gated Recurrent Unit
	Summary

	Technologies

	The Problem
	Background
	Neural Machine Translation
	Seq2Seq
	Padding
	Bucketing

	Word Embedding
	Classic Neural Language Model
	Word2Vec

	Attention Mechanism
	From NMT to Conversational Bot

	The Solution: A conversational bot
	The Data
	Preprocessing Data
	Structuring the data

	NMT Tensorflow
	Structure
	Training TF-NMT
	Inference. Generating conversations

	Open NMT
	Structure
	Training Open NMT
	Inference. Generating Conversations

	Metrics
	Perplexity
	Bleu

	Results: Conversations
	Different Trainings
	Cornell Trainings
	Open Subtitles trainings
	5 million OS question/answer trainings
	14 million OS question/answer training

	Conclusions
	General Difficulties
	Particular Difficulties
	TensorFlow Implementation
	``I don't know'' problem

	Future lines of work
	Final Conclusions

	Bibliography

