
A Modular Agent Architecture for Optimising
Hypothesis confirmation cost in Network

Diagnosis

Álvaro Carrera and Carlos A. Iglesias

Universidad Politécnica de Madrid,
Madrid, Spain

a.carrera@dit.upm.es, cif@dit.upm.es

Abstract. This article proposes a MAS architecture for network diag-
nosis under uncertainty. Network diagnosis is divided into two inference
processes: hypothesis generation and hypothesis confirmation. The first
process is distributed among several agents based on a Multiply Sec-
tioned Bayesian Network (MSBN), while the second one is carried out
by agents using semantic reasoning. A diagnosis ontology has been de-
fined in order to combine both inference processes.

To drive the deliberation process, dynamic data about the influence of
observable variables (data) are taken during diagnosis process. In order to
achieve quick and reliable diagnoses, this influence is used to choose the
best action to perform. This approach has been evaluated in a P2P video
streaming scenario. Computational and time improvements are highlight
as conclusions.

Keywords: agent, Bayesian, ontology, diagnosis, network

1 Introduction

The complexity of telecommunication networks has increased the de-
mand for network and service management systems. Nowadays, network
fault management requires high skilled engineers, which are not able to
cope with the increasing heterogeneity and complexity of the network.
The probability of occurrence of faults in large telecommunication net-
works grows as they become widespread, complex and heterogeneous [3].
Thus, the role of automatic diagnosis modules is getting more attention,
in order to cover the detection, isolation and recovery of faults. Another
important aspect to point out is the need for dealing with uncertainty
during the diagnosis task, since many corroboration tasks cannot be car-
ried out because of different reasons, such as the cost itself of the action
or that the action requires to access the subscriber equipment and could
cause him any trouble.

The main focus of this paper is to present a Multi-Agent System (MAS)
architecture that combines two reasoning processes: semantic reasoning



and Bayesian reasoning. This approach proposes to use Bayesian infer-
ence to handle uncertainty inherent in any diagnosis process and seman-
tic inference to discriminate which action is the best one to perform
depending on the available data.
The reminder of this article is structured as follows. Firstly, Sect. 2 pro-
poses an agent architecture for reasoning during both phases of a diagno-
sis: hypothesis generation and hypothesis confirmation. These two phases
can be deployed in different agents. Sect. 3 introduces a discussion com-
paring autonomy with resource consumption. Sect. 4 shows the knowl-
edge model used in this work. Sect. 5 explains the case study where our
approach is applied. Sect. 6 shows the evaluation and presents the results
of comparison with other approaches. Finally, Sect. 7 draws out the main
conclusions about the application of this approach and, besides, a brief
description of future possible improvements.

2 Agent Architecture

This section proposes an agent architecture for diagnosis tasks which
combines two reasoning processes. It consists of the following modules
shown in Fig. 1.

Fig. 1. Agent Architecture

Bayesian Module is a Bayesian reasoning inference engine that pro-
cesses environment data (test results, symptoms, etc.) to infer possible
root causes of the symptoms with an associated confidence about these
beliefs. The outcomes of this module are hypotheses with its respective
confidences and strength of influence among nodes [7].
We propose to use dynamic data from Bayesian networks. Each node of
a Bayesian network has a concrete influence over its neighbours [7] in
each moment of the diagnosis procedure. This influence between nodes
is the strength of the dependencies between nodes that is quantified via
conditional probability tables (CPT). This influence changes dynamically



depending on the evidences of the network (in other words, depending
on the available information about the environment).

To obtain these data, CDF [8] distance is used. This method is suit-
able when there are ordinal nodes, because it represents the shift of
probability according to the cumulative probability functions of the two
distributions.

Ontology-based Reasoning Module has the aim of deliberating which
action should be performed out of the information from the Bayesian
module. Bayesian module generates an ordered list of possible actions
to confirm the diagnosis hypothesis. This module filter this action based
on the action preconditions. After executing the actions, the result is
feedback to the Bayesian module. The reasoning process which includes
rules for multimedia failure diagnosis are expressed with SWRL [9] and
OWL [13].

Agent Control Module follows an extended BDI agent architecture
where beliefs are distributed across the two above mentioned inference
modules. When the agent receives new symptoms, a diagnosis plan is
launched, combining the previous modules.

Mapping module translates information between Bayesian module and
Ontology module. It performs the mapping process to create ontology in-
dividuals and extract information from ontology concepts to probabilistic
data that can be input in the Bayesian module. To perform this task,
we use PR-OWL [4] ontology that supports a way to add probabilistic
information to others concepts defined using OWL.

3 Discussion: Agent Types

We have to remark that it is not necessary that all agents have all mod-
ules. Some functionalities can be distributed across several agents in
order to obtain more scalability, remote access to restricted data, less
computational requirements, etc.

At this point of the explanation and to clarify the multi-agent system
proposed, three types of agents can be discriminated:

– Fully Autonomous Agent which has all modules presented before. It
is able to evaluate the environment, reason (in a distributed way)
under uncertainty, perform actions, etc. It can work autonomously,
but it has better performance working together with other agents.

– Semi-Autonomous Agent which has Agent Control Module and On-
tology based Reasoning Module. It cannot deal with uncertainty,
but it is able to interact with its environment. To reason with un-
certainty, it has to interact with an Fully Autonomous Agent.

– Dependent Agent which has only the Agent Control Module. It is able
only to perform prefixed request actions. For example, the execution
of one test or one monitoring action.



The usage of multi-agent technology for diagnosis tasks in telecommu-
nication networks brings a range of benefits. For example, agents can
be deployed in remote nodes, work when they are isolated or even cre-
ate other agents dynamically when its functionality is required. These
features are highly recommended for systems that work in complex envi-
ronments. Our proposal consists of defining a flexible agent architecture
which integrates the previously identified modules. These functionali-
ties can be distributed at design time or even run time by the agents
themselves (creating agents on demand), depending on non functional
requirements (time to repair) or functional requirements (distribution
requirements because of actions on remote equipments).

4 Knowledge-level model of the diagnosis task
for telecommunication networks

Following the knowledge-level analysis of the diagnosis task by Ben-
jamins [2], diagnosis can be decomposed into three subtasks: (i) symptom
detection, finding out whether complaints are indeed symptoms, (ii) hy-
pothesis generation, generate possible causes based on the symptoms,
and (iii) hypothesis discrimination, discriminating between the hypothe-
ses based on additional observations.
In this article, we focus on the last two tasks, hypothesis generation and
discrimination, as well as in the repair task, as illustrated in Fig. 2.

Fig. 2. Diagnosis inference structure. Legend: box (concept), oval (inference), rounded
corner box (task)

The first process, hypothesis generation, consists of generating hypoth-
esis from the notified fault based on a causal model. Since this process
needs to handle uncertainty, a Bayesian network has been selected for
expressing the causal model. Moreover, given that this Bayesian network



could not scale well with the size and heterogeneity of telecommunica-
tion networks, our architecture proposes the usage of Multiply Sectioned
Bayesian Network [12], which allows to distribute this reasoning process
in a multi-agent system.
The two other processes, hypothesis discrimination and repair, follow a
similar pattern. The first one obtains a test action plan to confirm the
generated hypotheses. This process contains a list of ordered actions to
be executed based on the expected benefits of the tests. These benefits
change dynamically with the influence between variables inside causal
model [7]. This influence between variables is the strength of the depen-
dencies between variables that is quantified via conditional probability
tables (CPT). In this way, the system can perform more efficient hypoth-
esis discrimination (see section 6).
Finally, the repair process obtains a healing action plan to repair the
confirmed diagnosis. In order to reason under uncertainty, we propose to
use an ontology based reasoning process, combining a diagnosis ontology
expressed in OWL [13] with rules expressed in SWRL [9].
Nevertheless, a technique to communicate both reasoning processes is
needed, in order to be able to provide feedback and integrate learning
mechanisms of the confidence of they generated hypotheses based on the
results of the tests.
Given the heterogeneity and complexity of systems in a telecommuni-
cation networks, this section defines a meta-model for diagnosis for fa-
cilitating information communication between the agents in the global
network fault diagnosis task.

Fig. 3. Meta-model for diagnosis

This model (Fig. 3) shows that hypotheses are generated according to
failure classes. These hypotheses identify a suspected component as the
location of the failure. In this way, the model represents what is happen-
ing and where is happening. Depending on the hypothesis class, different
actions can be carried out for corroborating the hypothesis (test actions)
or repairing the component (healing actions). All actions have conditions
(preconditions and postconditions) that allow somebody to evaluate its
eligibility.
Another important concept is that actions are executed by actors. Actors
can be human (manual actions) or agents (automatic actions).
Furthermore, the model also includes the concept of diagnosis. A diag-
nosis has its set of hypotheses, its set of performed tests and its set of



performed healing actions. This concept is useful for self-learning pro-
cesses, and learning from past experiences, such as which healing actions
repaired a certain failure.

Fig. 4. Action meta-model

This model has been formalised as a domain ontology for reasoning on
diagnostic tasks. This generic model can be extended for a particular
domain, including the specific taxonomy of faults, actions, actors and
hypotheses.
Actions can be classified according to the disjoint classes Available/Unavailable,
when all preconditions are satisfied or not; and, if an available action has
been performed, it is classified according to the disjoint classes Successful
Performed/Unsuccessful Performed, when all postconditions are satisfied
or not, as shown in Fig. 4.
The conditions of an action are modelled with the class Condition. Fig. 5
shows two generic conditions: Required Data that specifies a required pa-
rameter and Required Actor that specifies an actor to perform the action.
The second one is common in all actions, because all actions need to be
executed by someone. But these two actions are generic actions; all con-
ditions that particularise specific restrictions should be added depending
on the domain. Conditions can be classified according to the disjoint
classes Satisfied/Unsatisfied. To check all conditions, we use SWRL. In
section 5, the use of conditions are shown.

5 Case study

This section shows the case study used in this work. First of all, the
scenario used to evaluate the model is presented in Sect. 5.1. The diag-
nosis process is shown in Sect. 5.2. And, finally, the system behaviour is
explained step by step including SWRL rules examples in Sect. 5.2.



Fig. 5. Condition meta-model

5.1 Scenario

To properly frame this study, a P2P streaming scenario (see Fig. 6) was
chosen. In this scenario, there are a multimedia provider user and a
multimedia consumer user. Many faults may occur both in connection
and in services. The system is designed to provide, to an end-user or an
operator, the result of the diagnosis made upon receipt of a notification of
a symptom of failure. The result is expressed in percentages representing
the certainty of the occurrence of a given hypothesis.
The scenario network topology is as follows:

– Multimedia Provider Home Area Network that feeds the multimedia
content.

– Multimedia Consumer Home Area Network that consumes the stream-
ing service.

– ISP intranet that belongs to the service provider.
– Access network that provides access to home users.

Sharing of multimedia contents between two home users is addressed.
These contents are stored in a video server inside of the Multimedia
Provider HAN (Home Area Network) and are remotely accessed from
the Multimedia Consumer HAN. Multimedia contents are transmitted
in real time using RTSP (Real Time Streaming Protocol) for session
establishment and RTP (Real-time Transport Protocol) for content de-
livery.

5.2 Streaming Diagnosis Case

In order to simplify the explanation of the proposed approach, only a
simple case is exposed in the following paragraphs. First of all, the de-
ployment of our multi-agent system is presented, and then, an overview
of the Bayesian Network as well as the design principles are discussed.
And finally, the key processes of the case are highlighted.



Fig. 6. Scenario topology

Agents have been deployed according to geographic distribution. Thus,
one Semi-Autonomous Agent has been deployed into the multimedia
client PC. This agent has monitoring capabilities. One Fully Autonomous
Agent and one Dependent Agent have been deployed into Consumer
Home Gateway. These agents have diagnosis and test capabilities. Two
other agents like these (one Fully Autonomous Agent and one Dependent
Agent) have been placed into ISP network. And finally, one agent of
each type is deployed into Multimedia Provider HAN like into Multime-
dia Consumer HAN. In Multimedia Provider HAN, there are two agents
into Home Gateway one Fully Autonomous Agent and one Dependent
Agent and another one into Streaming Server (one Semi-Autonomous
Agent). Each one of these agents know which actions are able to per-
form by itself and publish a list of these actions to allow other agents to
request them.

Each Fully Autonomous Agent has its own piece of the whole MSBN, its
own subnetwork. These Bayesian Networks have been modelled following
the BN3M model [8]. In this model, three types of variables are distin-
guished: context, fault and evidence. Context variables model the environ-
ment, in this case, these variables are used to model information about
the network in which each agent resides. Fault and Evidence variables are
used to model the possible failures through hypotheses and observations.
Fig. 8 shows a simplified subnet used by one Fully Autonomous Agent
in Multimedia Provider HAN. To easy viewing of the subnet, Context
nodes have been omitted. Only, Fault and Evidence nodes are shown.

Diagnosis Process In the following paragraphs, a diagnosis scenario
is described based on the previously described configuration. Further-



Fig. 7. Agent deployment

more, two simple examples of semantic reasoning used during the delib-
eration process are presented.
First, a streaming session is detected by the Semi-Autonomous Agent
that resides inside multimedia client PC. This agent performs a mon-
itoring action to know the quality of the session. If there is a quality
degradation, a symptom is generated. However, this agent has not enough
information to process this symptom, and it needs to cooperate with a
Fully Autonomous Agent (in this case, the Fully Autonomous Agent that
resides in the Multimedia Consumer Home Gateway).
This agent is able to process symptoms performing Bayesian inference
in a distributed way (using MSBN approach). In other words, this agent
shares information with others Fully Autonomous Agent that are able
to reasoning with high level data. At this point, all Fully Autonomous
Agents are working together and in parallel. Each one takes its own
decisions using all available knowledge (shared knowledge and its own
private knowledge).
But, once a symptom has been processed, which action is the best one to
perform? Depending on the state of the environment and the knowledge
base of the agent, one action could change its influence in the diagnosis
process. To deal with this issue, we use the CDF method (see Section 2).
With this method, all possible actions are ordered by relevance to reach
a reliable confidence in the diagnosis process. The first one whose pre-
conditions are fulfilled is selected and executed. (Note: This deliberation
process is briefly described later in this article showing some used SWRL
rules.)
Finally, when an hypothesis has a confidence higher than a threshold,
the diagnosis finishes and a healing action is searched to fix the problem.
Agents have been deployed in different devices to perform distribute diag-
nosis and the proposed meta-model has been applied (see Fig. 7). Some



Fig. 8. Subnet of global Bayesian network used in the case study

agents have all modules proposed in section 2, these agents can work
isolated without problems and offer more functionality to our diagnosis
system. But, there are some devices such dedicated multimedia server
that have low performance computational resources. On one hand, to
solve this problem, we deploy modules in several agents to reduce re-
quired resources. But, on the other hand, an agent without Bayesian
module cannot reach any diagnosis, because it only can perform actions,
it does not perform inference. This inference process is performed in
other agent deployed in a different device.

Semantic reasoning This section shows the behaviour of the pro-
posed architecture in the case study scenario during one simple diagnosis.
In sake of brevity, we only present two simple examples of deliberation
process with SWRL rules: connectivity tests and CPU overload problem.
As it is shown in section 4, the proposed ontology models general con-
cepts like actor, action, condition, etc. But this generic terms have to
be specialised for specific domains (in our case study, a streaming sce-
nario). The first step to use the presented meta-model is introducing
actors and actions (the most important concepts in our meta-model).
Then, we should fill the relations between both entities: “actors can per-
form actions”. The second step is introducing conditions about actions.
Preconditions to know when an action is available and postconditions
to know when a performed action was successfully performed or failed
during its execution.
The following subsections show how the meta-model is used to choose
an action during a diagnosis.

Case 1: Choose the best test to perform The generic meta-model is
extended for this scenario with a specific ontology for diagnosis in multi-
media. Generic Test Action class is specialised according to the test that
can be carried out, such as Connectivity Test and new subclass of connec-



tivity test: ClientToRouterConnectivityTestAction. There is a Multimedi-
aClientDiagnosisAgent actor that has canPerform property with range
ClientToRouterConnectivityAction. Each of these test actions is speci-
fied with pre-conditions, according to the previously presented diagnosis
ontology. For example, the action X has the preconditions Y and W.
Below, several rules of the diagnosis module for selection test actions are
presented.
Rule 1 presents a generic rule that determines if there is an actor ca-
pable of executing an concrete action. This condition is aRequired Actor
Condition and it is generic for all actions. If it is not satisfied, an agent
can try to create and/or deploy new agents that are able to perform this
action. The rule to know if this type of condition is satisfied is shown
below.

Rule 1. Actor(?actor),
RequiredActorCondition(?condition),
hasPrecondition(?action, ?condition),
canPerform(?actor, ?action)
→ satisfied(?condition, true)

An exemplification of the use of Rule 1 is shown below:

Algorithm 1 Examplification of Rule 1

1: Actor(?actor), {Return 3 actors: PingAgent, ServerAgent and StreamingAgent.}
2:
3: RequiredActorCondition(?condition), {Return 10 contitions (each action has a

RequiredActorCondition condition).}
4:
5: hasPrecondition(?action, ?condition), {This query is used to obtain the action

that has the condition (10 actions).}
6:
7: {Let’s suppose that only one of the ten actions can be performed by the agents,

for example, PingAgent can perform PingTest}
8:
9: canPerform(?actor, ?action) {Return PingAgent actor and PingTest action.}

10:
11: → satisfied(?condition, true) {Then, RequiredActorCondition condition is satis-

fied, because there is at least one actor that can perform the action.}

Rule 2 presents a generic rule that determines if there is known param-
eter to execute an action. This condition is a Required Data Condition.
This type of condition has a data property that represents which data is
needed: required Variable Type. In this example, the value of this property
is a string with content Router LAN IP.The required action to know this
variable is specified as other action which has its own preconditions and
can be performed by an actor. The rule to know if this type of condition
is satisfied is shown in rule 2.



Rule 2. RequiredDataCondition(?condition),
Variable(?variable),
requiredVariableType(?condition, ?typecond),
variableType(?variable, ?typecond)
→ satisfied(?condition, true)

An exemplification of the use of Rule 2 is shown below:

Algorithm 2 Examplification of Rule 2

1: RequiredDataCondition(?condition), {Return 3 contitions.}
2:
3: V ariable(?variable), {Return 3 variables (data about the environment: Router

LAN IP, Streaming Server IP and Streaming Client.).}
4:
5: requiredV ariableType(?condition, ?typecond), {This query is used to obtain which

variable is required to execute the action. In this example, Router LAN IP.}
6:
7: variableType(?variable, ?typecond) {Return the variable which has Router LAN

IP as type and 192.168.0.1 as value.}
8:
9: → satisfied(?condition, true) {Then, RequiredDataCondition condition is satis-

fied, because there is a variable with the required type.}

Finally, we have obtained an available action that can be performed by
an actor. In this example, a test action to know how is the connectivity
between the client PC and its router.
After this process, an agent has several actions that are available and
is able to perform. Then, we need to know which is the best action to
perform. To choose one, each test action has an expected benefit (data
property). The value of this property is extracted from the Bayesian
network (see section 2), depending on the influence of an action in a
hypothesis.

6 Evaluation

The benefits of the proposed meta-model have been evaluated comparing
this approach with previous works [10, 6]. In this paper, we compare the
performance of the system using deliberation driven by “cost” or by
“influence”.
In previous works, test actions were classified by estimated cost. This cost
combined time cost and computational cost and is estimated a priori by
human experts. Then, all test actions are executed always in the same
order. And sometimes, unneeded actions are executed.
The evaluation has been carried out based on a benchmark for a real
diagnosis scenario of the R&D project Magneto. With data stored in
database with old diagnoses and the same Bayesian networks have been



used in both cases. The volume of this data is around 500 diagnoses. We
have clustered diagnoses in 13 diagnosis cases to simplify comparison and
shown results.
As it is shown in Fig. 9, the number of performed tests has been reduced.
Taking data from data base mentioned above, the average of performed
test with deliberation driven by cost is 5.23 tests (with standard devia-
tion 3.11). Using deliberation driven by influence, this number is reduced
to 2.76 (with standard deviation 1.42); in other words, the number of
performed tests has been reduced in 47.05%.
With deliberation driven by influence, there are two diagnosis cases that
performs one test more than following the previous approach (driven by
cost). The reason of this behaviour is that these are connectivity failures
inside user HAN. These failures are very uncommon; for this reason,
these hypotheses have, a priori, a little confidence and other hypotheses
have to be confirmed or refused first.

Fig. 9. Comparison: previous work vs proposed approach

Table 1 shows the evaluation results in several columns. MTTD [5] (Mean
Time to Diagnose) usually is the average number of minutes until the
root cause of the failure is correctly diagnosed; but, in this table, we
show this time rounded in seconds. Other relevant times, like MTTR [5]
(Mean Time to Respond) or MTTF [5] (Mean Time to Fix), are not
covered in this study.
The column named “Result” represents if deliberation driven by influence
improves driven by cost one or not in a specific diagnosis case.
The average of MTTD in previous approach is 25.47 seconds (with stan-
dard deviation 15.33), in proposed approach is 12.01 seconds (with stan-
dard deviation 7.12). Time improvement is 52.87%.

7 Conclusions and future work

We have presented a MAS that uses a meta-model ontology to diagnosis
with Bayesian reasoning using OWL and SWRL to choose actions to



Table 1. MTTD and number of test comparison

Diagnosis case MTTD Number of tests Result
Cost Influence Cost Influence

Case 1 41 29 9 6 4
Case 2 5 7 1 2 5
Case 3 36 8 7 2 4
Case 4 39 15 7 4 4
Case 5 4 8 1 2 5
Case 6 36 8 7 2 4
Case 7 9 9 2 2 ∼
Case 8 34 8 7 2 4
Case 9 40 24 9 5 4
Case 10 33 13 7 3 4
Case 11 5 5 1 1 ∼
Case 12 13 8 3 2 4
Case 13 36 14 7 3 4

perform. We focused on the deliberation process, leaving outside other
research scope issues. Our proposal of decision support improves previous
approaches [10, 6] both in time and in computational cost. Furthermore,
the proposed modular architecture presents the capability to add or re-
move some modules of the architecture to reduce the resources required
by agents, because there are important computational restrictions in de-
vices like routers, TVs or STBs. And, one of the main advantages of use
Bayesian Networks and semantic reasoning is the possibility of deploy
new knowledge base or new reasoning rules on the fly, without restarting
or deploying new agents.

As future work, we will study in depth the application of Multiply Sec-
tioned Bayesian Networks (MSBN) [12, 11] to distribute the Bayesian in-
ference engine that offers support to handle uncertainty and to maintain
coherence and consistency in a distributed reasoning process. Applying
MSBN approach, we can have a distributed inference engine that does
local information processing, partial intermediate information exchange,
inference global consistency and self-organization due to partial damage.

Acknowledgement

This research has been partly funded by the Spanish Ministry of Science
and Innovation through the projects Ingenio Consolider2010 AT Agree-
ment Technologies (CSD2007-0022), Cenit THOFU (CEN-20101019) and
T2C2 (TIN2008-06739-C04-03/TSI) as well as the Spanish Ministry of
Industry, Tourism and Trade through the project RESULTA (TSI-020301-
2009-31).

The authors would also like to thank to J. Garćıa-Algarra, J. González-
Ordás, P. Arozarena and R. Toribio for their support and collaboration
in this research through the Magneto R&D project [1].



References

1. Arozarena, P., Toribio, R., Kielthy, J., Quinn, K., Zach, M.: Prob-
abilistic Fault Diagnosis in the MAGNETO Autonomic Control
Loop. In: 4th International Conference on Autonomous Infrastruc-
ture, Management and Security. pp. 102–105. Springer (Jun 2010)

2. Benjamins, R.: Problem-solving methods for diagnosis and their role.
International Journal of Expert Systems: Research and Applications
8(2), 93–120 (1995)

3. Berthet, G., Fischer, N.: A unified theory of fault diagnosis and
distributed fault management in communication networks. In: Pro-
ceedings of IEEE. AFRICON ’96. pp. 776–781. IEEE (1995)

4. Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for proba-
bilistic ontologies. In: Proceeding of the 2006 conference on For-
mal Ontology in Information Systems Proceedings of the Fourth In-
ternational Conference FOIS 2006. pp. 237–249. IOS Press (2006),
http://portal.acm.org/citation.cfm?id=1566079.1566107

5. FitzGerald, J., Dennis, A.: Business Data Communications and Net-
working. John Wiley and Sons (2008)

6. Garćıa-Algarra, F.J., Arozarena-Llopis, P., Garćıa-Gómez, S.,
Carrera-Barroso, A.: A lightweight approach to distributed network
diagnosis under uncertainty. In: INCOS ’09: Proceedings of the 2009
International Conference on Intelligent Networking and Collabora-
tive Systems. pp. 74–80. IEEE Computer Society, Washington, DC,
USA (2009)

7. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Dia-
grams. Information Science and Statistics, Springer New York (2008)

8. Kraaijeveld, P., Druzdzel, M., Onisko, A., Wasyluk, H.: Genierate:
An interactive generator of diagnostic bayesian network models. In:
Proc. 16th Int. Workshop Principles Diagnosis. pp. 175–180. Citeseer
(2005)

9. O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso,
W., Musen, M.: Supporting rule system interoperability on the se-
mantic web with SWRL. The Semantic Web - ISWC 2005 pp. 974–
986 (2005)

10. Sedano-Frade, A., González-Ordás, J., Arozarena-Llopis, P., Garćıa-
Gómez, S., Carrera-Barroso, A.: Distributed Bayesian Diagnosis for
Telecommunication Networks, Advances in Intelligent and Soft Com-
puting, vol. 70. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

11. Xiang, Y.: Belief updating in multiply sectioned Bayesian networks
without repeated local propagations. International Journal of Ap-
proximate Reasoning 23(1), 1–21 (Jan 2000)

12. Xiang, Y., Poole, D., Beddoes, M.P.: MULTIPLY SECTIONED
BAYESIAN NETWORKS AND JUNCTION FORESTS FOR
LARGE KNOWLEDGE-BASED SYSTEMS. Computational Intel-
ligence 9(2), 171–220 (May 1993)

13. Xiao Hang Wang, D.Q.Z.: Ontology based context modeling and
reasoning using OWL. IEEE (Mar 2004)


