
MAS-CommonKADS: a comprehensive

agent-oriented methodology

?

Carlos A. Iglesias

1??

, Mercedes Garijo

2

,

Jos�e C. Gonz�alez

2

and Juan R. Velasco

2

1

Dep. de Teor��a de la Se~nal, Comunicaciones e Ing. Telem�atica, Univ. de Valladolid, E{47011 Valladolid, Spain

fcif@tel.uva.esg

2

Dep. Ing. Sist. Telem�aticos, Univ. Polit�ecnica de Madrid, E{28040 Madrid, Spain

fmga,jcg,juanrag@gsi.dit.upm.es

ABSTRACT

This article presents the models of an agent-oriented methodology calledMAS-CommonKADS. This method-

ology extends the knowledge engineering methodologyCommonKADS with techniques from object-oriented

and protocol engineering methodologies. The methodology consists of the development of seven models:

Agent model that describes the agents; Coordination model that describes the interactions between soft-

ware agents; Communication model that describes the interactions between human and software agents;

Expertise model that describes the reasoning process of the agents; Task model that describes the tasks

that the agents carry out; Organisation model that describes the social structures between human and

software agents; and Design Model that describes the design decisions about the agent architecture and

agent network. The main advantages of the application of this methodology are: (1) a clear software devel-

opment life cycle for multiagent development; (2) graphical and textual notation for each model; (3) project

management through the de�nition of landmark states in each model; (4) usage of standardised languages

for describing the conversations between the agents; and (5) usage of knowledge engineering techniques for

knowledge acquisition and knowledge reutilisation.

KEYWORDS

multiagent systems, software agents, methodology, knowledge engineering, coordination.

INTRODUCTION

Agent technology has reached a level of maturity for it to be applied in industry. Nevertheless, the appli-

cation of agent technology outside of the laboratories needs the de�nition of agent-oriented methodologies

that guide the development process and the management of agent-based applications.

This article presents an agent-oriented methodology calledMAS-CommonKADS, that extends the mod-

els of the knowledge engineering methodology CommonKADS (Schreiber et al., 1994) for dealing with

multiagent issues.

THE MODELS OF MAS-COMMONKADS

MAS-CommonKADS de�nes the following model set (Fig. 1):

{ Agent model (AM): speci�es the agent characteristics: reasoning capabilities, skills (sensors/e�ectors),

services, agent groups and hierarchies (modelled in the organisation model).

?

This research is funded in part by the Commission of the European Community under the ESPRIT Basic Re-

search Project MIX: Modular Integration of Connectionist and Symbolic Processing in Knowledge Based Systems,

ESPRIT-9119, and by the Spanish Government under the CICYT projects TIC91-0107 and TIC94-0139

??

This research was partly carried out while the �rst author was visiting the Dep. Ingenier��a de Sistemas Telem�aticos

(Universidad Polit�ecnica de Madrid)

COMMUNICATION
MODEL

TASK MODEL

COORDINATION
MODEL

AGENT
MODEL

ORGANISATION
MODEL

DESIGN
MODEL

performs
reasons

belongs to

realized in

interacts with
other agents humans
interacts with

EXPERTISE
MODEL

Fig. 1. Models of MAS-CommonKADS

{ Task model (TM): describes the tasks that the agents can carry out: goals, decompositions, ingredients

and problem-solving methods, etc.

{ Expertise model (EM): describes the knowledge needed by the agents to achieve their goals.

{ Coordination model (CoM): describes the conversations among agents: their interactions, protocols

and required capabilities.

{ Organisation model (OM): describes the organisation in which the MAS is going to be introduced and

the organisation of the agent society.

{ Communication model (CM): details the human-software agent interactions, and the human factors

for developing these user interfaces.

{ Design model (DM): collects the previous models and subdivides it into three submodels: application

design: composition or decomposition of the agents of the analysis, according to pragmatic criteria and

selection of the most suitable agent architecture for each agent; architecture design: designing of the

relevant aspects of the agent network: required network, knowledge and telematic facilities and platform

design: selection of the agent development platform for each agent architecture.

The application of the methodology consists of the development of the di�erent models.

DEVELOPING A CASE STUDY

We will show the main phases of the methodology developing a case study: an intrusion detection system.

The purpose of the system is to protect the systems against potentially harmful intruders. The system will

collect data, and based on the analysis of the data, will determine what actions should be taken when a

user of the system is suspected of being an intruder.

Conceptualisation

The conceptualisation phase is performed to obtain a �rst (and informal) description of the problem. We

identify the main users of the systems and the role(s) carried out by each user of them. This is shown using

the notation of use cases of OOSE (Object Oriented Software Engineering)(Jacobson et al., 1992) (Fig.

2). The interactions of the use cases are formalised with MSC (Message Sequence Charts)(Rudolph et al.,

1996) as Regnell(Regnell et al., 1996) (Fig. 3).

Administrator

InspectIntruders MSC Inspect
Intruders

Determine
Restrictions MSC Determiner

Defensive actions

Fig. 2. Initial use cases

msc Inspect Intruders

alt

Administrator System

answer(intruders)

Request_Intruders()

no_intruders_detected

Fig. 3. Interactions of a use case

Analysis

The analysis phase develops all the models except the design model. The models can be developed concur-

rently, following a risk-driven development process. The objectives of this phase are the identi�cation and

description of:

{ the agents by developing the agent model;

{ the goals of the agents by developing the task model;

{ the conversations between the agents by developing the coordination model;

{ the interactions between human and software agents by developing the communication model;

{ the knowledge needed by the agents to achieve their goals and the available problem solving methods

by developing the expertise model; and

{ the structural relationships between human and software agents by developing the organisation model.

The main steps of the analysis are: delimitation of the multiagent system from the external systems,

decomposition of the system into agents, development of the models for describing the agents and cross-

validation between models.

Initial task model In this case study, an initial task model can show the main tasks of the system (see Fig.

4). The task model consists of a set of coherent activities that are performed to achieve a goal in a given

domain. The required knowledge to complete a task is included in an expertise model.

Agent identi�cation The system can be decomposed attending to the identi�cation of a conceptual dis-

tance(Bond and Gasser, 1988): geographical distance, logical distance and knowledge distance. In our case,

we could consider a geographical distance for collecting the events across the network. From the initial task

model, we can recognise di�erent knowledge domains: classi�cation of events and planning and scheduling

of the actions to prevent the harmful actions of an intrusion.

Now we can re�ne the set of identi�ed agents using a technique called recursive use case modelling (Fig.

5). For each identi�ed use case, we establish which agent will interact with this use case, and which other

agents this agent needs to \use" to carry out the task of the use case.

Intruder detection

Event filtering 2Event collection 1 Classify events 3 Preventive actions 4

Classify known
intrussion cases 3.1

Classify unusual
patterns 3.2

Fig. 4. Initial task model

Based on the use cases and the task model, we can identify several agents: an Interface Agent, that

communicates the multiagent system with the user; a Collector Agent, whose goal is to collect the events

generated by the users and �lter them; a Filter Agent, whose goal is to classify whether the events are

suspicious and a Police Agent, whose goal is to establish which preventive actions should be carried out to

prevent harmful actions from the suspicious users. These agents could be further decomposed in sub-agents,

reassigning their goals.

Interface

Request Events

GiveIntruders

Police

Filter

GiveClassifiedEvents Collector

Fig. 5. Recursive use case modelling

Development of the rest of the models The expertise model describes the domain knowledge of the agents,

their inferences, the order of these inferences and the problem solving methods to carry out a task. We

should describe the main concepts, their properties and relationships (i.e. intruders, intrusions, network

systems, etc.). For describing the inferences, the CommonKADS library gives the initial inference structure

and related models. For example, a �rst approach to �lter the events can be to use heuristic classi�cation,

whose inference structure diagram is shown in Fig. 6.

matchVariables

abstract

Observables

Solution
abstractions

specialize

Solutions

Fig. 6. Inference structure for Heuristic Classi�cation(Tansley and Hayball, 1993)

For space limitations, the rest of the models are not developed here:

{ The organisation model is used to model the human relationships in the administration group and

the software agent relationships (Fig. 7). The relationships with objects of the environment are also

modelled here, using extended OMT (Object Modelling Technique) notation(Rumbaugh et al., 1991).

{ The communication model describes the interactions between human and arti�cial agents, here we

should design whether the interaction will be based on menus, etc. and the content of these interactions.

{ The coordination model describes the conversations between the agents. Each interaction is described

using speech-acts and formalised with MSCs. The processing of each interaction is expressed in com-

municating extended �nite state machines of the formal description technique SDL (Speci�cation and

Description Language)(ITU-T, 1994). The �rst version of the model supposes no existing conict, for

testing the set of identi�ed conversations. Then, each conversation is reviewed and more complex pro-

tocols can be identi�ed (e.g. negotiation, contract net, etc.).

Filter

BaseAgent

Detective

Fig. 7. Example of organisation of software agents

Design

The design consists of collecting all the functional requirements described in the previous models and the

non-functional requirements. We identify several sub-tasks for developing the design model:

{ Platform design: selection of hardware and software. We will use the MAST multiagent development

tool(Iglesias et al., 1996)

1

.

{ Application design: details the requirements of each model. The results are expressed in ADL (Agent

De�nition Language)(Gonzlezet al., 1994), a language for describing agent services and skills that can

be directly compiled.

{ Architecture design: details the network agents for maintaining the agent network(Iglesias et al., 1996).

Di�erent agent networks are distinguished: for coordination (group managers, allowed interactions and

protocols), for knowledge management (ontology servers, knowledge representation translators) and

for network infrastructure (agent name servers, security services, yellow pages servers, etc.). In this

application, the agent infrastructure is managed by a specialised agent called YP that acts as agent

name server, yellow pages server and group manager. The usage of ontology servers will be studied

during the testing phase.

Implementation and testing

The intrusion detection system is being implemented under Solaris 2.5 in a university network (Gmez Cid,

1997). The methodology does not cover the implementation phase, since it is very multiagent platform

dependent, but our experience is that the implementation can be derived easily from the developed models.

The testing of the platform can take advantage of the use cases de�ned in the model. The automatic

generation of test cases from these use cases and diagrams from the coordination model is subject of further

research.

1

The MAST platform is available at http://www.gsi.dit.upm.es/�mast

RELATED WORK AND CONCLUSIONS

Our approach o�ers a novel combination of knowledge engineering techniques, object-oriented techniques

and formal description techniques. The advantages are threefold: easy learning of the proposed graphical

notations and development steps, knowledge task libraries and easy interaction modelling.Other approaches

that are based only on object-oriented techniques, as Kinny(Kinny et al., 1996), Burmeister(Burmeister,

1996), Kendall(Kendall et al., 1996) and MASB(Moulin and Brassard, 1996), lack of suitable techniques

for knowledge modelling. In the same way, the methodology CoMoMAS(Glaser, 1996), based only in Com-

monKADS, lacks of graphical notation for developing the di�erent models.

The research presented here is ongoing. Current work on CommonKADS includes the development of

an integrated knowledge engineering tool for the application of the methodology. Other aspects of current

work are to extend the library of generic tasks of CommonKADS for intelligent agents and to extend MSC

for modelling multicast interactions.

References

Bond, A. H. and Gasser, L. (1988). An analysis of problems and research in DAI. In Bond, A. H. and

Gasser, L., editors, Readings in Distributed Arti�cial Intelligence, pages 3{36. Morgan Kaufmann

Publishers: San Mateo, CA.

Burmeister, B. (1996). Models and methodology for agent-oriented analysis and design. In Fischer, K.,

editor, Working Notes of the KI'96 Workshop on Agent-Oriented Programming and Distributed Sys-

tems. DFKI Document D-96-06.

Glaser, N. (1996). Contribution to Knowledge Modelling in a Multi-Agent Framework (the CoMoMAS

Approach). PhD thesis, L'Universtit�e Henri Poincar�e, Nancy I, France.

Gmez Cid, C. (1997). Sindi: Sistema multiagente para deteccin de intrusos. Master's thesis, E.T.S.I. de

Telecomunicacin. Universidad de Valladolid.

Gonzlez, J. C., Velasco Prez, J. R., Iglesias, C. n., Alvarez Toledo, J., and Escobero, A. (1994). A multia-

gent architecture for symbolic-connectionist integration. Technical Report MIX/WP1/UPM/3.0, Dep.

Ingeniera de Sistemas Telemticos, E.T.S.I. de Telecomunicacin, Universidad Politcnica de Madrid.

Iglesias, C. A., Gonz�alez, J. C., and Velasco, J. R. (1996). MIX: A general purpose multiagent architec-

ture. In Wooldridge, M., M�uller, J. P., and Tambe, M., editors, Intelligent Agents II (LNAI 1037),

pages 251{266. Springer-Verlag: Heidelberg, Germany.

ITU-T (1994). Z100 (1993). CCITT speci�cation and description language (SDL). Technical report,

ITU-T.

Jacobson, I., Christerson, M., Jonsson, P., and

�

Overgaard, G. (1992). Object-Oriented Software Engi-

neering. A Use Case Driven Approach. ACM Press.

Kendall, E. A., Malkoun, M. T., and Jiang, C. (1996). A methodology for developing agent based systems

for enterprise integration. In Luckose, D. and C., Z., editors, Proceedings of the First Australian

Workshop on DAI, Lecture Notes on Arti�cial Intelligence. Springer-Verlag: Heidelberg, Germany.

Kinny, D., George�, M., and Rao, A. (1996). A methodology and modelling technique for systems of BDI

agents. In van der Velde, W. and Perram, J., editors, Agents Breaking Away: Proceedings of the Sev-

enth European Workshop on Modelling Autonomous Agents in a Multi-Agent World MAAMAW'96,

(LNAI Volume 1038). Springer-Verlag: Heidelberg, Germany.

Moulin, B. and Brassard, M. (1996). A scenario-based design method and an environment for the de-

velopment of multiagent systems. In Lukose, D. and Zhang, C., editors, First Australian Workshop

on Distributed Arti�cial Intelligentce, (LNAI volumen 1087), pages 216{231. Springer-Verlag: Hei-

delberg, Germany.

Regnell, B., Andersson, M., and Bergstrand, J. (1996). A hierarchical use case model with graphical repre-

sentation. In Proceedings of ECBS'96, IEEE International Symposium and Workshop on Engineering

of Computer-Based Systems.

Rudolph, E., Grabowski, J., and Graubmann, P. (1996). Tutorial on message sequence charts (MSC). In

Proceedings of FORTE/PSTV'96 Conference.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-Oriented Modeling

and Design. Prentice Hall.

Schreiber, A. T., Wielinga, B. J., Akkermans, J. M., and Van de Velde, W. (1994). Com-

monKADS: A comprehensive methodology for KBS development. Deliverable DM1.2a KADS-

II/M1/RR/UvA/70/1.1, University of Amsterdam, Netherlands Energy Research Foundation ECN

and Free University of Brussels.

Tansley, D. and Hayball, C. (1993). Knowledge-Based Systems Analysis and Design. BCS Practitioner

Series. Prentice-Hall.

