
A Comparison Model for Agile Web Frameworks

José Ignacio
Fernández-Villamor

Departamento de Ingeniería
de Sistemas Telemáticos

Univ. Politécnica de Madrid
jifv@gsi.dit.upm.es

Laura Díaz-Casillas
Departamento de Ingeniería

de Sistemas Telemáticos
Univ. Politécnica de Madrid

ldcasillas@gsi.dit.upm.es

Carlos Á. Iglesias
Departamento de Ingeniería

de Sistemas Telemáticos
Univ. Politécnica de Madrid

cif@gsi.dit.upm.es

ABSTRACT
Nowadays, web development is one of the main activities in
software development, with a wide array of tools that make
it difficult for developers to deal with its heterogeneity. The
appearance of Ruby on Rails has brought a new paradigm to
current web development frameworks, and has shown how
an agile web development framework can simplify the devel-
opment process, with a considerable productivity increment.
There are several Java-based alternatives to Ruby on Rails,
such as Grails, Roma, Trails, JBoss Seam or Sails, with dif-
ferent approaches to the reuse of previous Java frameworks
and technologies. This paper proposes a comparison model
for agile web frameworks to facilitate developers the selec-
tion of the most suitable for each case. This paper reviews
the state of the art of agile web frameworks. Afterwards,
a comparison model based on a set of evaluation criteria is
defined for web framework evaluation. Finally, the model is
applied to the most popular web frameworks.

Categories and Subject Descriptors
1.2 [Relationship between the Web Architecture and
other computational areas]: Frameworks and software
architectures for Web-based systems

General Terms
Web frameworks

Keywords
Rails, Grails, Roma, Trails, agile web development, web
frameworks

1. INTRODUCTION
Web technologies have a wide acceptance and maturity, which
can be observed in the increasing number of services that
take the web stack as their base technology. However, web
software development is not a mature area, which has caused
the proliferation of components, frameworks and tools for
the development of web applications. This wide array of

tools make it difficult for developers to deal with hetero-
geneity and keep up to date.

Web application frameworks (WAF) [8] are defined as a set
of classes that make up a reusable design for an applica-
tion or, more commonly, one tier of one application. This
specialization in tiers (persistence, web flow, ...) has led
to its classification [20] due to its proliferation. Agile web
frameworks are defined as full stack web frameworks for de-
veloping an application. In contrast with web application
frameworks, they are not specialized in one layer, but offer
the full stack.

Agile web frameworks started with Ruby On Rails [24],
which defined a new approach to web development, based on
a single web framework. Ruby on Rails follows the principles
of convention over configuration and don’t repeat yourself,
providing an agile web development framework that simpli-
fies the development process and increases productivity for
prototyping web applications.

However, Ruby on Rails is based on the Ruby language de-
spite the fact that Java is the industry standard for business
applications. As a result, a Java-based solution is seeked
to let legacy Java systems and technologies be used in fu-
ture applications while keeping and reusing most libraries,
subsystems and technologies already developed in Java.

This has caused the appearance of several Java-based al-
ternatives to Ruby on Rails, such as Grails, Roma, Trails,
JBoss Seam or Sails, with different approaches to the reuse
of previous frameworks and technologies and the application
of agile principles to provide simplicity to web development.

This paper proposes an agile web framework comparison
model to assist software project leaders in the selection of a
suitable agile web framework for their business goals. The
rest of the article is organised as follows. Section 2 reviews
the state of the art of agile web frameworks. Then, section 3
presents a model for agile web frameworks comparison and
its results on four different web application frameworks. Sec-
tion 4 shows related work and finally, section 5 presents the
main conclusions.

2. AGILE WEB FRAMEWORKS
2.1 Ruby on Rails
Ruby on Rails [24] is a framework that is aimed at ag-
ile development of web applications. It was mainly devel-



oped by David Heinemeier Hansson and was extracted out
of Basecamp, a production-ready commercial web applica-
tion. Ruby on Rails’ community argues that this extraction
is the best proof of the framework’s suitability for the de-
velopment of web applications.

The main principles of Ruby on Rails are convention over
configuration and don’t repeat yourself, implying that con-
figuration code should only be used to override default as-
sumptions and that code repetition should be avoided. Rails
is written in Ruby [23], a programming language which in-
ternally helps to achieve most of Rails’ targets due to its
abbreviated syntax and dynamic nature.

Rails applications have to follow the Model-View-Controller
design pattern [15]. Also, Rails architecture offers the web
developer a set of ready available services such as vendor-
independent database persistence, automatic code genera-
tion for creation, read, update and deletion of resources or
integrated testing.

Most Ruby on Rails criticism are due to Ruby’s dynamic
typing and Rails immaturity. Also, Java is an industry stan-
dard for business applications. In spite of initiatives such as
JRuby [5], a Java implementation of Ruby that allows the
use of Java APIs and application servers, companies still feel
reluctant to adopt Ruby on Rails due to the vast number of
systems and libraries that are already written in Java.

2.2 Grails
Grails [19] is a Java-based Rails-like development framework
that was built in response to Ruby on Rails. As a result,
their principles are the same and Grails is heavily Rails in-
spired. To provide Java integration while offering a dynamic
oriented language, Grails is based on the Groovy language
[12], a dynamic object-oriented scripting language for the
Java virtual machine and with Java-like syntax.

Like Ruby on Rails, Grails is driven by convention over con-
figuration and don’t repeat yourself principles, and there-
fore most of the development experience is similar to that
of Rails. Most differences reside on Grails having a more
object-oriented domain definition in comparison with Rails,
although Grails offers less community support and appli-
cation programming interface refinement due to the frame-
work’s lower maturity.

Internally, Grails is based on already existing frameworks
such as Hibernate [18] and Spring [21], both to take advan-
tage of their maturity and proven stability and to allow easy
connection with legacy systems that use those frameworks.

2.3 Trails
Trails [14] is a web development framework that is inspired
in Ruby on Rails and Naked Objects [16]. Its target is of-
fering domain driven design by providing a full-stack web
application framework based on Tapestry [7], Spring, Hi-
bernate and Acegi [6]. As a result, Trails takes advantage
of the stability and maturity of a closed set of already ex-
isting frameworks. Trails enhancements to the direct use
of the frameworks are tight integration and automatic code
generation for common tasks.

2.4 Roma
Roma framework [4] is the latest approach to building an ag-
ile Java web development framework. It has been mainly de-
veloped by Luca Garulli and is based on the principles of do-
main driven design [3], model driven architecture paradigm
and reusability of previous frameworks. Thus, Roma frame-
work is a metaframework that offers a common application
programming interface to a set of pluggable Java frameworks
such as Hibernate, Spring or JPOX [9] to transparently
provide persistence, presentation or internationalization ser-
vices. The target is POJO-based development with a min-
imum coupling with pluggable underlying frameworks and,
following the model driven architecture paradigm, provide
framework-specific code generation for eventual fine tuning
of code.

3. AGILE WEB FRAMEWORKS COMPAR-
ISON MODEL

3.1 Framework comparison
Nowadays, there is a wide range of available frameworks and
an evaluation is required to determine which is the most
suitable for a particular application. Using an inappropiate
framework for a system leads to increase development cost
and time and reduces software quality.

Web framework comparison is still not a established disci-
pline. The closest area is software architecture comparison,
although it is a young discipline. The main contributions are
presented in [2]. Some approaches, such as SAAM (Software
Architecture Analysis Method) [10] or ATAM (Architecture
Tradeoff Analysis Method) [11] allow the assessment about
one single architecture and one single design choice. Oth-
ers like SACAM (Software Architecture Comparison Anal-
ysis Method) [22] and DoSAM (Domain-Specific Software
Architecture Comparison Model) [1] allow the comparison
of different architectures, and follow an approach based on
(i) extracting common views of the candidate architectures,
(ii) identifying comparison criteria (also so-called quality at-
tributes), (iii) defining indicators in order to measure how a
candidate architecture fulfills comparison criteria (so called
quality computation weights) and (iv) scoring the candidate
architectures.

This article covers all the phases, defining the common views
(or blueprint architecture) of agile web development frame-
works and a set of parameters to make an evaluation whose
results for the four frameworks analyzed are shown at the
end of this section.

3.2 Comparison model for agile web frame-
works

The goal of the comparison model is facilitating the evalu-
ation of agile web frameworks. This is achieved by a fine-
grained characterization of agile web frameworks through
an evaluation criteria that is based on the definition of a set
of parameters given the common views of the frameworks.
Parameters are grouped into a set of aspects shown on fig-
ure 1, which summarize general features and issues found
in web application development. The aspects are domain
description and persistence, presentation, security, usabil-
ity, testing, service orientation, component orientation and
adoption, and are described in the following sections.



Figure 1: Comparison model.

3.2.1 Domain Description and Persistence
A domain is a conceptualization of the application’s field of
interest. In software engineering this results in a mapping
between a set of classes and the different concepts of the
domain, such as, in the case of an e-commerce application,
clients, products or bills. In the Model-View-Controller ar-
chitecture, it is the model what contains the definition of
the domain and the used information. Important aspects in
domain definition are the following:

• Persistence. When providing database persistence of
domain objects, persistence is not an aspect that can
be kept transparent. An abstract repository of domain
objects that acts as a database is required. As a result,
queries for retrieving existing data need to be defined,
along with mechanisms for deleting existing objects.

• Data migrations. In the development of a web applica-
tion, several development iterations produce different
domain definitions. Keeping data integrity along the
different versions of the domain definition can be han-
dled with migrations. An example of this could be the
definition of a class field with a particular type that
needs to be changed in a future version of the appli-
cation without damaging previous stored data. In this
case, migrations would help to define how data should
be changed when upgrading to the next version of do-
main definition.

• Constraints. To prevent creation of incorrect domain
objects, a model can provide a way for definining con-
straints. These constraints will be used for data valida-
tion prior to accepting an object as part of the domain.

• Transactions. Some domain changes require complete
execution of different subchanges to ensure a coher-
ent final state of the domain. This requires mutual
exclusion when accessing data in a context that is sep-
arated from the business logic. In the usual case of
accessing a database, the mutual exclusion when using
this shared resource on performing bulk operations is
achieved with transactions. The integration between

business logic and the use of transactions can be imple-
mented in a web framework with several approaches,
compromising transparency and configurability.

As a result, considering the main comparison aspects that
are related to domain description, a set of parameters have
been defined:

• D.1 – Are data migrations built-in in the development
process? : As said, migrations are an important part
when developing a web application, allowing preserva-
tion of data integrity along different releases.

• D.2 – Is schema database automatically inferred from
domain definition? : A way of defining a domain is
outlining a set of classes that produces a particular
database schema to provide persistence.

• D.3 – Is domain definition automatically inferred from
schema data? : Another way of defining a domain is
specifying a database schema that produces a partic-
ular class hierarchy and structure.

• D.4 – Does it support validations? : Domain model’s
validations ensure data consistency before storage.

• D.5 – Does it support transactions? : The use of trans-
actions enables a coherent state of the domain data
when performing bulk operations.

3.2.2 Presentation
The presentation layer, i.e. the view part of the Model-
View-Controller design pattern, renders the information of
the model. It is not reponsible for incoming data, only man-
ages the information destined to the user, admitting dif-
ferent representations of the same data. Most framewoks
enable automatic generation of a basic representation of the
model, facilitating the development of the application and
encouraging the user feedback. In some cases, the view man-
agement is implemented by a external technology, avoiding
the use of low-level languages. Finally, internationalization
(I18N) and localization manage the adaptation to different
cultural environments, enabling the use of several languages
depending on the location.

The following presentation-related parameters have been de-
fined:

• P.1 – Is there a generator of static presentation code
for CRUD operations on models? : CRUD (Create,
Read, Update, Delete) operations on models are typi-
cal actions that does not have to be hand coded when
using generators of static code.

• P.2 – Is there a generator of dynamic presentation code
for CRUD operations on models? : CRUD operations
can also be generated at runtime, avoiding the need of
rerunning code generators on domain changes.

• P.3 – Can presentation layer be defined using an un-
derlying presentation technology? : Using a specific un-
derlying presentation technology lets the developer use
languages that are designed for the specific task of pre-
sentation definition.



• P.4 – Is presentation definition necessarily tied to an
underlying presentation technology? : Getting tied to
an underlying presentation technology implies acquir-
ing additional knowledge.

• P.5 – Does it support internationalization? : Interna-
tionalization and localization are important features
on the usual case of providing the presentation layer
in different languages.

3.2.3 Security
Applications on the web are under constant attack and it
is necessary the use of mechanisms to protect against com-
mon problems such as cross site scripting (XSS), injection
flaws or malicious file execution [17]. But there is not a
clear way to solve these issues, and usually frameworks rec-
ommend good practices or provide tools to manage them.
Furthermore, most applications deal with multiple aggre-
gated types of users, which often results in the definition of
complex business processes. Mechanisms to handle authen-
tication, authorization, and user sessions are necessary to
enable users management.

Therefore, considering the security aspect of web applica-
tion development, a set of evaluation parameters have been
defined:

• S.1 – Does it support static typing? : Static typing pro-
vides security, making it unnecessary to check mistyp-
ing or incorrect format.

• S.2 – Does it support user authentication? : Managing
different types of users is necessary in most applica-
tions.

• S.3 – Does it support automatic escaping to avoid in-
jection attacks? : Escaping mechanisms increase the se-
curity of the application, preventing injection attacks.

3.2.4 Usability
Usability measures a user’s ease of interaction with a system.
It considers system’s functionalities as well as its interface.
Usability depends on the type of users who are going to
work with the system, what are their goals, and what is
the context of use. In the case of web frameworks, usability
measures programmers’ development experience when usign
the framework.

The following usability-related parameters have been de-
fined:

• U.1 – Does it support automatic generation of code? :
Code generation improves the software development
process by avoiding manual coding of typical function-
alities.

• U.2 – Does it support dynamic typing? : A program-
ming language with dynamic typing improves its read-
ability and development agility at the cost of lacking
static typing checks.

• U.3 – Does it support different deployment environ-
ments (development, test, production)? : Using differ-
ent environments for each phase in the development
process facilitates data management.

3.2.5 Testing
Model-View-Controller-based application testing involve do-
main, controller and integration testing activities, with per-
formance testing as an essential activity for scalability check-
ing. Although different general testing frameworks are avail-
able for several languages, like JUnit or TestNG, these does
not take care of specific questions of the web application
development:

• Using different environments to development, test and
deploy the application faciliates the management of the
project. But using separate database for each purpose
requires a simple way of populating it with data in the
form of database fixtures. Dynamic ways of generating
these fixtures (i.e. programatically, e.g. with loops and
conditions) allow speeding up the process.

• Sometimes it is difficult to obtain a real scenario to
carry out the tests, for instance, when a network con-
nection is necessary. Using mock objects, objects that
simulates the behaviour of real objects, facilitates this
task and ensures the reliability of the results.

• Also, it is useful to support navigation of XML and
HTML elements for assertion of controller responses
in functional tests and execution of HTTP requests
and sessions to ease the definition of integration tests.

• For performance tests, benchmarking and profiling tools
are good helpers to perform scalability and load checks.

The following testing-related parameters have been defined:

• T.1 – Does it support unit testing? : Unit testing allows
testing of models to ensure proper operation on domain
objects.

• T.2 – Does it support functional testing? : Functional
testing allows testing of controllers to test application
business logic.

• T.3 – Does it support integration testing? : Integration
testing allows testing of the full web application.

• T.4 – Does it support performance testing? : Perfor-
mance testing allows testing of non-funtional perfor-
mance requirements such as scalability or load testing
through benchmarking and profiling.

• T.5 – Does it support database fixtures? : Database fix-
tures are auxiliar definitions of database contents that
are load before tests and ease their definition.

• T.6 – Does it support stub/mock objects? : Stub/mock
objects serve to provide data in tests whenever that
data is not available or is very difficult to define.

• T.7 – Does it support HTTP requests? : Execution of
HTTP requests help to define integration tests and
better simulate real use of web applications.

• T.8 – Does it support HTML/XML parsing? : HTML/XML
parsing allows processing of HTTP responses to test
format and content.



3.2.6 Service Orientation
Service Orientation can be implemented through different
approaches:

• W3C defines a web service as “a software system de-
signed to support interoperable machine-to-machine in-
teraction over a network. It has an interface described
in a machine-processable format (specifically WSDL).
Other systems interact with the web service in a man-
ner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serializa-
tion in conjunction with other web-related standards”.

• In a Representational Stateless Transfer (REST) ap-
proach, a Resource Oriented Architecture (ROA) is
proposed, where each resource is referenced using a
global identifier (URI) and shares a common inter-
face, consisting of a set of verbs to operate (HTTP
methods), for interaction between clients and servers
through stateless connections.

Finally, in relation to service oriented support, a set of pa-
rameters have been defined:

• SO.1 – Does it support REST architecture? : A REST
architecture implies using different verbs to perform
actions on web resources, along with a specific design
style, requiring an appropriate framework support.

• SO.2 – Does it support web services standards? : WSDL
and SOAP based web services are an industry stan-
dard for interoperability that has been widely adopted
by companies to support their internal processes and
provide business interaction.

• SO.3 – Does it support semantic web standards? : Se-
mantic web standards allow the use of ontologies for
advanced processing of exchanged data.

• SO.4 – Does it support automatic generation of REST-
ful service clients? : When consuming RESTful ser-
vices, a client needs to be built to access their data.

• SO.5 – Does it support automatic generation of web
services clients? : Consuming web services requires build-
ing a web service client.

3.2.7 Component Orientation
Component Orientation enables the possibility of using a
module or another without code refactoring to complete a
task.

The following component orientation-related parameters have
been defined:

• C.1 – Does it support different persistence modules with-
out refactoring? : Technology independence on domain
definition allows using different persistence modules to
use framework-specific features or seek compatibility
with legacy systems.

• C.2 – Does it support different testing modules with-
out refactoring? : Testing technology independence al-
lows taking advantage of framework-specific features
for finer testing.

• C.3 – Does it support different presentation technolo-
gies without refactoring? : Presentation technology in-
dependence allows rendering outputs in different for-
mats without additional development effort.

• C.4 – Does it support generation of underlying framework-
specific code? : Framework-specific code allows fine tun-
ing of framework-specific parameters along with com-
patibility with legacy systems.

• C.5 – Does it support connection with systems devel-
oped with any of the underlying frameworks? : If the
web framework uses an underlying framework to imple-
ment aspects such as persistence or presentation, inter-
operability would be improved by providing a mecha-
nism to allow connection with other systems developed
using any of those frameworks.

3.2.8 Adoption
Resources associated with a technology, such as the number
of skilled programmers or existing applications, enable the
start up of development projects. Usually, most companies
are reluctant to start projects with technologies that are
immature or that they are not familiarized with.

Considering these issues, a set of parameters have been de-
fined in relation to adoption:

• A.1 – Does it have a wide community of users that pro-
vide support, documentation and code? : A big number
of active users allows to keep the framework up to date:
fixing bugs, developing examples, tutorials, documen-
tation, etc. that help application development.

• A.2 – Does it have a big amount of programmers in
the framework’s language? : The existence of a large
number of skilled programmers reduces the risk taken
by companies when developing projects.

• A.3 – Maturity of framework’s technologies: The de-
gree of maturity of the technology has a direct impact
on the possible risks in the development of an applica-
tion. Mature technologies warrant stability, tool sup-
port and an experienced community.

• A.4 – Does it have a big amount of libraries developed
in the framework’s language? : The number of available
libraries facilitates the reuse of code for the develop-
ment of new applications.

• A.5 – Maturity of the application servers that are able
to run framework’s web applications: Application servers’
maturity warrants application stability.

3.3 Results
As shown on tables 1 and 2, the comparison model has been
used to evaluate Ruby on Rails, Grails, Trails and Roma
Framework. When applying the model, for each evaluation
criteria a set of parameters has been defined. The impor-
tance of each parameter is different and it is indicated as



Parameter Rails Grails Trails Roma

D.1 – Are data migrations built-in in
the development process? (20%)

Yes (100%) No (0%) No (0%) No (0%)

D.2 – Is schema database automatically
inferred from domain definition? (40%)

No (0%) Yes (100%) Yes (100%) Yes (100%)

D.3 – Is domain definition automati-
cally inferred from schema data? (20%)

Yes (100%) No (0%) No (0%) No (0%)

D.4 – Does it support validations?
(10%):

Yes (100%) Yes (100%) Yes (100%) Yes (100%)

D.5 – Does it support transactions?
(10%):

Yes (100%) Yes (100%) Yes (100%) Yes (100%)

P.1 – Is there a generator of static pre-
sentation code for CRUD operations on
models? (20%)

Yes (100%) Yes (100%) Yes (100%) Yes (100%)

P.2 – Is there a generator of dynamic
presentation code for CRUD operations
on models? (10%)

Yes (100%) Yes (100%) No (0%) No (0%)

P.3 – Can presentation layer be defined
using an underlying presentation tech-
nology? (20%)

Yes, by embedding
Ruby code (100%)

Yes, by embedding
Groovy tags (100%)

No, it can only
be defined using
Tapestry framework
(0%)

No, presentation
has to be defined
through annotated
POJOs (0%)

P.4 – Is presentation definition neces-
sarily tied to an underlying presentation
technology? (20%)

Yes, requiring redef-
inition of presenta-
tion for each output
format (0%)

Yes, requiring redef-
inition of presenta-
tion for each output
format (0%)

Yes, being tied to
Tapestry framework
(0%)

No, presentation is
defined through an-
notated POJOs to
allow technology in-
dependence (100%)

P.5 – Does it support internationaliza-
tion? (30%)

No, only through
third-party plugins
(50%)

Yes (100%) Yes (100%) Yes (100%)

S.1 – Does it support static typing?
(40%)

No. Ruby language
is required (0%)

No. Groovy is
required in con-
trollers and models,
although using Java
classes is straight-
forward (25%)

Yes, due to the use
of Java (100%)

Yes, due to the use
of Java (100%)

S.2 – Does it support user authentica-
tion? (20%)

No, only through
third-party plugins
(50%)

No, only through
third-party plugins
(50%)

No, only through
third-party plugins
(50%)

Yes (100%)

S.3 – Does it support automatic escap-
ing to avoid injection attacks? (20%)

Yes (100%) Yes (100%) Yes (100%) Yes (100%)

U.1 – Does it support automatic gener-
ation of code? (40%)

Yes (100%) Yes (100%) Yes (100%) Yes (100%)

U.2 – Does it support dynamic typing?
(20%)

Yes (100%) Yes (100%) No (0%) No (0%)

U.3 – Does it support different deploy-
ment environments (development, test,
production)? (40%)

Yes (100%) Yes (100%) No (0%) No (0%)

T.1 – Does it support unit testing?
(20%)

Yes (100%) Yes (100%) No, although any
Java testing frame-
work can be used
(50%)

No, although any
Java testing frame-
work can be used
(50%)

T.2 – Does it support functional test-
ing? (20%)

Yes (100%) Yes (100%) No (0%) No (0%)

T.3 – Does it support integration test-
ing? (20%)

Yes (100%) No (0%) No (0%) No (0%)

T.4 – Does it support performance test-
ing? (20%)

Yes (100%) No (0%) No (0%) No (0%)

T.5 – Does it support database fixtures?
(5%)

Yes (100%) No (0%) No (0%) No (0%)

T.6 – Does it support stub/mock ob-
jects? (5%)

Yes (100%) Yes, through the use
of Spring mock ob-
jects (50%)

No (0%) No (0%)

T.7 – Does it support HTTP requests?
(5%)

Yes, integrated in
the testing frame-
work (100%)

No, requiring coding
or external libraries
(0%)

No, requiring coding
or external libraries
(0%)

No, requiring coding
or external libraries
(0%)

T.8 – Does it support HTML/XML
parsing? (5%)

Yes, integrated in
the testing frame-
work (100%)

No, requiring coding
or external libraries
(0%)

No, requiring coding
or external libraries
(0%)

No, requiring coding
or external libraries
(0%)

SO.1 – Does it support REST architec-
ture? (20%)

Yes (100%) Yes (100%) No (0%) No (0%)

SO.2 – Does it support web services
standards? (20%)

Through Active
Web Service (AWS)
plugin (50%)

Through CXF plu-
gin (50%)

No direct support.
Spring Web Services
features can be used
(50%)

No direct support.
Spring Web Services
features can be used
(50%)

SO.3 – Does it support semantic web
standards? (20%)

No direct support.
Plugins such as
SWORD or Ac-
tiveRDF can be
used (50%)

No direct sup-
port. Semantic web
frameworks for Java
like Jena or Sesame
can be used (50%)

No direct sup-
port. Semantic web
frameworks for Java
like Jena or Sesame
can be used (50%)

No direct sup-
port. Semantic web
frameworks for Java
like Jena or Sesame
can be used (50%)

Table 1: Framework comparison (part 1).



Parameter Rails Grails Trails Roma

SO.4 – Does it support automatic gen-
eration of RESTful service clients?
(20%)

Yes (100%) No (0%) No (0%) No (0%)

SO.5 – Does it support automatic gen-
eration of web services clients? (20%)

Yes, using AWS plu-
gin (50%)

No (0%) No (0%) No (0%)

C.1 – Does it support different per-
sistence modules without refactoring?
(20%)

No (0%) No (0%) No (0%) Yes. Current re-
lease supports JDO
2.0 standard using
JPOX 1.1.4 (100%)

C.2 – Does it support different testing
modules without refactoring? (20%)

No (0%) No (0%) No (0%) No (0%)

C.3 – Does it support different presen-
tation technologies without refactoring?
(20%)

No (0%) No (0%) No (0%) Yes. Currently
Echo2 and JSP
available as result-
ing code (100%)

C.4 – Does it support generation
of underlying framework-specific code?
(20%)

No (0%) No (0%) No (0%) Yes (100%)

C.5 – Does it support connection with
systems developed with any of the un-
derlying frameworks? (20%)

Yes (100%) Yes (100%) Yes (100%) Yes (100%)

A.1 – Does it have a wide community of
users that provide support, documenta-
tion and code? (20%)

Yes (100%) Yes (100%) No (0%) No (0%)

A.2 – Does it have a big amount of pro-
grammers in the framework’s language?
(20%)

No (0%) No (0%) Yes (100%) Yes (100%)

A.3 – Maturity of framework’s technolo-
gies (20%)

Growing (50%) Growing (50%) Mature (100%) Mature (100%)

A.4 – Does it have a big amount of
libraries developed in the framework’s
language? (20%)

No (0%) Yes (100%) Yes (100%) Yes (100%)

A.5 – Maturity of the application
servers that are able to run framework’s
web applications (20%)

Growing (50%) Mature (100%) Mature (100%) Mature (100%)

Table 2: Framework comparison (part 2).

a percentage. The value of each parameter is obtained by
considering (i) general degree of fulfilment and (ii) degree
of integration of the approach (integrated or through third-
party plugins). Results are summarized on figure 2.

At first glance, Rails evaluation shows some of its criticised
aspects, such as lack of static typing, interoperability with
other systems, technology immaturity or shortage of expe-
rienced programmers. However, it is a leap ahead in terms
of usability against previous web frameworks, and provides
a good support for application testing.

In the case of Grails, it broadly follows Rails with testing
features and ease of use, being still a work in progress. Tech-
nologically, it is a more mature alternative, although the
Groovy language is a similar barrier as Ruby, which may
not justify the former’s adoption.

Trails is based on existing technologies such as Spring or
Hibernate. It tries to simplify the development process by
taking some ideas from Rails at the cost of losing the inter-
operability that would be obtained by using its underlying
technologies independently.

Finally, Roma framework is a novel approach and mostly
a work in progress. This can be noticed due to its lack of
features such as testing support. However, its design prin-
ciples show its strengths over the rest at static typing and
interoperability.

4. RELATED WORK
The work presented in this paper proposes a novel approach
for characterizing agile web frameworks and its usage for
framework selection. The work by Shan et al. [20] presents
a taxonomy of Java web frameworks which is related to our
work. The main difference is that in this work we are dealing
with agile web frameworks instead of Java web frameworks,
although this taxonomy is partly applicable. Kong et al. [13]
proposes a web application architecture framework (WAAF)
which provides different perspectives depending on the user
(planner, business owner, architect, etc.) and dimensions.
WAAF is intented for analysing a web application, while
our work intends to characterize an agile web framework.

5. CONCLUSIONS
In this paper, an approach to agile framework comparison
has been proposed. It is based on the definition of a set of
parameters given the common views of the frameworks. Pa-
rameters are grouped into a set of aspects that summarize
general features and issues found in web application devel-
opment.

The model has been applied on the main agile web frame-
works: Rails, Grails, Trails and Roma. Relevant results
are obtained, in terms of interoperability, maturity, usabil-
ity or testing. This way, the comparison model tries to help
in choosing among different frameworks before starting an
application, which is a key stage in web application devel-
opment projects.



Figure 2: Framework evaluation results.

Acknowledgements
This research project is funded by the European Commision
under the R&D project ROMULUS (FP7-ICT-2007-1) and
by the Spanish Government under the R&D project Java
sobre Ruedas (FIT-350401-2007-8).

6. REFERENCES
[1] K. Bergner, A. Rausch, M. Sihling, and T. Ternité.

DoSAM - Domain-Specific Software Architecture
Comparison Model. In Quality of Software
Architectures and Software Quality, Lecture Notes in
Computer Science, pages 4–20. Spring Verlag, 2005.

[2] P. Clemens, R. Kazman, and M. Klein. Evaluating
Software Architectures, Methods and Case studies. SEI
Series in Software Engineering, 2002.

[3] E. Evans. Domain-Driven Design: Tackling
Complexity in the Heart of Software. Addison Wesley,
2003.

[4] L. Garulli. Roma framework’s web page.
http://www.romaframework.org, 2006.

[5] C. Hibbs. JRuby’s killer feature.
http://www.oreillynet.com/ruby/blog/2006/11/

jrubys_killer_feature.html, 2006.

[6] Interface21 Inc. Acegi Security’s web page.
http://www.acegisecurity.org/, 2007.

[7] Jakarta. Tapestry web page.
http://jakarta.apache.org/tapestry, 2006.

[8] R. Johnson. J2EE development frameworks.
Computer, 38(1):107–110, 2005.

[9] JPOX Team. JPOX’s web page.
http://www.jpox.org, 2008.

[10] R. Kazman, L. Bass, G. Abowd, and M. Webb.
SAAM: A method for analyzing the properties
software architectures. Proceedings of the 16th
International Conference on Software Engineering,
pages 81–90, May 1994.

[11] R. Kazman, M. Klein, M. Barbacci, H. Lipson,
T. Longstaff, and S. Carrière. The architecture
tradeoff analysis method. Proceedings of ICECCS,
August 1998.

[12] D. Koenig, A. Glover, P. King, G. Laforge, and

J. Skeet. Groovy in Action. Manning publications Co.,
2007.

[13] X. Kong, L. Liu, and D. Lowe. Separation of concerns:
a web application architecture framework. Journal of
Digital Information, 6(2), 2005.

[14] K. Korhonen. Trails framework’s web page.
http://www.trailsframework.org, 2006.

[15] A. Leff and J. T. Rayfield. Web-application
development using the model/view/controller design
pattern. Fifth IEEE International Enterprise
Distributed Object Computing Conference, 2001.

[16] Naked Objects. Naked Objects’s web page.
http://www.nakedobjects.org, 2007.

[17] OWASP Foundation. The ten most critical web
application security vulnerabilities. http://www.
owasp.org/images/e/e8/OWASP_Top_10_2007.pdf,
2007.

[18] Red Hat. Hibernate’s web page.
http://www.hibernate.org, 2006.

[19] J. Rudolph. Getting started with Grails. InfoQ –
Enterprise Software Development Series, 2007.

[20] T. C. Shan and W. W. Hua. Taxonomy of java web
application frameworks. In ICEBE ’06: Proceedings of
the IEEE International Conference on e-Business
Engineering, pages 378–385, Washington, DC, USA,
2006. IEEE Computer Society.

[21] SpringSource. Spring framework’s web page.
http://www.springframework.org, 2006.

[22] C. Stoermer, F. Bachmann, and C. Verhoef. SACAM:
The software architecture comparison analysis
method. Technical Report CMU/SEI-2003-TR-006,
Carnegie Mellon University - Software Engineering
Institute, 2003.

[23] D. Thomas, C. Fowler, and A. Hunt. Programming
Ruby: The Pragmatic Programmer’s Guide. The
Pragmatic Bookshelf, 2004.

[24] D. Thomas, D. Heinemeier Hansson, L. Breedt,
M. Clark, J. Duncan Davidson, J. Gehtland, and
J. Schwarz. Agile Web Development with Rails. The
Pragmatic Bookshelf, 2nd edition, 2006.


