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Preface

In the last two decades, we have seen a significant increase of interest in agent-
based computing. This field is now set to become one of the key technologies
in the twenty-first century. It is crucial that both academics and industrialists
within Europe have access to a forum at which current research and application
issues are presented and discussed.

In December 2003, the First European Workshop on Multi-Agent Systems
(EUMAS) was held at the University of Oxford, UK. This workshop emerged
from a number of related workshops and other scholarly activities that were tak-
ing place at both national and European levels, and was intended to provide a
single recognized forum at which researchers and those interested in activities
relating to research in the area of autonomous agents and multi-agent systems
could meet, present research results, problems, and issues in an open and infor-
mal but academic environment. This set-up allows for discussions of the latest,
potentially preliminary findings of state-of-the-art research.

Following in the tradition of past EUMAS events (Oxford 2003, Barcelona
2004, Brussels 2005, Lisbon 2006, Hammamet 2007, Bath 2008, Agia Napa 2009,
and Paris 2010), the aim of the 9th European Workshop on Multi-Agent Systems
held in Maastricht (The Netherlands) during November 14–15, 2011, was to
encourage and support activity in the research and development of multi-agent
systems, in academic and industrial efforts.

In 2011, the EUMAS workshop had 45 papers accepted for oral presentation
and the demo session hosted four contributions. The workshop was very well
attended and the presentations gave the opportunity for several debates often
continuing during the coffee breaks.

The two-day event also gave the opportunity to listen to three exciting in-
vited talks given by Marie-Pierre Gleizes (Université Paul Sabatier, France),
Peter McBurney (King’s College London, UK), and Milind Tambe (University
of Southern California, USA).

After the workshop, the best papers were selected taking into account the
reviews they received during the pre-workshop review phase and the discussion
generated by their presentations. The authors of these papers were asked to
significantly improve their manuscripts and the resulting works passed through a
new review cycle. These papers are the backbone of this book. They are perfectly
completed by three papers written by the invited speakers, discussing key issues
in multi-agent systems.

May 2012 Massimo Cossentino
Michael Kaisers

Karl Tuyls
Gerhard Weiss



Improving Diagnosis Agents with Hybrid

Hypotheses Confirmation Reasoning Techniques

Álvaro Carrera and Carlos A. Iglesias

Universidad Politécnica de Madrid,
Madrid, Spain

{a.carrera,cif}@dit.upm.es

Abstract. This article proposes a Multi-Agent Systems (MAS) archi-
tecture for network diagnosis under uncertainty. Network diagnosis is di-
vided into two inference processes: hypotheses generation and hypotheses
confirmation. The first process is distributed among several agents based
on a Multiply Sectioned Bayesian Network (MSBN), while the second one
is carried out by agents using semantic reasoning. A diagnosis ontology
has been defined in order to combine both reasoning processes. To drive
the deliberation process, the strength of influence obtained from Cu-
mulative Distribution Function (CDF) method is used during diagnosis
process. In order to achieve quick and reliable diagnoses, this influence
is used to choose the best action to perform. This approach has been
evaluated in a P2P video streaming scenario. Computational and time
improvements are highlighted as conclusions.

Keywords: agent, Bayesian, ontology, diagnosis, network.

1 Introduction

The complexity of telecommunication networks has increased the demand for
network and service management systems. Nowadays, network fault management
requires high skilled engineers, which are not able to cope with the increasing
heterogeneity and complexity of the network. The probability of occurrence of
faults in large telecommunication networks grows as they become widespread,
complex and heterogeneous [3]. Thus, the role of automatic diagnosis modules is
getting more attention, in order to cover faults detection, isolation and recovery.

Furthermore, other important aspect to point out is the need for dealing with
uncertainty during the diagnosis task, since many corroboration tasks cannot be
carried out because of different reasons, such as the cost itself of the action or
that the action requires to access the subscriber equipment and could cause him
any trouble.

In recent past, several works have studied different approaches to deal with
uncertainty using Bayesian networks for diagnosis [7,11]. The main focus of this
work is to present a MAS architecture that combines two reasoning processes:
semantic reasoning and Bayesian reasoning. This approach proposes to use Ba-
yesian inference to handle uncertainty inherent in any diagnosis process and

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 48–62, 2012.
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Improving Diagnosis Agents with Hybrid Hypotheses 49

semantic inference to discriminate which action is the best one to perform de-
pending on the available data.

The reminder of this article is structured as follows. Firstly, Sect. 2 shows
the knowledge model used in this work. Sect. 3 proposes an agent architecture
for reasoning during both phases of a diagnosis: hypotheses generation and hy-
potheses confirmation. Sect. 4 exposes the testbed scenario and exemplifies the
diagnosis process. Sect. 5 shows the evaluation and presents the results of com-
parison with other approaches. Finally, Sect. 6 draws out the main conclusions
about the application of this approach and, besides, a brief description of future
possible improvements.

2 Knowledge-Level Model of the Diagnosis Task for
Telecommunication Networks

Following the knowledge-level analysis of the diagnosis task by Benjamins [2],
diagnosis can be decomposed into three subtasks: (i) symptom detection, finding
out whether complaints are indeed symptoms, (ii) hypotheses generation, gener-
ating possible causes based on the symptoms, and (iii) hypotheses discrimination,
discriminating between the hypotheses based on additional observations.

In this article, we focus on the last two tasks, hypotheses generation and
discrimination, as well as in the repair task, as illustrated in Fig. 1.

Fig. 1. Diagnosis inference structure. Legend: box (concept), oval (inference), rounded
corner box (task).

The first process, hypotheses generation, consists of generating hypotheses
from the notified fault based on a causal model. Since this process needs to
handle uncertainty, a Bayesian network has been selected for expressing the



50 Á. Carrera and C.A. Iglesias

causal model. Moreover, given that this Bayesian network could not scale well
with the size and heterogeneity of telecommunication networks, our architec-
ture proposes the usage of MSBN [13] technique, which allows to distribute this
reasoning process across MASs.

The two other processes, hypotheses discrimination and repairing, follow a
similar pattern. The first one obtains a test action plan to confirm the generated
hypotheses. This process contains a list of ordered actions to be executed based
on the expected benefits of the tests. The expected benefit of an action is defined
as how relevant is for the current and is equal to the influence between varia-
bles inside causal model [8]. In this way, the system can perform more efficient
hypotheses discrimination (as shown in Sect. 5).

Finally, the repair process obtains a healing action plan to repair the confirmed
diagnosis. In order to reason under uncertainty, we propose to use an ontology
based reasoning process, combining a diagnosis ontology expressed in Ontology
Web Language (OWL) [14] with rules expressed in Semantic Web Rule Language
(SWRL) [10].

Nevertheless, a technique to communicate both reasoning processes is needed,
in order to be able to provide feedback and integrate learning mechanisms of the
confidence of the generated hypotheses based on the results of the tests.

In order to carry out the exposed diagnosis process, an upper-ontology has
been defined to facilitate the communication between the agents in the fault
diagnosis task. This upper-ontology (Fig. 2) shows that hypotheses are generated
according to failure classes. These hypotheses identify a suspected component as
the location of the failure. In this way, the ontology represents what is happening
and where is happening. Depending on the hypothesis class, different actions
can be carried out for corroborating the hypothesis (test actions) or repairing
the component (healing actions). All actions have conditions(preconditions and
postconditions) that allow somebody to evaluate its eligibility for execution.

Fig. 2. Upper-ontology for diagnosis

Furthermore, the upper-ontology also includes the concept of diagnosis. A
diagnosis has its set of hypotheses, its set of performed tests and its set of per-
formed healing actions. This collection of data is useful for self-learning processes
as reinforcement learning, for example which healing actions repaired a certain
failure.

Another important assumption is that actions are executed by actors. Actors
can be humans (manual actions) or agents (automatic actions). Actions can be
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Fig. 3. Action upper-ontology

Fig. 4. Condition upper-ontology

classified according to the disjoint classes Available / Unavailable, when all pre-
conditions are satisfied or not; and, if an available action has been performed, it
is classified according to the disjoint classes Successful Performed / Unsuccess-
ful Performed, when all postconditions are satisfied or not. This classification is
shown in Fig. 3.

This model has been formalised as an OWL ontology for reasoning on diagno-
sis tasks. To adapt this generic diagnosis ontology for a specific diagnosis case,
the generic diagnosis ontology must be extended with specific concepts, i.e. possi-
ble faults, specific actors, specific conditions, etc. The conditions of an action are
modelled with the ontology class Condition. Fig. 4 shows two generic conditions:
Required Data that specifies a required parameter and Required Actor that spec-
ifies an actor to perform the action. The second one is condition for all actions,
because all actions need to be executed by someone. But these two conditions are
generic conditions; all conditions that particularise specific restrictions should be
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added depending on the domain. Conditions can be classified according to the
disjoint classes Satisfied/Unsatisfied. To check all conditions, we use SWRL. In
section 4, the use of conditions and SWRL rules is shown.

3 Agent Architecture for Diagnosis

The upper-ontology presented in Sect. 2 has guided the design of an agent ar-
chitecture that performs out both tasks: hypotheses generation and hypotheses
confirmation.

The proposed agent architecture (Fig. 5) consists of four modules. Hypothe-
ses generation is carried out by Bayesian module and the Hypotheses confirma-
tion, by Ontology module. Both modules are governed by Agent Control module
which is an extended Belief-Desire-Intention (BDI) agent architecture (B2DI
Agent Model [4]) where beliefs are distributed and shared across the MAS. Ba-
yesian Module is a reasoning inference engine that processes environment data
to infer possible fault root causes (i.e. hypotheses with associated confidences).
For this task, Bayesian networks are used to represent several concepts like
symptom, possible root causes, etc. and the relations among them in a Directed
Acyclic Graph (DAG) in which each node contains a Conditional Probability Ta-
ble (CPT). Bayesian networks have been design accordign to BN3M model [9]
which structures causal models in Bayesian networks to three groups of notes:
context, fault and evidence. Context variables model the environment, in this
case, these variables are used to model information about the network in which
each agent resides. Fault and Evidence variables are used to model the possible
failures through hypotheses and observations (i.e. results of tests).

Fig. 5. Agent Architecture

Since a Bayesian network is a DAG with probability distributions, each node
has a concrete influence on its neighbours [8]. The relevance of this influence in
the diagnosis procedure varies depending on the available information about the
environment. In other words, the influence represents how useful is the informa-
tion that the agent would obtain if it would perform one action, for example,
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if it would execute a test. To obtain these data, CDF [9] distance is used. The
outcomes of this method are used to sort all possible actions for an agent by
relevance in order to reach a reliable and fast diagnosis.

The outcomes of hypotheses generation task is added to Ontology-based Rea-
soning Module. This module is responsible for deliberating which action should
be performed out using the outcomes of the Bayesian module. This module filters
the sorted action list based on preconditions of each action (see Sect. 2). After
executing one action, its result is fedback to the Bayesian module to generate
updated hypotheses.

It should pointed out that the mapping between Bayesian module and On-
tology module is not trivial. So, Mapping module performs the mapping process
to create ontology individuals and extract information from ontology concepts
to probabilistic data that can be input to the Bayesian module. To perform this
task, we use Probabilistic OWL (PR-OWL) [5] ontology that supports a way to
add probabilistic information to others concepts defined using OWL.

SWRL rules are used before, during and after diagnosis process to choose
which action is the best one to perform in each moment to diagnose a problem
or to fix it, to check if the result of a performed action is the expected one or it
was an error, to notify human operators, etc. Finally, the use of SWRL, OWL
and Bayesian networks adds adaptability to the system since the behaviour of
the agent can be deployed by a simple message with an OWL file as content
that adds or modifies the current rules or Bayesian networks on the fly using
PR-OWL.

Since presented modules can be split in different agents, some functionalities
can be distributed across several agents in order to obtain more scalability, re-
mote access to restricted data, less computational requirements, etc. Depending
on which modules compound each agent, we can classify agents in three types:

– Fully Autonomous Agent which has all modules presented before. It is able
to evaluate the environment, reason (in a distributed way) under uncer-
tainty, perform actions, etc. It can work autonomously, but it has better
performance working together with other agents.

– Semi-Autonomous Agent which has Agent Control Module and Ontology
based Reasoning Module. It cannot deal with uncertainty, but it is able to
interact with its environment. To reason with uncertainty, it has to interact
with an Fully Autonomous Agent.

– Dependent Agent which has only the Agent Control Module. It is able only
to perform prefixed request actions. For example, the execution of one test
or one monitoring action.

Furthermore, the extensibility of the upper-ontology is possible using specific
domain ontologies and Bayesian networks which represent diagnosis knowledge
of a diagnosis domain.

Uncertainty handling and extensibility are highly recommended features for
systems that work in complex environments like network management. Our pro-
posal consists of defining a flexible agent architecture which integrates the previ-
ously identified modules. These functionalities can be distributed at design time
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or even run time by the agents themselves (creating agents on demand), depend-
ing on non functional requirements (time restrictions) or functional requirements
(distribution requirements for complex actions on remote equipments).

4 Case Study

This section shows the case study used in this work. First of all, the scenario used
to evaluate the model is presented in Sect. 4.1. Sect. 4.2 presents a example of the
proposed agent architecture. In Sect. 4.3, the agents deployment is exposed in
order to facilitate the explanation of a detailed diagnosis case, shown in Sect.4.4.

4.1 Scenario

To properly frame this study, a P2P streaming scenario (see Fig. 7) was chosen.
In this scenario, there are a multimedia provider user and a multimedia consumer
user. Multimedia contents are stored in a video server inside of the Multimedia
Provider Home Area Network (HAN) and are remotely accessed from the Multi-
media Consumer HAN. Multimedia contents are transmitted in real time using
Real Time Streaming Protocol (RTSP) for session establishment and Real-time
Transport Protocol (RTP) for content delivery. Many faults may occur both in
connection and in services. The system is designed to provide, to an end-user or
an operator, the result of the diagnosis made upon receipt of a failure symptom
notification. The diagnosis result is expressed in percentages representing the
certainty of the occurrence of a given hypothesis.

4.2 Agent Architecture Example

For exemplification purposes and facilitating the understanding of the deploy-
ment of agents in the scenario, an agent responsible to diagnose faults in Multi-
media Provider HAN is presented.

Agent Control Module has a main goal that is to diagnose network faults. This
module is responsible for acting as bridge between the other modules. Bayesian
module contains a Bayesian network that models possible failures and possible
tests in the Provider HAN region. A simplified version of this Bayesian network
and one of its CPTs are shown in Fig. 6.

Ontology based Reasoning module works with a specific domain diagnosis on-
tology specialised for P2P streaming scenario. In other words, this ontology that
extends the generic diagnosis ontology presented previously contains specific
concepts like Session or RTPMonitoringAction, specific conditions like Requi-
redRTPSessionCondition, etc. Mapping module has been adapted to properly
translate data between both domains: semantic and probabilistic domains.

4.3 Agents Deployment

In the scenario presented in Sect. 4.1, some agents have been deployed according
to their geographic distribution for exemplification purposes. One Fully Autono-
mous Agent is executed inside each subnetwork. One agent has been deployed
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Fig. 6. Bayesian network for case study

in a internal server of ISP Network. The other two ones have been deployed
in HAN gateways. Each one of these three agents is responsible to diagnose
faults inside their domain. These agents have been deployed into devices with
enough computational resources, but other three Semi-Autonomous Agents has
been deployed taking care of minimising the consumed resources, since they are
deployed in final user domain, such as multimedia consumer PC. One of them
resides into the multimedia consumer PC. This agent has monitoring capabilities
to detect and monitor quality of streaming sessions. The second one, into Mul-
timedia Streaming Server with low resources. This agent has testing capabilities
to know the server status. The other one is deployed in the network operator
terminal to notify diagnosis results. These deployments are shown in Fig. 7.

Notice that these agents publish all actions they are able to perform in a direc-
tory facilitator like a service. Thus, any agent can request an action execution.

4.4 Streaming Diagnosis Case

In order to facilitate the understanding of the example, only three agents are in-
volved in the exposed diagnosis case: “StreamingClientAgent” (Semi-Autonomous
Agent), “DiagnosisClientAgent” and “DiagnosisServerAgent” (both Fully Auto-
nomous Agents). Notice that all words with italic style in this section represent
ontology classes, not ontology individuals.

The presented case study starts when a user requests a video streaming ses-
sion. This streaming session is detected by the Semi-Autonomous Agent that
resides inside multimedia client PC, named “StreamingClientAgent”. This agent
creates a new RTPSession individual in the ontology with properties that re-
presents information about this session, like, which computer is the client and
which computer is the streaming server. The creation of this individual triggers
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Fig. 7. Agent deployment in case study scenario

SWRL engine to evaluate if any possible action is now available, i.e. if all its
preconditions are satisfied.

To simplify the explanation, we consider this agent is able to do only two
types of actions: RTPMonitoringAction (to monitor Quality of Service (QoS) in
RTP sessions) and NotifySymptomAction (to notify other agents about a new
detected symptoms).

RTPMonitoringAction has two preconditions: RequiredActorCondition and
RequiredRTPSessionCondition. To check if this conditions are satisfied, several
SWRL rules are used. Rule 1 is used for RequiredActorCondition and Rule 2 for
RequiredRTPSessionCondition.

Rule 1. Actor(?actor),
RequiredActorCondition(?condition),
hasPrecondition(?action, ?condition),
canPerform(?actor, ?action)
→ satisfied(?condition, true)

Rule 1 searches all individuals of class Actor and class RequiredActorCondition.
Then, it searches all actions which have one condition of this type. And finally, it
searches if one agent can perform a determined action. If these subconditions are
satisfied, the RequiredActorCondition individual changes its property “satisfied”
to true.

Rule 2. RTPSession(?session),
RequiredRTPSessionCondition(?condition),
hasPrecondition(?action, ?condition),
hasClient(?session, ?system),
Actor(?agent),
id(?agent, ClientAgent),
isExecutingIn(?agent, ?system),
→ satisfied(?condition, true)
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Rule 2 searches all individuals of class RTPSession and class RequiredRTPSe-
ssionCondition. Then, it searches all actions which have one condition of this
type. It obtains the client system of the streaming session and gets the local
system, i.e. the system in which the agent is executing currently. If both systems
are the same, the condition is satisfied.

Once both conditions are satisfied, the Action individual changes its property
“available” to true. Since “StreamingClientAgent” does not have more avail-
able actions, RTPMonitoringAction is selected to be executed. So, it performs a
monitoring action to know the quality of the session. For this example, a quality
degradation suddenly occurs and is detected. So, a new Symptom individual is
generated in the ontology and SWRL engine is triggered again.

Now, NotifySymptomAction can be executed using rules similar to rules 1
and 2. “StreamingClientAgent” has not enough information to process this symp-
tom, and it needs to cooperate with a Fully Autonomous Agent (in this case, the
Fully Autonomous Agent that resides in the Multimedia Consumer Home Gate-
way, named “DiagnosisClientAgent”). “DiagnosisClientAgent” agent receives a
message that notifies the new symptom. “StreamingClientAgent” receives an
acknowledgement message and a new SymptomACKMessage individual is cre-
ated and a postcondition is evaluated (see Rule 3. When all postconditions are
satisfied, “sucessfullyPerformed” property is set to true.

Rule 3. SymptomACKMessage(?msg),
RequiredACKCondition(?condition),
PerformedAction(?action),
NotifySymptomAction(?action),
hasPostcondition(?action, ?condition),
hasSymptomContent(?msg,?symptom),
hasSymptom(?action, ?symptom),
→ satisfied(?condition, true)

“DiagnosisClientAgent” is able to process symptoms performing Bayesian infe-
rence in a distributed way (using MSBN approach). In other words, this agent
shares information with others Fully Autonomous Agents that are able to rea-
son with high level data. So, the received Symptom individual is translated to
Bayesian format through the Mapping module (see Sect. 3).

Once this information is inserted into Bayesian module (see Sect. 3), all Fully
Autonomous Agents are working together and in parallel thanks to MSBN. Each
one takes its own decisions using all available knowledge (shared knowledge and
its own private knowledge).

When “DiagnosisClientAgent” has processed the new symptom and a set of
hypotheses are obtained from Bayesian module, it has to decide which action
is the best to be executed now. Depending on the state of the environment
and the knowledge base of the agent, one action could change its influence in the
diagnosis process. To deal with this issue, we use the CDF method (see Section 3).
With this method, all possible actions are ordered by relevance to reach a reliable
confidence in the diagnosis process. The first one whose preconditions are fulfilled
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is selected and executed. All Fully Autonomous Agents deployed in the scenario
have to sort all possible actions to choose the best one.

For example, “DiagnosisServerAgent” has received shared knowledge when
“DiagnosisClientAgent” has added the new symptom to the Bayesian module.
So, “DiagnosisServerAgent” starts its own decision process to choose the best
action that can be performed by itself. After it gets a set ofHypothesis individuals
from Bayesian Module, then this agent chooses a ConnectivityTestAction to
perform using CDF method (see Sect. 3). But it must check if all preconditions
for this action are satisfied. In this case, two preconditions must be satisfied.
One RequiredActorCondition (Rule 1) and one RequiredDataCondition (Rule 4).

Rule 4. RequiredDataCondition(?condition),
Variable(?variable),
requiredVariableType(?condition, ?typecond),
variableType(?variable, ?typecond)
→ satisfied(?condition, true)

Rule 4 searches all individuals of class Variable and class RequiredDataCondition.
Then, it searches type of the condition variables. If a variable has the wanted
type, then the condition is satisfied. In the case of ConnectivityTestAction the
required variable type is “Streaming Server LAN IP” and the variable value is
“192.168.1.11”.

Since both preconditions are satisfied, the agent executes the test and obtains
more information about the environment. The postcondition of this action is
a RequiredDataCondition which checks if a result is obtained later the test is
executed. This result is added to Bayesian module as evidence. The output of
Bayesian reasoning process is processed by Mapping module and inserted in
Ontology module as a new set of Hypothesis individuals. Once all hypotheses
are updated, CDF method is executed again to get which action is the most
relevant to be executed in order to reach a fast and reliable diagnosis. Then, the
most relevant available action is executed and the making decision process starts
again, i.e., to sort possible actions by relevance, to check preconditions, to filter
available actions, to choose the most relevant available action and to execute it.

This process is repeated until, at least, one hypothesis has enough confi-
dence, i.e. the confidence is higher than a threshold. Diagnosis conclusions are
shared using MSBN approach and, then, diagnosis finishes and a healing action is
searched to fix the problem if it is possible, otherwise the system notifies a human
operator.

To summarise the case study explanation, several agents have been deployed
in different devices to perform distribute diagnosis and the proposed upper-
ontology has been applied (see Fig. 7). Some agents have all modules proposed
in section 3. These agents can work isolated without problems and offer more
functionality to our diagnosis system. But, there are some devices such as ded-
icated multimedia server that have low performance computational resources
and it is not possible to deploy Fully Autonomous Agents in these devices. On
one hand, to solve this problem, we deploy only key modules in several agents to
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reduce required resources. But, on the other hand, an agent without Bayesian
module cannot reach any diagnosis, because it only can perform actions (diag-
nosis tests), it does not perform inference. So, this light-weight agents have to
share knowledge with Bayesian agents to reach diagnosis conclusions.

5 Evaluation

The benefits of the proposed upper-ontology have been evaluated comparing this
approach with previous works [7,11]. In this paper, we compare the performance
of the system using deliberation driven by “cost” or by “influence”.

In previous works, test actions were ordered by estimated cost. This cost
combined time cost and computational cost and it was estimated a priori by
human experts. Then, all test actions are executed always in the same order.
Even, sometimes, unneeded actions are executed.

In this work, test actions are sorted by relevance. Depending on the evidences
about the environment, an action can modify its relevance for the current diag-
nosis (see Sect. 3).

The evaluation has been carried out based on a benchmark for a real diagnosis
scenario of the R&D project Magneto [1]. With data stored in database with old
diagnoses and the same Bayesian networks have been used in both cases. The
volume of this data is around 500 diagnoses. We have clustered diagnoses in 13
diagnosis cases to simplify comparison and shown results.

As it is shown in Fig. 8, the number of performed tests has been reduced.
Taking data from data base mentioned above, the average of performed test
with deliberation driven by cost is 5.23 tests (with standard deviation 3.11).
Using deliberation driven by influence, this number is reduced to 2.76 (with
standard deviation 1.42); in other words, the number of performed tests has
been reduced in 47.05%.

With deliberation driven by influence, there are two diagnosis cases that per-
form one test more than following the previous approach (driven by cost). The
reason of this behaviour is that these are connectivity failures inside user HAN.
These failures are very uncommon; for this reason, these hypotheses have, a pri-
ori, low confidence and other hypotheses have to be confirmed or refused first.

Table 1 shows the evaluation results in several columns. Mean Time to Diag-
nose (MTTD) [6] stands for the average time until the root cause of the failure
is correctly diagnosed.

The column named “Result” represents if deliberation driven by influence
improves driven by cost one or not in a specific diagnosis case.

The average of MTTD in previous approach is 25.47 seconds (with standard
deviation 15.33), in proposed approach is 12.01 seconds (with standard deviation
7.12). Time improvement is 52.87%. These results show that the use of CDF
method to extract the relevance of an action from Bayesian networks combained
with semantic reasoning improves the performance of previous approaches driven
by cost.
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Fig. 8. Comparison: previous work vs proposed approach

Table 1. Evaluation of MTTD and number of tests using cost or influence metrics for
ordering tests

Diagnosis case MTTD Number of tests Result
Cost Influence Cost Influence

Case 1 41 29 9 6 �
Case 2 5 7 1 2 	
Case 3 36 8 7 2 �
Case 4 39 15 7 4 �
Case 5 4 8 1 2 	
Case 6 36 8 7 2 �
Case 7 9 9 2 2 ∼
Case 8 34 8 7 2 �
Case 9 40 24 9 5 �
Case 10 33 13 7 3 �
Case 11 5 5 1 1 ∼
Case 12 13 8 3 2 �
Case 13 36 14 7 3 �

6 Conclusions and Future Work

We have presented a MAS that uses a diagnosis upper-ontology with Bayesian
reasoning using OWL and SWRL to choose actions to perform. We focused on
the deliberation process for hypotheses generation and discrimination. Our pro-
posal of decision support improves previous approaches [7,11] both in time and
in computational cost. Furthermore, the proposed modular architecture presents
the capability to add or remove some modules of the architecture to reduce the
resources required by agents, because there are important computational restric-
tions in devices like routers, TVs or STBs. Finally, one of the main advantages
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of use Bayesian Networks and semantic reasoning is the possibility of deploy new
knowledge base or new reasoning rules on the fly, without restarting or deploying
new agents.

As future work, we will study in depth the application of MSBNs [12,13] to
distribute the Bayesian inference engine that offers support to self-organisation
capabilities to add robustness and to maintain coherence and consistency in a
distributed reasoning process. For depth comparisons, we plan to simulate more
complex network environment and to test several agent architectures in order to
measure the performance of each architecture.

Acknowledgement. This research has been partly funded by the Spanish Min-
istry of Science and Innovation through the projects Ingenio Consolider2010 AT
Agreement Technologies (CSD2007-0022), Cenit THOFU (CEN-20101019) and
CALISTA (TEC2012-32457) as well as the Spanish Ministry of Industry, Tourism
and Trade through the project RESULTA (TSI-020301-2009-31).

The authors would also like to thank to J. Garćıa-Algarra, J. González-Ordás,
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