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Abstract

The application of agent technology to real applications needs the development of a methodology
which supports all the Software Development Life Cycle (SDLC) of an agent based system including its
management. This paper proposes an extension of CommonKADS for fitting the characteristics of the
agent approach into the SDLC and the definition of a new model, the coordination model, for describing
the coordination protocols.

1 The need for a methodology

In spite of the great interest in the agent technology in the scientific community, and the introduction of
terms such as Agent-Based Software Engineering (Wooldridge & Fisher, 1994) and Multi-Agent Systems
engineering (Miiller, 1992), there has been little work in defining a methodology for designing agents and
agent based systems as mentioned in (Jennings, 1995; Jennings & Wooldridge, 1995; Miiller, 1992).

A first approach for the definition of a general methodology for multiagent systems (MAS) is here presented,
which has been developed because of the need to apply a multiagent platform to different applications.

2 The MAS-CommonKADS approach

The definition of a software engineering methodology does not usually begin from scratch, but is a refinement
cycle, adding the new aspects and perspectives of the systems and languages and integrating the successful
ingredients of previous methodologies. This is the approach followed here. Our methodology is called MAS-
CommonKADS because it 1s an extension of the CommonKADS methodology, adding the aspects relevant

to MAS.

2.1 CommonKADS overview

CommonKADS (de Hoog et al., 1993) is a methodology designed for the development of knowledge based
systems (KBS) analogous to methods of software engineering. The development of these methods has been
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FIGURE 1: The CommonKADS Model Set from (Schreiber et al., 1994; p.2)

funded by the European Community’s ESPRIT program from 1983 to 1994. A succinct overview of Com-
monKADS can be found in (Schreiber et al., 1994).

The CommonKADS methodology follows an approach to Knowledge Based System Development as the
building of a number of separate models that captures salient features of the system and its environment.

The process of KBS development consists of filling a number of model templates. Associated to these model
templates are model states that characterise the landmark moments in the development of the model. These
landmark states allow the management of the project, whose development proceeds in a cyclic and risk-driven
way.

The CommonKADS model set is shown in figure 1. There are six defined models:

e Organisation model: (OM) is a tool for analysing the organisation in which a KBS is going to be
introduced.

o Task model: (TM)is used to describe at a general level the tasks that are performed or will be performed
in the organisational environment where the proposed KBS will be installed in the future, and provides
the frame for the distribution of tasks to the agents.

o Agent model: (AM) an agent is an executor of a task. Tt can be human, computer software or any
other entity capable of executing a task. This model describes the capabilities and characteristics of
the agents.

o Communication model: (CM) details the exchange of information between the different agents involved
in executing the tasks described in the Task Model.

o Frpertise model: (EM) this is the focus of the CommonKADS methodology and models the problem
solving knowledge used by an agent to perform a task. The Expertise Model distinguishes between
application knowledge and problem solving knowledge (Wielinga et al., 1993; p. 10). Tt is divided
into three sub-levels: domain level (declarative knowledge of the domain), inference level (a library of
generic inference structures) and task level (ordering the inferences).

e Design model: (DM) while the other five models deal with the analysis of the KBS, this model is
intended to describe the architecture and technical design of the KBS in order to implement it.



2.2 Limitations of CommonKADS for MAS

CommonKADS was not designed for developing MAS. The main restrictions for the direct application of
CommonKADS to MAS come from the CommonKADS CM:

e The CM deals mostly with human-computer interaction. It is very restrictive for computer-computer
interaction. In the same way as the interaction model (Kingston, 1992), previous to CommonKADS
CM, both model the inputs and outputs of the tasks carried out between a user and a KBS. The
primitives of a protocol for complex interactions are not considered.

e According to CommonKADS, task assignment should be performed in a fixed way. However, a restricted
form of flexible task assignment can be carried out.(Waern et al., 1993; p. 19)

e The CM does not deal with multi-partner transactions in a natural manner.
In the following sections, we propose an extension of CommonKADS for MAS:

e First, how the agent approach can be integrated into the SDLC (section 3) is shown.

e Then a new model, the coordination model 3, is proposed (section 5). It is an alternative model to the
communication model for modelling the interaction between agents. The communication model could
still be used for human-computer interaction.

e Finally, an example is presented (section 6).

3 MAS-CommonKADS: software development life cycle model

The overall MAS-CommonKADS methodology for multiagent systems development follows these phases:
e Conceptualisation. Elicitacion task to obtain a first description of the problem and determination of use
cases which can help to understand informal requirements (Potts et al., 1994) and to test the system.

e Analysis. Determination of the requirements of our system starting from the problem statement.
During this phase the following models are developed: OM, TM, AM, CM, CoM and EM.

e Design. How the requirements of the analysis phase can be achieved by the developing of the DM
is determined here. The architecture of both the global multiagent network and each agent is also
determined.

e Coding and testing of each agent.
e Integration. The overall system is tested.

e Operation and maintenance.

3.1 Conceptualisation

The usage of use cases (Jacobson et al., 1992) has been introduced in most of the object oriented method-
ologies in the last few years (Regnell et al., 1996), especially in the earliest stages of system development.
The method of use case modelling presented in (Regnell et al., 1996) has the advantage of being formalized
with Message Sequence Charts, which are used for modelling the proposed coordination model.

3The selection of a new name is not easy because cooperation model was used in KADS-I and interaction model was used by
Kingston (Kingston, 1992) in an extension to KADS-I



3.2 Analysis

The results of this phase will be the requirements specification of the composite system through the devel-
opment of the models described before. Only the extensions to CommonKADS are developed in this paper.
The steps of this phase are:

1. Delimitation: Delimit the MAS system from the external systems. This task was carried out in
CommonKADS by the development of the AM. A first version of AM and CoM are obtained. The
external (predefined) systems are agentified. Both speech-acts and interchanged data are modelled in
the CoM. If there is user interaction, agentify the user and develop a first version of CM.

2. Decomposition: The system can be decomposed by the identification of more agents attending to

the following guidelines (Bond & Gasser, 1988):

e (eographical distribution: An agent has a unique physical address. From the problem statement
it is determined whether the system is geographically distributed (e.g., an intelligent network
management system). Each different physical position corresponds to a different agent.

e Logical distribution: Each agent performs one or several functions in the application. An agent is
able to perform a task in order to achieve a goal. The study of goal interrelationship determines
the autonomy of the agents. The development of the TM can help to determine new agents. The
process of assigning different goals to different agents is called the goal strategy (Du Bois, 1995;
p.112).

o Knowledge distribution. In the case of knowledge acquisition from different experts (Dieng, 1994)
or the existence of different expert domains (Wooldridge et al., 1991), an agent can be defined for
each domain and an EM can be developed for each agent.

3. Validation:
e Each time an agent is decomposed into new agents, these agents should be logically consistent
with the previous definition of the agent:
— The subagents are responsible for achieving the goals of the agent.
— The subagents should be consistent with the CoM and maintain the same external interactions.

e Cross validation with the other models (TM, CM, CoM).

e At least one conflict solving method should be determined for each conflict detected in the scen-
arios.

3.3 Design

As a result of the analysis phase, an initial set of agents has been determined. During this phase the DM is
developed. This phase is extended for MAS and consists of:

e Application design. The system i1s decomposed into sub-modules. For a MAS architecture, the most
suitable agent architecture® is determined for each agent.

o Architecture design. A multiagent architecture is selected here (instead of, for example a blackboard
or an object decomposition). For a MAS architecture, the infrastructure of the MAS-system (so-called
network model (Iglesias et al., 1996)) is determined. The agents (so-called network agents) that maintain
this infrastructure are also defined.

o Platform design. Software and hardware that is needed (or available) for the system.

4 Agent architecture is used for describing a particular agent software/hardware construction (Wooldridge & Jennings, 1995)
and agent model for the set of requirements (skills, role, etc.) of the CommonKADS AM



3.3.1 Application design

The EM (mainly its task level) and the TM can help us to identify new agents. For each new agent
identification, the steps in the decomposition and validation of the analysis should be followed.

The definition of the domain knowledge of each agent i1s based on the domain level of the EM. The common
domain knowledge for most of the agents and the coordination knowledge is extracted from the network
model (section 3.3.2).

In this phase, more agents can be identified complying with the following criteria:

e Enabling coordination by the allocation of scarce resources. If a resource is needed by several agents,
an agent manager (so-called internal agent in (Rumbaugh, 1995a)) of the resource can be suitable.
This heuristic has the disadvantage of increasing the dependencies between agents and the overload of
interactions (Bond & Gasser, 1988).

e Achieving some of the generic goals of cooperation (Durfee et al., 1989): duplicating tasks with different
performing methods. If a task can be achieved by different problem solving methods, a common usage
is to draw a goal graph with all the possibilities (Maurer & Paulokat, 1994; Mylopoulos et al., 1992).
After drawing this diagram, several strategies can be followed:

— Implement all the possibilities in one agent. The agent selects the best one at run-time by means
of a planning process.

— Implement one possibility per agent, and add an internal agent for deciding at run time which
agents are more suitable for carrying out the task and which i1s the best solution. The reason
for subdividing an agent can be that the methods are very heterogeneous (i.e. symbolic and
connectionist methods, different reasoning capabilities required, etc).

— The global plan can be decomposed into sub-plans assigned to different agents (i.e. contract net).
In this case, the commitments of the agents can be specified for prototypical interactions. This
specification of both commitments and reasoning will depend on the agent theory selected.

Once the agents have been identified, whether each agent should be modelled with a deliberative,
reactive or hybrid architecture can be determined. This selection depends on the required skills of each
agent reflected in the AM, as discussed in (Miiller, 1992). The next step is specifying each agent using
an agent language as detailed design language (DDL) if there is no suitable agent in our agent library.
This description of the agent knowledge can be decomposed in defining the general ontology for all the
agents (which can be imposed, for example, for limited access to resources (Brazier et al., 1996)) and
the particular behaviour of each agent together with the knowledge and resources needed.

3.3.2 Architecture design

The general architecture of the systems is; of course, a multiagent architecture. Here, the architecture design
is subdivided up into the three levels of the network model of a multiagent architecture proposed in (Iglesias

et al., 1996).

1. Network level: The design decisions on the infrastructure of the multiagent architecture are taken.
Which agents are needed to maintain the multiagent society (facilitators, knowledge managers, group
coordinators, etc.) are specified. Several questions should be answered, for example:

e Is an agent name server needed? Should it be centralised or distributed?
e Is an agent group manager needed?
e Is a service repository needed? Should it be dynamic or static?

e Is a broker facility needed?

Which telematic protocol is more suitable (http, tcp sockets, mail, etc.)?



e What degree of security is needed?

The interactions needed to perform network tasks such as logging-in, logging-out, etc, can be represented
in the interactions diagrams of CoM (section 5) defined as SDL tasks. In this way, these diagrams are
augmented to show the design decisions.

2. Knowledge level: Several design decisions should be taken regarding the management of ontologies:

e Are there distributed ontologies (Thomas et al., 1995)7 Is an ontology manager needed?

e Should the agents understand different knowledge representation languages (KRLs)? Is a KRLs-
translator needed?

These public ontologies are the domain knowledge that should be common to most of the agents, and
can be extracted from the domain level of the EM.

3. Coordination level: For sake of reusability, several authors have pointed out the advantages of
defining the Cooperation knowledge as a reusable module (Jennings & A.; 1993) or the definition of
reusable coordination protocols AgenTalk (Ishida, 1995; Kuwabara et al., 1995). This knowledge, the
set of suitable primitives (Finin & Fritzson, 1994; Huang et al., 1995) and the agents to form joint
plans are the basis for the definition of this level. This knowledge should be merged (and specialised if
needed) with the domain knowledge of each agent derived from the EM in the application design.

3.3.3 Platform design

Based on the architecture design, the agent architecture selected and the non-functional requirements, the
selection of the operating system and the software and hardware platform is made.

3.4 Coding and testing

As discussed in (Wooldridge & Fisher, 1994), this is an open question, depending on the usage of a general
purpose language or a formal agent language, which can be directly executable or translated to an executable
form.

3.5 Global testing, operation and maintenance

The correct behaviour of the global system can be partially tested by using typical scenarios which deal with
the possible conflicts and the methods for conflict resolution. Since the global behaviour of the system cannot
be determined during analysis or design, because it depends on the particular commitments and agreements
between the agents (Huang et al., 1995), simulation of the behaviours is usually needed.

Finally, the MAS is installed and maintained.

4 Modifications to the Agent Model

The agent model has been modified in order to include the characteristic aspects of intelligent agents. The
central constituent is the agent. It has five attributes: name, type (human, new system agent or predefined
system agent), subclass-of, role, position and groups (agent groups the agent belongs to). Other constituents
of this model are:

e Seruvice: facilities offered to the rest of agents to satisfy their goals. It can perform one task of the TM,
and has five attributes: name, type, task, and ingredients.
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Goal: objectives of the agents. The goal has the following attributes: name, description, type and
ingredients. The goals can be satisfied according to the reasoning capabilities of the agent described
below.

Reasoning capabilities: requirements on the agent’s expertise imposed by the task assignment. These
are realized by one or several expertise models that model how these capabilities are achieved. How
the agent reasons in its environment to achieve its goals is modelled here.

General capabilities: Skills (sensors and effectors to manipulate the environment), and languages the
agent understands (Agent Communication Languages and Knowledge Representation Languages).

Constraints: norms, preferences and permissions of the agent. The norms and preferences have special
interest in the case of MAS. For example, they are used to model when an agent decides to negotiate
and are realized by one or several expertise models.

The Coordination Model

Since the CommonKADS CM does not provide a suitable treatment of multiagent interactions, a different
CM development based on speech-acts is formulated here, which is called coordination model (CoM). This
is an alternative model that can be used when the agents are software agents. The CM of CommonKADS
can be used to model further human-machine communication. For the CoM, human agents are agentified
and the communication is carried out via speech-acts. The design of the user interface is outside the scope
of this extension.

5.1

Model structure

The Coordination model contains four costituents (figure 2):

Conversation: a set of interactions in order to ask for a service or request or update information®. It
1s distinguised by the name and the requested service name.

Interaction: a simple interchange of messages. It has the following attributes: speech-act, agent com-
munication language, knowledge representation language, synchronization (synchronous, asynchronous
or future), transmitter, receiver and ingredients.

Capabilities: the skills and knowledge of the initiator of the conversation and the other participants.

Protocol: a set of rules that govern the conversation. It defines the different states and interactions
allowed.

5.2 Graphical notation

Three graphical models (with the corresponding textual templates) are used to develop the CoM:

¢ Message sequence charts(Rudolph et al., 1996) are used to represent the different scenarios of the

use cases identified. An alternative graphical model are event trace diagrams as in the dynamic
modelling of OMT (Rumbaugh, 1995b; Rumbaugh, 1995a; Yau et al., 1995). Scenarios in the same
way than in ROOM (Selic et al., 1992) describe both how the system is used and the event sequences
that occur inside the system (in this case, the different interactions between the agents).

Event flow diagrams are used to model the generic behaviour of the agent, including all the possible
interactions and the data/knowledge interchanged in these interactions.

5Requesting or updating information is also modelled as a service



Agent Model / Task model

Hasinitiative
Agent /Participatesin
Service requested in Ingredient
L / Conversation \
realized by

has

governed by

Capabilities

Initiator

Protocol

Speech-act

Name

Properties Skill Language
i Knowledge Synchronization
Participants Transmitter
Ski IF Receiver
Knowledge Input Ingredient

determines allowed

Output Ingredient
-

realized by

Transfer Task
Experience model

Service Module
Design model

FIGURE 2: Coordination Model



¢ Communicating Extended Finite-State Machines (CEFSMs) of the formal description technique
SDL (Turner, 1993) are used for modelling the control flow of the interactions. SDL has the advantages
of the FDTs (unambiguous, complete, consistent, tractable specifications) and introduces the advantage
of being designed for modelling communication protocols. SDL has been selected from among the
available FDTs because of its clear and intuitive graphical language. From this FDT, only the CEFSMs
have been used. Block diagrams of SDL are an alternative solution to the event flow diagrams of the
previous point.

CEFSMs have the special characteristic for MAS of considering three kinds of events (signals) or stimuli:

e Message events: a message received from other agents. These signals are modelled by speech acts.
e Erxternal events: events from the environment through the sensors: push button, alarm firing, etc.

e Internal events: events generated by an agent in order to achieve a goal.

5.3 Landmark states

There are two main landmark states during the developing of this model, apart from the cross-validation
between models:

o Identification and description of the conversations (services) between agents (steps 1-6 in section 5.4).
During this phase we will assume that every conversation is performed following a client-server protocol.
Once this landmark state is achieved (and the agent model is completed), we can produce a prototype
for external and internal validation.

o Identification of the negotiation protocols needed (steps 7-9 in section 5.4). Some of the conversations
can be relaxed following a negotiation protocol.

5.4 Model development cycle
The steps followed for the development of this model are:

1. Describe the prototypical scenarios between agents. These scenarios can be a further development of
the scenarios determined in the conceptualisation phase for the use cases. The scenarios are described
using message sequence charts (MSCs)(Rudolph et al., 1996). An alternative representation is event
trace diagrams. During this first stage, we will consider that every conversation consists of only one
single interaction and the possible answer. The objective at this stage of development is to establish
the set of conversations (channels) between agents.

2. Represent the events (interchanged messages) between agents in event flow diagrams (also called service
charts). These diagrams collect the relationships between the agents via services.

3. Model the date interchanged in each interaction. The EM can help us to define the interchanged
knowledge structures. These interchanged data are shown in the event flow diagram between squared
brackets.

4. Model each interaction with the CEFSMs of SDL specifying speech-acts as inputs/outputs of message
events. Alternative representations are discussed in section 7. The inputs and outputs of the SDL
process representation can be validated with the MSC diagrams.

5. Each state can be further refined. If the state represents a knowledge task, the inference templates
of the CommonKADS library are very useful. While decomposing a state, it can be decomposed into
different agents, and thus, the complete process must be repeated.



6. Analyse each interaction and determine its synchronisation: synchronous, asynchronous or future.

7. Determine the receivers of each service request: individual or group and if a coordination protocol such
as contract-net is desired. This can be represented in SDL using the names of the agents or group
names in the explicit addressing facility.

8. Determine if a cooperation protocol is needed for each conversation. The reasons for using a cooperation
protocol can be, among others (Durfee et al., 1989):

e Increasing task completion through parallelism.

o Increasing the set or scope of achievable tasks by sharing resources (information, expertise, physical
devices, etc.).

e Increasing the likelihood of completing tasks by undertaking duplicate tasks.

e Decreasing the interference between tasks by avoiding harmful interactions.

e Resolving conflicts via negotiation protocols. Usually these conflicts need to be assisted by a
human agent. The CoM model is used for modelling the negotiation language category (protocol,
primitives, semanticas and object structure) and partly the negotiation process category (procedure
and behaviour) according to the classification of negotiation categories by (Miiller, 1992; p.213).
The other category negotiation decision category (preferences and strategies) should be modelled
with expertise models.

9. Consult the library of cooperation protocols and reuse a protocol defined previously or define its
interaction model. The utilization of HMSC (High level Message Sequence Charts) is very useful for
this purpose.

From the CoM we should check the consistency with the AM:

e The source point of an arrow of the initiator agent represents a goal or an event-response.
e Each source point of an arrow is a requested service.

e Each target point of an arrow is a service the agent offers.

This model allows the complete and clear specification of individual interactions. Nevertheless, the global
behaviour of the system depends on the sequence of interactions carried out by the agents.

An additional advantage of using SDL is the ability to model coordination protocols which can be reused
using tasks.

6 Example

6.1 Statement of the problem

In this section we apply the MAS-CommonKADS methodology to the development of a simplified classifica-
tion system (in the following SCS). This system will be running in a power plant. The system has to predict
if the value of a distinguished variable (e.g., the delivered power) is going up or down or is constant. This
classification is done from a set of values collected from sensors and filtered and stored every two minutes
by an existing data acquisition system. For the sake of simplicity, we will deal with only two variables (e.g.,
boiler temperature and pressure).

The managers of the plant have no clear idea of the techniques that should be used for classification, as there
is no analytical model available. They consider it a good idea to incorporate several classification modules
whose results would be presented every two minutes to a human operator in the control room of the plant.

Based on the assessment received from the system, the operator decides the control actions to be applied to
the plant in order to maintain it in the desired state (desired performance, delivered power, pollution level,
ete.).

10



6.2 Analysis

Since this is a “toy-problem”, we will neither analyse the risk of the system development, nor the impact of
the system in the organisation, but these software management issues should be considered in a real case.

6.2.1 First version of the AM, EM and TM

A first version of the AM is developed as recommended (Weaern & Gala, 1993; p.26) when there are pre-
defined systems (in our case, the collector system). Three agents are identified as attending to geographical
distribution criterion: Collector (for collecting data), Classifier and the User. For space limitations, we do
not show the CommonKADS templates of any model. The TM of the whole system also shows these three
functions.

msc ASKPREDICTION1
User-1 Classifier-1 Collector-1

AskPrediction——— |

AskData [y
——| GiveData
<€—— Suggest

msc ASKHISTORY msc ASKDATA
Classifier-1 Collector-1 Classifier-1 Collector-1
AskHistory —— | AskData | —— g
GiveHistory GiveData

FIGURE 3: Event trace of agent conversations version 1

AskPrediction[data]

User <€ > Classifier
Suggest[prediction] -
Error[cause] AskData([] GiveData[data]
AskHistory[] GiveHistory[history]
Error[cause]
Collector

FIGURE 4: Event flow diagram version 1

6.2.2 First version of CoM

The event traces of the prototypical use cases are shown in figure 3, and the corresponding event flow diagram
is shown in figure 4. The interlingua shown between squared brackets in the event flow diagram has been
obtained from the domain knowledge of the EM.

Only one CEFSM is included in figure 5. This diagram is an enhancement of the first version. It includes
some design issues: macro for NetworkLogln and non-functional requirements such as the Quet button of the
menu.
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/* The process consists of three states:
ShowMenu: shows a menu
ObtainPrediction: a prediction is being obtained
Disconnected: starts the disconnection

*/
NetworkLogIn
‘User presses button
Go for getting ] Go Quit
prediction’ +

( ObtainPrediction )

AskForService(Shutdown)

AskForService(Prediction)
i
[ |

Answer(prediction) Sorry(cause)

'The agent could try

Display(prediction) Display(cause) another plan

Y Y
( Show Menu > ( Show Menu >

FIGURE 5: CEFSM of service User:Interaction
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6.3 Design

Architecture design Since only an agent name server is needed, a centralised network agent is chosen for
the system, with Yellow-Pages facilities.

msc ASKPREDICTION
C4.5-1
User-1 Classifier-1 SNNS-1

I |
AskPrediction ——— |

AskSuggest|— yp
f——— GiveSuggest
~€—— Suggest

FIGURE 6: Event trace of agent conversations version 2

AskPrediction[data] AskSuggest[data] C45
User »> Classifier - >
fuggest[prediction] GiveSuggest[prediction]
Error[cause] AskData[] GiveData[data] SNNS
AskHistory[] GiveHistory[history]
Error[cause] Learners
Collector

FIGURE 7: Event flow diagram version 2

Application design From the statement of the problem, two methods are considered for predicting: a
neural one and a symbolic one, which will be carried out by two agents: Ag_Neural and Ag_ID3,
respectively. An additional agent (Selector) is added to select at run-time the best prediction. The
event trace and event flow diagrams of this solution are shown in figures 6 and 7. A new version of
AM and CoM are needed to add the new interactions, which are not shown here for space limitations.
The Agent Description Language (ADL) (Gonzélez et al., 1994) is selected to describe the agents. The
ADL code is included in appendix A.

Platform design The MIX platform (Iglesias et al., 1994; Gonzdlez et al., 1995) is selected because of its
facilities for integration of symbolic and connectionist techniques.

6.4 Coding and testing

The services are programmed in C++ using the libraries of the MIX Platform. The diagrams of the Co-
ordination model are a good specification of the interactions. The platform is then tested.

7 Related work and Conclusions

The main purpose of this paper is the definition of a complete software engineering methodology to MAS.
This has been made by the extension of the CommonKADS methodology in two ways:

o Integration of the multiagent characteristics in a SDLC.

e Development of a new model for interagent communication: the coordination model.

13



The CoM can be used in conjunction with CommonKADS (or another knowledge-engineering methodology)
or on its own for describing coordination protocols for MAS systems.

SDTs (Kuwabara et al., 1995; Fisher et al., 1996; Barbuceanu & Fox, 1996), Petri nets (Ismail et al.,
1996) and statecharts (Harel, 1987; Coleman et al., 1992) are different alternatives to CEFSM for dynamic
modelling. The CEFSMs of SDL have been selected because they are well known, highly visual, intuitive and
a good input to the implementation. The mapping between SDL and MSC concepts makes the utilization of
both languages and the availability of tools easy. They seem very suitable for modelling the interactions via
primitives such as KQML (Finin & Fritzson, 1994), which are modelled in SDL as signals. Tts nesting facility
via macros makes the reusability of protocols and its expansion easy. Nevertheless, the other alternatives
(especially Petri nets and statecharts) are not excluded.

In contrast to other coordination languages (Kuwabara et al., 1995; Barbuceanu & Fox, 1996) which are
environments for describing and debugging coordination protocols, our CoM is not language dependent, and
we have been successful in translating some of the protocols defined in (Kuwabara et al., 1995; Barbuceanu
& Fox, 1996). These results have shown that our model does not need (informal) textual explanation as do
the others.

In order to provide tool support, there is no current single tool that supports all the proposed graphical
models in this article. We are working now on an integrated environment for MAS systems that support all
the SDLC, but it is still in the early stage.

This methodology is been applied to two research projects in different applications. Although the examples
have been relatively small, we can conclude that besides the obvious advantage of using a methodology, the
advantages of documentation of this methodology and its facility to describe coordination protocols should
be stressed.
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A ADL Code

#DOMAIN "example"

#YP_SERVER "tcp://madrazo.gti.dit.upm.es:6050"

#COMM_LANGUAGE ckrl
#0ONTOLOGY example.ckrl

AGENT YP_Agent -> YPAgent
END YP_Agent

AGENT Interface -> BaseAgent
GOALS
Interaction: CONCURRENT interaction
RESOURCES
REQ_LIBRARIES: "inter-funct.C"
REQ_SERVICES: Start_Control
END Interface

AGENT Selector -> BaseAgent
RESOURCES
REQ_LIBRARIES: "selec_funct.C"
REQ_SERVICES: give_sample;
suggest

CONTRACT_POLICY eval_suggestion
REQ_MSG_STRUCT example::cost

SERVICES
start_control: CONCURRENT start_control
END Selector

AGENT Collector -> BaseAgent

RESOURCES

REQ_LIBRARIES: '"collec_funct.C"

INTERNAL_OBJECTS

history -> History

GOALS

get_data: CONCURRENT GetData

SERVICES
give_sample : GiveSample
ANS_MSG_STRUCT example::Vector;
give_history: GiveHistory
REQ_MSG_STRUCT example: :Depth
ANS_MSG_STRUCT example: :Vector

END Collector

[/ Fkkkokok ok ok dokok Kk ok ok ok ok
// Learning Agents
[/ Fkkkokok ok ok dokok Kk ok ok ok ok

CLASS Classifier -> BaseAgent
RESOURCES

REQ_SERVICES: Give_History
SUBSCRIBE_TO: Learning_Group

GOALS

daemon : CONCURRENT virtual
SERVICES

suggest: CONCURRENT virtual

REQ_MSG_STRUCT example: :Vector

ANS_MSG_STRUCT example::Suggestion
END Classifier

AGENT Ag_Neural -> Classifier

RESOURCES

REQ_LIBRARIES: "learn_funct.C"
GOALS
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daemon : CONCURRENT LearningNeural
SERVICES
suggest: CONCURRENT SuggestionNeural
COST SNNS_cost_function
REQ_MSG_STRUCT example::StructFile
ANS_MSG_STRUCT example: :Cost
END Ag_Neural

AGENT Ag_ID3 -> Classifier
RESOURCES

REQ_LIBRARIES: "learn_funct.C"
GOALS
daemon: CONCURRENT LearningSymbolic
SERVICES
suggest: CONCURRENT SuggestionSymbolic
REQ_MSG_STRUCT example::Vector
ANS_MSG_STRUCT example::Suggestion
COST C45_cost_function
REQ_MSG_STRUCT example::StructFile

ANS_MSG_STRUCT example: :Cost
END Ag_ID3



