
A Methodological Proposal for Multiagent SystemsDevelopment Extending CommonKADS?Carlos A. Iglesiasy??, Mercedes Garijoz,Jos�e C. Gonz�alezz and Juan R. VelascozyDep. de Teor��a de la Se~nal, Comunicaciones e Ing. Telem�atica, E.T.S.I. Telecomunicaci�onUniversidad de Valladolid, E{47011 Valladolid, Spainfcif@tel.uva.esgzDep. de Ingenier��a de Sistemas Telem�aticos, E.T.S.I. Telecomunicaci�onUniversidad Polit�ecnica de Madrid, E{28040 Madrid, Spainfmga,jcg,juanrag@gsi.dit.upm.esAbstractThe application of agent technology to real applications needs the development of a methodologywhich supports all the Software Development Life Cycle (SDLC) of an agent based system including itsmanagement. This paper proposes an extension of CommonKADS for �tting the characteristics of theagent approach into the SDLC and the de�nition of a new model, the coordination model, for describingthe coordination protocols.1 The need for a methodologyIn spite of the great interest in the agent technology in the scienti�c community, and the introduction ofterms such as Agent-Based Software Engineering (Wooldridge & Fisher, 1994) and Multi-Agent Systemsengineering (M�uller, 1992), there has been little work in de�ning a methodology for designing agents andagent based systems as mentioned in (Jennings, 1995; Jennings & Wooldridge, 1995; M�uller, 1992).A �rst approach for the de�nition of a general methodology for multiagent systems (MAS) is here presented,which has been developed because of the need to apply a multiagent platform to di�erent applications.2 The MAS-CommonKADS approachThe de�nition of a software engineering methodology does not usually begin from scratch, but is a re�nementcycle, adding the new aspects and perspectives of the systems and languages and integrating the successfulingredients of previous methodologies. This is the approach followed here. Our methodology is called MAS-CommonKADS because it is an extension of the CommonKADS methodology, adding the aspects relevantto MAS.2.1 CommonKADS overviewCommonKADS (de Hoog et al., 1993) is a methodology designed for the development of knowledge basedsystems (KBS) analogous to methods of software engineering. The development of these methods has been?This research is funded in part by the Commission of the European Communities under the ESPRIT Basic Research Pro-ject MIX: Modular Integration of Connectionist and Symbolic Processing in Knowledge Based Systems, ESPRIT-9119. TheMIX consortium is formed by the following institutions and companies: Institute National de Recherche en Informatique eten Automatique (INRIA{Lorraine/CRIN{CNRS, France), Centre Universitaire d'Informatique (Universit�e de Gen�eve, Switzer-land), Institute d'Informatique et de Math�ematiques Appliqu�ees de Grenoble (France), Kratzer Automatisierung (Germany),Fakult�at f�ur Informatik (Technische Universit�at M�unchen, Germany) and Dep. Ingenier��a de Sistemas Telem�aticos (UniversidadPolit�ecnica de Madrid, Spain).??This research was partly done while the �rst author was visiting the Dep. Ingenier��a de Sistemas Telem�aticos (UniversidadPolit�ecnica de Madrid).



COMMUNICATION
MODEL

AGENT MODEL

Task
Function
constituent

Task

Reasoning Capabilities
Applic. Knowledge
Strategic Knowledge

Decomposition
Expertise model

Transaction
Interaction

Transfer task
Transaction

Task
Ingredient
Agent

Agent
Initiative

Ingredient
Information item
Transaction

TASK MODEL

DESIGN MODEL

EXPERTISE
MODEL

ORGANIZATION
MODEL

Task
ApplicationFIGURE 1: The CommonKADS Model Set from (Schreiber et al., 1994; p.2)funded by the European Community's ESPRIT program from 1983 to 1994. A succinct overview of Com-monKADS can be found in (Schreiber et al., 1994).The CommonKADS methodology follows an approach to Knowledge Based System Development as thebuilding of a number of separate models that captures salient features of the system and its environment.The process of KBS development consists of �lling a number of model templates. Associated to these modeltemplates are model states that characterise the landmark moments in the development of the model. Theselandmark states allow the management of the project, whose development proceeds in a cyclic and risk-drivenway.The CommonKADS model set is shown in �gure 1. There are six de�ned models:� Organisation model: (OM) is a tool for analysing the organisation in which a KBS is going to beintroduced.� Task model: (TM) is used to describe at a general level the tasks that are performed or will be performedin the organisational environment where the proposed KBS will be installed in the future, and providesthe frame for the distribution of tasks to the agents.� Agent model: (AM) an agent is an executor of a task. It can be human, computer software or anyother entity capable of executing a task. This model describes the capabilities and characteristics ofthe agents.� Communication model: (CM) details the exchange of information between the di�erent agents involvedin executing the tasks described in the Task Model.� Expertise model: (EM) this is the focus of the CommonKADS methodology and models the problemsolving knowledge used by an agent to perform a task. The Expertise Model distinguishes betweenapplication knowledge and problem solving knowledge (Wielinga et al., 1993; p. 10). It is dividedinto three sub-levels: domain level (declarative knowledge of the domain), inference level (a library ofgeneric inference structures) and task level (ordering the inferences).� Design model: (DM) while the other �ve models deal with the analysis of the KBS, this model isintended to describe the architecture and technical design of the KBS in order to implement it.2



2.2 Limitations of CommonKADS for MASCommonKADS was not designed for developing MAS. The main restrictions for the direct application ofCommonKADS to MAS come from the CommonKADS CM:� The CM deals mostly with human-computer interaction. It is very restrictive for computer-computerinteraction. In the same way as the interaction model (Kingston, 1992), previous to CommonKADSCM, both model the inputs and outputs of the tasks carried out between a user and a KBS. Theprimitives of a protocol for complex interactions are not considered.� According to CommonKADS, task assignment should be performed in a �xed way. However, a restrictedform of 
exible task assignment can be carried out.(W�rn et al., 1993; p. 19)� The CM does not deal with multi-partner transactions in a natural manner.In the following sections, we propose an extension of CommonKADS for MAS:� First, how the agent approach can be integrated into the SDLC (section 3) is shown.� Then a new model, the coordination model 3, is proposed (section 5). It is an alternative model to thecommunication model for modelling the interaction between agents. The communication model couldstill be used for human-computer interaction.� Finally, an example is presented (section 6).3 MAS-CommonKADS: software development life cycle modelThe overall MAS-CommonKADS methodology for multiagent systems development follows these phases:� Conceptualisation. Elicitacion task to obtain a �rst description of the problem and determination of usecases which can help to understand informal requirements (Potts et al., 1994) and to test the system.� Analysis. Determination of the requirements of our system starting from the problem statement.During this phase the following models are developed: OM, TM, AM, CM, CoM and EM.� Design. How the requirements of the analysis phase can be achieved by the developing of the DMis determined here. The architecture of both the global multiagent network and each agent is alsodetermined.� Coding and testing of each agent.� Integration. The overall system is tested.� Operation and maintenance.3.1 ConceptualisationThe usage of use cases (Jacobson et al., 1992) has been introduced in most of the object oriented method-ologies in the last few years (Regnell et al., 1996), especially in the earliest stages of system development.The method of use case modelling presented in (Regnell et al., 1996) has the advantage of being formalizedwith Message Sequence Charts, which are used for modelling the proposed coordination model.3The selection of a new name is not easy because cooperation model was used in KADS-I and interaction model was used byKingston (Kingston, 1992) in an extension to KADS-I 3



3.2 AnalysisThe results of this phase will be the requirements speci�cation of the composite system through the devel-opment of the models described before. Only the extensions to CommonKADS are developed in this paper.The steps of this phase are:1. Delimitation: Delimit the MAS system from the external systems. This task was carried out inCommonKADS by the development of the AM. A �rst version of AM and CoM are obtained. Theexternal (prede�ned) systems are agenti�ed. Both speech-acts and interchanged data are modelled inthe CoM. If there is user interaction, agentify the user and develop a �rst version of CM.2. Decomposition: The system can be decomposed by the identi�cation of more agents attending tothe following guidelines (Bond & Gasser, 1988):� Geographical distribution: An agent has a unique physical address. From the problem statementit is determined whether the system is geographically distributed (e.g., an intelligent networkmanagement system). Each di�erent physical position corresponds to a di�erent agent.� Logical distribution: Each agent performs one or several functions in the application. An agent isable to perform a task in order to achieve a goal. The study of goal interrelationship determinesthe autonomy of the agents. The development of the TM can help to determine new agents. Theprocess of assigning di�erent goals to di�erent agents is called the goal strategy (Du Bois, 1995;p.112).� Knowledge distribution. In the case of knowledge acquisition from di�erent experts (Dieng, 1994)or the existence of di�erent expert domains (Wooldridge et al., 1991), an agent can be de�ned foreach domain and an EM can be developed for each agent.3. Validation:� Each time an agent is decomposed into new agents, these agents should be logically consistentwith the previous de�nition of the agent:{ The subagents are responsible for achieving the goals of the agent.{ The subagents should be consistent with the CoM and maintain the same external interactions.� Cross validation with the other models (TM, CM, CoM).� At least one con
ict solving method should be determined for each con
ict detected in the scen-arios.3.3 DesignAs a result of the analysis phase, an initial set of agents has been determined. During this phase the DM isdeveloped. This phase is extended for MAS and consists of:� Application design. The system is decomposed into sub-modules. For a MAS architecture, the mostsuitable agent architecture4 is determined for each agent.� Architecture design. A multiagent architecture is selected here (instead of, for example a blackboardor an object decomposition). For a MAS architecture, the infrastructure of the MAS-system (so-callednetwork model (Iglesias et al., 1996)) is determined. The agents (so-called network agents) that maintainthis infrastructure are also de�ned.� Platform design. Software and hardware that is needed (or available) for the system.4Agent architecture is used for describing a particular agent software/hardware construction (Wooldridge & Jennings, 1995)and agent model for the set of requirements (skills, role, etc.) of the CommonKADS AM4



3.3.1 Application designThe EM (mainly its task level) and the TM can help us to identify new agents. For each new agentidenti�cation, the steps in the decomposition and validation of the analysis should be followed.The de�nition of the domain knowledge of each agent is based on the domain level of the EM. The commondomain knowledge for most of the agents and the coordination knowledge is extracted from the networkmodel (section 3.3.2).In this phase, more agents can be identi�ed complying with the following criteria:� Enabling coordination by the allocation of scarce resources. If a resource is needed by several agents,an agent manager (so-called internal agent in (Rumbaugh, 1995a)) of the resource can be suitable.This heuristic has the disadvantage of increasing the dependencies between agents and the overload ofinteractions (Bond & Gasser, 1988).� Achieving some of the generic goals of cooperation (Durfee et al., 1989): duplicating tasks with di�erentperforming methods. If a task can be achieved by di�erent problem solving methods, a common usageis to draw a goal graph with all the possibilities (Maurer & Paulokat, 1994; Mylopoulos et al., 1992).After drawing this diagram, several strategies can be followed:{ Implement all the possibilities in one agent. The agent selects the best one at run-time by meansof a planning process.{ Implement one possibility per agent, and add an internal agent for deciding at run time whichagents are more suitable for carrying out the task and which is the best solution. The reasonfor subdividing an agent can be that the methods are very heterogeneous (i.e. symbolic andconnectionist methods, di�erent reasoning capabilities required, etc).{ The global plan can be decomposed into sub-plans assigned to di�erent agents (i.e. contract net).In this case, the commitments of the agents can be speci�ed for prototypical interactions. Thisspeci�cation of both commitments and reasoning will depend on the agent theory selected.Once the agents have been identi�ed, whether each agent should be modelled with a deliberative,reactive or hybrid architecture can be determined. This selection depends on the required skills of eachagent re
ected in the AM, as discussed in (M�uller, 1992). The next step is specifying each agent usingan agent language as detailed design language (DDL) if there is no suitable agent in our agent library.This description of the agent knowledge can be decomposed in de�ning the general ontology for all theagents (which can be imposed, for example, for limited access to resources (Brazier et al., 1996)) andthe particular behaviour of each agent together with the knowledge and resources needed.3.3.2 Architecture designThe general architecture of the systems is, of course, a multiagent architecture. Here, the architecture designis subdivided up into the three levels of the network model of a multiagent architecture proposed in (Iglesiaset al., 1996).1. Network level: The design decisions on the infrastructure of the multiagent architecture are taken.Which agents are needed to maintain the multiagent society (facilitators, knowledge managers, groupcoordinators, etc.) are speci�ed. Several questions should be answered, for example:� Is an agent name server needed? Should it be centralised or distributed?� Is an agent group manager needed?� Is a service repository needed? Should it be dynamic or static?� Is a broker facility needed?� Which telematic protocol is more suitable (http, tcp sockets, mail, etc.)?5



� What degree of security is needed?The interactions needed to perform network tasks such as logging-in, logging-out, etc, can be representedin the interactions diagrams of CoM (section 5) de�ned as SDL tasks. In this way, these diagrams areaugmented to show the design decisions.2. Knowledge level: Several design decisions should be taken regarding the management of ontologies:� Are there distributed ontologies (Thomas et al., 1995)? Is an ontology manager needed?� Should the agents understand di�erent knowledge representation languages (KRLs)? Is a KRLs-translator needed?These public ontologies are the domain knowledge that should be common to most of the agents, andcan be extracted from the domain level of the EM.3. Coordination level: For sake of reusability, several authors have pointed out the advantages ofde�ning the Cooperation knowledge as a reusable module (Jennings & A., 1993) or the de�nition ofreusable coordination protocols AgenTalk (Ishida, 1995; Kuwabara et al., 1995). This knowledge, theset of suitable primitives (Finin & Fritzson, 1994; Huang et al., 1995) and the agents to form jointplans are the basis for the de�nition of this level. This knowledge should be merged (and specialised ifneeded) with the domain knowledge of each agent derived from the EM in the application design.3.3.3 Platform designBased on the architecture design, the agent architecture selected and the non-functional requirements, theselection of the operating system and the software and hardware platform is made.3.4 Coding and testingAs discussed in (Wooldridge & Fisher, 1994), this is an open question, depending on the usage of a generalpurpose language or a formal agent language, which can be directly executable or translated to an executableform.3.5 Global testing, operation and maintenanceThe correct behaviour of the global system can be partially tested by using typical scenarios which deal withthe possible con
icts and the methods for con
ict resolution. Since the global behaviour of the system cannotbe determined during analysis or design, because it depends on the particular commitments and agreementsbetween the agents (Huang et al., 1995), simulation of the behaviours is usually needed.Finally, the MAS is installed and maintained.4 Modi�cations to the Agent ModelThe agent model has been modi�ed in order to include the characteristic aspects of intelligent agents. Thecentral constituent is the agent. It has �ve attributes: name, type (human, new system agent or prede�nedsystem agent), subclass-of, role, position and groups (agent groups the agent belongs to). Other constituentsof this model are:� Service: facilities o�ered to the rest of agents to satisfy their goals. It can perform one task of the TM,and has �ve attributes: name, type, task, and ingredients.6



� Goal: objectives of the agents. The goal has the following attributes: name, description, type andingredients. The goals can be satis�ed according to the reasoning capabilities of the agent describedbelow.� Reasoning capabilities: requirements on the agent's expertise imposed by the task assignment. Theseare realized by one or several expertise models that model how these capabilities are achieved. Howthe agent reasons in its environment to achieve its goals is modelled here.� General capabilities: Skills (sensors and e�ectors to manipulate the environment), and languages theagent understands (Agent Communication Languages and Knowledge Representation Languages).� Constraints: norms, preferences and permissions of the agent. The norms and preferences have specialinterest in the case of MAS. For example, they are used to model when an agent decides to negotiateand are realized by one or several expertise models.5 The Coordination ModelSince the CommonKADS CM does not provide a suitable treatment of multiagent interactions, a di�erentCM development based on speech-acts is formulated here, which is called coordination model (CoM). Thisis an alternative model that can be used when the agents are software agents. The CM of CommonKADScan be used to model further human-machine communication. For the CoM, human agents are agenti�edand the communication is carried out via speech-acts. The design of the user interface is outside the scopeof this extension.5.1 Model structureThe Coordination model contains four costituents (�gure 2):� Conversation: a set of interactions in order to ask for a service or request or update information5. Itis distinguised by the name and the requested service name.� Interaction: a simple interchange of messages. It has the following attributes: speech-act, agent com-munication language, knowledge representation language, synchronization (synchronous, asynchronousor future), transmitter, receiver and ingredients.� Capabilities: the skills and knowledge of the initiator of the conversation and the other participants.� Protocol: a set of rules that govern the conversation. It de�nes the di�erent states and interactionsallowed.5.2 Graphical notationThree graphical models (with the corresponding textual templates) are used to develop the CoM:� Message sequence charts(Rudolph et al., 1996) are used to represent the di�erent scenarios of theuse cases identi�ed. An alternative graphical model are event trace diagrams as in the dynamicmodelling of OMT (Rumbaugh, 1995b; Rumbaugh, 1995a; Yau et al., 1995). Scenarios in the sameway than in ROOM (Selic et al., 1992) describe both how the system is used and the event sequencesthat occur inside the system (in this case, the di�erent interactions between the agents).� Event 
ow diagrams are used to model the generic behaviour of the agent, including all the possibleinteractions and the data/knowledge interchanged in these interactions.5Requesting or updating information is also modelled as a service7
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� Communicating Extended Finite-State Machines (CEFSMs) of the formal description techniqueSDL (Turner, 1993) are used for modelling the control 
ow of the interactions. SDL has the advantagesof the FDTs (unambiguous, complete, consistent, tractable speci�cations) and introduces the advantageof being designed for modelling communication protocols. SDL has been selected from among theavailable FDTs because of its clear and intuitive graphical language. From this FDT, only the CEFSMshave been used. Block diagrams of SDL are an alternative solution to the event 
ow diagrams of theprevious point.CEFSMs have the special characteristic for MAS of considering three kinds of events (signals) or stimuli:� Message events: a message received from other agents. These signals are modelled by speech acts.� External events: events from the environment through the sensors: push button, alarm �ring, etc.� Internal events: events generated by an agent in order to achieve a goal.5.3 Landmark statesThere are two main landmark states during the developing of this model, apart from the cross-validationbetween models:� Identi�cation and description of the conversations (services) between agents (steps 1-6 in section 5.4).During this phase we will assume that every conversation is performed following a client-server protocol.Once this landmark state is achieved (and the agent model is completed), we can produce a prototypefor external and internal validation.� Identi�cation of the negotiation protocols needed (steps 7-9 in section 5.4). Some of the conversationscan be relaxed following a negotiation protocol.5.4 Model development cycleThe steps followed for the development of this model are:1. Describe the prototypical scenarios between agents. These scenarios can be a further development ofthe scenarios determined in the conceptualisation phase for the use cases. The scenarios are describedusing message sequence charts (MSCs)(Rudolph et al., 1996). An alternative representation is eventtrace diagrams. During this �rst stage, we will consider that every conversation consists of only onesingle interaction and the possible answer. The objective at this stage of development is to establishthe set of conversations (channels) between agents.2. Represent the events (interchanged messages) between agents in event 
ow diagrams (also called servicecharts). These diagrams collect the relationships between the agents via services.3. Model the date interchanged in each interaction. The EM can help us to de�ne the interchangedknowledge structures. These interchanged data are shown in the event 
ow diagram between squaredbrackets.4. Model each interaction with the CEFSMs of SDL specifying speech-acts as inputs/outputs of messageevents. Alternative representations are discussed in section 7. The inputs and outputs of the SDLprocess representation can be validated with the MSC diagrams.5. Each state can be further re�ned. If the state represents a knowledge task, the inference templatesof the CommonKADS library are very useful. While decomposing a state, it can be decomposed intodi�erent agents, and thus, the complete process must be repeated.9



6. Analyse each interaction and determine its synchronisation: synchronous, asynchronous or future.7. Determine the receivers of each service request: individual or group and if a coordination protocol suchas contract-net is desired. This can be represented in SDL using the names of the agents or groupnames in the explicit addressing facility.8. Determine if a cooperation protocol is needed for each conversation. The reasons for using a cooperationprotocol can be, among others (Durfee et al., 1989):� Increasing task completion through parallelism.� Increasing the set or scope of achievable tasks by sharing resources (information, expertise, physicaldevices, etc.).� Increasing the likelihood of completing tasks by undertaking duplicate tasks.� Decreasing the interference between tasks by avoiding harmful interactions.� Resolving con
icts via negotiation protocols. Usually these con
icts need to be assisted by ahuman agent. The CoM model is used for modelling the negotiation language category (protocol,primitives, semanticas and object structure) and partly the negotiation process category (procedureand behaviour) according to the classi�cation of negotiation categories by (M�uller, 1992; p.213).The other category negotiation decision category (preferences and strategies) should be modelledwith expertise models.9. Consult the library of cooperation protocols and reuse a protocol de�ned previously or de�ne itsinteraction model. The utilization of HMSC (High level Message Sequence Charts) is very useful forthis purpose.From the CoM we should check the consistency with the AM:� The source point of an arrow of the initiator agent represents a goal or an event-response.� Each source point of an arrow is a requested service.� Each target point of an arrow is a service the agent o�ers.This model allows the complete and clear speci�cation of individual interactions. Nevertheless, the globalbehaviour of the system depends on the sequence of interactions carried out by the agents.An additional advantage of using SDL is the ability to model coordination protocols which can be reusedusing tasks.6 Example6.1 Statement of the problemIn this section we apply the MAS-CommonKADS methodology to the development of a simpli�ed classi�ca-tion system (in the following SCS). This system will be running in a power plant. The system has to predictif the value of a distinguished variable (e.g., the delivered power) is going up or down or is constant. Thisclassi�cation is done from a set of values collected from sensors and �ltered and stored every two minutesby an existing data acquisition system. For the sake of simplicity, we will deal with only two variables (e.g.,boiler temperature and pressure).The managers of the plant have no clear idea of the techniques that should be used for classi�cation, as thereis no analytical model available. They consider it a good idea to incorporate several classi�cation moduleswhose results would be presented every two minutes to a human operator in the control room of the plant.Based on the assessment received from the system, the operator decides the control actions to be applied tothe plant in order to maintain it in the desired state (desired performance, delivered power, pollution level,etc.). 10



6.2 AnalysisSince this is a \toy-problem", we will neither analyse the risk of the system development, nor the impact ofthe system in the organisation, but these software management issues should be considered in a real case.6.2.1 First version of the AM, EM and TMA �rst version of the AM is developed as recommended (W�rn & Gala, 1993; p.26) when there are pre-de�ned systems (in our case, the collector system). Three agents are identi�ed as attending to geographicaldistribution criterion: Collector (for collecting data), Classi�er and the User. For space limitations, we donot show the CommonKADS templates of any model. The TM of the whole system also shows these threefunctions.
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6.3 DesignArchitecture design Since only an agent name server is needed, a centralised network agent is chosen forthe system, with Yellow-Pages facilities.
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ow diagrams of this solution are shown in �gures 6 and 7. A new version ofAM and CoM are needed to add the new interactions, which are not shown here for space limitations.The Agent Description Language (ADL) (Gonz�alez et al., 1994) is selected to describe the agents. TheADL code is included in appendix A.Platform design The MIX platform (Iglesias et al., 1994; Gonz�alez et al., 1995) is selected because of itsfacilities for integration of symbolic and connectionist techniques.6.4 Coding and testingThe services are programmed in C++ using the libraries of the MIX Platform. The diagrams of the Co-ordination model are a good speci�cation of the interactions. The platform is then tested.7 Related work and ConclusionsThe main purpose of this paper is the de�nition of a complete software engineering methodology to MAS.This has been made by the extension of the CommonKADS methodology in two ways:� Integration of the multiagent characteristics in a SDLC.� Development of a new model for interagent communication: the coordination model.13



The CoM can be used in conjunction with CommonKADS (or another knowledge-engineering methodology)or on its own for describing coordination protocols for MAS systems.SDTs (Kuwabara et al., 1995; Fisher et al., 1996; Barbuceanu & Fox, 1996), Petri nets (Ismail et al.,1996) and statecharts (Harel, 1987; Coleman et al., 1992) are di�erent alternatives to CEFSM for dynamicmodelling. The CEFSMs of SDL have been selected because they are well known, highly visual, intuitive anda good input to the implementation. The mapping between SDL and MSC concepts makes the utilization ofboth languages and the availability of tools easy. They seem very suitable for modelling the interactions viaprimitives such as KQML (Finin & Fritzson, 1994), which are modelled in SDL as signals. Its nesting facilityvia macros makes the reusability of protocols and its expansion easy. Nevertheless, the other alternatives(especially Petri nets and statecharts) are not excluded.In contrast to other coordination languages (Kuwabara et al., 1995; Barbuceanu & Fox, 1996) which areenvironments for describing and debugging coordination protocols, our CoM is not language dependent, andwe have been successful in translating some of the protocols de�ned in (Kuwabara et al., 1995; Barbuceanu& Fox, 1996). These results have shown that our model does not need (informal) textual explanation as dothe others.In order to provide tool support, there is no current single tool that supports all the proposed graphicalmodels in this article. We are working now on an integrated environment for MAS systems that support allthe SDLC, but it is still in the early stage.This methodology is been applied to two research projects in di�erent applications. Although the exampleshave been relatively small, we can conclude that besides the obvious advantage of using a methodology, theadvantages of documentation of this methodology and its facility to describe coordination protocols shouldbe stressed.ReferencesBarbuceanu, M. & Fox, M. S. (1996). Capturing and modeling coordination knowledge for multi-agent systems.Journal on Intelligent and Cooperative Information Systems. To appear.Bond, A. H. & Gasser, L., (Eds.) (1988). Readings in Distributed Arti�cial Intelligence. Morgan Kaufmann Publishers:San Mateo, CA.Brazier, F., van Eck, P., & Treur, J. (1996). Modelling cooperative behaviour for resource access in a compositionalmulti-agent environment. In 6th Workshop on Knowledge Engineering Methods and Languages, Paris, France.Coleman, D., Hayes, F., & Bear, S. (1992). Introducing objectcharts or how to use statecharts in object-orienteddesign. IEEE Transactions on Software Engineering, 18(1):9{18.de Hoog, R., Martil, R., Wielinga, B., Taylor, R., Bright, C., & van de Velde, W. (1993). The CommonKADS modelset. ESPRIT Project P5248 KADS-II/M1/DM..1b/UvA/018/5.0, University of Amsterdam, Lloyd's Register, ToucheRoss Management Consultants & Free University of Brussels.Dieng, R. (1994). Agent-based method for building a cooperative knowledge-based system. In Proceedings of FGCS'94Workshop on Heterogeneous Cooperative Knowledge-Bases, Lecture Notes in Computer Science (LNCS), Tokyo, Ja-pan. Springer-Verlag: Heidelberg, Germany.Du Bois, P. (1995). The Albert II Language. On the Design and the Use of a Formal Speci�cation Language forRequirements Analysis. PhD thesis, Facult�es Universitaires Notre-Dame de la Paix, Namur (Belgium).Durfee, E. H., Lesser, V. R., & Corkill, D. D. (1989). Trends in cooperative distributed problem solving. IEEETransactions on Knowledge and Data Engineering, 1(1).Finin, T. & Fritzson, R. (1994). KQML: A language and protocol for knowledge and information exchange. InProceedings of the Thirteenth International Workshop on Distributed Arti�cial Intelligence, pages 126{136, LakeQuinalt, WA.Fisher, K., M�uller, J., & Pischel, M. (1996). AGenDA: A general testbed for distributed arti�cial intelligence applica-tions. In O'Hare, G. M. P. & R, J. N., (Eds.), Foundations of Distributed Arti�cial Intelligence, pages 401{427. John14
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A ADL Code#DOMAIN "example"#YP_SERVER "tcp://madrazo.gti.dit.upm.es:6050"#COMM_LANGUAGE ckrl#ONTOLOGY example.ckrlAGENT YP_Agent -> YPAgentEND YP_AgentAGENT Interface -> BaseAgentGOALSInteraction: CONCURRENT interactionRESOURCESREQ_LIBRARIES: "inter-funct.C"REQ_SERVICES: Start_ControlEND InterfaceAGENT Selector -> BaseAgentRESOURCESREQ_LIBRARIES: "selec_funct.C"REQ_SERVICES: give_sample;suggestCONTRACT_POLICY eval_suggestionREQ_MSG_STRUCT example::costSERVICESstart_control: CONCURRENT start_controlEND SelectorAGENT Collector -> BaseAgentRESOURCESREQ_LIBRARIES: "collec_funct.C"INTERNAL_OBJECTShistory -> HistoryGOALSget_data: CONCURRENT GetDataSERVICESgive_sample : GiveSampleANS_MSG_STRUCT example::Vector;give_history: GiveHistoryREQ_MSG_STRUCT example::DepthANS_MSG_STRUCT example::VectorEND Collector// *********************// Learning Agents// *********************CLASS Classifier -> BaseAgentRESOURCESREQ_SERVICES: Give_HistorySUBSCRIBE_TO: Learning_GroupGOALSdaemon : CONCURRENT virtualSERVICESsuggest: CONCURRENT virtualREQ_MSG_STRUCT example::VectorANS_MSG_STRUCT example::SuggestionEND ClassifierAGENT Ag_Neural -> ClassifierRESOURCESREQ_LIBRARIES: "learn_funct.C"GOALS

daemon : CONCURRENT LearningNeuralSERVICESsuggest: CONCURRENT SuggestionNeuralCOST SNNS_cost_functionREQ_MSG_STRUCT example::StructFileANS_MSG_STRUCT example::CostEND Ag_NeuralAGENT Ag_ID3 -> ClassifierRESOURCESREQ_LIBRARIES: "learn_funct.C"GOALSdaemon: CONCURRENT LearningSymbolicSERVICESsuggest: CONCURRENT SuggestionSymbolicREQ_MSG_STRUCT example::VectorANS_MSG_STRUCT example::SuggestionCOST C45_cost_functionREQ_MSG_STRUCT example::StructFileANS_MSG_STRUCT example::CostEND Ag_ID3
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