
46 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Chapter III

The Agent-Oriented

Methodology

MAS-CommonKADS

Carlos A. Iglesias

Technical University of Madrid, Spain

Mercedes Garijo

Technical University of Madrid, Spain

Abstract

This chapter introduces the main concepts of the methodology MAS-

CommonKADS that extends object-oriented and knowledge engineering

techniques for the conceptualisation of multi-agent systems. MAS-

CommonKADS defines a set of models (Agent Model, Task Model, Expertise

Model, Coordination Model, Communication Model, Organisation Model,

and Design Model) that together provide a model of the problem to be

solved. Each of the components of the model is a generic component for the

sake of reusability. Readers familiar with object-oriented analysis will find

it easy to apply most of the techniques of MAS-CommonKADS in the

development of multi-agent systems and will be introduced to the application

of knowledge engineering techniques for specifying the knowledge of the

agents.

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 47

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Introduction

MAS-CommonKADS is an agent-oriented software engineering methodology

that guides the process of analysing and designing multi-agent systems. MAS-

CommonKADS distinguishes several development phases: conceptualisation,

where the system is conceived as a multi-agent system and where agent

properties of the system are identified; analysis, where different models are

developed in order to analyse the system from different points of view; design,

where the different models are operationally focussed; and development and

testing, which are not addressed explicitly in the methodology.

MAS-CommonKADS (Iglesias, 1998; Iglesias, Garijo, González, & Velasco,

1998) can be used in combination with other methodologies. For example, some

of its conceptualisation techniques, such as Class-Responsibility-Collabora-

tion (CRC) cards (Beck & Cunningham, 1989; Wirfs-Brock, Wilkerson, &

Wiener; 1990) and User-Environment-Responsibility (UER) techniques

(Iglesias & Garijo, 1999) can be used for conceiving a system from an agent

point-of-view and be combined with other methodologies such as Rational

Unified Process (RUP) (Kruchten, 2000) or eXtreme Programming (XP)

(Beck, 1999); or use another agent-oriented methodology. In the same way,

every analysis model can be used in combination with another methodology.

MAS-CommonKADS has as one of its goals to be usable by professionals who

want to include in their projects this new and exciting computation paradigm—

agents. In this way, MAS-CommonKADS extends well-known modelling tech-

niques, such as CRC cards, use cases, Message Sequence Charts (MSC)

(ITU-Z.120, 1996) or Specification and Description Language (SDL) (ITU-

T-Z.100, 1994) diagrams, with new perspectives driven by the agent metaphor.

This makes many of MAS-CommonKADS techniques easy to learn and

practice. The recent addition of MSC and SDL diagrams to Unified Modelling

Language (UML) (Salic, 2004) makes MAS-CommonKADS even easier to

practice with standard object-oriented CASE tools that can be enhanced with

stereotypes for some of the new modelling entities (for example, software actor

or environment).

The MAS-CommonKADS Methodology

The origins of MAS-CommonKADS come from CommonKADS (Schreiber et

al., 1999), a well-known knowledge engineering methodology, and from object-

oriented methodologies such as Object Modelling Technique (OMT)

TEAM LinG

48 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(Rumbaugh, Blaha, Premerlani, & Eddy, 1991), Object-oriented Software

Engineering (OOSE) (Jacobson, Christerson, Jonsson, & Övergaard, 1992) and
Responsibility Driven Design (RRD) (Wirfs-Brock, Wilkerson, & Wiener;
1990). In addition, it includes techniques from protocol engineering such as SDL
and MSC. All these techniques are combined in order to provide support to agent
developers.

MAS-CommonKADS is based on the models of CommonKADS extended and
adapted to agent modelling, including the definition of a new model, the
coordination model, for describing agent interactions.

The software development life cycle in MAS-CommonKADS follows the
phases described below:

• Conceptualisation. Elicitation task in order to obtain a first description of
the problem through the definition of a set of use cases that help to
understand the system and how to test it.

• Analysis. The analysis phase determines the functional requirements of
the system. It describes the system through the development of a set of
models.

• Design. The design phase combines a top-down and bottom-up approach,
reusing developed components and developing new ones, depending on the
targeted agent platform. The design phase takes as an input the analysis
models, which are then operationalised, that is, transformed into specifica-
tions (the design model) ready to be implemented. The internal architecture
of every agent and the “network architecture” of the system are deter-
mined.

• Development and testing. Coding and testing tasks of the previously
defined agents.

• Operation. Maintenance and operation of the system.

The methodology defines the following models (Figure 1):

• Agent model that specifies the agent characteristics: reasoning capabili-
ties, skills (sensors/effectors), services, agent groups, and hierarchies (both
modelled in the organisation model).

• Task model that describes the tasks that the agents can carry out: goals,
decompositions, ingredients, problem-solving methods, and so forth.

• Expertise model that describes the knowledge needed by the agents to
achieve their goals.

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 49

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

• Organisation model that describes the organisation into which the MAS

is going to be introduced and the social organisation of the agent society.

• Coordination model that describes the conversations between agents,

their interactions, protocols, and required capabilities.

• Communication model that details the human-software agent interac-

tions and the human factors for developing these user interfaces. This

model uses standard techniques for developing user interfaces and, conse-

quently, it is will not discussed in this chapter.

• Design model that collects the previous models and consists of three

submodels: network design, for designing the relevant aspects of the agent

network infrastructure (required network, knowledge and telematic facili-

ties); agent design, for dividing or composing the agents of the analysis,

according to pragmatic criteria and selecting the most suitable agent

architecture for each agent; and platform design, for selecting the agent

development platform for each agent architecture.

Figure 1. Models of MAS-CommonKADS

TEAM LinG

50 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Conceptualisation

The problem of conceptualisation is the first step towards the identification of the

functional requirements of a system. One of the most extended techniques for

getting a first idea of the system is the Use Case technique. The technique

consists in identifying the possible users of the systems and the possible user

goals, describing ways of achieving these user goals. These textual descriptions

are the use cases. Usually, different use cases can be combined with the

relationships extend (if a use case is an extension of another one) or include (if

a use case is a part of another one). This technique is very simple and intuitive

and has been very successful for requirements elicitation and validation.

The use case technique can also be used for conceptualising a multi-agent

system. Nevertheless, autonomous agents are distinguished because they do not

need a user that supervises their execution. So, while with use cases we have to

answer the question, How is my system used?, we could ask ourselves about

other requirements of our system such as: When and how does my system act

and react to the environment? (environment cases) and What are the goals of the

system? (responsibility or goal cases).

In order to conceptualise an agent-based system, two general techniques are

used in MAS-CommonKADS: the UER cases technique that deals with the

identification of use, reaction, and goal cases of an agent or a multi-agent system,

and the enhanced Class-Collaboration-Responsibility Cards technique that deals

with the identification of responsibilities, plans, and collaborations of an agent.

Both techniques are complementary. The UER technique can be used for both

single-agent or multi-agent systems (for identifying use, reactive, and goal cases

of the whole system). The enhanced CRC cards can only be used for concep-

tualising multi-agent systems, since they guide the definition of collaborative

scenarios.

UER Technique

The User-Environment-Responsibility (UER) technique (Iglesias & Garijo,

1999) combines user, environment and responsibility-driven analysis for concep-

tualising a system from an agent-oriented perspective. This technique can be

used for conceptualising a particular autonomous agent or the general require-

ments of a multi-agent system. The technique analyses the system from three

complementary perspectives: the user perspective, the environment perspective,

and the assigned responsibility perspective.

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 51

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

• User-Centred Analysis. The potential users (called actors) of the system

are identified, together with their possible tasks or functions. The result of

this analysis is the set of use cases. This analysis answers the question:

What are the possible uses of the multi-agent system?

• Environment-Centred Analysis. Agents can be situated in an environ-

ment, and this environment needs to be modelled. In particular, we are

interested in modelling how the system can act and react to this environ-

ment. The result of this analysis is the set of reaction cases. This analysis

answers the question: How has the multi-agent system reacted to the

environment?

• Responsibility-Driven Analysis. In contrast to usual software systems,

multi-agent systems can act proactively. The user can desire that the

system has some responsibilities, that is, the user can assign some goals or

responsibilities to the system and the system carries out these responsibili-

ties without a direct demand. This analysis answers the question: What are

the goals of the system? The main difference of goal cases from the use

cases is that the use cases show how the system gives an answer to a user

request, while the goal cases show how the system behaves when some

condition is fulfilled.

The application of the UER technique introduces some of the most relevant

properties of an agent system, such as reactivity and proactiveness in the

conceptualisation of the system.

User-Centred Analysis

A use case describes the possible interactions or uses of a system by a user.

System users are called actors and represent external entities of the system. Use

cases can be combined, pointing out if a use case extends or includes a previous

use case.

User-Centred Analysis consists of the following steps:

• Identify the Actors. It is especially relevant to identify the roles played

by the actors. Each role is considered a different actor. There are two

general kinds of actors: human actors (round head) and software actors

(square head).

• Identify the Use Cases. This process can be carried out by answering the

following questions:

TEAM LinG

52 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

o What are the main tasks or functions carried out by each actor?

o What system information is acquired, produced or changed by each

actor?

o Does any actor inform about external changes in the system environ-

ment?

o What information is needed by each system actor?

o Does any actor need to be informed about unexpected changes?

• Group the use cases if they are variations of the same subject (for example,

‘move a heavy stone’ and ‘move a light stone’).

• Determine the interactions of each identified use case.

• Describe the use cases using both a graphical notation and textual tem-

plates.

• Consider every possible exception that can happen during the interactions

and how each affects the use cases.

• Look for relationships among the use cases: extract common parts and note

if a use case adds the interactions of another use case (relationship

“include”) or adds information contained in another use case (relationship

“extends” or “include”).

• Describe the interactions of each scenario, using Message Sequence

Chart (MSC) notation. MSC has been selected because is a standardised,

formal description technique with a textual and graphical grammar. Some

of the relevant features for our purposes are the availability of a language

(High-level MSC, HMSC) for defining the phases of the interaction, and

the definition of operators for expressing alternatives, exceptions, and

concurrence in the same diagram. Although sequence and collaboration

diagrams do not allow the expression of these issues in such an easy way,

they can also be used.

Environment-Centred Analysis

The goal of environment-centred analysis is to identify the relevant objects of the

environment and the possible actions and reactions of the agent. This will be used

later for agent sensor modelling.

Environment-Centred Analysis consists of the following steps:

• Identify objects of the environment. These objects are shown in the use

case diagram as clouds.

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 53

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

• Identify the possible events coming from each object and establish a

hierarchy if possible.

• Identify the possible actions each agent can carry out on the environment

objects.

• Describe (in natural language) the reaction cases coming from interaction

with the environment. Describe in detail each possible scenario. Assess if

there are several scenarios arising from the same reaction case and

whether every scenario is autonomous (it is only managed by the agent that

receives the stimuli) or cooperative (it is managed in cooperation with other

agents).

• Group-related reactive cases with the relationships “extends” or “in-

cludes.” For example, “avoid obstacle” can group different scenarios for

avoiding an obstacle depending on its nature and can be avoided in an

autonomous way (e.g., just going to the left of the obstacle) or in a

cooperative way (e.g., asking for help to move it).

• Describe the reactive goal: its name, the activation condition (e.g., a wall

very close), the deactivation condition, and the success and failure condi-

tion (whether the reaction has been effective or not).

Responsibility-Driven Analysis

Responsibility- or goal-driven analysis deals with the definition of the require-

ments of the system that should be fulfilled without the direct interaction with the

user.

Goal-Driven Analysis consists of the following steps:

• Identify responsibilities (goals) of the system that require some action.

Some hints for identifying these goals are:

o Look for non-functional requirements, such as time requirements

(e.g., ‘Give an answer within five minutes’) or security requirements

(e.g., ‘Buy a product in a secure way’). Sometimes the agent needs

to carry out special actions to achieve these goals.

o Describe when some internal variable of the agent can reach an

undesirable value and what action should be carried out (e.g., high/

low temperature or too many processes).

o Describe undesired states, possible failures of the system that should

require action to be avoided.

TEAM LinG

54 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

• Describe the proactive goal: its name, its type (persistent, priority, etc.), the

activation condition (e.g., no fuel or idle), the deactivation condition and the

success and failure condition (whether the plan has been effective or not).

• Group related goals using the relationships “extends” or “includes.”

Enhanced CRC Cards and Internal Use Cases

The well-known Class Responsibility Collaboration (CRC) cards technique

(Beck & Cunningham, 1989; Wirfs-Brock, Wilkerson & Wiener; 1990) provides

a method for organising the relevant classes for modelling a system. This

technique was initially used for teaching object fundamentals in a collaborative

environment. The technique consists of filling in cards. Each card has a class

name and two columns. The left column shows the responsibilities of the class,

namely, the tasks the class can perform or knowledge it has, and the right column

show the classes that collaborate to achieve these tasks or obtain this knowledge.

This technique can be easily modified from an agent perspective. A CRC is filled

for each agent class. Each CRC is divided into five columns (Figure 2): goals

assigned, plans for achieving these goals, knowledge needed to carry out the

plans, collaborators in these plans, and services used in the collaboration. The

back side of the CRC is used for annotations or extended description of the front

side.

During this stage the knowledge is collected in an informal way. Later, in the

analysis phase, it will be specified which role the agent plays in the task,

knowledge, coordination, and communication models.

Internal use cases are also based on RDD and its CRC cards. Taking as input

the use cases of the conceptualisation phase and some initial agents, we can think

Figure 2. Enhanced CRC cards

Figure 3. User-environment-responsibility notation

 Agent:

Knowledge Collaborator Goals Plans Service

Use Case
Reactive

Case
Goal
Case

Environment
Software

Agent
Human
Agent

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 55

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

that each agent “uses” other agent(s) and can use these agents with different

roles. In Figure 3, the use case notation is extended for showing human agents

(with the round head) and software agents (with the square head). We try to

reuse such an agent from our agent library, combining in this way the top-down

and bottom-up approach. The external use cases coming from the actors of the

multi-agent system are decomposed in use cases that are assigned to agent roles

of the system.

Analysis

The results of this phase will be the requirements specification of the MAS

through the development of the models previously described, except for the

design model. These models are developed in a risk-driven way, and the steps

are:

• Agent Modelling: developing initial instances of the agent model for

identifying and describing the agents.

• Task Modelling: task decomposition and determination of the goals and

ingredients of the tasks.

• Coordination Modelling: developing the coordination model for describ-

ing the interactions and the coordination protocols between the agents.

• Knowledge Modelling: modelling of the knowledge about the domain,

the agents (knowledge needed to carry out the tasks and their proactive

behaviour), and the environment (beliefs and inferences of the world,

including the rest of the agents).

• Organisation Modelling: developing the organisation model. Depending

on the type of project, it may be necessary to model the organisation of the

enterprise in which the MAS is going to be introduced for studying the

feasibility of the proposed solution. In this case, two instances of the

organisation model are developed—before and after the introduction of the

MAS. This model is also used to model the software agent organisation.

The Agent Model

The agent model acts as a link between the rest of the models of MAS-

CommonKADS, since it collects the capabilities and restrictions of the agents.

TEAM LinG

56 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

MAS-CommonKADS proposes different strategies that can be combined in

order to identify the agents of our problem. Some of these techniques are:

• Analysis of the actors of the use cases defined in the conceptualisation

phase. The actors of the use cases delimit the external agents of the system.

Several similar roles (actors) can be mapped onto one agent to simplify the

communication.

• Analysis of the statement of the problem. The syntactic analysis of the

problem statement can help to identify some agents. The candidate agents

are the subjects of the sentences, the active objects. The actions carried out

by these subjects should be developed by the agents as goals (with

initiative) or services (under demand).

• Usage of heuristics. The agents can be identified by determining whether

there is some conceptual distance: knowledge distribution, geographical

distribution, logical distribution, or organisational distribution.

• Initial task and expertise models can help us to identify the necessary

functions and the required knowledge capabilities, resulting in a preliminary

definition of the agents. The goals of the tasks will be assigned to the agents.

• Application of the internal use cases technique—see above.

• Application of the enhanced CRC cards (Figure 2)—see above

Once the agents have been identified, every agent should be further described

using textual templates that collect the main characteristics of the agents, such

as its name, type, role, position, a description, offered services, goals, skills

(sensors and effectors), reasoning capabilities, general capabilities, norms,

preferences, and permissions. The process of filling in these templates helps the

engineer to review his/her understanding of the problem and serves as a means

of communication with the rest of the team.

The Task Model

The task model describes all the activities (so-called tasks) that should be

performed in order to achieve a goal.

Tasks are decomposed following a top-down approach and described in an “and/

or” tree. The description of a task includes its name, its goal, a short description,

input and output ingredients, task structure, its control, frequency of application,

preconditions, and required capabilities of the performers.

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 57

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The potential benefits of the development of this model are the documentation

of the activities of the organisation before and after the introduction of the multi-

agent system. This documentation serves to support the maintenance and

management of changes in the organisation and to support project feasibility

assessment.

The graphical notation of this model (Figure 4) follows traditional tree decompo-

sition or, alternatively, a decomposition where optional and iterative tasks are

indicated. It can be also be used to describe whether the tasks can be performed

in a parallel or sequential way. Usually, the first versions of the model use just

the sequential decomposition and refined versions of the model introduce

gradually parallel tasks, optional tasks, or iterative tasks. Alternatively, the

activity diagram of UML can be used for this model.

In case a task is knowledge intensive, it should be further developed in the

expertise model. In the same way, if a task requires the agent interaction or

human interaction, it should be further developed in the coordination model or

communication model, respectively.

The Coordination Model

The coordination model specifies the interactions between the agents of the

multi-agent system. The main components of the coordination model are the

conversations between agents that are initiated to fulfill a goal in a cooperative

Figure 4. Task diagram notation

Iterative task

 O

Optional task Sequential
decomposition

Parallel
decomposition

O
Task 3

Task 1

Task 1.1 Task 1.2 Task 1.3 Task 4
O

Task 2

Task 4.2

Task 4.1 Task 3.1 Task 3.2

TEAM LinG

58 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

way. Every conversation is composed of interactions (associated to speech acts)

and follows a conversation protocol. In order to establish a conversation, there

are some capabilities between the agents that maintain this conversation

(capabilities and knowledge) that are specified in this model.

The coordination model has two milestones: (1) definition of the communication

channels and building of a software prototype for testing purposes (as a mock-

up); and (2) analysis of the interactions and determination of complex interac-

tions (with coordination protocols).

The first phase consists of the following steps:

1. Describe the prototypical scenarios between agents using MSC notation.

The conversations are identified, taking as input the results of the tech-

niques used for identifying agents. During this first stage, we will consider

that every conversation consists of just one single interaction and the

possible answer.

2. Represent the events (interchanged messages) between agents in event

flow diagrams (also called service charts). These diagrams collect the

relationships between the agents via services.

3. Model the data interchanged in each interaction. The expertise model can

help us to define the interchanged knowledge structures. These inter-

changed data are shown in the event flow diagram between square

brackets.

4. Model each interaction with the state transition diagrams of Specification

and Description Language (SDL), specifying speech-acts as inputs/

outputs of message events. These diagrams can be validated with the MSC

diagrams.

5. Each state can be further refined in the task or expertise model.

6. Analyse each interaction and determine its synchronisation type: synchro-

nous, asynchronous, or future.

The second phase consists of analysing the interactions for getting more

flexibility (relaxing, for example, the user requirements), taking advantage of the

parallelism, duplicating tasks using different methods, or resolving detected

conflicts. When a cooperation protocol is needed, we should consult the library

of cooperation protocols and reuse a protocol definition. If there is no protocol

suitable for our needs, it is necessary to define a new one. We can use High-

level Message Sequence Charts (HMSC), which are very useful for this

purpose. These diagrams show the road map (phases) of the protocol and how

the different phases (specified with MSC) are combined. A phase can be a

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 59

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

simple MSC or another HMSC. The processing of the interactions is described

using SDL state diagrams. It is also necessary to fill in the textual protocol

template specifying the required reasoning capabilities of the participants in the

protocol. These capabilities can be described using one or several instances of

the expertise model. The state diagrams consider three kinds of events: message

events, which are events from other agents using message-passing; external

events, events from the environment perceived through the sensors; and

internal events, events that arise in an agent because of its proactive attitude.

The potential benefits of the development of this model are:

• The development of the coordination model is a means for specifying the

prototypical interactions between the agents working on the resolution of

a problem, together with the interactions with the environment. This model

is used to store the decisions of the structure of communications and the

protocols associated with these communications. The usage of these

descriptions is twofold: the designer can reuse protocols and scenarios, and

the intelligent agent can select them at run time.

• MSC and SDL are formal description techniques with a well-defined syntax

and semantic. The usage of these languages for specifying interactions in

multi-agent systems have been achieved by: (1) defining one signal type for

each possible speech-act (message type); (2) associating a logical expres-

sion to each state name (using commentaries); and (3) considering internal

events (similar to spontaneous transitions) for changes in the mental state

of the agent motivated because of its proactive attitude.

The development of this model can help in the maintenance and testing of a multi-

agent system.

The Expertise Model

The expertise model, which is the focus of CommonKADS, is used for modelling

the reasoning capabilities of the agents to carry out their tasks and achieve their

goals. Normally, several instances of the expertise model should be developed:

modelling inferences on the domain (i.e., how to predict delays in flights,

taxonomies of delays and flights, etc.); modelling the reasoning of the agent (i.e.,

problem-solving methods to achieve a task, character of the agent, etc.); and

modelling the inferences of the environment (how an agent can interpret the

event it receives from other agents or from the world). When we have to develop

TEAM LinG

60 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

the reasoning capabilities of an agent, we will reuse previously developed

instances of the expertise model and adapt these instances to the new charac-

teristics of the problem.

The expertise model consists of the development of the application knowledge

(consisting of domain knowledge, inference knowledge, and task knowledge)

and problem-solving knowledge.

The usage of this model can take advantage of the work previously developed,

for example, for developing a planner.

• Domain Knowledge represents the declarative knowledge of the problem,

modelled as concepts, properties, expressions, and relationships using the

Conceptual Modelling Language (CML) or the graphical notation of the

Class Diagrams of UML.

• Inference Knowledge represents the inference steps performed for

solving a task. There is a library of generic inference structures selected

by the task type (diagnosis, assessment, etc.). These generic inference

structures should be adapted to the problem. The inference structure is a

compound of predefined inference types (how the domain concepts can be

used to make inferences, represented as ellipses) and domain roles

(rectangles). This generic inference structure should be adapted to our

problem. After defining the inference structure, it is instantiated into a

similar diagram for the domain.

• Task Knowledge represents the order of the inference structures. The

notation consists of inference structures and task-method inference de-

composition structures.

• Problem-Solving Method: during the design we should specify a Prob-

lem-Solving Method (PSM) for each inference type: how the inference is

carried out. The PSMs are arranged in libraries for reuse. Two generic

kinds of PSMs are defined: autonomous PSMs, when the plan is carried

out by the agent itself, and cooperative PSMs, when the PSM takes into

account the participation of other agents. In addition to defining the PSMs,

there should be defined its assumptions (when a PSM can be selected and

when it is more suitable).

The potential benefits of the development of this model are the utilisation of a

well-known knowledge-level modelling framework, which has been successfully

applied in several projects, and the provision of a library of generic components,

specification languages and software tools.

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 61

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The Organisational Model

CommonKADS defines the organisation model for modelling the organisation in

which the knowledge-based system is going to be introduced. Here the model is

extended in the same way as the agent model for modelling the organisation of

agents. This model shows the static or structural relationships between the

agents, while the coordination model shows the dynamic relationships. The

graphical notation of these models is based on the notation of the Class Diagrams

of UML, adding a stereotype for distinguishing between agents and objects

(Figure 5). The aggregation symbol is used for expressing agent groups.

The agent symbol is that of MOSES (Henderson-Sellers & Edwards, 1994). In

contrast to this and to UML, the upper box does not store the defined attributes

as in UML, but rather the mental state and internal attributes of an agent, such

as their goals, beliefs, plans, and so forth. The lower box stores the external

attributes of the agents: services, sensors, and effectors.

In addition, the relationships between agents are modelled with associations in

which the roles played by the agents are described. Two special associations are

considered: inheritance and group.

The organisation model is used for modelling both the human organisation where

the multi-agent system is going to be developed and the multi-agent society itself.

The main modelling steps are the description of agent (human and software)

relationships, detailing the roles played in every relationship, and the study of the

relationship of the environmental objects with the agents. In the case of software

agent relationships, the model will collect the different use cases developed in the

coordination model, while in the human-software agent case, the system will

collect the use cases developed in the communication model. As a result of this

first analysis, the organisation model will define the static and dynamic relation-

ship between both human and software agents and the roles played by them in

the different interactions (in addition to the required knowledge to be able to

perform those interactions). During this process, inheritance and group relation-

ships between software agents can be modelled as a result of the analysis.

Figure 5. Organisation model notation

group inheritance role

association

role

 Goals
 Plans
 Beliefs

 Sensors
 Actuators
 Services

mental

state

external

interface

TEAM LinG

62 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The inheritance relationship between agents is defined as the union of the values

of the precedent classes for each attribute. For example, an agent class has its

goals and the goals of the precedent agent classes. If an agent defines an

attribute as exclusive, the values are overwritten. The potential benefits of the

development of this model are the specification of the structural relationships

between human and/or software agents, and the relationship with the environ-

ment. The study of the organisation is a tool for the identification of possible

impacts of the multi-agent system when installed. In the same way, this model

can provide information about the functions, workflow, process, and structure of

the organisation that allows the study of the feasibility of the proposed solutions.

This model represents both class-agent diagrams and instance-agent diagrams,

showing the particular relationships with the environment. In contrast with other

paradigms (i.e., object-oriented), the agent-instance diagrams are frequently

more relevant than the class-agent diagrams.

The Design Model

As a result of the analysis phase, an initial set of agents has been determined.

During the design phase, the design model is developed. This phase is extended

for multi-agent systems and consists of the following phases:

• Agent network design: the infrastructure of the multi-agent system (so-

called network model) is determined and consists of network, knowledge,

and coordination facilities. The agents (so-called network agents) that

maintain this infrastructure are also defined, depending on the required

facilities. Some of these required facilities can be:

o Network facilities: agent name service, yellow/white pages ser-

vice, de/registering and subscription service, security level, encryp-

tion and authentication, transport/application protocol, accounting

service, and the like.

o Knowledge facilities: ontology servers, PSM servers, knowledge

representation language translators, and so forth.

o Coordination facilities: available coordination protocols and primi-

tives, protocol servers, group management facilities, facilities for

assistance in coordination of shared goals, police agents for detecting

misbehaviours and the control of the usage of common resources, and

so forth. The result of the common facilities shared by the agents

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 63

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

allows the efficient communication between the agents and is ex-

pressed by an ontology, in the same way as a service ontology.

• Agent design: the most suitable architecture is determined for each agent,

and some agents can be introduced or subdivided according to pragmatic

criteria. Each agent is subdivided in modules for user-communication (from

communication model), agent communication (from coordination model),

deliberation and reaction (from expertise, agent, and organisation models),

and external skills and services (from agent, expertise, and task models).

The agent design maps the functions defined in these modules onto the

selected agent architecture. The issue of designing an agent architecture

is not addressed in the methodology, since the agent architecture is provided

by the agent development platform.

• Platform design: selection of the software (multi-agent development

environment) and hardware that is needed (or available) for the system.

The potential benefits of the development of this model are:

• The decisions on the selection of a multi-agent platform and an agent

architecture for each agent are documented.

• The design model collects the information of the previously developed

models and details how these requirements can be achieved.

• The design model for multi-agent systems determines the common re-

sources and needs of the agents and designs a common infrastructure

managed by network agents. This facilitates modularity in the design.

Example Case Study

This case study is based on the work carried out in the European IST project

Collaborator 2000-30045 (Bergenti, Garijo, Poggi, Somacher, & Velasco, 2002),

where a multi-agent system, called COLLABORATOR, has been developed

and is capable of providing modern enterprises with a shared workspace

supporting the activities of virtual teams. The description of the system in this

chapter has been adapted in order to show the main characteristics of the

methodology MAS-CommonKADS.

The COLLABORATOR system is designed to be used by users with different

requirements, profiles, and devices. The users need to interact with each other

TEAM LinG

64 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

and with the system itself for preparing collaborative sessions, negotiating the

dates of the sessions, and managing their personal agendas.

The system will be based on a simple Personal Calendar Agent that is in charge

of managing the appointments of a user. The system will try to learn to set up a

new appointment according to its user preferences. In the case of a conflict, the

system will be able to negotiate with other personal agents from the other

participants in the appointment. The system will be running on a PDA (Figure 6).

Conceptualisation

The first phase of the methodology is the conceptualisation. In order to have a

first understanding of the system, we can apply the UER technique resulting in

the diagram shown in Figure 7. Two main actors have been identified: the user

and the personal agent. The user will be able to confirm a meeting. The basic use

case of the Personal Agent will be to negotiate a meeting, because its user wants

to start to schedule a meeting or because another user wants to schedule a

meeting with this user. This negotiation will be done through their personal

agents. From the very beginning, the UER technique also takes into account

some of the agent properties, such as reactivity and proactivity. In this case, one

environment object is identified: the mobile phone. The agent could react to a low

battery state. In addition, the agent has been assigned some responsibilities, such

Figure 6. Screenshot of the Personal Calendar Agent

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 65

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

as avoiding calendar conflicts (two overlapping appointments) and learning user

preferences, in order to be as autonomous and adaptable as possible.

For every use, goal, and reactive case, the case should be further described,

describing its characteristics. For example, Avoid low battery is a high-priority

goal that is activated when the battery charge is low, deactivated with success

in case of reaching a high level of battery, and deactivated with failure in case

the battery is below some very low level.

Once we have identified the UER cases, they should be described using textual

templates as shown in Figure 8.

Figure 7. UER cases for the Personal Agent

Figure 8. Textual template of the reactive case Avoid low battery

Avoid
 Calendar
conflicts

Avoid low
battery

coordinate
meeting

PDA

::Personal Agent

coordinate
meeting

User

PA1 ::Personal Agent
coordinate
meeting

Learn
preferences

reactive-case Avoid low battery
 description

The Personal Agent can detect that the PDA has a low level of
battery. In this case he should try to store all the relevant data of
the personal agenda and try to attract the attention of its user
activation-condition

low-battery level
deactivation-condition

recharge in process or plugged in
successful condition

personal gent hibernates before the PDA shutdowns or
the use recharge the batteries

failure condition
out of battery

TEAM LinG

66 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The next step is grouping the cases and studying their relationships. In this

example, we can identify two possible scenarios for avoiding low battery:

periodically reminding the user to recharge the PDA (more frequently in the case

of a low battery) or “shutdown” the PDA (Figure 9). We can also observe that

there is a scenario included in this reactive case: the detection of the battery

level.

Another technique we can use is that of extended CRC cards (Figure 10). Here,

for example, we can select one goal of our agent and define the plans to achieve

it, together with the required knowledge to perform the plans and the potential

collaborations in these plans that could also be autonomous. In case the agent

offers a standard service to other agents, we point out this service.

Analysis

After the conceptualisation phase, we have a first overview of the agents of the

system. In this particular simplified system, we have previously identified one

Figure 9. Reactive cases relationship diagram

Figure 10. Extended CRC card

Avoid Calendar
conflicts

Suggest User
to choose

Calendar -
Ontology

User

Personal
Agent

Change
Appointment

Try to
group

Goals Plans Knowledge Collaborator

Agent PA Class: Personal Agent

Service

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 67

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

kind of agent: the Personal Agent. During the analysis phase, the engineer can

develop the analysis models that are needed in its problem. Usually, agent and

task model should always be developed. The development of the expertise model

helps the development of intelligent agents. In the case of interaction between

agents, the coordination model should be developed. The communication model

is developed when there is human-agent interaction. The organisation model

helps us to express structural relationships between agents or the human

organisation in which the multi-agent system is going to be introduced.

The models are developed in an iterative way, developing as many instances of

every model as needed and continuously refining the models. Since the models

are composed of artefacts, these artefacts can be easily reused.

Agent Model

From the actors of the conceptualisation phase, we can identify one agent, the

Personal Agent, which can have two roles: Coordinator or Participant. For the

sake of geographic distance and adaptation to the user, every Personal Agent

will be assigned to a single user.

In order to describe the Personal Agent, a textual agent template from the agent

model is filled in as shown in Figure 11, which helps us think about the problem.

Figure 11. Initial textual agent template of the Personal Agent

 Agent PersonalAgent
type

Intelligent software agent
roles

Coordinator / Participant
description
Personal Agent of a user, in charge of managing meetings in behalf of its user and
inform its user of new information about the accepted meetings.
Personal agent should classify incoming events in order to learn suitable scheduling
depending on the event type and how the user handles every event type.
reasoning-skills

expertise
knowledge about the meeting domain and categories of events and other users
ability to classify and capability to adapt to user preferences for scheduling
(to be further defined in expertise model)
restrictions

norms
A Personal Agent should notify its user of any change in an appointment.
permissions
A Personal Agent only can be a coordinator in case its user has the rights
to be coordinator

TEAM LinG

68 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Task Model

Now we can proceed to the development of the task model. Every instance of

the task model describes all the related activities to fulfill a goal. In this example,

we will further elaborate one the previously identified use cases: coordinate a

meeting. When a user wants to coordinate (initiate) a meeting, the user should

be allowed to have the role of coordinator for a meeting in that project.

This task can be decomposed as shown in the task diagram (Figure 12). This task

is initiated by the user. It should specify the foreseen length of the meeting, the

project and the required expertise of the participants. The task Collect-

Coordinator-Requirements models all the interaction between the user and the

agent that can help the user to show the available options for his/her decision.

Once the user has assigned the responsibility of coordinating the meeting, the

personal agent should select a range of suitable dates (task 2) based on its user

calendar and then select the attendees for that meeting (task 3). The next step

is to negotiate with the personal agents of the participants a suitable meeting date

as many times as needed (task 4, marked with an asterisk since it is an iterative

task). Finally, the agent should confirm with its user the negotiated date. If it is

suitable, the personal agent informs the other participants of the new appointment

that it is then added to their respective calendars. If the user decides that the

agreed upon date is not suitable, the user can start the task again or finish.

As seen in the previous task decomposition, the process of coordinating a

meeting has been described in a general way and can be reused in other projects.

Some of the tasks are further developed in other models. In particular, tasks 1

Collect Coordinator Requirements and 5.1 Confirm User are refined in the

communication model since they involve human interaction. Task 4.2 Send CFP

/ Receive Answer is refined in the coordination model since it involves agent

interaction. The tasks 2. Select attendees and 4.2. Decide Negotiate / End are

Figure 12. Task Model for coordinating a meeting.

Coordinate
a meeting

1. Collect
Coordinator
Requirement

2. Select
range of dates

3. Select
attendees

4. Negociate 5. Confirm

4.2 Send CFP /
Receive answers

4.1 Decide
Negotiate / End

5.1 Confirm
user

5.2 Notify
appointment

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 69

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

candidate tasks to be further developed in the expertise model since they may

require some reasoning process.

In order to show how a particular task can be described in the task model, the

task 3. Select attendees is described in using a textual task template.

Expertise Model

Instead of detailing further the rest of the tasks of the task model in this iteration,

we are going to illustrate how an instance of the expertise model can be

developed in this case study. We can further develop the task 3. Select

attendees in order to see how an intelligent agent can make this decision. The

expertise model (Schreiber et al., 1999) guides the knowledge-modelling pro-

cess. CommonKADS has a library of generic tasks, independent of the domain,

that can be reused or refined for knowledge intensive tasks. In this case, the

selection of attendees can be considered as a task of Assessment. A task of

assessment has the goal of finding a decision category for a case based on a set

of domain-specific norms. For example, in a loan application, the assessment

determines whether an application results in the loan or not (application-rejected,

accepted-with-risk, or accepted). In our problem, we will have to decide whether

a user would be interested and should participate in a meeting, qualifying him or

her as indispensable, convenient, or unnecessary.

Figure 13. Task template of the task Select attendees

 Task 3. Select attendees
goal

Obtain a set of indispensable and potential participants
Description

The coordinator should select the participants for the meeting based on the
project the meeting belongs to, the topic and the required expertise.

input
Characteristics of the meeting: project, required expertise (keywords), length,
tentative dates (according to availability of the coordinator) and list of
registered users

output
Qualified set of participants that are a subset of the registered users.
The participants are qualified as indispensable, convenient or unnecessary.

precondition
User should be authorised to act as a coordinator and there should be
registered users

supertask
Decide a meeting

subtasks
Decomposition-type

TEAM LinG

70 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

The CommonKADS library drives the knowledge acquisition process. Once we

have identified that this task is an Assessment, we can consult the CommonKADS

library and get its inference structure and task method (Figure 14). The inference

diagram illustrates inferences carried out in an assessment task. Ellipses

represent basic inferences and boxes represent knowledge roles. Inference

structures are domain independent, that is, they can be applied (reused) in

different domains without modifications.

We need to map the generic knowledge role to domain classes. In our example,

case represents data about the user and the meeting information, abstracted

case represents an abstraction of the case. For example, we can compare the

required expertise for attending the meeting and the users’ expertise and

determine a degree of expertise of every user for this particular meeting that can

help later to classify him/her. In addition, norms represent the domain knowledge

used in making the decision, for example, the criterion used to determine the

qualification of a user, such as availability on the proposed dates. The knowledge

role norm value represents a particular value of a norm (for example, the user

is available on some of the proposed dates), while decision categories repre-

sents how the user is qualified (indispensable, convenient, or unnecessary).

According to this inference structure, the process of Assessment consists of

obtaining an augmented case from the case we receive, that is, infer information,

specifying a set of criteria (norms) that can be evaluated, and selecting one. This

criterion is evaluated and, depending on this evaluation result, the user is

classified (decision class).

In parallel with the selection and adaptation of the generic task, an initial domain

can be modelled as shown in Figure 15. The degree-expertise is an abstraction

that takes into account the keywords of the user (expertise defined by keywords)

and the required expertise of the meeting.

In addition to this information, it is very important in this task to define the criteria

(norms) that will be applied to decide the qualification of an attendee. Several

criteria have been identified: the availability of the potential attendee on the dates

Figure 14. Inference diagram of PSM Assessment

 case

abstract
abstract

case
specify

norm value norm

norms select

match evaluate decision

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 71

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

of the proposed meeting, the degree of expertise of an attendee for a meeting,

and the relationship of the position of the potential attendee in the project as not

member, engineer, project leader, and so forth (Figure 16).

The task method for Assessment (Figure 17) collects the control structure of the

task as can be taken directly from the CommonKADS library.

Once we have defined the control and mapped domain classes onto the identified

knowledge roles, we should specify the primitive inferences.

In our case study, the inference abstract obtains the attribute degree of expertise

of the attendee by comparing the expertise of the attendee and the required

expertise. This inference abstract can assign a degree between 0 and 1 that

represents the number of required keywords that can be attributed to the

attendee. The inference specify generates a list of applicable norms depending

on the case. In this example, it just generates the list of the three identified

criteria. The inference select selects a norm from the list, based on heuristics or

randomly. The inference evaluate determines the degree of satisfaction (not

satisfied, low, medium, high) of a particular criterion. For example, if a user is not

a member of the project, the evaluation is low. The inference match determines

the qualification based on the evaluation of all the criteria.

Once the inferences are specified, the knowledge bases can be filled. For

example: DateFitsCalendar is not-satisfied IMPLIES attendee is unneces-

sary.

Figure 15. Domain model for selecting attendees

Figure 16. Hierarchy of criteria for selecting attendees

Attendee

keywords
degree-expertise
projects
calendar

keywords
Project
length
dates

Meeting proposal

receives

 selection - criterion

dates fits
calendar

expertise
degree

position in
project

TEAM LinG

72 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Coordination Model

Now we will show how to model interactions between agents using the

coordination model. The coordination model describes the conversation between

agents and identifies the services that agents offer to the rest of agents. The

coordination model identifies the needed conversations, usually with the input

from other models. In this case study, we have identified a task 4.1 Send CFP

/ Receive Answer and task 5.2 Notify appointment.

Once a conversation is identified, the next step is to describe the roles of the

participants in the conversation, the interactions and services, and the informa-

tion interchanged in the interaction, and then analyse how every interaction can

Figure 17. Method for assessment (Schreiber et al., 1999, p. 132)

TASK assessment;

ROLES:
INPUT: case-description: "The case to be assessed";
OUTPUT: decision: "the result of assessing the case";

END TASK assessment;
TASK-METHOD assessment-with-abstraction;

REALIZES: assessment;
DECOMPOSITION:

INFERENCES: abstract, specify, select, evaluate, match;
ROLES:

INTERMEDIATE:
abstracted-case: "The raw data plus the abstractions";
norms: "The full set of assessment norms";
norm: "A single assessment norm";
norm-value: "Degree of satisfaction of the criterion (not satisfied,
low, medium, high";
evaluation-results: "List of evaluated norms";

CONTROL-STRUCTURE:
WHILE HAS-SOLUTION abstract(case-description -> abstracted-case)
DO

case-description := abstracted-case;
END WHILE
specify(abstracted-case -> norms);
REPEAT

select(norms -> norm);
evaluate(abstracted-case + norm -> norm-value);
evaluation-results := norm-value ADD evaluation-results;

UNTIL
HAS-SOLUTION match(evaluation-results -> decision);

END REPEAT
END TASK-METHOD assessment-with-abstraction;

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 73

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

be modelled (for example, with or without negotiation, and how the agent should

select one or another protocol). In the case study, there are two identified roles

in this conversation (coordinator and participant). The coordinator sends to the

participants a meeting description with a range of potential dates and receives

in a certain period the answers with subranges of the initial range. Then, the

coordinator decides a date and notifies all participants.

The notation of the model is based on MSC (ITU-Z.120, 1996) for the

interactions and SDL (ITU-T-Z.100, 1994) for processing these interactions.

Alternative notations are UML2.0 Interaction Diagrams, which incorporate

most of the characteristics of MSC and SDL, and AUML Interaction diagrams

(Beuer, Müller, & Odell, 2001).

In order to illustrate the application of other models, we will develop here the task

of the task model. The MSC diagram is shown in Figure 18.

Organisation Model

The organisation model’s agent model uses the organisation model diagram

(Figure 19). In this example, there only two positions in the organisation,

depending on the scheduled meeting: Coordinator or Participant. The organisational

Figure 18. Message Sequence Chart of negotiating a date

msc FIPA Coordinate Meeting

propose (range-of-dates)

inform (subrange-of-dates)

inform (definitive-date)

Coordinator Participants

loop(0,n)

T

TEAM LinG

74 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

model could also be used for modelling the human positions in the company and

resolve eventual conflicts according to its hierarchical position.

Design

The design model describes the components that satisfy the requirements of the

analysis models. There are three main decisions to be carried out in this model:

platform design, agent network design, and agent design that are collected in a

textual template as shown in Figure 20.

In this case study, the users will be able to see the scheduled meetings in their

PDAs and on the Web. The platform selected was JADE (http://

www.jade.cselt.it) and the extension BlueJADE (Cowan & Griss, 2002) for

deploying JADE as a service of the application server JBoss (http://

www.jboss.org).

The design of the agent network consists of identifying a set of agents that

provide the network, coordination, and knowledge facilities. In this case study,

attending to design considerations, since the users can be off-line, there is a need

to define a new agent, the Session Manager Agent (SMA) that is woken by the

application server when needed (to initiate a new session). In this way, the task

model developed as part of the task model of the Personal Agent is now

reassigned to the Session Manager Agent. We can identify another service, the

Figure 19. Organisation diagram of collaborator

Personal Agent

Goals
 Avoid Calendar, Learn Preferences

Beliefs
 Preferences

Plans
 GroupAppPSM, NegociatePSM, ConfirmPSM

Sensors
 Battery

Actuators
 Shutdown

Services
 Schedule

Scheduled
meeting

participant

participates in

coordinator

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 75

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Resource Manager Service, which is used to share and store the calendars

persistently between Personal Agents. Regarding the design of this agent,

collecting the requirements from the analysis models (Agent, Task, Communi-

cation, Coordination, Expertise, and Organisation), this agent has no sensors,

FIPA communications capabilities (FIPA 2002), and only simple reasoning

capabilities. The architecture selected for this agent is a deliberative one, which

can be implemented with JADE using Jess Behaviours.

Conclusions

This chapter has shown the main modelling concepts of MAS-CommonKADS

and how the agent metaphor can be combined with standard object-oriented and

knowledge engineering techniques.

MAS-CommonKADS analyses the multi-agent system from different perspec-

tives (performed tasks, reasoning, agent interaction, user interaction, multi-agent

structure) that provide a description easy to implement in a particular multi-agent

framework.

The main strengths of the methodology are its simplicity, extending in a natural

way the standard software engineering methods. In addition, MAS-

CommonKADS takes into account reusability at all levels of the models, making

it easy to reuse analyses and designs from previous projects. The main

weaknesses of the methodology are its limited support in design, testing, and

coding.

Figure 20. Design textual templates for Session Manager Agent (SMA)

objects

Platform Collaborator

Languages: Java, Jess
Software: JBoss, JADE, Jess

Network Collaborator

Network-services – FIPA Standard (AMS, DF)
Knowledge-services: none
Coordination services: Resource Manager Service, Session Manager Agent

Agent System Session ManagerAgent
Subsystems:

user-interaction SMAInterface (tasks 1, 5.1; communication model)
reasoning SMAKB tasks 2,3, 4.2, 5.2, expertise model
agent-interaction CoordinatorBehaviour (task 4.1 and 5.2), main-task
SMABehaviour (Coordinating task).

TEAM LinG

76 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

There are two supporting tools for applying the methodology, a Java CASE tool

and a Plug-In for Rational Rose.

MAS-CommonKADS has been applied by our research groups in projects of

intelligent network management and development of hybrid, symbolic-

connectionist systems. Other researchers have also successfully applied MAS-

CommonKADS for flights reservation (Arenas & Barrera-Sanabria, 2002),

development of organisational memories (Arenas & Barrera-Sanabria, 2003), e-

learning (Salcedo, 2003), paper review assistant (Marci de Oliveira, 2000), or

simulation of stakeholders (Henesey, Notteboom & Davidsson, 2003).

Acknowledgments

We would like to thank the editors and anonymous reviewers of this chapter for

their comments, all the students who have contributed to its development, and all

the partners of the Collaborator project.

References

Arenas, A. & Barrera-Sanabria, G. (2002). Applying the MAS-CommonKADS

methodology to the Flights reservation problem: Integrating coordinating

and expertise. In Proceedings of 5th Joint Conference on Knowledge-

based Software Engineering. IOS Press.

Arenas, A. & Barrera-Sanabria, G. (2003). Modelling intelligent agents for

organisational memories. In Knowledge-based Intelligent Information

and Engineering Systems, Lecture notes in computer science 2773 (pp.

430-437). Berlin: Springer-Verlag.

Beck, K. (1999). Extreme programming explained: Embrance change.

Boston: Addison-Wesley Professional.

Beck, K. & Cunningham, W. (1989). A laboratory for teaching object-oriented

thinking. In OOPSLA’89 Conference Proceedings, New Orleans, LA,

USA (Vol. 17, pp. 1-6).

Bauer, B., Müller, J. P., & Odell, J. (2001). Agent UML: A formalism for

specifying multiagent interaction. In P. Ciancarini & M. Wooldridge (Eds.),

Agent-oriented software engineering (pp. 91-103). Berlin: Springer-

Verlag.

TEAM LinG

The Agent-Oriented Methodology MAS-CommonKADS 77

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bergenti, F., Garijo, M., Poggi, A., Somacher, M. & Velasco, J. R. (2002).
Enhancing collaborative work through agents. In VII Convegno

dell’Associazione Italiana per l’Intelligenza Artificiale. Available online
from http://www-dii.ing.unisi.it/aiia2002/paper.htm

Cowan, D. & Griss, M. (2002). Making software agent technology available

to enterprise applications, Technical report HP-2002-211, Hewlett-
Packard Labs.

FIPA (2004). FIPA Agent Communication Language Specifications. Available
online http://www.fipa.org/repository/aclspecs.html

FIPA (2004). The Foundation for Intelligent Physical Agents. Available online
http://www.fipa.org

Henderson-Sellers, B. & Edwards, J.M. (1994). BOOKTWO of object-ori-

ented knowledge: The working object. Sydney: Prentice Hall.

Henesey, L., Notteboom, T., & Davidsson, P. (2003). Agent-based simulation
of stakeholders relations: An approach to sustainable port terminal man-
agement. In Proceedings of the 13th International Association of

Maritime Economist (IAME) Conference, Busan, Korea (pp. 314-331).

Iglesias, C. A. (1998). Definition of a methodology for the development of

multiagent systems. PhD thesis, Technical University of Madrid (in
Spanish).

Iglesias, C. A. & Garijo, M. (1999). UER technique: Conceptualisation for
agent-oriented development. In Proceedings of the 3rd World

Multiconference on Systemics, Cybernetics and Informatics (SCI’99)

and 5th International Conference on Information Systems Analysis

and Synthesis (ISAS’99) (Vol. 5, pp. 535-540). International Institute of
Informatics and Systemics.

Iglesias, C. A., Garijo, M., González, J. C., & Velasco, J. R. (1998). Analysis and
design of multiagent systems using MAS-CommonKADS. In N. Callaos &
M. Torres (Eds.), Intelligent agents IV: Agent theories, architectures

and languages, LNAI 1365 (pp. 313-326). Berlin: Springer-Verlag.

ITU-T-Z.100 (1994). CCITT specification and description language (SDL).

Technical report, ITU-T.

ITU-Z.120 (1996). Message Sequence Chart (MSC). ITU. Z.120. Technical
report, ITU-T. Geneva.

Jacobson, I., Christerson, M., Jonsson, P., & Övergaard, G. (1992). Object-

oriented software engineering. A use case driven approach. New
York: ACM Press.

Kruchten, P. (2000). The rational unified process: An introduction (2nd ed.).
Reading, MA: Addison-Wesley.

TEAM LinG

78 Iglesias & Garijo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Marci de Oliveira, H. (2002). Técnicas para Projeto e Implementaçao de

Agentes de Software, Master Thesis, Universidade Estadual de Maringá,

Brasil.

Rumbaugh, J., Blaha, M., Premerlani, W., & Eddy, V. F. (1991). Object-

oriented modelling and design. Upper Saddle River, NJ: Prentice-Hall.

Salcedo, P. (2003). Inteligencia Artificial Distribuida y Razonamiento basado en

casos en la Arquitectura de un Sistema Basado en el Conocimiento para la

Educación a Distancia. Revista de Ingeniería Informática, 9.

Salic, B. (2004). UML 2.0: Exploiting abstraction and automation. Available

online http://www.sdtimes.com/opinions/guestview_098.htm

Schreiber, G., Akkermans, H., Anjewierden, A., deHoog, R., Shadbolt, N.,

VandeVelde, W. & Wielinga, B. (1999). Knowledge engineering and

management: The commonKADS methodology. Cambridge, MA: MIT

Press.

Wirfs-Brock, R., Wilkerson, B. & Wiener, L. (1990). Designing object-

oriented software. Upper Saddle River, NJ: Prentice-Hall

TEAM LinG

