The Provider Rating Agreement Pattern for Solving the
Provider Selection Problem

José Javier Durdn and Carlos A. Iglesias*

' Centro para las Tecnologias Inteligentes de la Informacién y sus Aplicaciones (CETINIA),
Universidad Rey Juan Carlos, C/ Tulipan s/n, Mostoles, Spain jjduran@ia.urjc.es
2 Departmento de Ingenerfa de Sistemas Telematicos, Universidad Politécnica de Madrid,
Ciudad Universitaria s/n, Madrid, Spain cif@gsi.dit.upm.es

Abstract. In this article, it is presented the provider selection problem, a typical
SOC problem related to agreement’s processes, as a milestone of how the solu-
tions taken around those problems could be represented and transferred between
developers. This article presents a structure of how, using a pattern model, that
information should be represented, and how it is possible to represent a problem
solution using those patterns, also known as agreement patterns, and which tools
are useful to show that.

1 INTRODUCTION

Through the years, different computation paradigms have had a predominant fac-
tor in the software development, from the begging when a centralized, an mono-
lithic, architecture conformed any application, to a more relaxed one, in which
clients presented more capability to work in the system, and converging to an
architecture in which each element should be as important in the system, and
also totally replaceable, been that view the Internet of services, also known as the
cloud computing paradigm.

That vision of an Internet of services comes from the arise of the Service Oriented
Computing (SOC), in which a system divided in components is built using dif-
ferent services offered by third-parties, or using that abstraction to decentralizing
the system itself. This vision has the goal to simplify the development of complex
systems, and to cut down costs of the final product. As a result of that behaviour,
it has appeared a market of different service providers, offering reusable services,
which as a result make possible to create more solutions based in the SOC vision
of software development.

A menace of SOC, is a problem that always has been in the software develop-
ment, how different components are used together, which in fact it is performed
taken care of the developer documentation, which in this case is the contract
of each service. This contracts, which are described using standards like WS-
Agreement (Andrieux et al., 2007), may lack of some information, or could have
errors in it, some case it is possible that a contract is unreal, in those cases it is
necessary to enrich contracts with trust and reputation information of the devel-
oper, in most cases using social information, or performing it another party.

* The second author has been partially supported by Germinus XXI (Grupo Gesfor) under the
project RESULTA.

Another problem of SOC, because been an emerging development paradigm,
is the fault of information about the good practices in that development. Other
paradigms, like the object-oriented paradigm, establish different patterns of how
to solve a generic problem, performing a defined set of steps, in our case, the ob-
jective of such kind of patterns is the way which different agreements are treated,
and how a system performs different maintenance task for its service oriented
architecture (SOA). The objective of those patterns is to help developers with a
huge catalogue of SOC good practices in common problems, and how they are
solved.

The goal of this article is presenting how agreement technologies, developed
within the agent research community, can be modelled as software patterns, pro-
viding a framework for capturing best practices for recurring problems, a com-
mon vocabulary and reusable solution descriptions. This article is focused on
describing how agreement patterns can describe the recurring Provider Selection
problem.

The rest of the article is organized as follows. First, section 2 presents the Provider
Selection Problem, and the main approaches to solve it. Then, section 3 gives an
overview of the notion of agreement patterns, their classification scheme an how
provider selection patterns are classified. Section 4 presents the ProviderSelection
pattern, describing its structure, usage and examples. Finally, section 5 draws out
the main conclusions and future works of this work.

2 THE PROVIDER SELECTION PROBLEM

Selection of the right parties to interact with is a fundamental problem in open
and dynamic environments (Sensoy, 2008). This problem is recurrent in SOC
environments, where dynamic service selection (Maximilien and Singh, 2004)
allows to combine available services to user needs. It is applied as a need to
find and select an specific service for the purpose of the system, first needing to
identify the service properties, which is called quality-of-service (QOS), and the
resources that could be spent by that need, and after that, it is necessary to find a
provider that offers that service, which in fact sometimes is not possible, and it is
necessary to switch to the service provider that offers the more suitable service.
Because of those properties, this problem is pillar for SOC.

This problem is present in different environments, which some of them are listed
next:

— Travel agency(Billhardt et al., 2007) An user requires an offer of a travel,
which is formed of the flight and an hotel, selecting the one that suits it’s
preferences, like flight company or arrival time, and that has the lower cost.

— E-Commerce(Aydogan, 2008) Different providers offer a similar product,
but with different qualities, and costs, and the user (or a mediator agent)
should select one provider among them, based on similarity to its prefer-
ences, and cost restrictions.

— WiFi roaming(Merino et al., 2005) The user must select among different
access points, those that have a reliable security, and a good quality of signal.

Each of these domains represents a problem, in which confidence of bidders is
necessary, and in which solutions taken are similar.

First, it is imperative to determine which roles are part of this problem, in fact
which are the parts that interact between them to advert and negotiate service
agreements.

— The main role is the consumer, or user, role, which suits with the system that
needs the service to be implemented in, and that will be responsible to find,
establish, and maintain different agreements with service providers to use a
service.

— The other main role in this interaction is the service provider one, which is
responsible of keep offering their services and helping to establish agree-
ments to use those services.

— A secondary role of this interaction is performed by the marketplace, in
which different providers are registered to help consumers to list them, and
ask them about a service. The marketplace role could be implemented by the
consumer, as a predefined list of providers, by a service provider offering
that service, or throw a social collaborative network of provider’s directory.

Also it is necessary to define the main aspects of this problem, in this case, what
are the aspects of the interaction, which will grant a better quality to the solution
adopted:

— Providers market-place: It is a component that knows which providers are
able to offer an specific service, in this case retrieving different offers as
agreements. This component should be a predefined list of providers acces-
sible to the user, another service that offers a provider search engine, or a
collaboratively created directory of providers.

— Service offer evaluation: Each received offer is evaluated, so, they are com-
parable between them, using different techniques, that is more detailed in
Section 2.1.

— Agreement negotiation: Once one offer has been selected, it is done a ne-
gotiation process, as stated in Section 2.2.

2.1 Service Offer Evaluation

The main problem around service selection is how to select the most appropriate
one, taking care of different factors (Singh and Huhns, 2005):

— Quality of Service: determined by similarity with required specifications,
cost, and availability. It is necessary to remark that agreements’ information
could be difficult to understand by the system, because there should be differ-
ent kinds of properties. The main properties are the functional ones, which
could be measured easily, like final cost or minimal bandwidth offered. In
counterpart, non-functional properties are more obscured, and difficult to
treat, like the feedback from user.

— Trust of the provider (Yang et al., 2006): the service offered by a provider
depends on the trust that is assigned to that provider. This information is
totally non-functional, but in some cases should be treated like functional,
e.g. mean times a services has failed, or what was the perceived quality of
the service, for example, using a rating from O to 5.

Taking care of that aspects, there are several methods for rating a service. They
can be distinguished the following approaches (Singh and Huhns, 2005):

— Rating (Sensoy, 2008): This technique use social collaboration to create a
score based board, also known as ”‘Social service selection’, in which dif-
ferent user scores each provider, or also services of each provider, with a
value used to create a feedback about user feel of QOS. This technique is
useful when a service is obscure, for example non guaranteed inversions, but

lacks of subjectivity of users, been manipulable by users. Also it is richer
that other techniques, in the fact that there exists information about service
feedback that could be used to enrich the selection process.

— Ranking (Maximilien and Singh, 2004): This other, instead, use heuristics
to determine how the QOS of a service is near to the needed service, also
known as ”‘Semantic service selection™, an treating semantic distance to
required one as the evaluation metric, and ranking different offers to select
the one that suits better. It is necessary to extract semantic information in
which the service could be measured to understand how near it is to the
required service.

— Economic service selection: Another technique to select a provider, simpler
but the most appropriate in some cases, is to select those ones that are offer-
ing a service with a lower cost, in which only quantitative properties of the
QOS are taken into account, for example time taken to treat a petition, or
availability of the service in a determined time slot.

Selection of which technique to use is not trivial, for example, in a trusted network
of providers it is better to select economic techniques, or ranking if the service
definition is ambiguous, as it is expected that providers are trustworthy, but in
no trusted networks, it is preferred to use rating ones. Also, it is possible to fuse
different techniques, so the information of the service offer is richer, and in that
way, the service will be selected wisely, but it is necessary to weight how each
technique depends on the environment, to assure that the system is not highly
restrictive with no trusted providers, and is cost-balanced.

An advantage of ranking techniques is that it is prepared to sustain any heuristic
used to match offers with required service, been able to use anyone in a trust-
based component. The advantage of abstracting this knowledge to a different
component is that it is possible to fit the system requirements in this component,
and reuse the rest of provider selection interaction.

2.2 Agreement Negotiation

Once a provider is chosen to establish an agreement with, it is done a negotiation
process, in which consumer and provider offers each one an offer for that agree-
ment, defining which valuables will be exchanged, in this case they are QOS and
cost for service renting. For this process, there are different techniques (Bromuri
et al., 2009), which assure that an agreement will be establish, but a problem
of this negotiation is that it presents a Nash equilibrium problem, in which two
parties have interest in conflict with each other.

Actually, this negotiation is performed after a provider is selected, but a more
wide vision of the provider selection problem should be able to establish a ne-
gotiation process between the consumer and all the providers, been able to select
the one that accepts first an offer from the consumer. This interaction should be
treated as a bidding process, and presents more complexity that the provider se-
lection problem, and would be suitable for a future agreement pattern.

3 AGREEMENT PATTERNS

When working with a new technology, or beginning to work with one that pre-
viously existed, it is useful to have access to a collection of rules, examples, and

descriptions, of the principal aspects of that technology. In software development
there are programming languages as rules, source code examples, and software
patterns as descriptions of good approaches taken to produce a specific piece of
software. Those software patterns are intended to offer new developers a view of
how to approach to a solution that is proven to have good properties, and also
offering information that contrast that. Also, different works have proven that
patterns are really usable as experience representation and distribution (Oluyomi
et al., 2006).

Agreement technologies (Jennings, 2005) (AT) is a recent discipline which col-
lects this multidisciplinary research and can be defined as the technologies for
the practical application of knowledge to the automated fulfilment of agreements.
Agreement technologies do not dictate the underlying technologies (objects, com-
ponents, agents, services, ...), but are focused on the formalization of knowledge
structures, protocols, algorithms and expertise that contribute to the establishing
of agreements in an open dynamic environment.

Based on this previous research, Agreement patterns (Iglesias et al., 2009) are
defined as software patterns which helps software components coordination through
the fulfilment of agreements. Agreements patterns include all kind of agreements,
both explicit ones (e.g. negotiation) and tacit ones (e.g. organization).

The main need of the pattern engineering is to define a pattern template that re-
flects the needs from the domain in which it will be used. In the case of agreement
oriented services there is important to determine those ones:

— Participants, or Roles.
— Trigger
— Purpose

Taking those aspects in account, it should be possible to define the pattern tem-
plate. In this case we propose the use of the canonical form (also called Alexan-
drian) for software patterns informal description(Buschmann et al., 1996), which
it has been enrich with the elements listed before:

— Name: a meaningful name that provides a vocabulary for discussing.

— Alias: an alternative name to the pattern.

— Participants: who are the main participants in the interaction, and their
roles.

— Trigger: why the interaction process begins, and with which interactions is
related. It will describe when it is used.

— Purpose: what is the problem that it solves.

— Problem: a statement of the problem and the goals it wants to reach.

— Context: the preconditions under which the problem and its solution seem
to recur.

— Forces: a description of the relevant forces and constraints and how they
interact with one another and with the goals. Considerations to be taken into
account to select a solution for a problem.

— Solution: static relationships and dynamic rules describing how to realize
the desired outcome. It should be described using pseudo-code, class dia-
grams, reasoning diagrams, or any model that helps to understand the solu-
tion.

— Examples: one or more sample applications of the pattern which illustrate
its application. Known occurrences of the pattern, which help in verifying
that the pattern is a proven solution to a recurring problem.

— Resulting context: the state or configuration of the system after the pattern
has been applied.

— Rationale: a justification of the pattern, explaining how and why it works,
and why it is “good”.

— Related patterns: compatible patterns which can be combined with the de-
scribed pattern.

All this points forms a good batch of questions about the pattern itself, helping
to determine the inner of the pattern, as assuring that it is a true pattern widely
useful, and not an anti-pattern(Rising, 1998) of bad manners in software develop-
ment, that don’t offer and extensible and reusable interaction process for service
oriented computing.

In order to classify agreement patterns, a classification scheme has been pro-
posed (Iglesias et al., 2009), which has identified the following dimensions:

— Duration: Is the agreement established temporally, short term, or perma-
nently, long term?

— Normative context: The pattern is strict as a established norm, or flexible?

— Topic: Which is the main purpose of the pattern? E.g.: Service offering,
Service negotiation, or Service bidding.

— Phase: What moment of the agreement life-cycle it represents? E.g.: negoti-
ation, conclusion or selection.

— Decision making: How selection process are performed? E.g.: In provider
selection it should be social-collaborative, but in agreement portability it
should be rule based.

4 THE PROVIDER SELECTION PATTERN

Using the provider selection problem as example of how the agreement patterns
are applied, they are going to be defined a series of steps and models to be used
as formalization of it. The purpose of those models is to define the interaction
process that is part of this problem.

4.1 Problem Description

The pattern template previously showed in section 3 would be applied to the
provider selection problem, which presents a good number of factors to consider
it the basis of service oriented computing:

— Itis use when it is required to create an adaptable system.

— Provider selection trust is required to assure system’s assurance.

— It will dynamically establish agreements as required to manage different of-
fers, and select the best that suits requirements, and cost factors.

The main purpose of the agreement is to unify all the information about different
approaches taken in this scenario to be able to present it in a formal way, accessi-
ble by different developers, to take care of the pattern whenever a system requires
its capabilities.

Those aspects assures the need for a formal description of how a solution is ob-
tained, as presenting the problem enough complexities, and been widely used and
generic.

4.2 Description of the Agreement Pattern

Based on the pattern structure described in section 3, the solution to the Provider
Selection problem can be described as follows.

— Name: Provider selection.
— Alias: Service selection

— Duration: Variable. Based on system and purpose of service.
— Normative context: Flexible.

— Topic: Service provider selection.
— Phase: Agreement selection.

— Decision making: Based on trust/reputation mechanism, mainly social-collaborative.

— Participants: User, that requires a service; Service provider, that offers an
agreement for a service to be used by the User; and the Market place, which
list the different Service provider that are offering services. Relations be-
tween roles are present in Figure 1.

QualityOfService

describes
Agreement offers Provider

enrich fits
ReputationMechanism ServiceDescription
/ A
requlires
agqreeg
User ~ | MarketPlace

Uses I

Fig. 1: Participant classes in the provider selection problem

— Trigger: A system requires a service, commonly with some restrictions or
preferences on its non functional properties (QoS, price, ...), and there is
more than one service provider that fits in that description.

— Purpose: Retrieve the best provider, and establish a service usage agreement

with it.

— Problem: A user requires an agreement with a provider, that must offer a
service with required properties, like quality of the service, cost or trust in
that provider, and as a result, an agreement is done with the most appropriate
provider.

— Context: The user has access to a market of offered services, and a trust
system.

— Forces: Trust and reputation techniques to enrich bidders information.

— Solution: See Algorithm 1, for a pseudo-code description of the solution.

1.

The user asks bidders in a service providers’ market, for a service offer,
with an specific properties.

Each provider offers a different proposed agreement, including non func-
tional properties, such as costs or QOS information.

The user enriches the information in each agreement with trust infor-
mation, using a trust-based component, like a collaborative reputation
system, self-experience, or heuristics for service matching.
Agreements are evaluated, based on their non functional properties as
well as based on the trust and reputation of the provider, using a spe-
cific evaluation function based on the system purpose, for example, a
high security system will evaluate poorly any system without good trust
information.

If there is almost one provider with an acceptable evaluation, it is real-
ized an agreement with it. A threshold must be defined to don’t establish
an agreement if all providers are offering invalid agreements. Once the
target provider is chosen, it begins a negotiation process, in which the
consumer tries to establish the agreement with highest utility.

Algorithm 1 Pattern solution pseudo-code

Require: RequiredServiceDescription
Require: ReputationMechanism
Require: ProvidersMarketPlace
OfferedAgreements = ProvidersMarketPlace.askFor(RequieredServiceDescription)
while Agreement a in OfferedAgreements do
ReputationMechanism.enrich(a)
if RequiredServiceDescription.isBetter(a, best) then

best=a

end if
end while

if best.assures(RequiredServiceDescription) then
ServiceAgreement = best. AgreeProposal()

end if

Ensure: ServiceAgreement.assures(RequiredServiceDescription)

— Examples:

e Broadband access negotiation (Merino et al., 2005), in which users se-

lects the provider that fits with its needs, and use other users feedback
to select the most appropriate.

e Ad-Hoc service negotiation (Song, 2008), in which a provider offers
different services, in which the QOS changes, but fits better with the
required service as an increase of cost instead. In this case the user tries
to find equilibrium between service matching and cost assumed.

e E-Commerce (Aydogan, 2008), in which several providers are offering
the same good but with different important aspects, mainly shipping
method and final cost, and the user measures the offering, with other
users feedback, like comments in the provider web, and feedback about
trustworthy of the provider.

— Resulting context: The user establish an agreement, if an acceptable one is
offered among the providers.

— Rationale: It defines the interaction basis in the search for an agreement
when it is necessary to compare different offers, and enrich them with trust
systems.

— Related patterns: Agreement Portability.

4.3 Reasoning Cognitive Pattern

To help to understand how this problem could be driven, it is possible to divide
it in different tasks, which should be threatened independently, except of how
they are interconnected. This tasks interconnection is described in figure 2. The
purpose of those tasks is as follows:

— Estimate: Enriches providers offers with trust information from the trust/reputation
knowledge.

— Assess: Selects a provider that fits the user requirements of the QOS. In this
task it is measured how the service proposal is similar to the required service,
and the trust information of the provider.

Those tasks treat different information from different knowledge sources:

— Service Provider Offer: This information is obtained from asking to the
market place about service providers that fit a required need for a service.
It should be described using an agreement definition language, like WS-
Agreement.

— Trust/Reputation: This information should be obtained from a service of
service providers reputation, the provider itself, or from a social-collaborative
source. It should be a quantification of average number of service losses, a
measure of principal properties, like average bandwidth in a WiFi access
point; or feedback of other users, which requires to apply a new trust filter-
ing to that information.

— Provider Agreement: This is the final product of the problem, in which the
system, after selecting a service provider, creates an agreement, in which
the consumer ask for access to the specified service. This agreement can be
represented by an agreement language such as WS-Agreement.

S RELATED WORK AND CONCLUSIONS

This article has presented agreement patterns as an instrument for modelling
reusable solutions.

Service Provider
Offer

: Trust
Estimate Reputation

Service Rating

Service Provider Provider
decision Agreement

Fig. 2: Provider Selection reasoning diagram

There are related works for defining design patterns in the areas of multi-agent
systems and Service Oriented Computing (SOC).

Agent-Oriented Patterns have been defined for sharing multi-agent system devel-
opment experiences. Oluyomi (Oluyomi et al., 2007; Oluyomi, 2006) presents
an agent pattern classification scheme based on two dimensions: stages of the
agent-oriented software development and tasks in each stage of development. At
each stage or level of development (analysis, multi-agent architecture, agent ar-
chitecture, multi-agent implementation), the framework identifies the attributes
of that level of abstraction, in order to classify these patterns. In addition, Oluy-
omi proposes to refine the canonical pattern form for defining an Agent-Oriented
Pattern Template Structure, which adds more granularities depending on the pat-
tern type (agent internal architecture structural, interactional or strategic patterns,
etc.). Some of the patterns identified by Oluyomi, whose classification scheme
includes other approaches, can be considered agreement patterns. The main dif-
ferences between her classification and the one proposed in this article is that
Oluyomi’s classification is agent oriented, and it is hard to use if it is not imple-
mented with agents (agent oriented development phase, agent architecture, etc.),
while the one proposed here is independent of the technology to be used, al-
though implementation examples can be presented with different technologies.
In addition, agreements are not a key concept in Oluyomi’s classification scheme
as in our proposal. Future work will provide a mapping of the agreement related
patterns classified by Oluyomi onto our classification scheme.

In the area of Service Oriented Architecture (SOA), SOA patterns have been de-
fined (Erl, 2008; Rotem Gal Oz, 2009; Zdun et al., 2006). For example, Erl (Erl,
2008) classifies patterns for architecture services, service compositions, service
inventories and service oriented enterprise. Rotem-Gal-Oz (Rotem Gal Oz, 2009)
describes patterns for Message Exchange, Service Interaction, Service Composi-
tion, Structural, Security and Management. SOA patterns (Zdun et al., 2006) pro-
vide high level architectural patterns, which do not detail yet agreement issues.

Inside the SOC community, the GRAAP Working Group (Grid Resource Allo-
cation and Agreement Protocol WG) has defined the specification Web Services
Agreement (Andrieux et al., 2007), which is particularly interesting for this re-
search. The purpose of the specification is the definition of a Web Services pro-
tocol for establishing agreements defined in XML. The specification covers the
specification of agreement schemas, agreement template schemas and a set of
port types and operations for managing the agreement life cycle. This specifi-
cation defines an agreement as an agreement between a service consumer and a
service provider specifies one or more service level objectives both as expressions
of requirements of the service consumer and assurances by the service provider
on the availability of resources and/or service qualities. An agreement defines
a dynamically-established and dynamically-managed relationship between par-
ties. The object of this relationship is the delivery of a service by one of the parties
within the context of the agreement. The management of this delivery is achieved
by agreeing on the respective roles, rights and obligations of the parties. An
agreement is characterized by its name, context and terms.

The OASIS Reference Architecture for SOA (McCabe, 2008) is an abstract real-
ization of SOA, focusing on the elements and their relationships needed to enable
SOA-based systems to be used, realized and owned. The reference architecture
defines three primary viewpoints: business via services that captures what SOA
means for people using it to conduct business, realizing service oriented archi-
tectures deals with the requirements for constructing a SOA; and owning service
oriented architectures addresses issues involved in owning and managing a SOA.
The notion of agreement is included in several ways in the architecture, as an
organizational concept (constitution) or as a formalization of a relationship (busi-
ness agreement and contract).

These two initiatives, OASIS RA and WS-Agreement are compatible and com-
plementary of our proposal, since they provide a modelling reference architecture
as well as a language for describing the identified patterns boiling down to the im-
plementation level. This integration will be include in future publications.

The pattern ProviderSelection described within this article illustrates how agree-
ment patterns can help in providing a common vocabulary as well as a collection
of best practices for engineering agreement-based distributed applications.
Future works will validate this model with other problems, and represent a com-
pendium of agreement based problems, and their solutions, which they purpose
is to help developers to take each pattern an assemble a system capable of inter-
act with service providers, without needing to know how the interaction must be
done, instead knowing the required elements to be implemented.

Bibliography

[Andrieux et al., 2007]Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig,
H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., and Xu, M. (2007). Web
services agreement specification (WS-Agreement). Technical report, Grid
Resource Allocation Agreement Protocol (GRAAP) Working Group.

[Aydogan, 2008]Aydogan, R. (2008). Content-oriented composite service negotia-
tion with complex preferences. In AAMAS °08: Proceedings of the 7th in-
ternational joint conference on Autonomous agents and multiagent systems,
pages 1725-1726, Richland, SC. International Foundation for Autonomous
Agents and Multiagent Systems.

[Billhardt et al., 2007]Billhardt, H., Hermoso, R., Ossowski, S., and Centeno, R.
(2007). Trust-based service provider selection in open environments. In
SAC ’07: Proceedings of the 2007 ACM symposium on Applied computing,
pages 1375-1380, New York, NY, USA. ACM.

[Bromuri et al., 2009]Bromuri, S., Urovi, V., Morge, M., Stathis, K., and Toni, F.
(2009). A multi-agent system for service discovery, selection and negotia-
tion. In AAMAS '09: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems, pages 1395-1396, Richland,
SC. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

[Buschmann et al., 1996]Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996). Pattern-oriented software architecture: a system of
patterns. John Wiley & Sons, Inc., New York, NY, USA.

[Sensoy, 2008]Sensoy, M. (2008). A Flexible Approach For Context-Aware Service
Selection In Agent-Mediated E-Commerce. PhD thesis, Bogazi¢i University.

[Erl, 2008]Erl, T. (2008). SOA Design Patterns. Prentice-Hall.

[Iglesias et al., 2009]Iglesias, C. A., Garijo, M., Fernandez-Villamor, J. 1., and
Durén, J. J. (2009). Agreement patterns.

[Jennings, 2005]Jennings, N. (2005). Agreement technologies. Intelligent Agent
Technology, IEEE / WIC / ACM International Conference on, 0:17.
[Maximilien and Singh, 2004]Maximilien, E. M. and Singh, M. P. (2004). A frame-
work and ontology for dynamic web services selection. /IEEE Internet Com-

puting, 8(5):84-93.

[McCabe, 2008]McCabe, F. G. (2008). Reference architecture for service oriented
architecture. Technical report, OASIS.

[Merino et al., 2005]Merino, A. S., Matsunaga, Y., Shah, M., Suzuki, T., and Katz,
R. H. (2005). Secure authentication system for public wlan roaming. Mob.
Netw. Appl., 10(3):355-370.

[Oluyomi et al., 2006]Oluyomi, A., Karunasekera, S., and Sterling, L. (2006). De-
sign of agent-oriented pattern templates. In ASWEC "06: Proceedings of the
Australian Software Engineering Conference, pages 113—-121, Washington,
DC, USA. IEEE Computer Society.

[Oluyomi et al., 2007]Oluyomi, A., Karunasekera, S., and Sterling, L. (2007). A
comprehensive view of agent-oriented patterns. Autonomous Agents and
Multi-Agent Systems, 15(3):337-377.

[Oluyomi, 2006]Oluyomi, A. O. (2006). Patterns and Protocols for Agent-Oriented
Software Development. PhD thesis, Faculty of Engineering. University of
Melbourne, Australia.

[Rising, 1998]Rising, L., editor (1998). The patterns handbooks: techniques, strate-
gies, and applications. Cambridge University Press, New York, NY, USA.

[Rotem Gal Oz, 2009]Rotem Gal Oz, A. (2009). SOA Patterns. Manning.

[Singh and Huhns, 2005]Singh, M. P. and Huhns (2005). M.n.: Service-oriented
computing: Semantics, processes, agents. J. Wiley and Sons.

[Song, 2008]Song, W. (2008). Building dependable service-oriented application
via dynamic reconfiguration and fault-tolerant reconfiguration collabora-
tion protocol. PhD thesis, Tempe, AZ, USA.

[Yang et al., 2006] Yang, S. J. H., Hsieh, J. S. E, Lan, B. C. W., and Chung, J. (2006).
Composition and evaluation of trustworthy web services. Int. J. Web Grid
Serv., 2(1):5-24.

[Zdun et al., 2006]Zdun, U., Hentrich, C., and Aalst, W. M. P. V. D. (2006). A sur-
vey of patterns for service oriented architectures. Int. J. Internet Protoc.
Technol., 1(3):132-143.

