

Analysis and Design of Multiagent Systems

using MAS-CommonKADS
�

Carlos A. Iglesias
✁✄✂☎✂

, Mercedes Garijo
✆
,

José C. González
✆

and Juan R. Velasco
✆

✝
Dep. de Teorı́a de la Señal, Comunicaciones e Ing. Telemática, E.T.S.I. Telecomunicación,

Univ. de Valladolid. C/ Real de Burgos s/n, 47011 Valladolid, Spain

cif@tel.uva.es✞
Dep. de Ingenierı́a de Sistemas Telemáticos, E.T.S.I. Telecomunicación,

Univ. Politécnica de Madrid. C/ Ciudad Universitaria s/n, 28040 Madrid, Spain✟
mga,jcg,juanra ✠ @gsi.dit.upm.es

Abstract. This article proposes an agent-oriented methodology called

MAS-CommonKADS and develops a case study. This methodology extends the

knowledge engineering methodology CommonKADS with techniques from object-

oriented and protocol engineering methodologies. The methodology consists of

the development of seven models: Agent Model, that describes the characteristics

of each agent; Task Model, that describes the tasks that the agents carry out; Ex-

pertise Model, that describes the knowledge needed by the agents to achieve their

goals; Organisation Model, that describes the structural relationships between

agents (software agents and/or human agents); Coordination Model, that describes

the dynamic relationships between software agents; Communication Model, that

describes the dynamic relationships between human agents and their respective

personal assistant software agents; and Design Model, that refines the previous

models and determines the most suitable agent architecture for each agent, and

the requirements of the agent network.

1 The MAS-CommonKADS methodology

MAS-CommonKADS [13] extends CommonKADS [27], for multiagent systems (MAS)

modelling, adding techniques from object oriented (OO) methodologies such as Object

Modelling Technique (OMT) [26], Object Oriented Software Engineering (OOSE) [15]

and Responsibility Driving Design (RDD) [31] and from protocol engineering for de-

scribing the agent protocols, such as Specification and Description Language (SDL) [14]

and Message Sequence Charts (MSC96) [25]). The methodology defines the following

models:

✡
This research is funded in part by the Commission of the European Community under the

ESPRIT Basic Research Project MIX: Modular Integration of Connectionist and Symbolic

Processing in Knowledge Based Systems,ESPRIT-9119, and by the Spanish Government under

the CICYT projects TIC91-0107 and TIC94-0139.✡☛✡
This research was partly carried out while the first author was visiting the Dep. Ingenierı́a de

Sistemas Telemáticos (Universidad Politécnica de Madrid).

– Agent model (AM): specifies the agent characteristics: reasoning capabilities, skills

(sensors/effectors), services, agent groups and hierarchies (both modelled in the

organisation model).

– Task model (TM): describes the tasks that the agents can carry out: goals, decom-

positions, ingredients and problem-solving methods, etc.

– Expertise model (EM): describes the knowledge needed by the agents to achieve

their goals.

– Organisation model (OM): describes the organisation into which the MAS is going

to be introduced and the social organisation of the agent society.

– Coordination model (CoM): describes the conversations between agents: their in-

teractions, protocols and required capabilities.

– Communication model (CM): details the human-software agent interactions, and

the human factors for developing these user interfaces.

– Design model (DM): collects the previous models and consists of three submodels:

network design for designing the relevant aspects of the agent network infrastruc-

ture (required network, knowledge and telematic facilities); agent design for divid-

ing or composing the agents of the analysis, according to pragmatic criteria and

selecting the most suitable agent architecture for each agent; and platform design

for selecting the agent development platform for each agent architecture.

The application of the methodology consists of the development of the different

models. Each model consists of constituents (the entities to be modelled) and relation-

ships between the constituents. A textual template is defined for each constituent in

order to describe it. The states of the constituents describe their development: empty,

identified, described or validated.

The software process model of the methodology combines the risk-driven approach

with the component-based approach. The general process is risk driven, that is, in every

cycle the states of the models to be reached are defined for reducing the perceived risks.

When a state consists of identifying components, the developed components (agents,

services, knowledge bases, etc.) are candidates for reusing.

In order to illustrate the application of the methodology, we will develop a case

study, called The Travel Agency. The problem consists of building a system that is

consulted by a user for booking a flight, and answers with the cheapest available flights

with lowest probability of being delayed. The system will be run by any company, and

the information of the flights will be available from the airlines.

2 Conceptualisation

During this phase we will carry out an elicitation task to obtain a preliminary description

of the problem. This is carried out following a user-centered approach by determining

some use cases (scenarios) which can help us to understand informal requirements and

to test the system. Use cases are described using OOSE notation and the interactions

are formalised with MSC (Message Sequence Charts) [25, 24].

We can identify one user role: the traveller, a person who wishes to travel. The

following information should be supplied: departure date (dd), arrival date (ad) and

Traveller

Ask flight MSC Traveller
Request

Secretary

Fig. 1. Use case diagram

destination (dest). Two scenarios are identified: the system answers with an available

flight (num flight) or with no available flight (and the cause). If there is no available

flight, the user can change the flight data. The interaction between the user and the sys-

tem is represented using the use case notation of OOSE [15] (Fig. 1, notation extended

as explained in 3.1). The interactions of the use cases are formalised using MSC as

a notation (Fig. 2). In this figure two message interchange alternatives are combined

with the alternative (alt) operator. A basic MSC contains the description of the asyn-

chronous communication between entities called instances, and has primitives for local

actions, timers (set, reset and time-out), process creation, process stop, coregions, and

inline operators expressions for composition of event structures (alternative, parallel

composition, iteration, exception and optional regions). The purpose in this phase is to

get an idea of the interactions, but they will be refined later in the coordination model,

specifying the data/knowledge interchanged and the speech-act of each interaction.

alt

msc TRAVELLER-REQUEST

Traveller System

answer(num_flight)

Request_Flight(dd, ad, destination)

sorry(cause)

Fig. 2. MSC Traveller request use case diagram

3 Analysis

The results of this phase will be the requirements specification of the MAS through the

development of the models previously described, except for the design model. These

models are developed in a risk-driven way, and the steps are:

– Agent modelling: developing initial instances of the agent model for identifying and

describing the agents.

– Task modelling: task decomposition and determination of the goals and ingredients

of the tasks.

– Coordination modelling: developing the coordination model for describing the in-

teractions and coordination protocols between the agents.

– Knowledge modelling: modelling of the knowledge on the domain, the agents (know-

ledge needed to carry out the tasks and their proactive behaviour) and the environ-

ment (beliefs and inferences of the world, including the rest of agents).

– Organisation modelling: developing the organisation model. Depending on the

type of project, it may be necessary to model the organisation of the enterprise in

which the MAS is going to be introduced for studying the feasibility of the pro-

posed solution. In this case, two instances of the organisation model are developed:

before and after the introduction of the MAS. This model is also used to model

the software agent organisation. Another approach to define a social level for MAS

extending CommonKADS is presented in [11].

3.1 Agent Modelling

Agents can be identified with the following strategies (or a combination of them):

– Analysis of the actors of the use cases defined in the conceptualisation phase. The

actors of the use cases delimit the external agents of the system. Several similar

roles (actors) can be mapped onto one agent to simplify the communication.

– Analysis of the statement of the problem. The syntactic analysis of the problem

statement can help to identify some agents. The candidate agents are the subjects

of the sentences, the active objects. The actions carried out by these subjects should

be developed by the agents as goals (with initiative) or services (under demand).

– Usage of heuristics. The agents can be identified determining whether there is some

conceptual distance [3]: knowledge distribution, geographical distribution, logical

distribution or organisational distribution.

– An initial task and expertise models can help us to identify the necessary functions

and the required knowledge capabilities, resulting in a preliminary definition of the

agents. The goals of the tasks will be assigned to the agents.

– Application of the internal use cases technique. This technique is based on RDD [31]

and its CRC (Class Responsibility Collaboration) cards. Taking as input the use

cases of the conceptualisation phase and some initial agents, we can think that each

agent “uses” other agent(s), and can use these agents with different roles. The use

case notation (Fig. 1 and 3) is extended for showing human agents (with the round

head) and software agents (with the squared head). When an agent needs to use an

agent for a particular function (for example, evaluate something), we look for such

an agent in our agent-library for reusing, combining in this way the top-down and

bottom-up approach.

– Application of the enhanced CRC cards. A CRC is filled for each agent, describing

its class. Each CRC is divided into five columns: goals assigned, plans for achiev-

ing these goals, knowledge needed to carry out the plans, collaborators in these

plans, and services used in the collaboration. The back side of the CRC is used for

annotations or extended description of the front side.

Secretary

Request flights

Request prediction

MSC Determine
flights and prediction

Predictor

Airline clerk

Fig. 3. Internal use case diagram

In the proposed case study, we identify:

– Since there is a user (human agent), as a general rule, we create a user-interface

agent derived from an interface agent class for each human agent. In this case,

it will be called Secretary. The type of interaction (menu-based, etc.) between a

human agent and his/her agent assistant should be modelled in the communication

model.

– Now we can recognise a knowledge distance (we need an expert in predicting flights

without delays), with the role (class) of Predictor.

– There is also a geographical distance, the information of the available airlines can

only be accessed through Airlines-Clerk agents. This information will be requested

from Airlines-Clerk agents, so it can be useful to define a group for these agents and

send multicast messages. This group will be modelled in the organisation model.

We should then fill the textual template of the agent model for each identified agent,

that includes its name, type, role, position, a description, offered services, goals, skills

(sensors and effectors), reasoning capabilities, general capabilities norms, preferences

and permissions.

The approach followed here is quite different from the approach of agent identific-

ation in synthetic ecosystems [23], since we suppose that agents will be rather complex

(because of their architecture) and we will try to limit the number of agents.

alt tell(flights)

sorry(cause)

msc DETERMINE FLIGHTS AND PREDICTIONS

Airline clerkSecretary Predictor

ask(dd, ad, destination)

ask(flights)

tell(predictions)

Fig. 4. MSC internal use case diagram

3.2 Task Modelling

Tasks are decomposed following a top-down approach, and described in an and/or tree.

The description of a task [8] includes its name, a short description, input and output

ingredients, task structure, its control, frequency of application, preconditions and re-

quired capabilities of the performers.

The potential benefits of the development of this model are the documentation of the

activities of the organisation before and after the introduction of the multiagent system.

This documentation serves for supporting the maintenance and management of changes

in the organisation and for supporting project feasibility assessment.

3.3 Coordination Modelling

The coordination model has two milestones: (1) definition of the communication chan-

nels and building of a prototype; (2) analysis of the interactions and determination of

complex interactions (with coordination protocols).

The first phase consists of the following steps:

1. Describe the prototypical scenarios between agents using MSC notation (Fig. 4).

The conversations are identified taking as an input the results of the techniques used

for identifying agents. During this first stage, we will consider that every conversa-

tion consists of just one single interaction and the possible answer.

2. Represent the events (interchanged messages) between agents in event flow dia-

grams (also called service charts) (Fig. 5). These diagrams collect the relationships

between the agents via services.

3. Model the data interchanged in each interaction. The expertise model can help us to

define the interchanged knowledge structures. These interchanged data are shown

in the event flow diagram between squared brackets.

4. Model each interaction with the state transition diagrams of SDL (Specification and

Description Language) [14] specifying speech-acts as inputs/outputs of message

events (Fig. 6). These diagrams can be validated with the MSC diagrams.

5. Each state can be further refined in the task or expertise model.

6. Analyse each interaction and determine its synchronisation type: synchronous, asyn-

chronous or future.

User Secretary

Airline clerk

ask[dd.ad,destination]

tell[flight]
sorry[cause]

Predictor

ask[flights]

tell[prediction]

ask[dd.ad,destination]
tell[flight]

sorry[cause]

Fig. 5. Event flow diagram

The second phase consists of analysing the interactions for getting more flexibility

(relaxing for example the user requirements), taking advantage of the parallelism [7],

duplicating tasks using different methods or resolving detected conflicts. When a co-

operation protocol is needed, we should consult the library of cooperation protocols and

reuse a protocol definition. If there is no protocol suitable for our needs, it is necessary

to define a new one. We can use HMSC (High level Message Sequence Charts) [14],

which are very useful for this purpose. These diagrams (Fig. 7) show the road map

(phases) of the protocol, and how the different phases (specified with MSC) are com-

bined. A phase can be a simple MSC or another HMSC (e.g. counterp). The processing

of the interactions is described using SDL state diagrams, and it is also necessary to

fill in the textual protocol template specifying the required reasoning capabilities of the

participants in the protocol. These capabilities can be described using one or several in-

stances of the expertise model. The state diagrams consider three kinds of events: mes-

sage events, events from other agents using message-passing; external events, events

from the environment perceived through the sensors; and internal events, events that

arise in an agent because of its proactive attitude.

ask(flight)

Ready_to_predict

do: prediction

tell(prediction)

Ready_to_predictReady_to_predict

sorry(cause)

prediction
yes no

Fig. 6. SDL state diagram

The potential benefits of the development of this model are:

– The development of the coordination model is a means for specifying the proto-

typical interactions between the agents working on the resolution of a problem,

together with the interactions with the environment. This model is used to store

the decisions of the structure of communications and the protocols associated with

these communications. The usage of these descriptions is twofold: the designer can

reuse protocols and scenarios and the intelligent agent can select them at run time.

– MSC and SDL are formal description techniques with a well-defined syntax and se-

mantics. The usage of these languages for specifying interactions in multiagent sys-

tems have been achieved by: (1) defining one signal type for each possible speech-

act (message type); (2) associating a logical expression to each state name (using

commentaries); and (3) considering internal events (similar to spontaneous trans-

itions) for changes in the mental state of the agent motivated because of its proact-

ive attitude. In addition, a multicast message has been proposed and requested from

the MSC standardisation working group, for simplifying the specification of group

protocols. These languages have been used for supporting the system specification,

design, documentation and definition of test cases.

– The development of this model can help in the maintenance and testing of a mul-

tiagent system.

msc PROPOSITION

proposed

accepted rejected

ACCEPT REJECTEDCOUNTERP

SATISFIED FAILED

failedsatisfied

Fig. 7. HMSC diagram

3.4 Knowledge Modelling

The expertise model is used for modelling the reasoning capabilities of the agents to

carry out their tasks and achieve their goals. Normally, several instances of the expertise

model should be developed: modelling inferences on the domain (i.e. how to predict

delays in flights, taxonomies of delays and flights, etc.); modelling the reasoning of the

agent (i.e. problem solving methods to achieve a task, character of the agent, etc.) and

modelling the inferences of the environment (how an agent can interpret the event it

receives from other agents or from the world). When we have to develop the reasoning

capabilities of an agent, we will reuse previously developed instances of the expertise

model and adapt these instances to the new characteristics of the problem.

The expertise model [30]
�

consists of the development of the application know-

ledge (consisting of domain knowledge, inference knowledge and task knowledge) and

problem solving knowledge.

The usage of this model can take advantage of the work previously developed, for

example for developing a planner [2].

Domain Knowledge: represents the declarative knowledge of the problem, modelled

as concepts, properties, expressions and relationships using the Conceptual Modelling

Language (CML) [28] or the graphical notation of the Object Model of OMT.

In our problem, if we are focusing just on the domain, we could identify concepts

such as flight, airlines, delay, etc.; properties such as num flight, ao, dd,. . . . These con-

cepts are arranged in domain models that describe a particular relationship between

✁

A very practical approach to the development of this model can be found in [17].

themselves. For example, we could develop a causal model of what events cause a

delay; a hierarchy of events, delays, etc. The road map of the developed domain models

and their relationships are presented in model schematas.

Inference Knowledge: represents the inference steps performed for solving a task.

There is a library of generic inference structures selected by the task type (diagnosis,

assessment, etc.). These generic inference structures should be adapted to the prob-

lem. Consulting the library for modelling how to predict whether a flight is going to

be delayed, we see that the task Prediction is not suitable, because this is used for sug-

gesting what will happen next to the system. We found that the most suitable task is

Assessment, whose inference structure (supposing no available norm) is shown in Fig.

8. The inference structure is a compound of predefined inference types (how the do-

main concepts can be used to make inferences, represented as ellipses) and domain

roles (rectangles). This generic inference structure should be adapted to our problem.

After defining the inference structure, it is instantiated into a similar diagram for the

domain.

Task Knowledge: represents the order of the inference structures. The notation con-

sists of inference structures and task-method inference decomposition structures.

Problem Solving Method: during the design we should specify a Problem Solving

Method (PSM) for each inference type: how the inference is carried out. The PSMs are

arranged in libraries for reuse.

The potential benefits of the development of this model are the utilisation of a well-

known knowledge level modelling framework, which has been successfully applied in

several projects, and the provision of a library of generic components, specification

languages and software tools.

compare

Case
description

Abstract case
description

System
model

Decision class

compare

Fig. 8. Inference structure diagram

3.5 Organisation Modelling

CommonKADS defines the organisation model for modelling the organisation in which

the knowledge based system is going to be introduced. Here the model is extended in

the same way as the agent model for modelling the organisation of agents. This model

shows the static or structural relationships between the agents, while the coordination

model shows the dynamic relationships. The graphical notation of these models is based

on the notation of the Object Model of OMT, adding a special symbol for distinguishing

between agents and objects. An example of agent hierarchy diagram is shown in Fig. 9.

The aggregation symbol is used for expressing agent groups.

Predictor

BaseAgent

Secretary

Fig. 9. Class agent diagram

The agent symbol is quite similar to the class symbol proposed in OMT, but has a

different meaning. The upper box does not store the defined attributes as in OMT but

the mental state and internal attributes of an agent, such as their goals, beliefs, plans,

etc. The lower box stores the external attributes of the agents: services, sensors and

effectors.

The inheritance relationship between agents is defined as the union of the values of

the precedent classes for each attribute. For example, an agent class has its goals and

the goals of the precedent agent classes. If an agent defines an attribute as exclusive, the

values are overwritten.

The potential benefits of the development of this model is the specification of the

structural relationships between human and/or software agents, and the relationship

with the environment. The study of the organisation is a tool for the identification of

possible impacts of the multiagent system when installed. In the same way, this model

can provide information about the functions, workflow, process and structure of the or-

ganisation that allows the study of the feasibility of the proposed solutions. This model

represents both class agent diagrams and instance agent diagrams, showing the par-

ticular relationships with the environment. In contrast with other paradigm (i.e. object

oriented), the agent instance diagrams are frequently more relevant than the class agent

diagrams.

4 Design

As a result of the analysis phase, an initial set of agents has been determined. During

the design phase the design model is developed. This phase is extended for MAS and

consists of [13]:

– Agent network design: the infrastructure of the MAS-system (so-called network

model [12]) is determined, and consists of network, knowledge and coordination

facilities. The agents (so-called network agents) that maintain this infrastructure are

also defined, depending on the required facilities. Some of these required facilities

can be:
� Network facilities: agent name service, yellow/white pages service, de/registering

and subscription service, security level, encryption and authentication, trans-

port/application protocol, accounting service, etc.
� Knowledge facilities: ontology servers, PSM servers, knowledge representa-

tion language translators, etc.
� Coordination facilities: available coordination protocols and primitives, pro-

tocol servers, group management facilities, facilities for assistance in coordin-

ation of shared goals, police agents for detecting misbehaviours and the control

of the usage of common resources, etc.

The result of the common facilities shared by the agents allow the efficient com-

munication between the agents and is expressed in an ontology, in the same way as

the service ontology as defined by Nodine [22].

– Agent design: the most suitable architecture is determined for each agent, and some

agents can be introduced or subdivided according to pragmatic criteria. Each agent

is subdivided in modules for user-communication (from communication model),

agent communication (from coordination model), deliberation and reaction (from

expertise, agent and organisation models), external skills and services (from agent,

expertise and task models). The agent design maps the functions defined in these

modules onto the selected agent architecture.

The issue of designing an agent architecture [5] is not addressed in the methodo-

logy, since the agent architecture is provided by the agent development platform.

– Platform design: selection of the software (multiagent development environment)

and hardware that is needed (or available) for the system.

The potential benefits of the development of this model are:

– The decisions on the selection of a multiagent platform and an agent architecture

for each agent are documented.

– The design model collects the information of the previously developed models and

details how these requirements can be achieved.

– The design model for multiagent systems determines the common resources and

needs of the agents and designs a common infrastructure managed by network

agents. This facilitates modularity in the design.

5 Related Work

There are several proposals for defining an agent-oriented (AO) methodology.

Here we include a review and the relationship between these approaches and MAS-

CommonKADS.

Kinny [18] defines a methodology for MAS extending OMT. He proposes two main

levels: an external view for modelling the agent relationships (our organisation model)

and the interactions (our coordination model). The internal view describes the mental

state of a BDI (Belief-Desire-Intention) agent (our expertise and agent models). The

modelling of the interactions is elaborated more in our coordination model. The internal

view could be an interesting alternative to the our expertise model, though the expertise

model offers a very elaborate framework for knowledge modelling.

Burmeister [6] describes an AO methodology, extending OO techniques. Three mod-

els are distinguished: agent model (our agent and expertise models), organisational

model (our organisation model) and a cooperation model (our coordination model).

She proposes a very interesting extension to the CRC cards and a clear development

process. Our graphical notation for modelling interactions seems to be more detailed,

and the knowledge modelling is elaborated more in the CommonKADS framework.

Kendall [16] proposes another AO methodology based on OO and enterprise mod-

elling techniques. The use case model is very similar to our internal use cases. Coordin-

ation and knowledge modelling are not so well developed and the process development

is not very clear.

MASB [20, 21] proposes an AO methodology that covers analysis and design. The

behaviour diagrams are similar to the internal use case diagrams, and it proposes a new

graphical notation (perhaps too complex) for modelling the agents. The conversation

modelling is only mentioned.

CoMoMAS [10] proposes also an extension to CommonKADS for MAS. It has a

very interesting extension to CML for MAS and a good redefinition of the expertise

model. It also defines a new model for cooperation, but is less developed than our co-

ordination model. Our model also proposes different graphical notations instead of just

textual templates.

DESIRE [4] is a formal framework for multiagent modelling, that covers mainly our

task, agent and expertise models. It could be suitable for specifying the design after the

analysis phase.

CoLa [29] is a specification language for task decomposition, transactions and con-

tracts, which are specified in our methodology in the task and coordination models. Our

graphical notation could be easily mapped onto this specification language.

COOL [1] and AgentTalk [19] are an alternative to our coordination model. Our

model takes advantage of the properties of formal description techniques and their

standardised textual and graphical notation and semantics.

6 Conclusions and Future Work

The engineering approach [9] to agent-based systems development is a key factor for

their introduction into the industry. This principled development will be specially needed

as long as the number of agents of the systems increase. The standard advantages of an

engineering approach, such as management, testing and reutilisation should be applied

in the development of agent-based systems.

This paper presents an agent-oriented methodology that covers the software devel-

opment life cycle of a multiagent system, through the development of seven models,

that can be reused. The software process model combines a risk-driven approach with a

component-based approach.

This methodology integrates techniques from a well-known knowledge engineering

methodology, CommonKADS, with techniques from object-oriented methodologies and

protocol engineering. The application of techniques based on well-known techniques is

intended to facilitate the learning of the methodology and to provide confidence to the

managers with techniques that have been successfully applied.

For each model of the methodology, we have shown the standard development pro-

cess and the graphical notation. The methodology also defines textual templates for

each model, not included here, and some non-standard development processes.

This approach is currently being employed in real applications. The feedback from

these applications will help to refine the methodology.

Our main effort has been the development of the new model, the Coordination

Model. The rest of the models are subject of further improvement.

Our future work is focused on the development of a workbench for the methodology,

since there is no integrated environment available.

Acknowledgements

We would like to thank Amalio F. Nieto, Mark Hallett and two anonymous referees for

many suggestions concerning the content and presentation of this paper.

References

1. Mihai Barbuceanu and Mark S. Fox. Capturing and modeling coordination knowledge for

multi-agent systems. Journal on Intelligent and Cooperative Information Systems, July

1996.

2. V. R. Benjamins, Leliane Nunes de Barros, and Valente Andre. Constructing planners

through problem-solving methods. In B. Gaines and M. Musen, editors, Proceedings of

the 10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, volume 1,

pages 14–1/20, Banff, Canada, November 1996. KAW.

3. Alan H. Bond and Les Gasser. An analysis of problems and research in DAI. In Alan H.

Bond and Les Gasser, editors, Readings in Distributed Artificial Intelligence, pages 3–36.

Morgan Kaufmann Publishers: San Mateo, CA, 1988.

4. F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and Treur J. DESIRE: Modelling

multi-agent systems in a compositional formal framework. Int Journal of Cooperative In-

formation Systems, 1(6):67–94, January 1997.

5. Joanna Bryson. Agent architecture as object oriented design. (In this volume).

6. Birgit Burmeister. Models and methodology for agent-oriented analysis and design. In

K Fischer, editor, Working Notes of the KI’96 Workshop on Agent-Oriented Programming

and Distributed Systems, 1996. DFKI Document D-96-06.

7. E. H. Durfee, V. R. Lesser, and D. D. Corkill. Trends in cooperative distributed problem

solving. IEEE Transactions on Knowledge and Data Engineering, 1(1), March 1989.

8. Cuno Duursma, Olle Olsson, and Sundin Ulf. Task model defintion and task analysis pro-

cess. Technical Report Technical report KADS-II/M5/VUB/TR/004/2.0 ESPRIT Project

P5248, Free University Brussels and Swedish Institute of Computer Science, 1994.

9. M. Fisher, J. Müller, M. Schroeder, G. Staniford, and G. Wagner. Methodological founda-

tions for agent-based systems. In Proceedings of the UK Special Interest Group on Found-

ations of Multi-Agent Systems (FOMAS). Published in Knowledge Engineering Review (12)

3, 1997, 1997. http://www.dcs.warwick.ac.uk/ fomas/fomas96/abstracts/ker3.ps.

10. Norbert Glaser. Contribution to Knowledge Modelling in a Multi-Agent Framework (the Co-

MoMAS Approach). PhD thesis, L’Universtité Henri Poincaré, Nancy I, France, November

1996.

11. Rune E. Gustavsson. Multi agent systems as open societies - a design framework -. (In this

volume).

12. C. A. Iglesias, J. C. González, and J. R. Velasco. MIX: A general purpose multiagent archi-

tecture. In M. Wooldridge, J. P. Müller, and M. Tambe, editors, Intelligent Agents II (LNAI

1037), pages 251–266. Springer-Verlag: Heidelberg, Germany, 1996.

13. Carlos A. Iglesias, Mercedes Garijo, José C. González, and Juan R. Velasco. A meth-

odological proposal for multiagent systems development extending CommonKADS. In

B. Gaines and M. Musen, editors, Proceedings of the 10th Banff Knowledge Acquisition for

Knowledge-Based Systems Workshop, volume 1, pages 25–1/17, Banff, Canada, November

1996. KAW. Track Agent-Oriented Approaches To Knowledge Engineering.

14. ITU-T. Z100 (1993). CCITT specification and description language (SDL). Technical re-

port, ITU-T, June 1994.

15. I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-Oriented Software En-

gineering. A Use Case Driven Approach. ACM Press, 1992.

16. Elisabeth A. Kendall, Margaret T. Malkoun, and Chong Jiang. A methodology for devel-

oping agent based systems for enterprise integration. In D. Luckose and Zhang C., editors,

Proceedings of the First Australian Workshop on DAI, Lecture Notes on Artificial Intelli-

gence. Springer-Verlag: Heidelberg, Germany, 1996.

17. John Kingston. Building a KBS for health and safety assessment. In Applications and

Innovations in Expert Systems IV, Proceedings of BCS Expert Systems ’96, pages 16–18,

Cambridge, December 1996. SBES Publications. Also published as technical report: AIAI-

TR-202, Artificial Intelligence Applications Institute, University of Edinburgh.

18. David Kinny, Michael Georgeff, and Anand Rao. A methodology and modelling technique

for systems of BDI agents. In W. van der Velde and J. Perram, editors, Agents Breaking

Away: Proceedings of the Seventh European Workshop on Modelling Autonomous Agents

in a Multi-Agent World MAAMAW’96, (LNAI Volume 1038). Springer-Verlag: Heidelberg,

Germany, 1996.

19. Kazushiro Kuwabara, Toru Ishida, and Nobuyasu Osato. AgenTalk: Coordination protocol

description for multiagent systems. In Proceedings of the First International Conference on

Multi-Agent Systems (ICMAS-95), page 455, San Francisco, CA, June 1995.

20. B. Moulin and L. Cloutier. Collaborative work based on multiagent architectures: A meth-

odological perspective. In Fred Aminzadeh and Mohammad Jamshidi, editors, Soft Comput-

ing: Fuzzy Logic, Neural Networks and Distributed Artificial Intelligence, pages 261–296.

Prentice-Hall, 1994.

21. Bernard Moulin and Mario Brassard. A scenario-based design method and an environment

for the development of multiagent systems. In D. Lukose and C. Zhang, editors, First Aus-

tralian Workshop on Distributed Artificial Intelligentce, (LNAI volumen 1087), pages 216–

231. Springer-Verlag: Heidelberg, Germany, 1996.

22. Marian H. Nodine and Amy Unruh. Facilitating open communication in agent systems: the

infosleuth infrastructure. (In this volume).

23. Van Parunak, John Sauter, and Steve Clark. Toward the specification and design of industrial

synthetic ecosystems. (In this volume).

24. Björn Regnell, Michael Andersson, and Johan Bergstrand. A hierarchical use case model

with graphical representation. In Proceedings of ECBS’96, IEEE International Symposium

and Workshop on Engineering of Computer-Based Systems, March 1996.

25. Ekkart Rudolph, Jens Grabowski, and Peter Graubmann. Tutorial on message sequence

charts (MSC). In Proceedings of FORTE/PSTV’96 Conference, October 1996.

26. J. Rumbaugh, M.Blaha, W. Premerlani, F. Eddy, and V. Lorensen. Object-Oriented Model-

ing and Design. Prentice-Hall, 1991.

27. A. Th. Schreiber, B. J. Wielinga, J. M. Akkermans, and W. Van de Velde. CommonKADS:

A comprehensive methodology for KBS development. Deliverable DM1.2a KADS-

II/M1/RR/UvA/70/1.1, University of Amsterdam, Netherlands Energy Research Foundation

ECN and Free University of Brussels, 1994.

28. A. Th. Schreiber, B. J. Wielinga, and J. M. Akkermans W. Van de Velde. CML: The Com-

monKADS conceptual modelling language. Research report KADS-II/M2/RR/UvA/69/1.0,

University of Amsterdam, Netherlands Energy Research Foundation ECN and Free Univer-

sity of Brussels, March 1994. Accepted for EKAW’94.

29. Egon Verharen, Frank Dignum, and Sander Bos. Implementation of a cooperative agent

architecture based on the language-action perspective. (In this volume).

30. B. J. Wielinga, W. van de Velde, A. Th. Schreiber, and H. Akkermans. Expertise

model definition document. deliverable DM.2a, ESPRIT Project P-5248 /KADS-

II/M2/UvA/026/1.1, University of Amsterdam, Free University of Brussels and Netherlands

Energy Research Centre ECN, May 1993.

31. R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software.

Prentice-Hall, 1990.

This article was processed using the LATEX macro package with LLNCS style

