
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DEVELOPMENT OF A SEMANTIC

CONTEXTUAL CONTENT MANAGEMENT

SYSTEM FOR MOBILE DEVICES IN BEACON

POWERED ENVIRONMENTS

APPLICATION IN A SMART OFFICE

SCENARIO

Javier Ruiz Corisco

Enero de 2017

TRABAJO FIN DE GRADO

T́ıtulo: Desarrollo de un sistema semántico contextual de gestión de

contenidos para dispositivos móviles en entornos con Bea-

cons.

T́ıtulo (inglés): Development of a Semantic Contextual Content Manage-

ment System for Mobile Devices in Beacon Powered Envi-

ronments. Application in a Smart Office Scenario.

Autor: Javier Ruiz Corisco

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Juan Quemada Vives

Vocal: Joaqúın Salvachúa Rodŕıguez

Secretario: Gabriel Huecas Fernández-Toribio

Suplente: Santiago Pavón Gómez

FECHA DE LECTURA: 26 de Enero de 2017

CALIFICACIÓN:

Resumen

La tecnoloǵıa está cambiando d́ıa a d́ıa la manera en la que vivimos. La constante evolución

de la tecnoloǵıa implica un cambio también en la manera en la que la gente trabaja. Las

últimas tendencias, como el “Internet de las Cosas”, están transformando nuestro entorno

y la manera en la que consumimos contenido desde nuestros dispositivos. Los lugares de

trabajo no son una excepción, y el concepto de “oficina inteligente” está muy presente hoy

en d́ıa, permitiéndonos hacer el lugar f́ısico de trabajo más inteligente y adaptable.

El objetivo de este proyecto es el desarollo de un gestor de contenido contextual, y

su integración en una plataforma de automatización de tareas. El proyecto proveerá a los

usuarios de contenido basándose en eventos con distinto origen y contexto. Estos contenidos

pueden redifinir la manera en la que los usuarios interactúan con su lugar de trabajo,

teniendo un impacto positivo en su rendimiento y mejorando en general la productividad.

Los usuarios pueden crear contenido personalizado a través del gestor de contenido.

Mediante el uso del editor gráfico los usuarios podrán hacerlo de manera fácil e intuitiva.

El sistema ha sido integrado en una plataforma de automatización de tareas para poder

entregar el contenido basándose en tecnoloǵıas semánticas. Para lograrlo se han definido en

esta plataforma nuevos canales, reglas y una ontoloǵıa.

Mediante el uso de una aplicación Android los eventos originados desde beacons o de

otros canales son mandados a la plataforma de automatización de tareas para su evaluación.

Los usuarios recibirán una notificación en su dispositivo si existe contenido disponible para

ellos, dependiendo del contexto.

El proyecto ha sido aplicado en el entorno de una oficina inteligente, permitiendo su

uso en diferentes casos como la mejora de navegación en el lugar de trabajo o alertas sobre

eventos de la compañ́ıa.

Por último se presentan las conclusiones extráıdas de este proyecto, los problemas en-

contrados durante su desarrollo y las posibles ĺıneas de trabajos futuros.

Palabras clave: Gestor de contenidos, Tecnoloǵıa semántica, Contexto, Automati-

zación de Tareas, Beacons, Oficina Inteligente

V

Abstract

Technology is constantly changing the way we live our lives. The constant evolution of

technology means the way people do business is also changing. Trending technologies, like

the Internet of Things (IoT), are transforming our environment and the way we consume

content through our devices. Workplaces are no exception, and the concept of “smart

office” is very present nowadays, allowing us to make the physical work environment more

intelligent and adaptable.

The objective of this final project thesis is the development of a context aware content

management system and its integration into a task automation platform. The project will

provide users with custom content based on contextual event sources. These contents can

redefine the way users interact with their workplace, having a positive impact on their

performance and boosting productivity overall.

Users can create their own custom content through the content management system.

Making use of the graphical editor, users can create new content in an easy way.

The system has been integrated into a task automation platform in order to enable

context-aware content delivery based on semantic technologies. For this purpose we have

defined new channels, rules and an ontology.

A mobile application has been used in order to capture events from beacons or other

channels, sending them to the Task Automation platform for evaluation. Users will get

notified on their phones if there is content available for them, depending on their context.

The project has been evaluated in a smart office environment, allowing its use for dif-

ferent cases, such as enhanced o ce navigation or company events announcements.

Finally, we present the conclusions drawn from this project, the problems that we have

faced during the development and possible future lines of work.

Keywords: Custom Content, Semantics, Context, Automation, Beacons, Smart Office

VII

Agradecimientos

A mis padres, por su apoyo, su confianza y su paciencia. Sin ellos no habŕıa llegado hasta

aqúı. Gracias por enseñarme y darme tanto, sois el mejor ejemplo de personas al que alguien

podŕıa aspirar a llegar algún d́ıa.

A los que me han ayudado y han estado desde el momento en el que entré en la Escuela,

y por supuesto a los que han aparecido al final cuando más lo necesitaba para darme ese

ultimo empujón.

Y en especial a ella, por hacerme grande y darle luz a mis d́ıas más oscuros.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 2

2 Enabling Technologies 5

2.1 Beacons . 5

2.2 Task Automation Server . 7

2.2.1 EWE-Tasker . 7

2.2.2 Notation3 . 8

2.2.3 EYE . 8

2.2.4 EWE Ontology . 9

2.2.5 Android App . 10

2.3 Custom Content Management System . 10

XI

2.3.1 SirTrevor . 10

2.3.1.1 Block Architecture . 11

2.3.2 Apache Stanbol . 12

2.3.3 MongoDB . 13

3 Architecture 15

3.1 Alternative Beacon CMS Solutions . 15

3.2 Architecture Overview . 18

3.3 Content Management System (CMS) . 19

3.3.1 Content Editor . 20

3.3.2 Semantic Information: Place Ontology 25

3.3.3 Content Rendering . 26

3.4 Content Delivery . 27

3.4.1 Task Automation Server . 27

3.4.2 CMS Integration . 31

3.5 Android Application . 31

4 Case study 33

4.1 Enhanced Workplace Navigation . 33

4.2 Other Use Cases . 40

5 Conclusions and future work 43

5.1 Introduction . 43

5.2 Conclusions . 43

5.3 Achieved goals . 45

5.4 Problems faced . 45

5.5 Future work . 46

Bibliography 47

A Channel Creation 49

A.1 Place Channel definition . 49

A.2 CMS Channel definition . 50

List of Figures

2.1 Commercial Bluetooth Beacon Solutions . 6

2.2 EWE-Tasker . 7

2.3 EYE Integration . 9

2.4 SirTrevor Block Catalog . 11

2.5 Apache Stanbol Functionality . 13

2.6 CMS using Apache Stanbol via HTTP Rest Interface 13

3.1 Pushmote Scenario, showing the Event and the Action 16

3.2 Architecture . 18

3.3 PHP Market Share in 2017 . 20

3.4 Content Editor . 21

3.5 Content Editor: Block Management . 21

3.6 Content Editor: Content List . 22

3.7 Image Upload Processt . 23

3.8 Client Credentials Grant Flow, OAuth 2.0 25

3.9 CMS: SirTrevor Adapter . 26

3.10 TAS Sub-modules Interconnection . 27

3.11 Rule Editor Graphic Interface . 28

3.12 Channel Administration Interface . 30

4.1 Case Use: Enhanced Navigation Route . 34

4.2 CMS: Login form . 35

XV

4.3 CMS: Creating Custom Content . 36

4.4 CMS: Content Listing . 37

4.5 EWE-Tasker: Place Channel Creation . 38

4.6 EWE-Tasker: Created Rule . 39

4.7 Smart Place Notification . 40

4.8 Displaying Content . 40

4.9 Weekly Talk Notification . 41

4.10 Displaying Content . 41

4.11 Mobile App: Emergency Alert . 41

CHAPTER1
Introduction

1.1 Context

The constant evolution of technology has changed the way we live. Trending technologies,

like the Internet of Things, have the potential to impact our routine. The “smart city”

concept is becoming a reality all over the world, looking for ways to improve efficiency on

things such as energy use. It is natural that the “smart” concept is starting to also being

applied to workplaces.

The main goal of the smart office is to make the physical workplace more intelligent and

adaptable to the objectives and the operative of the company. By making the workplace

interact with the users, and not only the other way around, employees can free more time

in order to do real work – the work that makes the employee more valuable. Interacting

with user smartphones is the best way to do so.

Customizing the way the workplace interacts with users is a start, but letting users

customize it the way they want it is great. It avoids having them feeling out of control. There

has been an increase in the need of automating time-consuming everyday tasks. The proof of

it is in the number of services that offer this feature such as Zapier [10]. This is accomplished

by using Event-Condition-Action (ECA) rules. Providing an intuitive visual interface, users

1

CHAPTER 1. INTRODUCTION

without programming knowledge can establish their own rules interconnecting different

applications.

These systems are called Task Automation Services (TAS), and they are a solid choice

when it comes to empower smart offices. By allowing users to create and manage their own

automations we will make them happier and more productive.

1.2 Project goals

In this context, the objective of this final project is the development of a content man-

agement system to deliver contextual information to mobile devices in beacon powered

environments, such as Smart Offices. In order to achieve this goal, the project defines the

following subgoals:

• Development of a Content Management System (CMS) that provides authoring tools

for assigning contents depending on the user context.

• Development of a Content Delivery Service, in order to integrate the CMS in the

platform EWETasker [6] developed by the Intelligent Systems Group (GSI) of UPM.

This integration will include: (i) definition of a service of the CMS to integrate with

the rule engine; and, (ii) enabling the rule engine to execute content selection rules.

• Integration with the Android client that interacts with the iBeacon enabled space and

receives the actions of the rule engine. In particular, a new action will be defined to

present users the contents as notifications.

• Evaluation of the project in a smart office scenario.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is the following:

Chapter 1 explains the context in which this project is developed. Furthermore, it de-

scribes the main goals to achieve in this project.

Chapter 2 describes the main technologies evaluated in order to design and implement

this project.

Chapter 3 goes into detail about the architecture of this project, including the design

phase and implementation details.

2

1.3. STRUCTURE OF THIS DOCUMENT

Chapter 4 provides an evaluation of the project in a smart office scenario.

Chapter 5 gathers the conclusions obtained from this project and provides some sugges-

tions for possible future work to improve it.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

In this chapter, we are going to explain the different approaches and technologies that we

have used in the making of this project. In the first place, we will start with the tools used for

our custom Content Management System, such as SirTrevor for the actual content system

and a document-oriented database, MongoDB. After that, we will give a brief overview

of the technology developed by Intelligent Systems Group (GSI) where this project will be

integrated.

2.1 Beacons

Beacons are BLE (Bluetooth-Low-Energy) powered devices that broadcast small data pack-

ets. It is really important to know that the broadcast takes place at regular time intervals

and not continuously. This allows beacons to operate on really small batteries, such as

coin-cell or AA ones, for several months. Increasing the interval time can help to increase

the battery life on the beacons given there is no need for constant transmission all the time.

Smart Bluetooth devices, such as smartphones, use the beacon’s signal strength in order

to estimate the distance between them. Typically the range will be about 50 meters.

For this project we will be working with Estimote Beacons [6] because of the good results

5

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.1: Commercial Bluetooth Beacon Solutions

that the Intelligent Systems Group has been getting over the past few years. There is an

increasing market emerging around the beacons but Estimote has been a solid choice for us.

Some of the reasons why Estimote is a great choice for anyone looking to work on beacons

are:

• You can get to 9.83 out of 10 smartphones with it since it’s available for both Android

and iOS [4].

• Broadcast interval can be customized depending on your needs.

• Great design, making it perfect for any environment.

• Battery life can last up to two years.

Estimote Android SDK

Estimote offers a well-documented library in order to make our apps interact with the

beacons. Estimote offers both an Android and an iOS SDK. In our case, and since we are

integrating into the Intelligent Systems Group Android Application we will use the Android

one. This allows for:

• Beacon monitoring, so you can monitor a region and the devices that enter or exit it.

• Beacon ranging, for debugging purposes to manage all your beacons.

6

2.2. TASK AUTOMATION SERVER

2.2 Task Automation Server

In order to deliver the content to the users in this project, we are going to need some sort

of automation. Depending on the context we will show one type of context or another, and

to do so the best way is making use of Rules. So we are going to use a Semantic Rule Task

Automation Engine called EWE-Tasker. In this section we will go over the engine itself,

and the tools that power it.

2.2.1 EWE-Tasker

EWE-Tasker [15] is a web application (created by Sergio Muñoz López, from the Intelligent

Systems Group) which does Semantic Rule Task Automation. It uses the EWE Ontology

(more on 2.2.4), based on Notation3, to specify these rules.

Figure 2.2: EWE-Tasker

These rules have a Event - Condition - Action structure meaning that when an event

takes place, a condition is evaluated and if needed an action is triggered. Both events and

actions belong to channels that can be easily managed by users. With EWE-Tasker users

can:

• Create and import rules for a specific task automation.

• Create and modify the channels that contain events and actions.

• Test rules with the EYE reasoner.

7

CHAPTER 2. ENABLING TECHNOLOGIES

2.2.2 Notation3

Notation3 [18], also known as N3, is a semantic language designed with human-readability

in mind. Its compact and readable features make it a good alternative to RDF’s standard

XML syntax. The language has been developed by Tim Berners-Lee and more members

from the Semantic Web community.

The aims of the language are:

• To optimize expression of data and logic in the same language.

• To allow RDF to be expressed.

• To allow rules to be integrated smoothly with RDF.

• To allow quoting so that statements about statements can be made.

• To be as readable, natural, and symmetrical as possible.

The language achieves these objectives with the following features:

• URI abbreviation using prefixes which are bound to a namespace (using @prefix) a

bit like in XML.

• Repetition of another object for the same subject and predicate using a comma ”,”.

• Repetition of another predicate for the same subject using a semicolon ”;”.

• Bnode syntax with a certain properties just put the properties between [and].

• Formulae allowing N3 graphs to be quoted within N3 graphs using and .

• Variables and quantification to allow rules, etc to be expressed.

• A simple and consistent grammar.

2.2.3 EYE

EYE [11] stands for ”Euler Yet another proof Engine”, and it is a a high-performance rea-

soning engine that uses an optimized resolution principle, supporting forward and backward

reasoning and Euler path detection to avoid loops in an inference graph. It is written in

Prolog and supports, among others, all built-in predicates defined in the Prolog ISO stan-

dard. Backward reasoning with new variables in the head of a rule and list predicates are a

8

2.2. TASK AUTOMATION SERVER

useful plus when dealing with OWL ontologies, so is more expressive than RDFox or FuXi,

whilst being more performant than other N3 reasoners.

Figure 2.3: EYE Integration

Internally, EYE translates the supported rule language, N3, to Prolog Coherent Logic

intermediate code and runs it on YAP (Yet Another Prolog) engine, a high performance

Prolog compiler for demand-driven indexing. The inference engine supports monotonic

abduction-deduction-induction reasoning cycle. EYE can be configured with many options

of reasoning, such as not providing false model, output filtering, and can also provide useful

information of reasoning, for example, proof explanation, debugging logs, and warning logs.

The inference engine can be added new features by using user-defined plugins.

2.2.4 EWE Ontology

Evented Web Ontology [3], also known as EWE, is an ontology designed to describe elements

within Task Automation Services from a descriptive approach, enabling rule interoperability.

EWE ontology is composed of four main classes:

• Event: The event class defines a particular occurrence of a process generated by a

particular service. These events are instantaneous, and let the users describe under

which conditions they should be triggered. Changes on the state of a system, or a

sensor (like proximity to a beacon) can be modeled as events.

• Action: Action class defines an operation or process being provided by a service.

They are the result of a rule, this being composed of an event as an input and an

action as an output. We can think of the Action class as the output of a Rule.

9

CHAPTER 2. ENABLING TECHNOLOGIES

• Channel: A Channel defines an individual which either generates Events, provide

Actions, or both. So sensors and actuators are both described as channels.

• Rule: The Rule class defines an Event-Condition-Action (ECA) rule, being triggered

by an Event that produces the execution of an Action. These Rules define particular

interconnections between instances of the Event and Action classes; including the

configuration parameters for both: inputs and outputs.

2.2.5 Android App

A Mobile Application (developed by Antonio Fernández Llamas [7]) is also used in this

project so the custom content can be presented to the users. The mobile interacts with the

Beacons through Bluetooth, processing data when an event is captured and a rule is then

evaluated.

2.3 Custom Content Management System

Having already gone over the technologies that enable the delivery of the contents in this

project, we will focus now on the ones enabling the creation and storage of such content.

The project should allow the creation of customized content so we can target the highest

number of users depending on the context. It should be easy, accessible and reliable.

There are several alternatives available on the Internet when it comes to HTML Content

editors. We have taken a few of them into account: CKEditor[17] or TinyMCE[5] being

good examples of ”What You See Is What You Get” editors. The thing is that this kind of

editors share all the same features. And more often than not these are bloated with a lot

of additional tools that are not used, especially in the context of this project.

We also looked into already prepared solutions for content management in Beacon envi-

ronments, such as Pushmote[9]. The main issue with these solutions is that they are strictly

closed. Meaning that you can only use what they allow, so there is no margin to extend it.

2.3.1 SirTrevor

SirTrevor [13] is an open-source javascript library that provides a rich content editor, and

not just for the web. Instead of storing the content in a database, SirTrevor stores it inside

a JSON object. It also provides a very clean and simple interface that allows us to create

custom content in an easy way.

10

2.3. CUSTOM CONTENT MANAGEMENT SYSTEM

What makes SirTrevor different is that its purpose is to create structured content with

no presentational information. It is often called “output-agnostic” – meaning that how

the content is rendered is up to who uses it. What really matters is the content and the

structure, but not the presentation.

Being open-source, lightweight and extensible, SirTrevor seemed like the best choice.

2.3.1.1 Block Architecture

SirTrevor content is made out of blocks. A block defines the type of content and the

actual data inside that block. Sir Trevor includes a collection of pre-built blocks that you

can include and use inmediately, or use as a base for your own custom blocks. In our case,

these are the blocks that we have included in the project: Text, Heading, List, Image, Tweet

and Video.

Figure 2.4: SirTrevor Block Catalog

• Text Block: Allows both plain and rich text (including hyperlinks, bold and italics)

to be structured in a simple way.

• Heading Block: Useful for design purposes and creating sections in your content.

• List Block: Unordered lists are also available as a block.

11

CHAPTER 2. ENABLING TECHNOLOGIES

• Image Block: Uploading your own images is also an option with SirTrevor (more on

how to handle the upload in the Architecture Section of this project)

• Tweet Block: Useful way to embed single tweets.

• Video Block: Embedding videos from popular video services on the Internet is also

a possibility.

It is very important to remember that SirTrevor does not store any of this, it only

creates a JSON object that remembers the order of the blocks and its contents.

All of these blocks can be easily translated into HTML (more on this later on the

Architecture section), and they all follow the next structure:

Listing 2.1: Text Block Structure

{

"data": [{

"type": "text",

"data": {

"text": "<p>Hello, my name is Sir Trevor</p>",

"format": "html"

}

}]

}

The block structure is always composed of both “type” and “data”.

That is why in order to create our Content Management System we need to store this

object in a database. We have opted for a NoSQL database, MongoDB [14], as explained

later in this section.

2.3.2 Apache Stanbol

Apache Stanbol [1] is an open source set of software components for semantic content

management. Its intended use is to extend a content management system with semantic

services. In order to integrate and be used as a semantic service for a CMS, all of its

components can be accessed via a RESTful web service API. Its main features are:

• Content Enhancement: Extracting data from non-semantic content in order to add

semantic information.

12

2.3. CUSTOM CONTENT MANAGEMENT SYSTEM

Figure 2.5: Apache Stanbol Functionality

Figure 2.6: CMS using Apache Stanbol via HTTP Rest Interface

• Reasoning: Services that are able to retrieve additional semantic information from

the enhanced content described before.

• Knowledge Models: Definition and manipulation of the data models (ontologies)

that are used to store the semantic content.

• Persistence: Storing and/or caching of semantic information, so it allows search.

Apache Stanbol is a really interesting project, although its learning curve is very steep.

It also may turn out a bit overkill for our project, since we are not focusing the custom

content to a specific model. Despite not going ahead with it for this project, it will be

considered for future lines of work.

2.3.3 MongoDB

MongoDB[14] is an open-source cross-platform database that stores data using a flexible

document data model very similar to JSON. The fields inside can vary from one entry to

another. Instead of being based of tables and rows like in relational databases (such as

SQL), MongoDB is built of documents and collections. Documents structure are comprised

of sets of key-value pairs. Collections are simply sets of documents, being the equivalent to

tables on the traditional relational databases.

13

CHAPTER 2. ENABLING TECHNOLOGIES

The major asset of MongoDB, and other NoSQL databases, is how dynamic docu-

ments can be. Documents contain one or more fields, including arrays, binary data or

sub-documents. And the structure can vary from one document to another with no trouble

at all.This allows to evolve the data model as quick as we need it to change.

MongoDB uses BSON (Binary JSON) behind the scenes. BSON extends the JSON

model providing new features like additional data types and the possibility of ordering

fields. Given that SirTrevor stores the data in a JSON object, MongoDB seemed like the

perfect choice for our Content Management System.

Conclusion

Having considered the different approaches and technologies over the last pages, we have

opted for a combination of different technologies for this project.

We will create our own Custom Content Management System, or CMS, using SirTrevor,

MongoDB and web technologies such as PHP and Javascript. The CMS will be then

integrated into the EWE-Tasker web application and share the same user database.

The content will be served to the Android Mobile Application depending on the user

context and the semantic data of the contents. The mobile application will be modified in

order to fulfill this purpose.

14

CHAPTER3
Architecture

In this chapter, we will explain the architecture of this project, including the design phase

and implementation details. First of all, different content management system alternatives

will be evaluated. In the second place, we will focus on the architecture of the project itself.

Finally, we will talk about the integration on both the EWETasker web-app and the Android

app.

3.1 Alternative Beacon CMS Solutions

Since we decided to go ahead and use the Estimote Beacons, it is worth mentioning that the

company had plans for building a project like ours. In a 2013 interview [16] with Estimote

CEO Jakub Krzych, he talks about a cloud based Context Management System. It could

be used to associate or define custom messages or images when a mobile device enters a

Beacon region.

Since then Estimote decided not to pursue the idea and focus instead on providing

the best solutions for the actual beacons. Improving the hardware (different sizes and

types of beacons for different solutions), the firmware (support for iBeacon, Eddystone and

Nearable), the mobile SDKs, indoor positioning, security, etc.

15

CHAPTER 3. ARCHITECTURE

In the previous chapter we briefly described different solutions in order to present custom

content to the users on a beacon environment. These may be suitable in some situations,

so we have decided to evaluate a few and see if they could work for our project.

Pushmote

Pushmote [9] is a Software Development Kit, available for both Android and iOS, that

allows your app to show content to your users depending on their location.

Similar to the way the Task Automation Server works, Pushmote defines three key terms

to understand the way it works.

• Scenario: A Scenario is a sentence relating an event and an action. Its the Pushmote

equivalent for a Rule in our Task Automation Server.

• Event: Possible events (all location related) are: Enters to, Exit from and Comes

nearby to.

• Action: These may include: Showing an image, a video or opening an URL.

Figure 3.1: Pushmote Scenario, showing the Event and the Action

There are some disadvantages with solutions like Pushmote, we will go over these now.

First of all, there is no context present on it. The events we can use on a scenario

are exclusively location based, so there is no customization on what kind of content a user

will receive. If two different people enter the same region they both will receive the same

content.

Also there is so much you can do with it. The actions are not extensible, you can

only use the ones that Pushmote defines. There is no way to build your own solution and

integrate it.

Lastly, they do not offer free plans. In order to try it we have had to make use of a

limited trial. We would rather go with an open-source solution.

16

3.1. ALTERNATIVE BEACON CMS SOLUTIONS

Rover

Rover [12] is another company focused on location-powered mobile engagement. Even

though they have been on the market less time than other competitors, they really stand

out from them.

The main features are very similar to the ones that Pushmote offers (location based

events, beacon management). The thing that makes Rover stand out from others, is that

it adds a bit of Context into their solution. On top of location-triggered events, you can

add more filters, based on the customer age or gender for example. Rover also provides a

Experience Creator, a great custom content creator that allows you to design the content

straight from their website, customizing everything.

The drawback is that Rover, having all these features, is not free. They offer too a

14-day trial, but their cheapest plan starts from $150 / month. Despite that, they are a

great inspiration for this project.

Bleesk

Bleesk [2] is the last of the companies that we have evaluated. The main focus of Bleesk is

simple: download their app and start receiving the best local offers and deals.

Their approach is a bit different from the other ones. They offer what is called White

Label. They rebrand both the mobile app and the CMS so you can offer it under your brand

to your customers. Although it is an interesting idea, it is not suitable for our project.

17

CHAPTER 3. ARCHITECTURE

Conclusion

After evaluating the different alternatives we still think the best approach is creating our

own system. None of the evaluated solutions have everything we are aiming for, but we will

be using them as inspiration.

We will design and implement a content management system to manage contents through

a web application. In addition, we will extend it by adding a model using ontologies, getting

the semantic context functionality we are looking for. This will allow us to serve content

depending on the context, and even automatically recommend custom content based on

semantic technologies.

3.2 Architecture Overview

In this chapter, the architecture of the project will be explained, including the design

and the final implementation. The system is divided into different modules to help its

understanding.

Figure 3.2: Architecture

The figure 3.1. shows the whole system, which is mainly composed by the Content

Management System, the Task Automation Server and the Mobile Application.

• Content Management System (CMS): this module is the responsible of creating

and managing custom content destined to the users. This module is divided into three

18

3.3. CONTENT MANAGEMENT SYSTEM (CMS)

different submodules:

– Content Manager

– Content Editor

– Content Rendering

• Task Automation Server: this module [15] is the one responsible of automating

the content being delivered to the users making use of rules.

• Mobile Application: The Android application [7] is where the content will be

delivered and presented to the user when certain conditions are met.

Events coming from the Estimote beacons are passed to the Task Automation Server

via the Mobile App. Once these events are received an action is triggered, so the CMS

receives the command and executes an action. The content is then delivered to the mobile

app where it will be shown.

The main focus of our project is the Content Management System, and in a minor way

the Task Automation Server and the Mobile App.

In the following sections we are going to describe deeply subsystems involved in the

project.

3.3 Content Management System (CMS)

One of the main uses of beacons is to provide contextual information about the object the

user is next to. This is not exclusively restricted to objects, and can also apply to places so

information is provided about the environment. Other use cases may be: authorizing access

to rooms or buildings, navigation help in specific areas, enhancing accessibility, or insightful

data about the people entering and exiting the place.

For this purpose we have developed a Content Management System allowing creation

and management of the content that will be presented to the users in many of these cases.

The CMS has been implemented using different technologies like HTML5, CSS3, Javascript,

MongoDB and PHP.

19

CHAPTER 3. ARCHITECTURE

3.3.1 Content Editor

Technology Stack

PHP is a server-side scripting language originally created in 1994, especially suited for web

development and can be embedded into HTML.

Figure 3.3: PHP Market Share in 2017

PHP is used by 82.4% of all of the websites using server-side scripting. Despite the

down on the popularity that it suffered the past few years, with the new versions it has

rised again. PHP is a solid choice for a project like ours.

Also, as we have stated before we decided to incorporate a Javascript library into our

CMS. SirTrevor is a pretty straight-forward out-of-the-box library, and the documentation

is more than enough to get a project started really fast.

There is only two steps to get SirTrevor up and running: first you include the library

files into your project, and last you incorporate a SirTrevor element inside a form in your

HTML that will get converted to a SirTrevor instance with a small Javascript snippet.

<form>

<textarea class="js-st-instance"></textarea>

</form>

<script>

var editor = new SirTrevor.Editor({

el: document.querySelector(’.js-st-instance’),

defaultType: ’Text’,

iconUrl: ’build/sir-trevor-icons.svg’

});

</script>

Going back to the state of the art, we talked about how SirTrevor stores the content you

20

3.3. CONTENT MANAGEMENT SYSTEM (CMS)

create. It is all contained in a JSON file. SirTrevor does not provide a solution for storing

the content, so we decided to use MongoDB to store the output of the editor.

Adding an intuitive interface, some design principles and the power of Javascript and

CSS, we present the result for the graphic interface of our Content Editor.

Graphic Interface

Figure 3.4: Content Editor

The Figure 3.4. shows the main interface of the Content Editor. With some custom

CSS and Javascript code we have made the SirTrevor instance into an actual smartphone

to make the interaction better. Basic instructions are also displayed on the left side of it,

and a title textbox is placed on top of the preview area.

An interesting feature added into the editor is the possibility of previewing the way your

content will be displayed depending on what kind of smart device opens it. The control

buttons are located on the top right corner.

Figure 3.5: Content Editor: Block Management

SirTrevor main features on block management are available. You can add, edit, delete

or even modify the order your content blocks are displayed. At the same time you are doing

the changes, the JSON file is dinamically changing to reflect all these modifications.

21

CHAPTER 3. ARCHITECTURE

We have also developed a listing interface in order to manage all the contents from the

database. In the first stage of the project development, all contents are shown regardless of

who created them since the user integration came at a later stage. From this view we can

edit content that is already created, we can render it as HTML (the way it will actually

appear on the device, more on this on the section “Content Rendering”) and we can also

delete items. A shortcut button to create new content has also been added on the top right

corner.

Figure 3.6: Content Editor: Content List

3rd Party APIs (Image/Tweet Block)

All of the default SirTrevor blocks work with no customization needed at all. There are two

exceptions to this rule, and these two are the Image and Tweet block.

Image Block: Image Upload API

The Image block relies on a server side component to store images on the server. The

default behavior of SirTrevor will be doing an AJAX file upload in the background to a

server endpoint. It will then retrieve the image URL, hosted on our own server.

In order to not be server dependent in our project and avoid handling image files, we

decided to incorporate a third-party API as a solution for this problem. Images will be

hosted on an external server.

Imgur is an online image host and image sharing community founded by Alan Schaaf

on 2009. It was created as a response to the standard problems encountered in the image

hosting services. Started as a side project, it has raised $40 millions in funding and nowadays

is the first choice for many when it comes to image uploading.

In order to use Imgur services from the RESTful API an authorization is needed so our

22

3.3. CONTENT MANAGEMENT SYSTEM (CMS)

Figure 3.7: Image Upload Processt

application must be registered in Imgur as a developer application. After registering the

application we will obtain a Client-ID, that allows us to upload images to Imgur servers

(and store them into our account).

It is important to remember that every HTTP request we make to the Imgur API

will need to incorporate the next HTTP header: ”Authorization: Client-ID ¡our-client-id-

here¿”.

The only remaining thing to do was to code our custom server-side solution on PHP.

After selecting an image from the file upload we need to encode the image on base64 and

send it in a POST to Imgur.

This is an excerpt of the JSON response received after an image upload:

{

"data": {

"id": "QEhi1py",

"title": null,

"description": null,

"datetime": 1484007293,

"type": "image/jpeg",

"animated": false,

23

CHAPTER 3. ARCHITECTURE

"width": 960,

"height": 638,

"size": 64580,

"link": "http://i.imgur.com/QEhi1py.jpg"

},

"success": true,

"status": 200

}

The important part for our Image Block is the actual link of the image. So we will

return that in our PHP script, and our SirTrevor instance on the Content Editor will pick

it up and show the image successfully.

Tweet Block: Twitter API

Similar to the Image Block, the Tweet Block needs server-side code. The code will need

to lookup a Tweet ID that will be introduced in the block in the Content Editor, and it will

return the tweet in JSON making use of the official Twitter API.

Unlike the Imgur API, the only way to do this involves making use of an authenticated

call. More specifically, Twitter uses OAuth to provide authorized access to its RESTful

API.

Open Authorization, more commonly known as OAuth is an open standard for token-

based authentication and authorization on the Internet. It allows an end user’s account

information to be used by third-party services (in this case, Twitter) without having to

share the user password.

Since we do not really need to do things like posting tweets, meaning a user context,

Twitter provides Application-only authentication. Its implementation is based on the Client

Credentials Grant flow of the OAuth 2 Specification.

Since there is no need to sign a request, this approach is much simpler than the standard

OAuth model.

After getting our access token we just need to make use of the following endpoint: GET

https://api.twitter.com/1.1/statuses/show.json?id=tweetID

24

3.3. CONTENT MANAGEMENT SYSTEM (CMS)

Figure 3.8: Client Credentials Grant Flow, OAuth 2.0

3.3.2 Semantic Information: Place Ontology

We wanted to associate the content to a specific location, in order to let the Content Delivery

System send the appropriate content. With this purpose in mind, we have defined a Place

Ontology. Making use of available standardized vocabularies we have created the following,

using the EWE ontology:

Listing 3.1: Place EWE Ontology

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix dbpedia: <http://dbpedia.org/resource/classes#> .

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/> .

@prefix ewe-place: <http://gsi.dit.upm.es/ontologies/ewe-place/ns/> .

@base <http://gsi.dit.upm.es/ontologies/ewe-place/ns/> .

ewe-place:Place a owl:Class ;

dc:title

dc:description

geo:lat

geo:long

dbpedia:floorCount

• dc:title - This represents an appropiate title for the location.

• dc:description - A brief description of the place we are defining.

• geo:lat geo:long - Latitude and Longitude pointing to the location.

25

CHAPTER 3. ARCHITECTURE

• dbpedia:floorCount - In a building context, it is useful to define the floor in which

the place is located.

The content created is then associated to the place we want to, and all of this is stored in

the Content Management System database. The Content Delivery System will then, after

getting an event that a user is in a smart place, retrieve the corresponding content to the

area.

3.3.3 Content Rendering

The content is going to be rendered on mobile devices. When it comes to content rendering

(meaning text and media) the different operating systems have notable differences. This is

reason enough for a lot of application developers to resort to web technologies.

Web technologies on mobile are a great and solid choice. Content rendering in different

operating systems is almost identical in the eyes of the user, and it makes the job easier for

the developers. You can even have webviews embedded on your applications without the

user even noticing.

Responsive web is a must nowadays, and we have reached a point where web content is

more consumed on mobile devices than on desktop.

But, our Content Management System is “output-agnostic”, meaning that how the

content is rendered is up to who retrieves it. This is the reason we have built a module

following a common design pattern, an Adapter.

Figure 3.9: CMS: SirTrevor Adapter

The adapter is built on PHP. Using MongoDB controller, the adapter retrieves the

requested content. The adapter loops through the JSON object, iterating over all the blocks.

Depending on the type of the block, it will call the corresponding static sub-module. The

input will be the block data, and the output is HTML.

26

3.4. CONTENT DELIVERY

After the adapter is done we have a complete web-page containing all the content ready

to view from the mobile device.

3.4 Content Delivery

We have already gone through the main module of our project. In this section we will talk

about how the content is delivered to the users. This task is accomplished by integrating our

developed Content Management System into the Task Automation Server [15].

3.4.1 Task Automation Server

The main purpose of this module [15] , designed by the Intelligent Systems Group, is to

manage certain tasks handling events and triggering actions in an automated way. This

module is composed by four modules:

• Rule Engine: this submodule evaluates user created rules. If the conditions are met

an action triggers.

• Action Trigger: submodule that triggers an action if it receives the appropriate re-

sponse.

• Rule Administration: this submodule allows users to create new rules and manage

existing ones.

• Channel Administration: submodule

Figure 3.10: TAS Sub-modules Interconnection

27

CHAPTER 3. ARCHITECTURE

Rule Engine

Rule Engine is based on the EWE ontology we have described on the Enabling Technologies

section of this project. It is composed by the EYE Helper and the EYE Server.

The EYE Helper loads the user rules. It then captures the events and sends them to

the EYE Server.

The EYE Server evaluates the received events and rules, and draws conclusions from

them. These are the actions, that will be then triggered by the Action Trigger submodule.

Rule Administration

The submodule allows creation and management of user rules. It is composed by the Rule

Editor, Rule Manager and Rule Repository.

Rules have a Event - Condition - Action structure, commonly known as “If this then

that”.

Figure 3.11: Rule Editor Graphic Interface

New rules have been defined for this project in order to automate tasks related to content

delivery and location. The rules are the following:

• If the user presence is detected near a specific beacon, the user has entered a Smart

Place.

• If the user is inside of a Smart Place, custom content is delivered to the user mobile

device.

28

3.4. CONTENT DELIVERY

Channel Administration

This submodule allows new channel creation and management of existing ones. It also

handles the events and the parsing of the response generated when a rule is evaluated. It is

composed by: Channel Editor, Channel Manager, Channel Repository and Events Manager.

Channels are defined by the events and actions associated to them, using the EWE on-

tology. These channels are stored in the Channel Repository using JSON, and the structure

follows the next schema:

Listing 3.2: New Place Channel

{

"title": "Place",

"description": "This channel represents a specific place powered by

beacons.",

"nicename": "Place",

"created_by": "jav",

"events": {

"event": {

"title": "Inside Of",

"prefix": "@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

. @prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/#>.

@prefix ewe-place: <http://gsi.dit.upm.es/ontologies/ewe-place/ns

/#> .",

"num_of_params": "1",

"eye_fragment": "?event rdf:type ewe-place:Inside.

?event ewe:placeID ?placeID."

}

},

"actions:": {

action":{

"title": "Entered",

"prefix": "@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

. @prefix ewe-place: <http://gsi.dit.upm.es/ontologies/ewe-place

/ns/#> . @prefix ov: <http://vocab.org/open/#> .",

"num_of_params": "1",

"eye_fragment": "ewe-place:Place rdf:type ewe-place:Inside ;

ov:location "#PARAM_1#"."

}

},

"created_at":"12:13 03-01-2017"

}

29

CHAPTER 3. ARCHITECTURE

Two new channels have been defined in this project, allowing us to accomplish our

objectives and leaving room for new ways to use them.

Place Channel

This channel represents a specific place in a smart beacon environment. Having a Place

channel is really useful so users can automate tasks when they enter specific places, avoiding

having to deal with the Beacon IDs and using a more natural concept.

• Event: Inside Of. When a user is inside of a specific place.

– Params: Identifier of Place

• Action: Entered. Informs that a user has entered the place.

– Params: Location

Having the Place channel allows users to automate any tasks they want within a specific

place. Users will have a selection of smart places available to choose from.

Figure 3.12: Channel Administration Interface

CMS Channel

This channel represents the custom Content Management System already described in

the last section. This channel is essential so automated appropiate content is shown to the

users, so we need to define an action for this.

• Action: Show. Shows appropriate content depending on the context.

– Params: Location

30

3.5. ANDROID APPLICATION

3.4.2 CMS Integration

We have described in the last section the different submodules that compose the Task

Automation Server. We decided to integrate the CMS into the EWE-Tasker web application

so we could make use of the same database.

Now the users can create their custom content using the same login that they have in

order to create rules.

The CMS Channel action to show content needs to be executed when triggered. In order

to do so, it will make use of an API developed in the CMS module. HTTP requests will be

sent to the CMS asking for the appropiate URL that will get delivered to the mobile device.

Once the URL is delivered to the mobile phone the user needs to be notified. When

they click on the notification the content will appear on their screen.

In the final section of this chapter we will talk about how the content is finally rendered

on the mobile device using an Android application.

3.5 Android Application

A Mobile Application is used in this project to show the content to the users. We decided

to take the existing application [7] developed by the group and improve it in order to

accomplish our goals.

The mobile application allows us to interact with the beacons located on the smart

places. The beacons are constantly broadcasting via Bluetooth, letting smart devices lis-

tening they are close.

Once the event of being close to one of the beacons is captured, the corresponding rules

will be evaluated. Therefore, locating the user in the Place and sending available content

to their device.

When the content URL is sent to the mobile application, a notification comes through

the phone alerting the user.

If the user clicks on this notification, the application opens with the custom content

already rendered.

31

CHAPTER 3. ARCHITECTURE

32

CHAPTER4
Case study

Introduction

This chapter objective is to help understand the project main functionalities. For this

purpose we will go over the main use case to show the main features.

We want our users to automate tasks in their work environment making use of the new

channels we have created, Place and CMS. Making users more comfortable in the workplace

will result in a productivity increase, and a better mood. Also, we could make time-wasting

tasks easier and remove dependencies, like in our main use case.

4.1 Enhanced Workplace Navigation

This use case is aimed to make the adaptation curve easier when someone starts a new

job. For this scenario we will be using the Intelligent Systems Group as the Company. The

laboratory of the Group will act as the workplace. This laboratory is located inside our

School, in the Technical University Campus on Madrid.

First, we have to identify the main actors in this use case:

33

CHAPTER 4. CASE STUDY

• Administrator User: the goal of this user is to configure the different modules so

the automated smart environment is set correctly for the other user. This way the

company can ensure that the new candidates are properly introduced to the workplace.

• New User: this user goal is to experience a nice transition into his new work envi-

ronment. Using the mobile application the user will encounter convenient features,

learning more about his surroundings, making his transition to the new workplace

easier.

In order to build the scenario for this use case, we have used the available research

done in the School Ambassadors program [8]. This program purpose was to elaborate an

appropriate script for guided routes, during an open house day on the Telecommunications

School. This guided visit was oriented to high school students that were considering joining

the Technical University after graduatin g.

Different routes were designed in order to target the different research areas that the

school offers. Considering the Intelligent Systems Group we have adapted Route A and

made it more suitable to our needs.

Figure 4.1: Case Use: Enhanced Navigation Route

Coordinating an open house day is a tedious work, involving many people in order to

34

4.1. ENHANCED WORKPLACE NAVIGATION

show people around. This is affordable in terms of effort when you have dozens of people

attending. If only one person is joining the team there is no easy way to show them around.

Using the research previously mentioned we have enough information to create custom

content for each place. And that is the next step, creating the custom content for each

location.

Content Creation

Before being allowed to access the Content Editor, the administrator will have to sign into

the system. As we mentioned on the Architecture chapter, the CMS was integrated into

EWE-Tasker to make things easier. So, by using the same login credentials we can access

both functions. All users can access the CMS, it is not restricted to just administrators.

Figure 4.2: CMS: Login form

In this use case, the administrator will be using the CMS for the first time. So when he

access the CMS he will find that there is no content available, but he will be prompted to

create it.

After clicking on the “Add new content“ button, the administrator will start creating

the custom content. Adding text, images, even videos is easy using a clickable and intuitive

interface.

There is a textarea where the user will use the designed EWE Place Ontology described

35

CHAPTER 4. CASE STUDY

in the Architecture chapter. In this case, our administrator is creating the content that will

be associated to the School Library.

Listing 4.1: EWE-Place Ontology describing the School Library

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/> .

@prefix ewe-place: <http://gsi.dit.upm.es/ontologies/ewe-place/ns/> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix dbpedia: <http://dbpedia.org/resource/classes#> .

@base <http://gsi.dit.upm.es/ontologies/ewe-place/ns/> .

ewe-place:Place a owl:Class ;

dc:title "Library";

dc:description "The library is located on the A building.";

geo:lat "40.452014";

geo:long "-3.725808";

dbpedia:floorCount "1" .

Figure 4.3: CMS: Creating Custom Content

After the administrator is satisfied with the output, he will click Save in order to store it

on the Content Database. He will continue to do the same procedure with all the different

content he needs to create in order to finish the route.

It is advised to create a user account with the only goal of managin all this content.

36

4.1. ENHANCED WORKPLACE NAVIGATION

That way the edition of the content over time will be easier, not being dependable on one

single person, and less an administrator.

In the following figure we can see the list of contents already created by the administrator

user. Each one of these contents has a “Place” associated using the EWE Place Ontology.

The user can manage this content as much as he wants. Different options are given for

every content:

• Edit: clicking this button allows users to modify the existing content on the Content

Editor.

• Client View: this is a full-page preview on how the content will be rendered as HTML.

Using developer tools from any of the current browsers we will be able to replicate

any screen size. It is really useful in terms of QA and testing.

• Delete: clicking this button, and after confirmation, users will be able to delete existing

content.

Figure 4.4: CMS: Content Listing

EWE-Tasker Configuration

We have already prepared all the content that will be displayed on the different locations.

It is time to configure EWE-Tasker in order to automate the content delivery for the users.

Channel Creation

The first step involves Channel creation. Once a channel is created, it will be available to

any user on the database so they can create custom rules as they please. For this project

we needed to define two new channels: Place and CMS.

37

CHAPTER 4. CASE STUDY

In order to do so we click on Channels in the top-menu bar. We will encounter a list of

all the available channels, and a button allowing us to create a new one. Clicking in said

button we will encounter a form.

Every channel has common fields: the title, the description, a nice name, and an image

to represent the channel. The image is needed in order to create rules, as we will see later

in this chapter.

Figure 4.5: EWE-Tasker: Place Channel Creation

We can also add different events and actions, as it was described on previous chapters.

When the channel has everything we need, the Send button is clicked and the channel gets

stored in the database. The channel is now available to create rules on the EWE-Tasker

platform. We also need to do this with the CMS channel. Both channels are described in

appendix A.

38

4.1. ENHANCED WORKPLACE NAVIGATION

Rule Creation

Once we have the Place and CMS channels in our database, it is time to create the rules.

These rules will be automatically executed, achieving our ultimate goal: displaying content

on the user device.

First, we need to define the rules that will associate a Place with a Beacon. Defining

these rules we are allowing users of the EWE-Tasker platform to create their own rules

based on location in an easy way.

The first two params of the rule come from the event of the Presence Detector Channel.

The first one being the beacon identificator, and the second one the distance to it. The last

param of the rule indicates the Place where this beacon will be placed.

This rule will be replicated with different data for every smart place we want to enable.

In order to show content we now need to capture the event of being in a Place. We do

not need to define a rule per location, as we did before.

The new rule just has to be defined once, and it will be imported into the new user

account so it can be executed, along with the previously defined rules.

Figure 4.6: EWE-Tasker: Created Rule

Content Rendering

Finally, when all of the previous one-time setup has been completed, the user is ready to

receive the content on his phone.

To do so, the user has to install the already introduced Mobile App [7] loggin with his

user account, in order to listen to the beacons present in the workplace.

Whenever the user passes through a beacon located on the entrance of the Library, the

event will be sent to the Task Automation Server, executing the corresponding action to

locate the user on the Library.

39

CHAPTER 4. CASE STUDY

When the mobile phone receives the confirmation of being located on the library from

the TAS Server, it will trigger the API call to the CMS server, retrieving the appropiate

content.

Figure 4.7: Smart Place Notification Figure 4.8: Displaying Content

A notification will be displayed on the user screen alerting him that there is information

about this location available. Tapping on the notification will render the content.

4.2 Other Use Cases

The main use case described in the last section provides insight about how the project

functionalities may be of use, displaying the main features.

There are plenty of cases where this project can be useful, we will list a few of them as

a conclusion for the Case Study chapter.

Weekly Workshops and Talks Newsletter

Employees get a brief introductory text and a video about the weekly talk depending on

their interests, previously declared on their account. This could also apply to other company

events or announcements.

40

4.2. OTHER USE CASES

Figure 4.9: Weekly Talk Notification Figure 4.10: Displaying Content

Emergency Evacuation Guidance

By triggering an emergency flag, the system will send users an emergency alert notification.

The custom content could show the optimal evacuation routes depending where the users

are located in that moment.

Figure 4.11: Mobile App: Emergency Alert

All of these cases are easily achievable through the edition of the Content Manage-

ment System API. Having access to user profiles makes the targetting of the content more

accurate.

41

CHAPTER 4. CASE STUDY

42

CHAPTER5
Conclusions and future work

5.1 Introduction

In this last chapter and to conclude this project, we will describe the conclusions obtained

with the project completion. We will resume the principal concepts explained in the memory,

the achieved goals, and finally a brief discussion about future work for the long road of this

project.

5.2 Conclusions

Having finished this project, and through the use of new technologies such as beacons or

semantics, we have proven that context-aware contents can improve the way users interact

with their work environment.

We have developed a Custom Content Management System, allowing users to create

content that may include text, images, videos and even tweets. Users can also associate

this content to different locations with the help of semantic notation.

We have also integrated this CMS into a Task Automation Server, so their users can

43

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

access it and content delivery gets automated through rule creation.

In this context, we have learned that using semantic technologies and automation can

help in the process of content customizing and targeting.

Lastly, we have adapted a mobile Android application so the users can receive the

content created in the CMS depending on their context.

The project has been designed and developed with classic technologies as well as inno-

vative technologies that may be uncommon to the standard user. Combining all of them

has been a long and fulfilling process, allowing us to learn new things. The technologies

used on this project are listed below:

• Content Management System

– HTML5, CSS3, Javascript for the frontend

– PHP for the backend

– MongoDB as the main database

• CMS Integration into Task Automation Server

– Web Technologies: PHP, MongoDB

– Semantic Technologies: Notation3, RDF, EYE, EWE Ontology

• Mobile App Improvement

– Android

The software developed in this project has been based on, and integrated into two

different projects from the Intelligent Systems Group:

• Development of a Task Automation Platform for Beacon enabled Smart Homes [15].

• Design and implementation of a Semantic Task Automation Rule Framework for An-

droid Devices [7].

In the following sections we will describe in depth the achieved goals, the problems faced

and some suggestions for a future work.

44

5.3. ACHIEVED GOALS

5.3 Achieved goals

In the following section we will go over the achieved goals during the making of this project:

• Development of a Content Management System for Smart Offices. This was

the main objective in this project, designing and implementing a system which allows

custom content creation for every user.

• Design and implementation of a new Place ontology class. In order to asso-

ciate the content to different locations, we have defined a Place ontology class using

the EWE Ontology.

• Creation a graphical interface which allows users to create content in an

easy intuitive way. We have made sure that the process to create new content was

really straightforward. This has been achieved through the creation of a visual builder

using web technologies.

• Integrating the CMS with the Task Automation Server codebase. We have

integrated our main project into the Task Automation Server in order to let the users

access both features with the same login. This way users can manage their rules,

channels and contents from a single place.

• Creation of new Channels on the Task Automation Server. New channels

have been defined in order to achieve our goals. The events and actions of these

channels are described in Notation3 and modeled after the EWE Ontology. The

Place and CMS channel are now available on the TAS for everyone to use, improving

the way rules are defined.

• Definition of new EYE rules on the TAS. New rules have been created for the

automation of content delivery. These rules are written in Notation3, and they are

evaluated by the EYE rule engine.

5.4 Problems faced

During the development of the project we had to face some problems. These problems are

briefly described in this section:

• Beacons accuracy: The beacons owned by the Intelligent Systems Group are an

early version of the commercial version of Estimote Beacons. The distance measures

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

between the mobile phone and the beacon deviated more often than it should. In order

to overpass this obstacle, we tested all the beacons and used the more accurate ones

for the development of this project. New versions of Estimote Beacons are reported

to be more precise.

• Task Automation Platform limitations: EWE-Tasker main problem comes when

we want to trigger multiple actions with a single event capture. Other task automa-

tions systems like Zapier are recently allowing to do this, so it is definitely a future

line of work for EWE-Tasker. We have tackled this problem by linking two rules. The

action triggered by the first rule will act as the event captured by the second one.

• MongoDB PHP Controller and OSX compatibility: the development of this

project has been made on a Macbook Air with OSX El Capitan. The MongoDB

controller for PHP is really tricky. This was solved by hosting the project on another

UNIX server and accessing remotely to make changes.

5.5 Future work

Finally, in the last section we will talk about possible future lines of work that could be

added to this project:

• Collaborative Content Editing. Giving the possibility to users of creating con-

tent together could achieve better results. It also would promote teamwork in the

workplace.

• Auto Save Function. Many content editors over the Internet allow this (e.g. Google

Drive). Making use of asynchronous HTTP requests every time major changes are

made to the content, we could allow auto saving. This way users would not lose the

progress made if they accidentally closed the editor.

• Wearables adaptation. Making use of Android Wear we could show the notifica-

tions in the smartwatch.

• iOS application. This could be achieved either by writing a native iOS application

based on the Android one, or creating a hybrid app using React Native. Taking the

hybrid approach there would be only one codebase to mantain.

• Semantic Recommendation Framework. Making even more precise through the

use of a recommendation framework.

46

Bibliography

[1] Apache. Apache Stanbol, semantic content management. http://stanbol.apache.org/.

[2] Wojtek Borowicz. Bleesk uses beacons to promote local deals and grows ex-

ponentially. https://community.estimote.com/hc/en-us/articles/

204412023-Bleesk-uses-beacons-to-promote-local-deals-and-grows-exponentially,

2015.

[3] M. Coronado. EWE Ontology Specification. http://www.gsi.dit.upm.es/

ontologies/ewe/, 2013.

[4] International Data Corporation. Smartphone OS Market Share, 2016 Q3.

http://www.idc.com/promo/smartphone-market-share/os;jsessionid=

C0B86D70FEBB7A2936E47E7189480242, 2016.

[5] Ephox. TinyMCE, a javascript library for rich-text editing. https://www.tinymce.com/.

[6] Estimote. Estimote Beacons. http://estimote.com/.

[7] Antonio Fernández Llamas. Design and implementation of a semantic task automation rule

framework for android devices.

[8] Jorge Garćıa Castaño. Future Students: ETSIT Open House Day, 2015.

[9] Pushmote Inc. Pushmote, mobile engagement. https://pushmote.com/.

[10] Zapier Inc. Zapier, automated actions for everyday tasks. https://zapier.com/.

[11] J.DeRoo. Euler, yet another proof engine. http://eulersharp.sourceforge.net.

[12] Rover Labs. Rover, location-powered mobile engagement. https://www.rover.io/, 2014.

[13] madebymany. SirTrevor, a rich content editor. http://madebymany.github.io/

sir-trevor-js/.

[14] Inc. MongoDB. MongoDB, an open-source nosql database. https://www.mongodb.com/.

[15] Sergio Muñoz López. Development of a task automation platform for beacon enabled smart

homes.

[16] Rackspace Studios, SFO. Y Combinator company, Estimote, shows why Low Energy Blue-

tooth is so important. https://www.youtube.com/watch?v=VfJch1XpCOw&feature=

youtu.be&t=580, 2013.

[17] CKSource sp. CKEditor, a html/wysiwyg editor. http://ckeditor.com/.

47

http://stanbol.apache.org/
https://community.estimote.com/hc/en-us/articles/204412023-Bleesk-uses-beacons-to-promote-local-deals-and-grows-exponentially
https://community.estimote.com/hc/en-us/articles/204412023-Bleesk-uses-beacons-to-promote-local-deals-and-grows-exponentially
http://www.gsi.dit.upm.es/ontologies/ewe/
http://www.gsi.dit.upm.es/ontologies/ewe/
http://www.idc.com/promo/smartphone-market-share/os;jsessionid=C0B86D70FEBB7A2936E47E7189480242
http://www.idc.com/promo/smartphone-market-share/os;jsessionid=C0B86D70FEBB7A2936E47E7189480242
https://www.tinymce.com/
http://estimote.com/
https://pushmote.com/
https://zapier.com/
http://eulersharp.sourceforge.net
https://www.rover.io/
http://madebymany.github.io/sir-trevor-js/
http://madebymany.github.io/sir-trevor-js/
https://www.mongodb.com/
https://www.youtube.com/watch?v=VfJch1XpCOw&feature=youtu.be&t=580
https://www.youtube.com/watch?v=VfJch1XpCOw&feature=youtu.be&t=580
http://ckeditor.com/

BIBLIOGRAPHY

[18] W3C Team. Notation3 (N3): a readable RDF syntax. https://www.w3.org/

TeamSubmission/n3/, 2011.

48

https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TeamSubmission/n3/

APPENDIXA
Channel Creation

This appendix describes the new two channels created in the Task Automation Server as

we stated in the section 3.4.1.

A.1 Place Channel definition

The channel Place is created with the following params:

• Title: Place.

• Description: This channel represents a specific place powered by beacons.

• Nicename: Place.

• Event:

– Title: Inside Of.

– Rule:

?event rdf:type ewe-place:InsideOf.

?event ewe:placeID ?placeID.

49

APPENDIX A. CHANNEL CREATION

– Prefix:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix ewe: <http://gsi.dit.upm.es/ontologies/ewe/ns/#>.

@prefix ewe-place: <http://gsi.dit.upm.es/ontologies/ewe-place

/ns/#> .

• Action:

– Title: Entered.

– Rule:

ewe-place:Place rdf:type ewe-place:Entered ;

ov:location "#PARAM_1#".

– Prefix:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ewe-place: <http://gsi.dit.upm.es/ontologies/ewe-place

/ns/#> .

@prefix ov: <http://vocab.org/open/#> .

A.2 CMS Channel definition

The channel CMS is created with the following params:

• Title: CMS.

• Description: This channel represents the custom Content Management System.

• Nicename: CMS.

• Action:

– Title: Show.

– Rule:

ewe-cms:CMS rdf:type ewe-cms:Show;

ov:message ?placeID.

– Prefix:

@prefix ewe-cms: <http://gsi.dit.upm.es/ontologies/ewe-cms/ns

/#> .

@prefix ov: <http://gsi.dit.upm.es/ontologies/ov/ns/#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

50

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Beacons
	Task Automation Server
	EWE-Tasker
	Notation3
	EYE
	EWE Ontology
	Android App

	Custom Content Management System
	SirTrevor
	Block Architecture

	Apache Stanbol
	MongoDB

	Architecture
	Alternative Beacon CMS Solutions
	Architecture Overview
	Content Management System (CMS)
	Content Editor
	Semantic Information: Place Ontology
	Content Rendering

	Content Delivery
	Task Automation Server
	CMS Integration

	Android Application

	Case study
	Enhanced Workplace Navigation
	Other Use Cases

	Conclusions and future work
	Introduction
	Conclusions
	Achieved goals
	Problems faced
	Future work

	Bibliography
	Channel Creation
	Place Channel definition
	CMS Channel definition

