
TRABAJO DE FIN DE GRADO

T́ıtulo: Desarrollo de un recolector de Social Media para análisis de

sentimientos

T́ıtulo (inglés): Development of a Social Media crawler for Sentiment Anal-

ysis

Autor: José Emilio Carmona López

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Carlos A. Iglesias Fernández

Secretario: Juan Fernando Sánchez Rada

Suplente: Álvaro Carrera Barroso

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos

Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE GRADO

DEVELOPMENT OF A SOCIAL

MEDIA CRAWLER FOR

SENTIMENT ANALYSIS

José Emilio Carmona López

Febrero de 2016

Resumen

Este trabajo fin de grado contiene el resultado de un proyecto cuyos objetivos han

sido diseñar y desarrollar los siguientes elementos:

• Un sistema de recopilación de comentarios en redes sociales y portales de opinión.

• GSI Crawler, un portal web que, utilizando el anterior sistema, recogerá y

analizará los comentarios de los distintos portales.

• Implementación de un servicio para programar, monitorizar y administrar el

sistema de recolección de comentarios.

Se describirá el desarrollo de los scrapers para la extracción de comentarios sociales.

Se ha creado un scraper para cada portal web. Facebook, Twitter y Youtube ofrecen

la información necesaria mediante el uso de una API propia. En cambio, Amazon,

Yelp y TripAdvisor no ofrećıan ninguna API para este fin, por lo que se ha tenido

que construir un scraper a medida para cada uno de estos portales.

A continuación, se describirá el desarrollo del portal web GSI Crawler. Este portal

web es una herramienta útil para el análisis de comentarios de cualquiera de estos

portales antes mencionados. El usuario elegirá el tipo de análisis que quiere llevar a

cabo (emociones, sentimientos o detección de comentarios falsos) y además facilitará,

por ejemplo, un URL directo a un negocio de Yelp ó TripAdvisor. GSI Crawler

descargará los comentarios pertenecientes a este elemento y, posteriormente, ejecutará

el análisis pertinente usando la herramienta Senpy. Una vez el análisis haya finalizado,

se mostrará un resumen del resultado y además se brindará la posibilidad de revisar

uno a uno cada comentario junto con su calificación extráıda del análisis.

Finalmente, se recogerán las conclusiones extráıdas del proyecto, la tecnoloǵıa que se

ha aprendido durante el desarrollo del mismo y las posibles ĺıneas de futuro trabajo.

Palabras clave: Analisis de sentimiento, scraper, Yelp, Twitter, Facebook, Youtube,

Amazon, TripAdvisor, JavaScript, Polymer, Python

V

Abstract

This thesis collects the result of a project whose objective is to design and develop

the next elements:

• A comments collection system for social networks and recommendations sites.

• GSI Crawler, a website that, using the previous system, will collect and analyze

the comments from the different websites.

• Implementation of a service to schedule, monitor and administrate the crawling

system.

It will be described the development of scrapers to collect comments. A scraper

has been developed for each website. Facebook, Twitter and YouTube offer the

necessary information through the use of a specific API. Otherwise, Amazon, Yelp

and TripAdvisor don’t offer an API which we could extract the comments, therefore

a custom scraper has had to be developed to each one of these websites.

Next, the development of GSI Crawler will be described. This website is useful to

the analysis of comments from any website mentioned before. The user will choose

the type of analysis he wants to carry out (Emotions, Sentiments or Fake Analysis)

and the user will also supply, for instance, a direct URL to a Yelp’s Business, the

id of a Facebook’s Fan Page or a YouTube’s Video. GSI Crawler will download the

comments belonging to this element and, later, the pertinent analysis will be run

using the Senpy tool. Once the analysis is finished, a summary of the result will be

shown and the possibility of review each comment one by one will be also offered.

Finally, we gather the extracted conclusions from this project, the technologies we

have learned during the development and the possible lines of future work.

Keywords: Sentiments analysis, scraper Yelp, Twitter, Facebook, Youtube, Ama-

zon, TripAdvisor, JavaScript, Polymer, Python

VII

Agradecimientos

• Al Grupo de Sistemas Inteligentes (GSI) por el apoyo durante la realización del

proyecto aśı como el soporte con la herramienta Senpy para la implementación

al proyecto.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 3

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Introduction . 5

2.2 Information retrieval . 5

2.2.1 Scrapy . 5

2.2.2 Scrapyd . 7

2.2.3 PhantomJS . 7

2.2.4 Selenium WebDriver . 8

2.3 Text Analysis . 9

XI

2.3.1 Senpy . 9

2.4 Web technologies . 9

2.4.1 Client technologies . 9

2.4.1.1 Polymer Library . 10

2.4.2 Server technologies . 11

2.4.2.1 WSGI Servers in Python 13

3 GSI Crawler Architecture 15

3.1 Introduction . 15

3.2 General Overview . 16

3.3 GSI Crawler . 17

3.3.1 User Interface . 17

3.3.2 Server side . 18

3.3.3 Crawling System . 23

3.3.3.1 Amazon . 23

3.3.3.2 Yelp . 23

3.3.3.3 TripAdvisor . 24

3.3.3.4 Twitter . 25

3.3.3.5 YouTube . 25

3.3.3.6 Facebook . 25

3.4 Crawler scheduler . 26

4 Case study 27

4.1 Introduction . 27

4.2 Performing a new analysis . 28

4.2.1 Fake Analysis . 29

4.2.2 Emotions Sentiments . 31

4.2.3 Sentiment Analysis . 33

4.2.4 Perform all analysis at the same time 34

4.3 Scheduling a crawling job . 36

5 Evaluation 39

5.1 Introduction . 39

5.2 Requirements and Benchmark . 39

5.3 Effort to build a new crawler . 41

6 Conclusions and future work 45

6.1 Conclusions . 45

6.2 Achieved goals . 46

6.3 Future Work . 46

Bibliography 48

A Analysis Results 51

A.1 Yelp . 51

A.2 Amazon . 52

A.3 Twitter . 55

A.4 Facebook . 57

A.5 YouTube . 60

A.6 TripAdvisor . 62

B Instructions for deploying GSI Crawler 65

B.1 Preparing the environment . 65

B.1.1 Installing dependencies . 66

B.2 Deploying Senpy . 66

B.3 Running GSI Crawler . 67

C Deploying GSI Crawler using Docker 69

List of Figures

3.1 General Architecture . 16

3.2 Analysis Type Modal Window - User interface 18

3.3 Analysis Result - User interface . 19

3.4 Scrapy Cloud Web Interface . 26

4.1 Main Page . 28

4.2 New analysis modal window . 29

4.3 Loading card . 30

4.4 Fake Analysis Result . 30

4.5 Fake analysis result detailed each comment 31

4.6 Emotion analysis result . 32

4.7 Emotion analysis result detailed each comment 32

4.8 Sentiment analysis result . 33

4.9 Sentiment analysis result detailed each comment 34

4.10 All analysis result cards . 35

4.11 Schedule a new crawling job . 36

4.12 Scraped Result . 37

XV

CHAPTER1
Introduction

1.1 Context

Sentiment Analysis [14] is a term used to talk about the use of natural language pro-

cessing, text analysis and computational linguistics to identify and extract subjective

information in source information. In other words, Sentiment Analysis is used to look

for the opinions in content and choosing the sentiment within those opinions.

The social repercussion of an institution, a business or, for instance, a new product

launch could be measured by the amount of comments that users could make in the

different social networks about these [4]. However, this way of repercussion measuring

may be misleading as this way is not taking into account the importance of the

comments’ content and, simply, they are being treated like a number. For instance, a

product could have many mentions in the social networks but it could be that most

of these mentions could be negative.

For this reason, the sentiment analysis is a very important tool to take into ac-

count. A sentiment analysis system can analyze the comments content and it can give

an overview more approximate to the users’ opinion towards an institution, product

1

CHAPTER 1. INTRODUCTION

or business.

Nevertheless, a sentiment analysis system needs to be fed with the content to

be analyzed. An analyzer must be combined with a scraper system to collect com-

ments from the different social networks so that, together, they are able to obtain the

expected result.

Most of these social networks offer a public interface called API (Application Pro-

gramming Interface), with which the useful information could be gathered. Neverthe-

less, some interesting websites do not offer this public interface and the information

should be extracted in a less trivial way.

The automated gathering of data from the Internet is nearly as old as the Internet

itself. Although Web Scraping is not a new term, in years past the practice has been

more commonly known as screen scraping, data mining, web harvesting, or similar

variations.

Web Scraping [1], in theory, is the practice of gathering data through any means

other than a program interacting with an API (or, obviously, through a human using

a web browser). This is most commonly accomplished by writing an automated

program that queries a web server, requests data (usually in the form of the HTML

and other files that comprise web pages), and then parses that data to extract the

needed information.

The modern Web is far from the characteristic stasis of the beginnings of the

Web. Access to website contents can be restricted by means of authorization and

authentication techniques. In addition, web pages are not longer static, and are

based on a combination of client and server side dynamic rendering techniques.

This advantage of the modern Web might be a problem for the Web Scraping.

When content is published through an API, a simple script can obtain interesting

content calling that API. Nevertheless, when the content is only available at the

presentation level, scraping techniques are needed, that could require the simulation

of the behavior of a modern Web Browser.

In this final work, during the development of the scrapers, some problems have

appeared in the gathering of the interest information and we have solved this incon-

veniences using several tools that enrich the scripts. The main function of some used

tools, such as Selenium, is not the function we have done of these tools, but it has

been a key factor to solve some of these inconveniences.

2

1.2. PROJECT GOALS

1.2 Project goals

The main goal of this project is to provide a platform for sentiment analysis for social

networks and opinions websites. With this aim, the project will develop a system

for collecting comments, a module to analyze these comments with Senpy tool and

will develop a Website (GSI Crawler) that works like a user interface to run those

analyses.

The previous main goal can be divided into the following sub goals:

• Design and build a scraper for several social networks (Twitter, Facebook,

YouTube), for several opinions websites (Yelp, TripAdvisor) and for Amazon.

• Build a software module which is able to communicate with the Senpy platform

for Sentiment Analysis.

• Design and build a web platform for user analysis, to define the type of analysis

and the target website.

• Deepen the knowledge and usage of technologies covered in this project such as:

Web Scraping, Web Servers based on Python or Polymer to create user interface.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document.

The structure is as follows:

• Chapter 1 provides an introduction to the context in which this project is

developed. Besides, it describes the main objectives to achieve once concluded.

• Chapter 2 offers a description of the main standards and technologies on which

this project rely.

• Chapter 3 details an overview of the GSI Crawler architecture.

• Chapter 4 describes a selected use case.

• Chapter 5 analyzes the behavior and performance of the system. In addition,

the effort to build a new crawler will be measured.

3

CHAPTER 1. INTRODUCTION

• Chapter 6 sums up the conclusions extracted from this project, and we offer

a brief view about the lines of future work.

4

CHAPTER2
Enabling Technologies

2.1 Introduction

2.2 Information retrieval

The amount of information available in the web has grown exponentially over the

last years, with standards such as Linked Data helping exchange data among hetero-

geneous systems. However, many times these standards are not followed, and so it

becomes necessary to recover and convert the data into compatible formats. There are

multiple frameworks capable of crawling the web and recovering the relevant pieces

of information, but we will focus here in Scrapy1, a Python tool that allows users to

extract data from websites into any format, with powerful capabilities.

2.2.1 Scrapy

Scrapy [12] is a fast high-level web crawling framework, used to extract structured

data from websites. It is written in Python, and by default outputs data to JSON,

1http://scrapy.org/

5

CHAPTER 2. ENABLING TECHNOLOGIES

although it accepts custom exporters giving the user the ability to export into any

format it requires. Originally designed for web scraping, it can also be used to extract

data using APIs or as a general purpose web crawler.

Scrapy project architecture is built around ‘spiders’, which are self-contained

crawlers which are given a set of instructions. The spiders are Python classes that

extend the Spider class in scrapy.

Listing 2.1: Amazon Scraper snippet

-*- coding: utf-8 -*-

import scrapy

import re

import json

import urlparse

class AmazonScraper(scrapy.Spider):

name = "AmazonScraper"

allowed_domains = ["amazon.es"]

start_urls = []

url_reviews_format = ’http://www.amazon.es/product-reviews/%s’

url_base = ’http://www.amazon.es/’

pages = None

current_page = 1

def __init__(self, amazon_id, pages=None):

self.start_urls = [self.url_reviews_format % amazon_id]

if(pages == None):

self.pages = None

else:

self.pages = int(pages)

def parse(self, response):

item = AmazonItem()

name = response.css(’div.a-row.product-title a::text’)[0].extract()

name = self.encodeUTF8(name)

price = response.css(’div.a-row.product-price-line span.a-color-price::text’)[0].

extract()

price = self.encodeUTF8(price)

item["url"] = response.url

item["name"] = name

item["price"] = price

return item

Listing 2.1 shows part of a scrapy spider that will return a JSON object containing

6

2.2. INFORMATION RETRIEVAL

the URL of the scrapped page, as well as the name and price fields scrapped from the

document, containing an Amazon item.

2.2.2 Scrapyd

Scrapyd2 is a service for deploying, running and managing Scrapy spiders. It’s man-

aged using a JSON API, but some online services, like Scrapy Cloud3, have developed

a web interface to make the administration easier. Scrapyd can schedule a spider run,

monitorize the job and view the results through a Web interface. Finally, the job

result is stored. For this purpose Scrapy provides a collection of Item Exporters for

different output formats, such as XML, CSV or JSON. In addition, you can define an

item pipeline to store the result in a database, using MySQL or MongoDB.

2.2.3 PhantomJS

PhantomJS4 is a headless Webkit browser scriptable with a JavaScript API [9]. Head-

less browser is a web browser without a graphical user interface. Google stated in

2009 that using a headless browser could help their search engine index content from

websites that use AJAX.

PhantomJS provides automated control of a web page in an environment similar to

popular web browsers, but is executed via a command line interface or using network

communication. It’s particularly useful for testing web pages as it’s able to render and

understand HTML the same way a browser would, including styling elements such as

page layout, color, font selection and execution of JavaScript and AJAX which are

usually not available when using other testing methods.

This headless browser, PhantomJS, could be used combined with Selenium. Using

both tools we can build an automated script that simulates the behavior of a normal

browser. JavaScript could be rendered and, if the content is served dynamically, we

could collect the information properly.

2http://scrapyd.readthedocs.org/
3http://scrapinghub.com/scrapy-cloud/
4http://phantomjs.org/

7

CHAPTER 2. ENABLING TECHNOLOGIES

2.2.4 Selenium WebDriver

Selenium5 is a web testing framework. Selenium provides the necessary tools to

automate a browser giving a series of instructions and gathering the results in several

ways.

Selenium WebDriver [10] is the function we are going to focus on. The WebDriver

is the evolution of Selenium Remote Control. It has been developed to connect

Selenium to the browser we want to use, in this case, PhantomJS. The WebDriver

sends the request to the browser, the browser processes the request and sends back

the result.

Using Selenium, we can code the scripts using Python like the Listing 2.2:

Listing 2.2: TripAdivsor Scraper snippet

from selenium import webdriver

from selenium.webdriver.common.desired_capabilities import DesiredCapabilities

from selenium.webdriver.phantomjs.service import Service as PhantomJSService

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_conditions as EC

def retrieveItem(url):

item = TripAdvisorItem()

user_agent = (

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_4) " +

"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.57 Safari/537.36"

)

dcap = dict(DesiredCapabilities.PHANTOMJS)

dcap["phantomjs.page.settings.userAgent"] = user_agent

service_args = [’--load-images=no’]

driver = webdriver.PhantomJS(desired_capabilities=dcap,

service_log_path=os.path.devnull, service_args=service_args)

driver.get(url)

name = driver.find_element_by_css_selector(’#HEADING’).text.encode(’UTF-8’)

image = driver.find_element_by_css_selector(’div.carouselPhoto.border.inView img’)

image = image.get_attribute(’src’)

item["url"] = url

item["name"] = name

item["image"] = image

return item

5http://docs.seleniumhq.org/

8

2.3. TEXT ANALYSIS

2.3 Text Analysis

2.3.1 Senpy

Senpy6 is a tool originally developed to create sentiment and emotion analysis servers

easily. It is written in Python and it uses NIF+JSON-LD [11] [16] as interface, making

it suitable to communicate different NLP tools. Its goal is to provide a simple way

to turn sentiment analysis algorithms into servers.

To create a web service, a new plugin must be defined. Each plugin only needs

two files: a .senpy file where the service is defined, including the port where it will be

accessible and other options, and a .py file where the service is implemented and the

algorithm is called with the options required in the call parameters. Finally, in this

Python file the response is processed, creating an ”Entry” with various attributes for

each element, converting them to NIF+JSON-LD and sending the final response.

2.4 Web technologies

Known simply as ”The web”, the World Wide Web is an information system where

hypertext documents are accessed via the internet. First proposed by Tim Berners-

Lee in 1989 [3], it has grown to be used by two out of five people around the world7.

The technologies used in web services can be divided in Client technologies, ex-

ecuted in the user’s computer, and Server technologies, executed in the server side

of the service. We will provide a short description of some technologies available for

each side, focusing on those used in this project.

2.4.1 Client technologies

Web browsers are usually responsible for running the code of a website. Usually, that

code consists on CSS, HTML and JavaScript files, that are interpreted by the browser

to present the page, and respond to the user actions.

• HTML or HyperText Markup Language is the standard markup language used

to create web pages. It consists on a collection of pairs of tags that identify the

6https://github.com/gsi-upm/senpy
7http://webfoundation.org/about/vision/history-of-the-web/

9

CHAPTER 2. ENABLING TECHNOLOGIES

different elements on a page, describing the structure of the page. It can also

include images and other objects, allowing for complex user interaction.

• CSS or Cascading Style Sheets is a style sheet language, used mostly to describe

the look and formatting of documents written in a markup language such as

HTML. It is designed to allow separation of content from document presentation,

providing more flexibility and control of the presentation, while also improving

accessibility.

• JavaScript is a programming language used to run scripts to interact with the

user inside the browser window. Along with JavaScript, it most used library8 is

jQuery, which is designed to simplify many of the usual tasks performed with

JavaScript.

These technologies are often used with Ajax (Asynchronous JavaScript XML), a

group of web development techniques used to create asynchronous web applications.

Using Ajax, web applications can interact with the server in the background, therefore

not interfering with the behavior and graphical display of the rest of the page.

2.4.1.1 Polymer Library

Polymer9 is a library for creating Web Components, which are a set of W3C standards

and upcoming browser APIs for defining your own custom HTML elements [13]. With

the help of polyfills and sugar, it can create these custom elements and bring Web

Component support to browsers that don’t play nice with the standard just yet.

Polymer provides a set of polyfills that enables us to use web components in non-

compliant browsers with an easy-to-use framework. Polymer does this by:

• Allowing us to create Custom Elements (Listing 2.3) with user-defined naming

schemes. These custom elements can then be distributed across the network

and used by others with HTML Imports (Listing 2.4).

• Allowing each custom element to have its own template accompanied by styles

and behavior required to use that element.

• Providing a suite of ready-made UI and non-UI elements to use and extend in

your project.

8http://libscore.com/#libs
9https://www.polymer-project.org/1.0/

10

2.4. WEB TECHNOLOGIES

Polymer library has been used to build the GSI Crawler user interface.

Listing 2.3: Custom element name-tag

<link rel="import"

href="bower_components/polymer/polymer.html">

<dom-module id="name-tag">

<template>

<!-- bind to the "owner" property -->

This is {{owner}}’s name-tag element.

</template>

<script>

Polymer({

is: "name-tag",

ready: function() {

// set this element’s owner property

this.owner = "Daniel";

}

});

</script>

</dom-module>

Listing 2.4: Usage of custom element name-tag

<!DOCTYPE html>

<html>

<head>

<script src="bower_components/webcomponentsjs/webcomponents-lite.min.js"></script>

<link rel="import" href="name-tag.html">

</head>

<body>

<name-tag></name-tag>

</body>

</html>

2.4.2 Server technologies

The interactions presented by the web client are the processed in the server side,

usually communicating using HTTP. There are multiple applications capable of han-

dling this interaction, known as HTTP servers. Apache, NginX or Microsoft Windows

11

CHAPTER 2. ENABLING TECHNOLOGIES

Server R© are some of the most popular servers10.

For our service, we have used Apache [8], an Open Source HTTP-Server. First

launched in 1995, it has continued development to this date, with version 2.4.17

being released on October 201511. It is currently developed and maintained by an

open community of developers under the Apache Software Foundation, and made

available in a wide variety of operating systems, including GNU/Linux and Microsoft

Windows R©. It features a module based system, allowing the core functionality to be

expanded by compiled modules. Some of the most popular modules include:

• mod php Enabling the use PHP to execute server side code, this module can

be found in many Apache installations, allowing the deployment of services like

WordPress or Joomla.

• mod auth basic Handling basic user authentication, this module allows the

server administrator to block sections of the server from being accessed by the

general public.

• mod proxy Allows the use of Apache as a proxy, masking other services behind

it.

• mod wsgi The aim of mod wsgi is to implement a simple to use Apache mod-

ule which can host any Python application which supports the Python WSGI

interface. The module would be suitable for use in hosting high performance

production web sites, as well as your average self managed personal sites running

on web hosting services.

Over the last few years, there has been an important trend in the use of evented

web technologies, a vision of the traditional web APIs complemented with other APIs

that produce events, and provide a callback mechanism, making the Web more like a

giant network. Node.js12 is one of the most popular environments to build this kind

of applications.

10http://news.netcraft.com/archives/2015/05/19/may-2015-web-server-survey.html
11http://httpd.apache.org
12https://nodejs.org

12

2.4. WEB TECHNOLOGIES

2.4.2.1 WSGI Servers in Python

Web Server Gateway Interface (WSGI) is a specification for simple interfaces between

web servers and web applications for the Python programming language. First defined

in PEP 333 [5], and updated in PEP 3333 [6], it has been adopted as a standard for

Python web application development.

There are multiple implementations and frameworks of WSGI for Python, some

of the most popular are:

• Bottle is a simple lightweight WSGI framework, focusing on simplicity [7]. It is

distributed as a single-file module, with no other dependencies than the Python

standard library. However, it has capabilities to handle routing, easy access to

web data such as cookies and HTTP headers, and includes a built-in server for

development. It also has support for templates, both with a built-in engine, and

using external modules such as mako or jinja2.

• Django is a full-fledged Python web framework, offering fast and scalable ser-

vices, with multiple built-in options, such as security and administration tools.

It is slightly higher level than other frameworks, and emphasizes reusability of

components and plugins, as well as rapid development.

• Flask, a micro web application framework, based on the jinja2 template engine,

and the Werkzeug WSGI toolkit. It focuses on providing a simple interface,

whilst still providing multiple features such as RESTfull request dispatching,

cookies and request handling and unicode support. It also includes native sup-

port for unit testing, as well as a development server and debugger. It supports

extensions for extra functionalities.

In our application, we have chosen Apache as the gateway server, using mod wsgi,

and Bottle13 for the application itself.

13http://bottlepy.org/

13

CHAPTER 2. ENABLING TECHNOLOGIES

14

CHAPTER3
GSI Crawler Architecture

3.1 Introduction

In this chapter, we cover the design phase of this project, as well as implementation

details involving its architecture. Firstly, we present an overview of the project,

divided into several modules. This is intended to offer the reader a general view of

this project architecture. After that, we present each module separately and in much

more depth.

The main purpose of this project is to provide a platform for sentiment analysis

for social networks and opinions websites which users can use to analyze their own

items. First, we need a scraper system to collect comments from the different websites.

The scraper system is made up by spiders developed with several technologies. Yelp

and Amazon spiders are developed using Scrapy framework, TripAdvisor spider is

developed using Selenium+PhantomJS, and YouTube, Twitter and Facebook spiders

are developed using their own API libraries. Second, we need a web application acting

like an interface between the user and the scraping and analyzing system. This web

application is composed of two parts: frontend and backend. The frontend is built

15

CHAPTER 3. GSI CRAWLER ARCHITECTURE

using Polymer library1 and the backend is built using Bootle2. The backend will

receive the request from frontend and it will start the crawling process and, next, it

will start the analyzing process. When the analysis ends, the backend will notify to

the frontend, showing the result.

Finally, a crawler schedule service have been implemented. This service is able to

run crawler jobs and store the results. Later, these results can be accessed in order

to be analyzed.

With all the modules above, we have a platform that allows us scraping and

analyzing social networks and opinions websites comments.

A diagram of the general architecture is shown in Figure 3.1. Each module will

be detailed in the following sections.

Figure 3.1: General Architecture

3.2 General Overview

The core of this project is the GSI Crawler. As it can be seen in Listing 3.1, GSI

Crawler is composed by three different modules: Frontend, Backend, and Crawling

System. All these modules are differentiated following functional criteria.

The interconnection of these modules into a major functionality is represented by

Figure 3.1. These modules represented above are described as follows.

1https://www.polymer-project.org/1.0/
2http://bottlepy.org/

16

3.3. GSI CRAWLER

1. Frontend. The user interacts with the web interface to analyze items. This user

interface is a web application.

2. Backend. The web application is supported by a backend server. The server

will receive the client request and it will trigger the crawling process and, next,

it will trigger the analyzing process.

3. Crawling System. Once an analyzing request is triggered, the first step is to

retrieve the comments from the website. This system will use the specific spider

to crawl the item messages the user want to analyze. When the crawling process

is finished, the results are delivered back to the backend module.

4. Scrapyd. The service implemented is able to schedule crawling jobs to recollect

messages periodically. The messages are stored and, later, they can be analyzed.

3.3 GSI Crawler

GSI Crawler is the result of connecting every module of the project. GSI Crawler

has been developed as platform allocated into a server, that can be accessed using a

Web Browser. This platform provides a user interface to interact with the user. The

interface has been made to make easy and fast the process of analyzing and showing

the results. The server side is the responsible of getting the users commands, crawl

the comments and trigger the analysis. Finally, the server will send to the client the

result of the analysis.

3.3.1 User Interface

The user interface is a web application. It has been developed as a clear user interface

using Material Design principles. The interface brings a lateral menu with three

sections: the functional one (Analysis) and two informative sections (What is it GSI

Crawler? and About us). Focusing in the Analysis section, we can find a menu inside

a floating button. In this menu, a button for each website is displayed (Yelp, Amazon,

Twitter, Facebook, YouTube and TripAdvisor).

When any of these websites items are pressed, a modal window is shown. In this

window, the user needs to fill the item information (like URL, Video Id, Fanpage Id

or Hashtag) and the user can select what type of analysis he wants to do. This modal

window is shown in Figure 3.2.

17

CHAPTER 3. GSI CRAWLER ARCHITECTURE

Once the analysis is finished, the result is shown in a card (Figure 3.3). The card

will show the overall analysis result, but the user can review every message analysis

using the Reviews button. A modal window will be shown with every message with

the information of analysis detailed.

The user interface has been developed using Polymer framework. Polymer has

been designed to make a HTML5 web as modular as possible, using its custom tags.

As this project is not a closed project but it will be eventually updated, making

modular could be a key factor to keep it maintainable. For this reason, Polymer has

been chosen.

Figure 3.2: Analysis Type Modal Window - User interface

3.3.2 Server side

The web application is supported by the platform backend. For compatibility reasons,

and as the entire project has been developed using Python, the server has been

developed in Python using Bottle3, a lightweight WSGI4 micro web-framework for

Python. When a user triggers an analysis using the web application, the server

assigns it a job id and start the crawling process. This job id is sent back to the

client, and the client must use this job id (known as UUID) to request the analysis

3http://bottlepy.org/
4https://en.wikipedia.org/wiki/Web Server Gateway Interface

18

3.3. GSI CRAWLER

Figure 3.3: Analysis Result - User interface

result. Between modules, JSON-LD has been chosen to interchange information.

JSON-LD is a lightweight Linked Data format. As JSON-LD is a Web Standard

and as our system is susceptible to be connected with very different systems, to be

a web standard is a key factor to be used. In addition, we have followed Schema5

recommendations to name the different properties sent by each module. Thus, the

Crawling System will store the result using a JSON-LD structure into a file with the

following name [JOB-ID].scraper. This file is stored in a folder named analysis, inside

web app root folder.

Listing 3.1: Crawling result structure

{

"@context" : "http://schema.org",

"name" : "Chipotle Mexican Grill",

"image" : "http://s3-media1.fl.yelpcdn.com/bphoto/6LE3czYoi_YFW855C93z2w/o.jpg",

"reviews" : [

{

"@type" : "Review"

"author" :

{

5https://schema.org/

19

CHAPTER 3. GSI CRAWLER ARCHITECTURE

"@type" : "Person",

"name" : "Yanni L."

},

"datePublished" : "7/24/2015",

"reviewBody" : "The best Chipotle location in the city!!! Great service,

consistent quality, and generous portions!"

},

{

"@type" : "Review"

"author" :

{

"@type" : "Person",

"name" : "Bonnie P."

},

"datePublished" : "11/30/2015",

"reviewBody" : "This location is just ok. Portion size is sooo tiny! If I’m

paying more than two bucks just for some guac, I better get a decent amount. "

}

]

}

In Listing 3.1 the JSON-LD crawling result structure is shown. Other fields could

be included if the website give relevant information in order to be used in future to

improve the analysis.

When the crawling process is finished, the server start the analysis process. The

analyzing module sends the messages to Senpy platform and get the analysis result for

every message. Communication between Web App and Senpy platform is established

using JSON NIF+Marl [2] (Sentiments Analysis) and JSON NIF+Onyx [15] (Emotion

Analysis). Once every message is analyzed, the analysis module gets the overall

analysis result and store it using a JSON structure in a file with the following name

[JOB-ID].analysis. This file is stored in a folder named analysis, inside web app root

folder.

Listing 3.2: Analysis result structure

{

"@context" : "http://schema.org",

"name" : "Chipotle Mexican Grill",

"image" : "http://s3-media1.fl.yelpcdn.com/bphoto/6LE3czYoi_YFW855C93z2w/o.jpg",

"reviews" :

[

{

"@type" : "Review",

"author" :

{

20

3.3. GSI CRAWLER

"@type" : "Person",

"name" : "Yanni L."

},

"datePublished" : "7/24/2015",

"reviewBody" : "The best Chipotle location in the city!!! Great service,

consistent quality, and generous portions!",

"sentimentAnalysis" : {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "sentiment140_0.1",

"maxPolarityValue": 1.0,

"name": "sentiment140",

"minPolarityValue": 0.0

}

],

"entries": [

{

"text": "The best Chipotle location in the city!!! Great service

, consistent quality, and generous portions!",

"@id": "Entry0",

"nif:language": "auto",

"opinions": [

{

"marl:hasPolarityValue": 1.0,

"prov:wasGeneratedBy": "sentiment140_0.1",

"@id": "Opinion0",

"marl:hasPolarity": "marl:Neutral"

}

]

}

]

}

},

{

"@type" : "Review",

"author" :

{

"@type" : "Person",

"name" : "Bonnie P."

},

"datePublished" : "11/30/2015",

"reviewBody" : "This location is just ok. Portion size is sooo tiny! If I’m

paying more than two bucks just for some guac, I better get a decent amount.

",

"sentimentAnalysis" : {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "sentiment140_0.1",

21

CHAPTER 3. GSI CRAWLER ARCHITECTURE

"maxPolarityValue": 1.0,

"name": "sentiment140",

"minPolarityValue": 0.0

}

],

"entries": [

{

"text": "This location is just ok. Portion size is sooo tiny!

If I’m paying more than two bucks just for some guac, I

better get a decent amount.",

"@id": "Entry0",

"nif:language": "auto",

"opinions": [

{

"marl:hasPolarityValue": 0.5,

"prov:wasGeneratedBy": "sentiment140_0.1",

"@id": "Opinion0",

"marl:hasPolarity": "marl:Neutral"

}

]

}

]

}

}

],

"loading" : false,

"error" : null

}

In Listing 3.2 the JSON analysis result structure is shown. Other fields could be

included if the website give relevant information.

This JSON is delivered to client when the analyzing process is finished. If the

client request the analysis result and the result is not ready, the following JSON will

be delivered (Listing 3.3).

Listing 3.3: Analysis not ready structure

{

"error" : null,

"loading" : false,

"id" : "f711d419-00f8-495b-bd6f-7d9774f14181"

}

If an error occurs, in both crawling process and analyzing result steps, the last

JSON structure will be used too. The error field must have any value except null.

22

3.3. GSI CRAWLER

loading field will be always false in case of error. id field gives the analysis id.

3.3.3 Crawling System

The Crawling System is the most important module inside GSI Crawler. This module

is the responsible to recollect the messages from the different websites. According

to the specific needs, for each website a crawler has been developed using different

technologies.

The development of each crawler will be detailed in the next lines, explaining the

difficulties found in the development process.

3.3.3.1 Amazon

The Amazon Crawler has been developed using Scrapy, written in Python. Scrapy is

one of the fastest and easiest of implement crawlers. In addition, Scrapy is fully scal-

able giving a good support to run parallels crawling jobs at the same time. For this

reason, Scrapy is the best option to be used with Amazon. Amazon lets users leave

reviews about the items that they have bought. Every item has a unique id, a ten char-

acter alphanumeric string. Amazon offers a REST structure for their website. Prod-

uct reviews can be found following the next REST structure: http://www.amazon.es/

product-reviews/[AMAZON-ID]. At this URL, the crawler can find relevant informa-

tion like the item’s title, the item’s price, the overall rating and a list of reviews. Each

review is shown with the next relevant information: author’s name, rating, date and

message. The list of reviews is divided using pagination and each page could be ac-

cessed using a simple URL link. Once the crawler gets the HTML code of the website,

the information is gathered using CSS Selectors. As Amazon doesn’t use a standard

to tag the HTML fields, this crawler could fail if Amazon does some modifications in

the user interface of their web page.

An example of the JSON generated by the Amazon Crawler is shown at Listing

A.2

3.3.3.2 Yelp

The Yelp Crawler has been developed using Scrapy, written in Python. Yelp is a

platform where the users leave comments about several kinds of business they have

23

CHAPTER 3. GSI CRAWLER ARCHITECTURE

visited. Inside Yelp, each business has a unique name, and this business can be

accessed following the next URL: http://www.yelp.com/biz/[BUSINESS-NAME]. At

this URL, the crawler can find relevant information like the business’s name, the

business’s price range, the overall rating and a list of reviews. Each review is shown

with the next relevant information: author’s name, rating, date and message. The

list of reviews are divided using pagination and each page could be accessed using a

simple URL link. Once the crawler get the HTML code of the website, the information

is gathered using CSS Selectors. Yelp uses Schema6 standard to tag their relevant

information. That make the job of gathering the information easier. In addition, the

crawler will work even if Yelp does important modification of their user interface of

their web page if they continue using Schema standard.

An example of the JSON generated by the Yelp Crawler is shown at Listing A.1

3.3.3.3 TripAdvisor

TripAdvisor is a platform like Yelp, but it is focused on travel business. Several

kinds of businesses can be found in TripAdvisor like Hotels and Restaurants. Inside

TripAdvisor, each business has a unique name, and this business can be accessed

following the next URL: http://www.tripadvisor.com/[BUSINESS-NAME]. At this

URL, the crawler can find relevant information like the business’s name, the business’s

price range, the overall rating and a list of reviews. Each review is shown with

the next relevant information: author’s name, rating, date and message. The list

of reviews are divided using pagination. Each page needs to be loaded running a

script written in Javascript. Scrapy is not able to execute Javascript code. For this

reason, the TripAdvisor Crawler has been written in Python using Selenium package

and PhantomJS Browser. PhantomJS Browser is used to load and render the final

HTML code and Selenium is used to control the browser from Python script. Once

the crawler get the final HTML code of the website, the information is gathered using

CSS Selectors. As TripAdvisor doesn’t use a standard to tag the HTML fields, this

crawler could fail if TripAdvisor does some modifications in the user interface of their

web page.

An example of the JSON generated by the TripAdvisor Crawler is shown at Listing

A.6

6https://www.schema.org/

24

3.3. GSI CRAWLER

3.3.3.4 Twitter

Twitter is a social microblogging section. Each Twitter user has his own timeline,

a list of their blog entries (known as tweets). Twitter offers an API to access to

the information needed for this project: recollect the tweets that contain a specific

hashtag. Although the use of Scrapy is an option, the API is considerably much faster.

The Twitter Crawler has been developed using Python and Twython7. Twython is

a Python library providing an easy way to access Twitter data, a wrapper for the

Twitter API. To use Twitter API, a Twitter App Key must be provided. Using

Twitter API, last tweets can be filtered by a hashtag. Tweets can be retrieved with

the next relevant information: author’s name, date and message.

An example of the JSON generated by the Twitter Crawler is shown at Listing A.3

3.3.3.5 YouTube

YouTube is a social video-sharing network. Each video can be commented by YouTube

users. YouTube offers an API to access to the information needed: recollect the com-

ments from a specific video. Although the use of Scrapy is an option, the API is

considerably much faster. The YouTube Crawler has been developed using Python

and Google API Python Client library. Google API Python Client is the Python

client library for Google’s discovery based APIs made by Google. To use Google

API, the client id and client secret must be provided. Using Google API, comments

of a YouTube video can be gathered. These comments can be retrieved with the next

relevant information: author’s name, date and message.

An example of the JSON generated by the YouTube Crawler is shown at Listing

A.5

3.3.3.6 Facebook

Facebook is a social network which lets the businesses create their own fan page. In

the fan page, the businesses can write posts, like a blog entry. In each entry, the users

can leave their comments. GSI Crawler is focused on analyzing the users comments

of the blog entries from Facebook fan pages. Facebook offers an API, called Graph

API. The Facebook Crawler is able to retrieve the comments from a fan page. It is

7https://github.com/ryanmcgrath/twython

25

CHAPTER 3. GSI CRAWLER ARCHITECTURE

written in Python and uses Graph API. To use Graph API, an OAuth Token must

be provided. Using Graph API, comments from a fan page can be gathered. These

comments can be retrieved with the next relevant information: author’s name, date

and message.

An example of the JSON generated by the Facebook Crawler is shown at Listing

A.4

3.4 Crawler scheduler

The Crawler Scheduler is a service that is able to schedule the execution of the

crawlers periodically. This service has been deployed using Scrapyd which is able to

manage natively Scrapy crawlers. In addition, using a web interface (Figure 3.4), the

execution of the crawlers can be monitored and the results of the crawling process

can be viewed. This service can be managed using a JSON API. The crawling result

can be retrieved anytime using this JSON API.

Figure 3.4: Scrapy Cloud Web Interface

26

CHAPTER4
Case study

4.1 Introduction

In this chapter we are going to describe a selected use case. This description will cover

the main GSI Crawler features, and its main purpose is to completely understand the

functionalities of GSI Crawler, and how to use it.

The actor of this case is the user. The goal of the user is to perform a brand

monitoring, choosing between 6 different websites and choosing between 3 kinds of

analysis. In this use case the user wants to monitor and analyze the comments from

different websites. For instance, if the user wants to monitor a restaurant in different

social networks, such as: Yelp, Twitter, Facebook, YouTube and TripAdvisor.

Finally, we are going to explain how to schedule a new crawler job, storing the

results. These results could be retrieved anytime the user wants.

27

CHAPTER 4. CASE STUDY

4.2 Performing a new analysis

The first step to take is to browse to GSI Crawler main page (Figure 4.1). In the main

page, at the Analysis lateral menu option, a menu containing the different websites

options can be found, inside a floating button with an eye icon.

Figure 4.1: Main Page

In this menu, the website where the comments will be extracted can be chosen.

To illustrate this use case in detail, a restaurant with presence in Yelp, Twitter,

Facebook, YouTube and TripdAvisor will be used. Choosing an option from this

menu, a modal window (Figure 4.2) will be opened.

This window has a field to introduce the URL from where the comments will be

extracted. This URL points to a item page in case of Amazon or to a business page

in case of Yelp or TripAdvisor. If Twitter, Facebook, or YouTube option is chosen,

the user has to introduce in this field a Twitter hashtag, a fan page Facebook id or a

YouTube video id, respectively.

At the bottom of the new analysis modal window, four different buttons can be

find. The Fake button will start a fake analysis, the Emotions button will start

an emotion analysis, Sentiments button will start a sentiment analysis, and the All

28

4.2. PERFORMING A NEW ANALYSIS

button will start the three previous analysis at the same time. Furthermore, a button

named ”Analysis Example” can be found. Tapping on this button, an example URL

value will fill the URL field.

Figure 4.2: New analysis modal window

4.2.1 Fake Analysis

This kind of analysis will mark those comments that are not real, called fake com-

ments. These false comments are made to increase (or decrease) the business social

reputation, trying to cheat the websites rating system.

To make a fake analysis, the user needs to choose one option between the different

websites, fill the URL field and press Fake button. A loading card (Figure 4.3) will

be added to the main page and it will display the result when the server ends the

analysis (Figure 4.4).

The card will show the overall analysis result taking in account every comment.

We can see how many comments in total are scraped and analyzed and how many

comments are marked as Fake comments. Based on the percentage of fake comments

over the total number, a grade is displayed with an associated color.

29

CHAPTER 4. CASE STUDY

Finally, pressing Reviews button a list of every comment scraped and analyzed is

displayed (Figure 4.5). In this list we can find what comments are marked as Fake

comments, its author, its date, its rating value, and its message.

An example of the JSON generated by the Fake Analyzer is shown at Listing A.1

Figure 4.3: Loading card

Figure 4.4: Fake Analysis Result

30

4.2. PERFORMING A NEW ANALYSIS

Figure 4.5: Fake analysis result detailed each comment

4.2.2 Emotions Sentiments

This kind of analysis will rate the scraped comments based on the emotions extracted

from the message. The analyzer will rate these messages with different emotions:

disgusted, angry, afraid, sad, happy, and surprised. These emotions will be associated

with a specific color to show the results.

To make an emotion analysis, the user needs to choose one option between the

different websites, fill the URL field and press Emotions button. A card (Figure 4.3)

will be added to the main page and it will display the result when the server ends the

analysis (Figure 4.6).

The card will show the overall analysis result taking in account every message.

Based on the emotions of all comments, an overall emotion rate is displayed with an

associated color and emoticon.

Finally, pressing Reviews button a list of every comment scraped and analyzed is

displayed (Figure 4.7). In this list we can find what emotion is predominant in each

comment, its author, its date, and its message.

An example of the JSON generated by the Emotion Analyzer is shown at Listing

A.2

31

CHAPTER 4. CASE STUDY

Figure 4.6: Emotion analysis result

Figure 4.7: Emotion analysis result detailed each comment

32

4.2. PERFORMING A NEW ANALYSIS

4.2.3 Sentiment Analysis

This kind of analysis will rate the scraped comments based on the sentiments ex-

tracted from the message. The analyzer will rate these comments with different sen-

timents: Positive, Neutral, and Negative. These sentiments will be associated with a

specific color to show the results.

To make an emotion analysis, the user needs to choose one option between the

different websites, fill the URL field and press Sentiments button. A card (Figure

4.3) will be added to the main page and it will display the result when the server

ends the analysis (Figure 4.8).

The card will show the overall analysis result taking in account every comment.

Based on the sentiment of all comments, an overall sentiment polarity is displayed

with an associated color.

Finally, pressing Reviews button a list of every comment scraped and analyzed is

displayed (Figure 4.9). In this list we can find what sentiment is predominant in each

comment, its author, its date, and its message.

An example of the JSON generated by the Sentiment Analyzer is shown at Listing

A.3

Figure 4.8: Sentiment analysis result

33

CHAPTER 4. CASE STUDY

Figure 4.9: Sentiment analysis result detailed each comment

4.2.4 Perform all analysis at the same time

If the user wants to analyze fake comments, its emotions and sentiments, he could use

All button. This will scrap comments and it will make the three different analysis,

shown in a card (Figure 4.10).

An example of the JSON generated by the multipler analyzer is shown at Listing

A.4

34

4.2. PERFORMING A NEW ANALYSIS

Figure 4.10: All analysis result cards

35

CHAPTER 4. CASE STUDY

4.3 Scheduling a crawling job

To schedule a crawling job, the user could choose between 2 options: do a JSON call

(using scrapyd1 API, for instance, performing a curl request using the command line)

or use a Web Interface.

Going to scraping web platform, the user could schedule a new crawling job press-

ing Run Spider button. In the modal form, the user needs to choose the spider to use

(the website where the comments the user wants to analyze are) and an argument

called url should be specified (Figure 4.11).

Once scrapyd has finished the crawling job, the user could get the comments

scraped looking for the job in the Completed Jobs box and pressing on the number

of items (Figure 4.12).

Figure 4.11: Schedule a new crawling job

1https://scrapyd.readthedocs.org/en/latest/

36

4.3. SCHEDULING A CRAWLING JOB

Figure 4.12: Scraped Result

37

CHAPTER 4. CASE STUDY

38

CHAPTER5
Evaluation

5.1 Introduction

In this chapter we will analyze the behavior and performance of the system. We will

evaluate the time the crawler system need to extract comments from the different

websites. The crawling system developed for this project has multiple heterogeneous

crawlers, each one of them with different hardware requirements. Therefore, we will

take a look at the performance for each crawler.

In addition, we will also evaluate the effort to write a new crawler embedded in

the current system. The time and the average of numbers of lines required to build a

new crawler will be analyzed.

5.2 Requirements and Benchmark

For our crawling system, we will analyze the memory and CPU usage when the

different crawlers are launched to recollect the comments. As each crawler is different

from the others, we have made a benchmark for each one. The software and hardware

39

CHAPTER 5. EVALUATION

used to obtain the benchmark results are shown in Table 5.1. The obtained results

can be seen in Table 5.2.

Operating System Ubuntu 14.04 x64, Kernel Linux 3.19.0

CPU Intel Core i7-4750HQ 2.0GHz

Memory 2 x Hynix 4GB 1600 MHz DDR3

Hard Drive SanDisk SSD SM0256F 256GB

Table 5.1: Software and Hardware used to benchmark the crawling system

Crawler CPU Usage Memory Time to crawl 100 comments

Yelp 0.5 % 48.8 MB 9”

Amazon 0.7 % 44.3 MB 13”

Twitter 0.1 % 23.2 MB 2”

Facebook 0.1 % 20.5 MB 5”

Youtube 0.1 % 18.7 MB 3”

TripAdvisor 32 % 405.5 MB 49”

Table 5.2: Memory and CPU usage for each crawler

We can see that Facebook, YouTube and Twitter are faster than others to crawl

the comments. The reason is simple, the crawling system is using their own JSON

API to recollect the comments. In addition, a notable difference between Yelp and

Amazon in front of TripAdvisor can be observed. The reason of this difference is while

Yelp and Amazon uses Scrapy framework, TripAdvisor uses a browser (PhantomJS).

The browser needs to render each visited link, and that makes the crawling process

much slower and a high consumer of memory and CPU.

40

5.3. EFFORT TO BUILD A NEW CRAWLER

5.3 Effort to build a new crawler

To analyze the effort to build a new crawler, we have selected the FourSquare1 web

page. This site is very similar to Yelp and doesn’t need to render Javascript, so we

will use Scrapy framework to build this crawler and analyze the effort to implement

to our crawling system.

We can start the development of our new crawler using a basic prepared template

like Figure 5.1.

Listing 5.1: Crawling basic structure template

-*- coding: utf-8 -*-

import scrapy

class FourSquareSpider(scrapy.Spider):

name = "FourSquareScraper"

allowed_domains = ["foursquare.es", "foursquare.com"]

start_urls = []

current_page = 1

filePath=None

handle_httpstatus_list = [404]

def __init__(self, url, filePath=None):

self.start_urls = [url]

self.filePath = filePath

def parse(self, response):

pass

def get_next_request(self, response):

pass

def parse_reviews_list(self, response):

pass

def extract_reviews_list(self, response):

pass

def parse_review_code(self, review_code):

pass

def encodeUTF8(self, string):

if isinstance(string, unicode):

return string.encode(’utf-8’)

return string

1http://www.foursquare.com

41

CHAPTER 5. EVALUATION

def saveJSON(self, json, fileName):

textutf8 = json.encode(’UTF-8’)

text_file = open(fileName, "w")

text_file.write(textutf8)

text_file.close()

return

def returnError(self, error):

item = {’error’:’Crawler has failed to fetch the comments’, ’loading’:False}

self.saveJSON(json.dumps(item), self.filePath)

Helping us with web developer tools like those Chrome includes, we can get the

CSS Selectors pointing to information we need to recollect. With few coding, we could

fill empty functions and we could get a functional crawler to recollect FourSquare

reviews. We can see the result in Figure 5.2.

Listing 5.2: FourSquare Crawler

def parse(self, response):

try:

name = response.css(’#container > div > div.contents > div.wideColumn > div.

venueInfoSection > div.venueHeader > div.primaryInfo > div.venueNameSection >

h1::text’)[0].extract()

name = self.encodeUTF8(name)

image = response.css(’#container > div > div.contents > div.wideColumn > div.

venueInfoSection > div.venueHeader > div.mainIconWrapper > a > img::attr(src)

’)[0].extract()

image = self.encodeUTF8(image)

reviews = self.extract_reviews_list(response)

item = {’name’:name, ’image’:image, ’reviews’:reviews}

self.current_page = 1

nextRequest = self.get_next_request(response)

if(nextRequest == None):

self.saveJSON(json.dumps(item), self.filePath)

yield item

return

nextRequest.meta[’item’] = item

yield nextRequest

except Exception as e:

self.returnError(e)

def get_next_request(self, response):

try:

if(self.pages != None and self.current_page >= self.pages):

return None

pagination_div = response.css(’#tipsContainer > div.tipPagination’)

if(len(pagination_div) == 0):

42

5.3. EFFORT TO BUILD A NEW CRAWLER

return None

pagination_div = pagination_div[0]

number_of_pages = pagination_div.css(’a’)

if(len(number_of_pages) <= self.current_page):

return None

self.current_page = self.current_page + 1

url = ’%s?tipsPage=%s’ % (self.start_urls[0], self.current_page)

print url

return scrapy.Request(url, callback=self.parse_reviews_list)

except Exception as e:

print str(e)

return None

return None

def parse_reviews_list(self, response):

reviews = self.extract_reviews_list(response)

item = response.meta[’item’]

for review in reviews:

item[’reviews’].append(review)

self.current_page = self.current_page + 1

nextRequest = self.get_next_request(response)

if(nextRequest == None):

self.saveJSON(json.dumps(item), self.filePath)

yield item

return

nextRequest.meta[’item’] = item

yield nextRequest

def extract_reviews_list(self, response):

try:

reviews = list()

reviews_list_container = response.css(’#tipsList’)[0]

reviews_list = reviews_list_container.css(’li’)

for review_code in reviews_list:

review = self.parse_review_code(review_code)

if(review != None):

reviews.append(review)

return reviews

except Exception as e:

self.returnError(e)

def parse_review_code(self, review_code):

try:

author = review_code.css(’div.tipInfo > span.userName > a::text’)[0].extract()

author = self.encodeUTF8(author)

date = review_code.css(’div.tipInfo > span.tipDate::text’)[0].extract()

date = self.encodeUTF8(date)

message = review_code.css(’p.tipText::text’)[0].extract()

message = self.encodeUTF8(message)

return {’author’:author, ’date’:date, ’message’:message}

except:

return None

43

CHAPTER 5. EVALUATION

That is, we have a 100% functional crawler in only 115 lines. Comparing with

the number of lines contained in the template, we have added a total of 71 lines.

Measuring the effort in time terms, this example has been coded in approximately 1

hour. It’s clear that the effort to code a new crawler is very light.

44

CHAPTER6
Conclusions and future work

In this chapter we will describe the conclusions extracted from this project, and the

thoughts about future work.

6.1 Conclusions

We started this document specifying several requirements and goals we aimed to

achieve with the architecture developed for this Final Project.

In this project we have created a crawling system in order to automatize the

gathering of social comments from several websites.

We have used this crawling system to build a platform that allow us to crawl and

analyze comments from several websites using a graphical interface, making this job

easier. Senpy platform has been used to analyze the messages.

In addition, this project allows the user to schedule the crawling process to retrieve

the comments from a website periodically. The conclusions deduced from the work

will now be presented.

45

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Finally, doing this work the knowledge has been deepened about the usage of

technologies used in this project such as: Web Scraping, Web Servers based on python

or Polymer to create user interface.

6.2 Achieved goals

In chapter 1 we discussed the goals we wanted to achieve with this project. This can

be summarize as follows:

1. Design and build a scraper for each social network (Twitter, Face-

book, YouTube), for each opinions website (Yelp, TripAdvisor) and

for Amazon. One of the main requirements of this project is to develop a

crawling system that automatize the gathering of social comments from several

websites. The crawling module has been the core of the GSI Crawler platform

developed in this project.

2. Build a software module which is able to communicate with the Senpy

platform for Sentiment Analysis. A module to analyze the messages gath-

ered by the crawling system has been implemented by the server built in this

project. This module uses Senpy to analyze the messages.

3. Design and build a web platform for user analysis, allowing users

define the type of analysis and the target website. The result of this

goal is the platform GSI Crawler. This platform lets the user select the target

website and the type of analysis and, finally, perform the analysis.

4. Deepen the knowledge and usage of technologies covered in this project

such as: Web Scraping, Web Servers based on Python or Polymer to

create user interface. The goal is clearly achieved. I never used some tech-

nologies needed to complete this project and now I acquired some ease in the

usage of these technologies.

6.3 Future Work

There are several lines that can be followed to extend some used features on the

sentiment analysis but were not included into this project due to the time limitation.

46

6.3. FUTURE WORK

In the next points some lines of work or improvement to continue the development

are presented.

• Extend GSI Crawler, adding user authentication and giving the option to store

the different analysis.

• Build a panel to show and analyze the Crawler Scheduler results. This will be

useful to monitor the evolution of reviews of a specific business or the sentiments

of the public about a specific topic.

• Improve TripAdvisor crawler. Using a browser to render the Javascript code

makes the process much slower. An alternative like ScrapyJS1 could be used to

build this crawler.

• Store the information using a database engine like MongoDB instead of store

using JSON in a plain document.

• Use Fake analysis previously before make an Emotion or a Sentiment analysis.

Discarding fake comments will increase the reliability of the final analysis.

1https://github.com/scrapinghub/scrapy-splash

47

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

48

Bibliography

[1] Web scraping. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia of Database Systems,

page 3490. Springer US, 2009.

[2] Adam Adam Westerski and J. Fernando Sánchez-Rada. Marl ontology specification. 2013.

[3] Tim Berners-Lee. Information management: A proposal. Technical report, 1989.

[4] Francesco Bonchi, Carlos Castillo, Aristides Gionis, and Alejandro Jaimes. Social network

analysis and mining for business applications. ACM Trans. Intell. Syst. Technol., 2(3):22:1–

22:37, May 2011.

[5] P. J. Eby. Python web server gateway interface, 2003. Tech. Rep. PEP 333.

[6] P. J. Eby. Python web server gateway interface, 2010. Tech. Rep. PEP 3333.

[7] Justin Ellingwood. How to use the Bottle Micro Framework to Develop Python Web Apps.

December 2013.

[8] Roy T. Fielding and Gail E. Kaiser. The Apache HTTP Server Project. IEEE Internet Com-

puting, 1(4):88–90, 1997.

[9] Klint Finley. PhantomJS: The Power of WebKit but Without the Broswer. March 2011.

[10] Ayush Gondhali, Rishikesh Chandra, Ashish Shinde, and Sanket Pimple. Automation test-

ing using data driven approach. International Journal on Recent and Innovation Trends in

Computing and Communication, 3(4):1841–1844, april 2015.

[11] Sebastian Hellmann, Jens Lehmann, Sören Auer, and Martin Brümmer. Integrating nlp using

linked data. In 12th International Semantic Web Conference, 21-25 October 2013, Sydney,

Australia, 2013.

[12] Newcoder. Introduction to Web Scraping using Scrapy. July 2013. http://newcoder.io/

scrape/intro/.

[13] Jarrod Overson and Jason Strimpel. Developing Web Components - UI from jQuery to Polymer.

O’Reilly, 2015.

[14] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and Trends in

Information Retrieval, 2(1-2):1–135, 2008.

[15] J. Fernando Sánchez-Rada and Carlos A. Iglesias. Onyx: A Linked Data Approach to Emotion

Representation. Information Processing & Management, 52:99–114, January 2016.

49

http://newcoder.io/scrape/intro/
http://newcoder.io/scrape/intro/

BIBLIOGRAPHY

[16] Manu Sporny, Gregg Kellogg, and Markus Lanthaler. JSON-LD Syntax 1.0. Technical report,

12 2012.

50

APPENDIXA
Analysis Results

This chapter shows the results given by the scraping and analyzing modules for each

website. The results have been trimmed (only the number of comments) in order not

to extend this section.

A.1 Yelp

The crawling system recollect some information from a Yelp business. It takes the

name of the business (tagged as name) and the URL to the main image of the busi-

ness (tagged as image). From each comment the information recollected is: date of

publication (tagged as datePublished), the user rating (tagged as ratingValue), the

review message (tagged as reviewBody) and the author, containing its name. This

result is from a Fake Analysis, the analysis is under fakeAnalysis key. It contains a

Boolean property (tagged as fake) that indicates if the comment is fake or not.

51

APPENDIX A. ANALYSIS RESULTS

Listing A.1: Yelp Analysis Example

{

"@context": "http:\/\/schema.org",

"name": "Taqueria Cazadores",

"image": "http:\/\/s3-media3.fl.yelpcdn.com\/bphoto\/MALKEtLaRCmaphhqvvE1ow\/ls.jpg",

"reviews": [

{

"@type": "Review",

"datePublished": "12\/11\/2015",

"ratingValue": 4,

"reviewBody": "it was just ok, I expected more for the price though.",

"fakeAnalysis": {

"fake": true

},

"author": {

"@type": "Person",

"name": "Bapir A."

}

},

{

"@type": "Review",

"datePublished": "7\/28\/2015",

"ratingValue": 4,

"reviewBody": "Highly recommendation of the place as have some of the good job

here for I love coming here. last time ordered three items with my friend was

a enjoying time here.",

"fakeAnalysis": {

"fake": false

},

"author": {

"@type": "Person",

"name": "Mable I."

}

}

],

"loading": false,

"error": null

}

A.2 Amazon

The crawling system recollect the same information from Amazon than Yelp. This

kind of analysis is Emotions. The sentiment analysis is under emotionAnalysis key.

hasEmotionCategory key from ONYX structure gives us the information of what

emotion predominates in each comment.

52

A.2. AMAZON

Listing A.2: Amazon Analysis Example

{

"@context": "http:\/\/schema.org",

"name": "HP K1500 Wired Keyboard",

"image": "http:\/\/ecx.images-amazon.com\/images\/I\/410Iim0BKaL._AC_AA60_SCLZZZZZZZ__

.jpg",

"reviews": [

{

"@type": "review",

"datePublished": "on November 18, 2014",

"ratingValue": 5,

"reviewBody": "This keyboard feels solid and looks good too. Pleased.",

"author": {

"@type": "Person",

"name": "DanMBA"

},

"emotionAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "emotext",

"maxPolarityValue": 1,

"name": "EmoText",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "This keyboard feels solid and looks good too. Pleased.",

"@id": "Entry",

"nif:language": "en",

"nif:emotionSets": {

"@id": "Emotions0",

"emotions": [

{

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#valence": 7.63,

"onyx:hasEmotionCategory": "http:\/\/gsi.dit.upm.es\/ontologies\/

wnaffect\/ns#joy",

"@id": "Emotion0",

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#dominance": 6.35,

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#arousal": 5.555

}

]

}

}

]

53

APPENDIX A. ANALYSIS RESULTS

}

},

{

"@type": "review",

"datePublished": "on March 1, 2014",

"ratingValue": 5,

"reviewBody": "This is a perfect replacement keyboard if you do not want to spent

much money. It is a steal for the price.",

"author": {

"@type": "Person",

"name": "KODEN"

},

"emotionAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "emotext",

"maxPolarityValue": 1,

"name": "EmoText",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "This is a perfect replacement keyboard if you do not want to spent

much money. It is a steal for the price.",

"@id": "Entry",

"nif:language": "en",

"nif:emotionSets": {

"@id": "Emotions0",

"emotions": [

{

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#valence": 5.09,

"onyx:hasEmotionCategory": "http:\/\/gsi.dit.upm.es\/ontologies\/

wnaffect\/ns#anger",

"@id": "Emotion0",

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#dominance": 5.144,

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#arousal": 5.456

}

]

}

}

]

}

}

], "loading": false,

"error": null

}

54

A.3. TWITTER

A.3 Twitter

This result shows a sentiment analysis. The sentiment analysis is under sentiment-

Analysis key. hasPolarityValue key from MARL structure gives us the information

about the polarity of the sentiment the user shows in his comment, being the polarity

value of 1 the most positive and the polarity value of 0 the most negative.

Listing A.3: Twitter Analysis Example

{

"@context": "http:\/\/schema.org",

"reviews": [

{

"@type": "Review",

"datePublished": "Mon Feb 01 22:39:23 +0000 2016",

"reviewBody": "Hab\u00eda que probarlo. goikogrill #goiko #goikogrill #burguers #

hamburguesas #americanfood #chamberi",

"author": {

"@type": "Person",

"name": "Victoria"

},

"sentimentAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "sentiment140_0.1",

"maxPolarityValue": 1,

"name": "sentiment140",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "Hab\u00eda que probarlo. goikogrill ",

"@id": "Entry0",

"nif:language": "auto",

"opinions": [

{

"marl:hasPolarityValue": 0.5,

"prov:wasGeneratedBy": "sentiment140_0.1",

"@id": "Opinion0",

"marl:hasPolarity": "marl:Neutral"

}

]

}

]

}

55

APPENDIX A. ANALYSIS RESULTS

},

{

"@type": "Review",

"datePublished": "Sun Jan 31 11:51:49 +0000 2016",

"reviewBody": "RT @ErDiegoNieto: @DanieloviedoM a la bater\u00eda de #Goiko en

@truiteatre #Mallorca #entradasagotadas. Vente paca @dominguezja",

"author": {

"@type": "Person",

"name": "Lucia\u2665"

},

"sentimentAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "sentiment140_0.1",

"maxPolarityValue": 1,

"name": "sentiment140",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "RT @ErDiegoNieto: @DanieloviedoM a la bater\u00eda de ",

"@id": "Entry0",

"nif:language": "auto",

"opinions": [

{

"marl:hasPolarityValue": 0.5,

"prov:wasGeneratedBy": "sentiment140_0.1",

"@id": "Opinion0",

"marl:hasPolarity": "marl:Neutral"

}

]

}

]

}

}

],

"hashtag": "#goiko",

"loading": false,

"error": null

}

56

A.4. FACEBOOK

A.4 Facebook

This result shows a multiple analysis: Fake, Sentiments and Emotions.

Listing A.4: Facebook Analysis Example

{

"@context": "http:\/\/schema.org",

"name": "Goiko Grill",

"image": "https:\/\/scontent.xx.fbcdn.net\/hprofile-xtl1\/v\/t1.0-1\/p200x200

\/11742653_476490885844148_4161450282861413292_n.jpg?oh=4291

d729434f02272b03c13ce6a5fda1&oe=57420DEF",

"reviews": [

{

"datePublished": "2015-12-21T19:46:22+0000",

"author": {

"@type": "Person",

"name": "Marcos de la Osa"

},

"reviewBody": "\u00a1Y est\u00e1 muy buena!",

"fakeAnalysis": {

"fake": false

},

"sentimentAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "sentiment140_0.1",

"maxPolarityValue": 1,

"name": "sentiment140",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "\u00a1Y est\u00e1 muy buena!",

"@id": "Entry0",

"nif:language": "auto",

"opinions": [

{

"marl:hasPolarityValue": 0.5,

"prov:wasGeneratedBy": "sentiment140_0.1",

"@id": "Opinion0",

"marl:hasPolarity": "marl:Neutral"

}

]

}

]

},

57

APPENDIX A. ANALYSIS RESULTS

"emotionAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "emotext",

"maxPolarityValue": 1,

"name": "EmoText",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "\u00a1Y est\u00e1 muy buena!",

"@id": "Entry",

"nif:language": "en",

"nif:emotionSets": {

"@id": "Emotions0",

"emotions": [

{

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#valence": 0,

"onyx:hasEmotionCategory": "http:\/\/gsi.dit.upm.es\/ontologies\/

wnaffect\/ns#neutral-emotion",

"@id": "Emotion0",

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#dominance": 0,

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#arousal": 0

}

]

}

}

]

}

},

{

"datePublished": "2016-02-02T21:22:05+0000",

"author": {

"@type": "Person",

"name": "Fredy Luis Goncalves Barbosa"

},

"reviewBody": "En hora buena, y que sigan los \u00e9xitos",

"fakeAnalysis": {

"fake": false

},

"sentimentAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "sentiment140_0.1",

58

A.4. FACEBOOK

"maxPolarityValue": 1,

"name": "sentiment140",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "En hora buena, y que sigan los \u00e9xitos",

"@id": "Entry0",

"nif:language": "auto",

"opinions": [

{

"marl:hasPolarityValue": 0.5,

"prov:wasGeneratedBy": "sentiment140_0.1",

"@id": "Opinion0",

"marl:hasPolarity": "marl:Neutral"

}

]

}

]

},

"emotionAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "emotext",

"maxPolarityValue": 1,

"name": "EmoText",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "En hora buena, y que sigan los \u00e9xitos",

"@id": "Entry",

"nif:language": "en",

"nif:emotionSets": {

"@id": "Emotions0",

"emotions": [

{

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#valence": 0,

"onyx:hasEmotionCategory": "http:\/\/gsi.dit.upm.es\/ontologies\/

wnaffect\/ns#neutral-emotion",

"@id": "Emotion0",

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#dominance": 0,

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#arousal": 0

}

]

59

APPENDIX A. ANALYSIS RESULTS

}

}

]

}

}

],

"loading": false,

"error": null

}

A.5 YouTube

The fields of this result are the same of Yelp or Amazon, explained before.

Listing A.5: YouTube Analysis Example

{

"@context": "http:\/\/schema.org",

"name": "eW3gMGqcZQc",

"image": "http:\/\/img.youtube.com\/vi\/eW3gMGqcZQc\/maxresdefault.jpg",

"reviews": [

{

"@type": "Review",

"date": "2016-01-27T16:08:36.484Z",

"reviewBody": "I hate trying to learn stuff online...I am very hands on and visual

, in \naddition when I ask a question I want an answer I don’t want to wait 5

\nminutes or 5 hours or 5 days for an answer.... by the time I wait for \

nsomeone to type an answer ill usually have moved on or away from what I was \

ntrying to figure out....\ufeff",

"author": {

"@type": "Person",

"name": "P4L9BLACK"

},

"emotionAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "emotext",

"maxPolarityValue": 1,

"name": "EmoText",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "I hate trying to learn stuff online...I am very hands on and visual

, in \\naddition when I ask a question I want an answer I don’t want to

60

A.5. YOUTUBE

wait 5 \\nminutes or 5 hours or 5 days for an answer.... by the time I

wait for \\nsomeone to type an answer ill usually have moved on or away

from what I was \\ntrying to figure out....\\ufeff",

"@id": "Entry",

"nif:language": "en",

"nif:emotionSets": {

"@id": "Emotions0",

"emotions": [

{

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#valence": 5.6981818181818,

"onyx:hasEmotionCategory": "http:\/\/gsi.dit.upm.es\/ontologies\/

wnaffect\/ns#anger",

"@id": "Emotion0",

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#dominance": 5.2845454545455,

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#arousal": 5.3472727272727

}

]

}

}

]

}

},

{

"@type": "Review",

"date": "2015-09-24T04:33:36.528Z",

"reviewBody": "nice video\ufeff",

"author": {

"@type": "Person",

"name": "Rohini Komarappagari"

},

"emotionAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "emotext",

"maxPolarityValue": 1,

"name": "EmoText",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "nice video\\ufeff",

"@id": "Entry",

"nif:language": "en",

"nif:emotionSets": {

"@id": "Emotions0",

"emotions": [

61

APPENDIX A. ANALYSIS RESULTS

{

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#valence": 6.55,

"onyx:hasEmotionCategory": "http:\/\/gsi.dit.upm.es\/ontologies\/

wnaffect\/ns#joy",

"@id": "Emotion0",

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#dominance": 5.58,

"http:\/\/www.gsi.dit.upm.es\/ontologies\/onyx\/vocabularies\/anew\/ns

#arousal": 4.38

}

]

}

}

]

}

}

],

"loading": false,

"error": null

}

A.6 TripAdvisor

The fields of this result are the same of Yelp or Amazon, explained before.

Listing A.6: TripAdvisor Analysis Example

{

"name": "Casa Flores",

"image": "http:\/\/media-cdn.tripadvisor.com\/media\/photo-s\/09\/47\/bf\/6f\/getlstd-

property-photo.jpg",

"reviews": [

{

"@type": "Person",

"datePublished": "Reviewed November 20, 2015",

"ratingValue": 5,

"reviewBody": "The has been of the best dinner that I have ever had! Everything

was perfect and the food was AMAZING!!!",

"author": {

"@type": "Person",

"name": "Darya F"

},

"sentimentAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

62

A.6. TRIPADVISOR

"@id": "sentiment140_0.1",

"maxPolarityValue": 1,

"name": "sentiment140",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "The has been of the best dinner that I have ever had! Everything

was perfect and the food was AMAZING!!!",

"@id": "Entry0",

"nif:language": "auto",

"opinions": [

{

"marl:hasPolarityValue": 1,

"prov:wasGeneratedBy": "sentiment140_0.1",

"@id": "Opinion0",

"marl:hasPolarity": "marl:Positive"

}

]

}

]

}

},

{

"@type": "Person",

"datePublished": "Reviewed November 18, 2015",

"ratingValue": 5,

"reviewBody": "Vanessa and her husband are the warmest hosts. They make you feel

at home. The food is delicious! All of it, but Vanessa’s specialty are her

homemade pastas. They steal the show!",

"author": {

"@type": "Person",

"name": "Liz S"

},

"sentimentAnalysis": {

"@id": "_:b0",

"analysis": [

{

"version": "0.1",

"@id": "sentiment140_0.1",

"maxPolarityValue": 1,

"name": "sentiment140",

"minPolarityValue": 0

}

],

"entries": [

{

"text": "Vanessa and her husband are the warmest hosts. They make you feel

at home. The food is delicious! All of it, but Vanessa’s specialty are

her homemade pastas. They steal the show!",

"@id": "Entry0",

63

APPENDIX A. ANALYSIS RESULTS

"nif:language": "auto",

"opinions": [

{

"marl:hasPolarityValue": 0.5,

"prov:wasGeneratedBy": "sentiment140_0.1",

"@id": "Opinion0",

"marl:hasPolarity": "marl:Neutral"

}

]

}

]

}

}

],

"loading": false,

"error": null

}

64

APPENDIXB
Instructions for deploying GSI Crawler

This chapter aims to provide a general walk-trough on how to deploy our GSI Crawler

system. It assumes basic knowledge on both the system and the tools used, and the

required tools.

B.1 Preparing the environment

GSI Crawler consists of several modules. They have been packed together, except

Senpy1 which is an external and independent module. The system needs specific

dependencies to work. In this section the installation of those dependencies will

be covered. These instructions are suposed you are running a Debian based Linux

distribution, specifically Ubuntu 14.04 x64 but it might work with other distributions.

1https://github.com/gsi-upm/senpy

65

APPENDIX B. INSTRUCTIONS FOR DEPLOYING GSI CRAWLER

B.1.1 Installing dependencies

Listing B.1: Installing dependencies

We need Python to exec our code

sudo apt-get install python

Python package manager to install Python libraries

sudo apt-get install python-pip

Browser controller from Python script

sudo pip install selenium

Headless browser needed to build TripAdvisor

sudo apt-get install phantomjs

Library to deploy a WSGI for Python

sudo pip install bottle

Crawling Scrapy Framework

sudo pip install scrapy

Twitter API Client

pip install twython

Youtube API Client

sudo pip install --upgrade google-api-python-client

Other Python libraries needed

sudo pip install parse

sudo pip install pytz

B.2 Deploying Senpy

The most simple way to deploy Senpy module is using a Docker Image. Docker is

needed to be installed before this step. You can follow official Docker installing in-

structions at Docker Official Website2. Once Docker is installed in your system, Senpy

module can be downloaded and executed running the following command (Listing

C.1).

Listing B.2: Deploying Senpy

docker run -ti -p 5000:5000 balkian/senpy --host 0.0.0.0 --default-plugins

2https://docs.docker.com/engine/installation/ubuntulinux/

66

B.3. RUNNING GSI CRAWLER

B.3 Running GSI Crawler

Once dependencies are installed and Senpy is deployed, GSI Crawler server can be

started using the following command (Listing B.3) at GSI Crawler root folder.

Listing B.3: Running GSI Crawler

python web.py

Now GSI Crawler can be accessed using the following url: http://localhost:

8888/.

67

http://localhost:8888/
http://localhost:8888/

APPENDIX B. INSTRUCTIONS FOR DEPLOYING GSI CRAWLER

68

APPENDIXC
Deploying GSI Crawler using Docker

This chapter aims to provide a general walk-trough on how to deploy our GSI Crawler

system. It assumes basic knowledge on both the system and the tools used, and the

required tools.

The most simple way to deploy GSI Crawler platform is using a Docker Image.

Docker is needed to be installed before this step. You can follow official Docker

installing instructions at Docker Official Website1. Once Docker is installed in your

system, GSI Crawler platform can be downloaded and deployed running the following

command (Listing C.1).

Listing C.1: Deploying Senpy

docker run -ti -p 8888:8888 pepos/gsicrawler --host 0.0.0.0

Now GSI Crawler can be accessed using the following url: http://localhost:

8888/.

1https://docs.docker.com/engine/installation/ubuntulinux/

69

http://localhost:8888/
http://localhost:8888/

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Introduction
	Information retrieval
	Scrapy
	Scrapyd
	PhantomJS
	Selenium WebDriver

	Text Analysis
	Senpy

	Web technologies
	Client technologies
	Polymer Library

	Server technologies
	WSGI Servers in Python

	GSI Crawler Architecture
	Introduction
	General Overview
	GSI Crawler
	User Interface
	Server side
	Crawling System
	Amazon
	Yelp
	TripAdvisor
	Twitter
	YouTube
	Facebook

	Crawler scheduler

	Case study
	Introduction
	Performing a new analysis
	Fake Analysis
	Emotions Sentiments
	Sentiment Analysis
	Perform all analysis at the same time

	Scheduling a crawling job

	Evaluation
	Introduction
	Requirements and Benchmark
	Effort to build a new crawler

	Conclusions and future work
	Conclusions
	Achieved goals
	Future Work

	Bibliography
	Analysis Results
	Yelp
	Amazon
	Twitter
	Facebook
	YouTube
	TripAdvisor

	Instructions for deploying GSI Crawler
	Preparing the environment
	Installing dependencies

	Deploying Senpy
	Running GSI Crawler

	Deploying GSI Crawler using Docker

