

GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A LYRICS

EMOTION ANALYSIS SYSTEM FOR

CREATIVE INDUSTRIES

JOSÉ MARÍA IZQUIERDO MORA

ENERO 2018

TRABAJO FIN DE GRADO

T́ıtulo: Diseño y desarrollo de un sistema para el análisis de los

sentimientos de las ĺıricas de las canciones para la industria

creativa

T́ıtulo (inglés): Design and Development of a Lyrics Emotion Analysis Sys-

tem for Creative Industries

Autor: José Maŕıa Izquierdo Mora

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente:

Vocal:

Secretario:

Suplente:

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF

A LYRICS EMOTION ANALYSIS SYSTEM

FOR CREATIVE INDUSTRIES

José Maŕıa Izquierdo Mora

Enero de 2018

Resumen

Como resultado del trabajo realizado a lo largo del proyecto cuyo objetivo ha sido diseñar

y desarrollar una interfaz para el análisis de los sentimientos y emociones que producen las

letras de las canciones.

La forma de consegurirlo, ha sido desarrolando un entorno de visualización para presen-

tar los datos obtenidos de las letras de las canciones y analizarlos con Senpy. Este entorno

de visualización se ha desarrollado con Polymer Web Components y D3.js.

El flujo de los datos ha sido entre musixmatch, Senpy y ElasticSearch. Se ha usado

Luigi en este proceso ya que ayuda a construir flujos complejos de tareas agrupadas, Luigi

se ha encagado de realizar el análisis de las letras y almacenarlos en ElasticSearch.

A continuación, se ha empleado D3.js para crear widgets interactivos que hacen que los

datos sean fácilmente accesibles, estos widgets permitirán al usuario interactuar con ellos y

filtrar los datos que le sean más interesantes. Para hacer la interfaz acorde al Material de

la libreŕıa de Polymer Web Components.

Como resolución del proyecto, podemos realizar un amplio análisis de las letras, depen-

diendo de las canciones y artistas y de esta forma conocer las emociones y sentimientos que

generan.

Palabras clave: Senpy, Letras, Sentimientos, Emociones, ElasticSearch, Sefarad, Análisis

VII

Abstract

The way to achieve this, it has been developing a visualization environment to present the

data obtained from the lyrics of the songs , and analyze them with Senpy. This visualization

environment has been developed with Polymer Web Components and D3.js.

The data flow has been between musixmatch, Senpy and ElasticSearch. Luigi has been

used in this process as it helps to build complex flows of clustered tasks, Luigi has gone

from analyzing the lyrics to storing them in ElasticSearch.

Next, D3.js has been used to create interactive widgets that make data easily accessible,

these widgets will allow the user to interact with them and filter the data that is most

interesting to them. To make the interface according to the Material Designing Google and

displaying dynamic data in widgets, the Polymer Web Components library has been used.

As a resolution of the project, we can make a broad analysis of the lyrics, depending on

the songs and artists and thus know the emotions and feelings they generate.

Keywords: Senpy, Lyrics, Sentiments, Emotions, ElasticSearch, D3.js, Analysis

IX

Agradecimientos

Gracias a mi tutor Carlos, por todo el apoyo y ayuda recibida durante el desarrollo del

proyecto.

A toda mi familia, especialmente a mis padres, abuelos y mi hermano los cuales han

estado conmigo durante toda la carrera.

También a todas esas personas con las que he compartido esta carrera, de las cuales me

llevo una bonita amistad.

Gracias a todos vosotros.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 2

2 Enabling Technologies 5

2.1 Introduction . 5

2.2 Sefarad . 5

2.3 Visualization . 6

2.3.1 Polymer Web Components . 6

2.4 ElasticSearch . 8

2.4.1 Searching . 8

2.5 Luigi . 9

2.6 Senpy . 9

XIII

2.7 Musixmatch . 10

3 Architecture 13

3.1 Introduction . 13

3.2 Architecture . 13

3.3 Search System . 14

3.4 Orchestrator System . 16

3.4.1 Workflow . 17

3.4.1.1 FetchDataTask . 20

3.4.1.2 SentimentTask . 21

3.4.1.3 EmotionTask . 22

3.4.1.4 Elasticsearch . 22

3.5 Analysis System . 23

3.6 Index System . 23

3.7 Visualisation System . 25

3.7.1 Mock up . 25

3.7.2 Widgets . 27

3.7.2.1 Google Sentiment Chart . 27

3.7.2.2 Google Singers Chart . 28

3.7.3 Wheel Sentiment . 29

3.7.3.1 Spider Emtion . 30

3.7.3.2 Songs Chart . 31

3.7.3.3 Song Searcher . 32

3.7.4 Dashboard Tabs . 32

3.7.4.1 Papers tab . 32

3.7.4.2 Home tab . 33

3.7.5 Songs tab . 33

4 Case study 35

4.1 Introduction . 35

4.2 Extracting data . 35

4.3 Analyzing data . 36

4.4 Indexing data . 36

4.5 Displaying data . 37

4.6 Conclusions . 40

5 Conclusions and future work 41

5.1 Introduction . 41

5.2 Conclusions . 41

5.3 Problems faced . 42

5.4 Achieved goals . 42

5.5 Future work . 43

Bibliography 44

List of Figures

2.1 Sefarad architecture . 6

3.1 Architecture . 14

3.2 Pipeline Phases . 17

3.3 Pipeline . 18

3.4 Dependency graph . 19

3.5 Index . 24

3.6 Home tab mock-up . 26

3.7 Songs tab mock-up . 27

3.8 Google Sentiment Chart . 28

3.9 Wheel Sentiment . 29

3.10 Spider Emotion . 30

3.11 Songs Chart . 31

3.12 Song Searcher . 32

3.13 Papers tab . 32

4.1 Home tab . 37

4.2 Songs tab part one . 38

4.3 Songs tab part two . 39

4.4 Songs tab part three . 39

XVII

CHAPTER1
Introduction

1.1 Context

In our daily life, music is an essential part, in which we all take refuge at some point.

This has been present in humans since we learned the language, has been part of numerous

movements and always its lyrics have been accompanied by such movements and expressions.

As such, we can consider that we express the feelings through the music, since it will not

be the same if we are sad, happy, etc. In this way, it would be viable to realize an analysis

of the lyrics of the songs.

Emotion analysis can become a useful tool for creative industries to search, recommend,

or assist in in composition processes.

The main objective of this project is to develop and deploy a dashboard that reflects

the results of the analysis of the reactions and feelings of the desired songs. Transforming

them into a simple way to understand and visualize for the user.

For the realization of the project, we will divide it into different phases, each with its

corresponding tools. The first phase consists of a data scraper in the chosen song, trying to

compile the lyrics of it, through musixmatch, to analyze it later. The result of this will be

1

CHAPTER 1. INTRODUCTION

stored in a json file, with a predefined structure. Then, this information will be collected

in ElasticSearch and analyzed with the help of Senpy. Luigi, from Python, will help to

make these questions. Finally, the results of the analysis will be displayed in a Dashboard

managed by Sefarad, which will generate the visualization for the user. The programming

languages of the project to use will be Python, HTML, CSS or JavaScript.

In summary, this project will allow the user to perform a complete analysis of the

sentiment and the emotion that generate the songs, being able to choose the same ones.

1.2 Project goals

Ultimately, the project tries to show the future users the result of the analysis of the feelings

that the lyrics of the songs produce. In this way, the project collects data and generates

a pipeline to analyze feelings and emotions. Finally, everything we do, through interactive

widgets for results.

The main objectives of the project are:

• Get the lyrics of the desired songs.

• Create a pipeline for analysis of emotions and feelings.

• Be able to display results in a dashboard made up of widgets.

1.3 Structure of this document

The structure of the chapters which will be described in the document will be briefly sum-

marized below:

Chapter 1 puts in context the project developed. Also, briefly review the main objectives

to be achieved.

Chapter 2 provides detailed information on the technologies used to achieve this project.

Chapter 3 details the design and implementation phases of the project. Furthermore,

explains the components that make up the project. In addition to how the visualization

module is designed. All the architecture.

Chapter 4 explains the details of the realization of our project, specifically the case study

where the results will be analyzed.

Chapter 5 debates the problems encountered, the conclusions drawn from the project and

2

1.3. STRUCTURE OF THIS DOCUMENT

suggestions for future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

2.1 Introduction

During this chapter, we provide detailed information on the technologies used to achieve

this project.

To carry out the project, we have used the technologies developed in the Grupo de

Sistemas Inteligentes (GSI), such as Sefarad or Senpy. The first, for the visualization of the

analyzed data. The other, we need it for the analysis of feelings and emotions.

The way to extract the data has been made thanks to the Musixmatch API, once

obtained the data that we have introduced in ElasticSearch through Luigi. Subsequently,

these data will be the ones we will visualize.

2.2 Sefarad

Sefarad [4] an application designed to visualize data from SPARQL queries, directly at the

end without needing to write more code. The way of visualizing such data, is done through

widgets based on Polymer Web Components. It also offers the ability to create cores for

5

CHAPTER 2. ENABLING TECHNOLOGIES

large collections of data.

Sefarad environment is divided into three dock containers, each focusing on one task, as

we can see in the figure 2.1:

Figure 2.1: Sefarad architecture

2.3 Visualization

The purpose of this module is to represent the data being processed and to draw different

graphs. This display is structured in different control panels. In addition, this dashboard

is divided into different widgets. For this purpose we will use Polymer.

2.3.1 Polymer Web Components

Polymer [9] is a lightweight library built on top of web standards-based APIs for web

components. Facilitates the creation of your customized html elements to your liking in a

6

2.3. VISUALIZATION

more efficient and easy way by building more complex web applications.

Because it is based on the Web Components API built into the browser, Polymer el-

ements are interoperable at the browser level and can be used with other frameworks or

libraries that work with modern browsers.

With this technology we can take advantage of the elements created, can be particularly

useful for building reusable user interface components. Instead of continually rebuilding

an element in different frames and for different projects, it can be defined once and reused

throughout its Project or any future project.

Polymer works with simple declarative syntax to create your own elements, using all

standard web tools, such as element structure with HTML, CSS styles creation and inter-

acting with JavaScript.

It is designed to be flexible and close to the web platform is based on the features of the

web platform for creating custom elements.

In addition to the Polymer library, the project has a series of elemnts of predefined

elements that you can drop onto a page, or use them as starting points for your own

elements.This is classified in Polymer element catalog categories. The elements are listed

below.

• Gold-elements. Elements built for e-commerce-specific use-cases, like checkout

flows.

• Neon elements. This elemets are for transitions that draw attention and animations.

• Platinum-elements. Elements that take advantage of features to create a web page

in a real web application, with push notifications and offline use.

• Molecules. This elements wraps other libraries in order to make them easier to use.

• App-elements. This elements are a set of components useful when building complete

applications. They include components for functions such as routing, international-

ization and data storage.

• Iron-Elements. This elements are basic building blocks for creating an application

• Paper-elements. User interface components designed to implement Google’s mate-

rial design orders.

• Google-web-components. This elements as the name implies a collection of web

components for Google APIs and services

7

CHAPTER 2. ENABLING TECHNOLOGIES

2.4 ElasticSearch

Elasticsearch [3] is an analytical RESTful search and distributed engine of free code under

the apache licenses, being able to realize great amount of use cases. Everything from a

centralized form, that is, from the core of the stack in order to discover what is expected

and what is unexpected.

It gets answers instantly, which means that the relationship with the data changes. It

can iterate and cover more ground.

It is implemented in inverted indexes with finite state transducers for full-text queries,

BKD trees to store numerical and geo data, and a column store for analysis.

Being indexed can take advantage of and access all your data at great speeds.

Use Lucene and all its functions must be available through JSON and Java API. Admits

face and percolocation, this can be beneficial if we want to know if new documents

2.4.1 Searching

Search queries are performed through the API and the results that match that search or

query are retrieved.

As a parameter:

http://localhost:9200/music23/_search?pretty

As a request body:

"hits" : {

"total" : 4,

"max_score" : 1.0,

"hits" : [

{

"_index" : "music23",

"_type" : "prueba",

"_id" : "793365265",

"_score" : 1.0,

"_source" : {

"id" : 793365265,

"name" : "Michael Jackson",

"titulo" : "this is it",

"text" : "Ready?
One, two, three, ahh!
This is it, here I stand
I’

m the light of the world
I feel grand
Got this love, I can feel<

8

2.5. LUIGI

br>And I know, yes for sure
It is real

And it feels as though

I’ve seen your face a thousand times
And you said you really know

me too yourself
And I know that you have got addicted with their

eyes
But you say you’re gonna leave it for yourself
Ohhh!
I

never heard a single word about you
Falling in love wasn’t my plan<

br>I never thought that I would be your lover

Come on baby just

understand

This is it
I can say
...

",

"sentiment" : "marl:Positive",

"polarity" : "1"

}

},

2.5 Luigi

Luigi [10] is a Python package that helps you build complex work pipes. It manages work-

flow management, visualization, fault handling, command line integration and it manages

much more.

Luigi is similar to GNU Make, this one has some tasks and in turn they can have

dependencies on other tasks. There are also some similarities with Oozie and Azkaban.

The big difference is that Luigi is not only designed for Hadoop, and can easily be extended

with other types of tasks.

Luigi is in Python. Instead of the XML configuration or similar external data files, the

dependency graph is stati fi ed within Python. This facilitates the creation of complex

graphs of task dependencies. However, the workflow can trigger things that are not in

Python, such as running Pig scripts.

As an example, this tool internally in Spotify is used to execute thousands of tasks

every day, organized in complex dependency graphs. are usually Hadoop works, those

made in these tasks. It provides an infrastructure that powers all sorts of things, such as

recommendations, classification lists, and test analysis.

2.6 Senpy

Senpy [6] is a framework for sentiment and emotion analysis services. Services created with

senpy are interchangeable and easy to use because they share the API. It is based on NIF,

9

CHAPTER 2. ENABLING TECHNOLOGIES

Marl and Onyx [2] vocabularies.Furthermore, it simplifies the development of the service.

Senpy implements all common blocks, so that developers can focus on what really mat-

ters: large analysis algorithms that solve real problems.

Senpy is a framework that converts your algorithm of feeling or emotion analysis into a

complete semantic service. Senpy deals with:

• Interface. Parameter validation, error handling.

• Formatting. JSON-LD entry and exit, Turtle / n-triples, or simple text entry.

• Linked data.Senile results are scored semantically, using a series of well-established

vocabularies and default URIs.

• User interface. A web user interface where people can explore their service and try

different configurations.

• A client to interact with the service. Available in Python.

Finally, as far as architecture is concerned, the main component of a sentiment analysis

service is the algorithm itself. However, for the algorithm to work, it needs to obtain the

user’s appropriate parameters, the results according to the API, interact with the user when

errors occur or more information is needed.

2.7 Musixmatch

Musixmatxh1 is a catalog of letters with more than 12.4 million letters in 50 languages. It

is accessible on Windows and Mac through Spotify, as well as on mobile applications for

operating systems such as iOS, Android and Windows Phone.

Musixmatch shows lyrics on the screen to see the music that is playing in time. In its

native applications, it supports the ability to scan all songs in a user’s music library and

find lyrics for them, as well as to be used as a music player.

Its API-enabled allows website owners and mobile application developers to legally dis-

play and monetize the letters in their database.

For your use as a developer you will need an API key, a mandatory parameter for most

API calls. It is a personal identifier and must be kept secret. Once the API key is obtained,

1https://developer.musixmatch.com/documentation

10

2.7. MUSIXMATCH

the developers can now exploit their methods and make all the calls they want as long as

the lyrics of the songs are registered.

11

CHAPTER 2. ENABLING TECHNOLOGIES

12

CHAPTER3
Architecture

3.1 Introduction

In chapter three, we introduce the composition of the project architecture. A general

part is explained with all the modules that form it. Then, we explain each module in

detail separately. Finally, parts of what we have created are taught, such as the pipeline

responsible for data extraction.

3.2 Architecture

In this section we explain the modules presented in the project architecture, as we can see

in the figure shown below.

• Search System: This is one of the main parts of the project, where the data of the

Musixmatch API1 [5] songs are obteined.

• Orchestrator System: Through Luigi[10] we build a pipeline to connect the different

modules, the search system with the analysis and indexing system.

1https://developer.musixmatch.com/documentation

13

CHAPTER 3. ARCHITECTURE

• Analysis System: In our project, we use Senpy [6] to analyze the feelings and

emotions of the songs obtained.

• Index System:In this module, the data of the songs obtained in the other modules

in Elasticsearch [?] are indexed.

• Visualisation System: This is another important part of the project, it reflects the

results obtained, since it is responsible for processing and displaying the data.

Figure 3.1: Architecture

Once the general modules have been described, the sub-modules of the architecture of

our project are detailed in the following points.

3.3 Search System

This is one of the main parts of the project, as we said, because it is responsible for extracting

the data we want to analyze.

14

3.3. SEARCH SYSTEM

The technology used to carry out this project, as explained in chapter 2 is Musixmatch,

through the developed Python script that can be seen in the following code sample.

It is important to highlight that it is necessary to introduce a new parameter when

using this script because the MusixMatch API requires the use of an ”apiKey” to access

its tools. This parameter is called in the code apikeyMusixmatch . Another variable

apiurlMusixmatch is also used, which runs the required url.

For our study of song lyrics, four artists of different styles and musical genres have

been chosen to compare the data from different perspectives. The chosen artists have been

Michael Jackson, Joaquin Sabina, Extremoduro and Julio Iglesias

Next, the method from which we obtain the data of the songs are shown. The way to

process it is the following:

• We introduce in the method the name of the artist and the corresponding song.

• The method obtains the data from the Musixmatch API, and also transforms it into

JSON format.

• Finally, we get the results in our JSON (songs.json).

import urllib.request, urllib.error, urllib.parse

import json

import socket

import random

apikeyMusixmatch = ’xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

apiurlMusixmatch = ’http://api.musixmatch.com/ws/1.1/’

#This method returns the data of the songs in a json, they are passed as

parameters the name of the song and the artist

def song_lyric(song_name,artist_name):

while True:

#Make a request to the API with the query by calling it with the

parameters mentioned above and the lyrics.get method

querystring = apiurlMusixmatch + "matcher.lyrics.get?q_track=" + urllib.

parse.quote(song_name) + "&q_artist=" + urllib.parse.quote(

artist_name) +"&apikey=" + apikeyMusixmatch + "&format=json&

f_has_lyrics=1"

request = urllib.request.Request(querystring)

request.add_header("User-Agent", "curl/7.9.8 (i686-pc-linux-gnu) libcurl

7.9.8 (OpenSSL 0.9.6b) (ipv6 enabled)")

while True:

#An API response timeout is established

15

CHAPTER 3. ARCHITECTURE

try:

response = urllib.request.urlopen(request, timeout=4) #timeout

raw = response.read()

except socket.timeout:

print("Timeout raised and caught")

continue

break

#The data is collected in JSON format and a random Id is established

json_obj = json.loads(raw.decode(’utf-8’))

body = json_obj["message"]["body"]["lyrics"]["lyrics_body"]

copyright = json_obj["message"]["body"]["lyrics"]["lyrics_copyright"]

tracking_url = json_obj["message"]["body"]["lyrics"]["html_tracking_url"]

id_json = random.randrange(1, 1000000000,1)

print(tracking_url)

lyrics_tracking(tracking_url)

#A JSON (songs.json) is generated with the desired data and the lyrics of

the song are returned

from pprint import pprint

body2 = body.replace("\n","
")

body.split("...")

print(body)

data = json.dumps({"id": id_json,"name":artist_name, "titulo": song_name

,"text":body2},)

print(data)

with open(’\home\jose\sefarad\luigi\songs.json’, ’w’) as outfile:

outfile.write(data)

return (body)

Finally, once the JSON is obtained, the search system concludes, having obtained the

necessary data to be able to proceed to the next step.

3.4 Orchestrator System

The chosen orchestrator system is Luigi [10], a Python module developed by Spotify that

is responsible for the resolution of dependencies, the analais of the lyrics of the songs, etc.

Luigi makes this work through a script that describes the pipeline to follow. All this, is

described in the workflow that is detailed in the next point.

16

3.4. ORCHESTRATOR SYSTEM

3.4.1 Workflow

In the workflow, the tasks that form the pipeline are described, in our case this is collected

in a script called buildPipeline.py that has been developed using the Luigi orchestator.

As you can see in figure (3.3) the phases that make up the process are shown. This

phases are divided into FetchDataTask, SentimentTask, EmotionTask and Elasticsearch.

Figure 3.2: Pipeline Phases

17

CHAPTER 3. ARCHITECTURE

By entering the following commands, we managed to execute our workflow.

Commands to execute the workflow

python3 -m luigi --module buildPipeline Elasticsearch -- index music --doc

type results --filename songs.json --local scheduler

In this way, the orchestrator Luigi indexes music in the Elasticsearch database, after

executing the buildPipeline.py script, performing the tasks that are in it using the songs.json

file as a data source.

While executing Luigi’s previous command, we made a couple of captures that can be

seen in the list of tasks (3.3) and (3.4), where you can see the dependencies graphically

and the tasks that are being executed.

Figure 3.3: Pipeline

In the list of tasks (3.3), we can check the status of the pipeline, if any task has failed,

which is running or which are pending, each task is updating status as it is running.

18

3.4. ORCHESTRATOR SYSTEM

Figure 3.4: Dependency graph

In the dependency graph (3.4),we can observe a graph while performing the task of

feelings, while waiting for the tasks corresponding to emotions and storage. Because until

one is over, the other can not start.

19

CHAPTER 3. ARCHITECTURE

3.4.1.1 FetchDataTask

FetchDataTask is the first task in the workflow whose main objective is to read the json

file. As we can see below, the Python code responsible for this task is detailed.

class FetchDataTask(luigi.Task):

"""

Generates a local file containing elements of data in JSON format.

"""

filename = luigi.Parameter()

def run(self):

"""

Writes data in JSON format into the task’s output target.

The data objects have the following attributes:

* ‘_id‘ is the default Elasticsearch id field,

* ‘text‘: the text,

"""

file = self.filename

with open(file) as f:

j = json.load(f)

for i in j:

i["_id"] = i["id"]

with self.output().open(’w’) as output:

json.dump(j, output)

output.write(’\n’)

def output(self):

"""

Returns the target output for this task.

In this case, a successful execution of this task will create a file on the

local filesystem.

:return: the target output for this task.

:rtype: object (:py:class:‘luigi.target.Target‘)

"""

return luigi.LocalTarget(path=’/tmp/_docs-%s.json’ % self.filename)

20

3.4. ORCHESTRATOR SYSTEM

3.4.1.2 SentimentTask

This task loads the data from the previous task and sends it to Senpy to analyze the

recovered data. In this process, the feelings expressed by the lyrics of the songs that make

up our project are analyzed. Once analyzed, a parameter is introduced in the data with

the result of the analysis.

We can observe the code responsible for carrying out this task.

class SentimentTask(luigi.Task):

"""

This task loads data fetched with previous task and send it to Senpy tool

in order to analyze

data retrieved and check sentiments expressed.

"""

#date = luigi.Parameter()

filename= luigi.Parameter()

#file = str(random.randint(0,10000)) + datetime.datetime.now().strftime("%Y

-%m-%d-%H-%M-%S")

def requires(self):

"""

This task’s dependencies:

* :py:class:‘˜.FetchDataTask‘

:return: object (:py:class:‘luigi.task.Task‘)

"""

return FetchDataTask(self.filename)

def output(self):

"""

Returns the target output for this task.

In this case, a successful execution of this task will create a file on the

local filesystem.

:return: the target output for this task.

:rtype: object (:py:class:‘luigi.target.Target‘)

"""

return luigi.LocalTarget(path=’/tmp/analyzed-%s.jsonld’ % self.filename)

def run(self):

"""

Send data to Senpy tool and retrieve it analyzed. Store data in a json file

.

21

CHAPTER 3. ARCHITECTURE

"""

with self.output().open(’w’) as output:

with self.input().open(’r’) as infile:

j = json.load(infile)

for i in j:

r = requests.get(’http://test.senpy.cluster.gsi.dit.upm.es/api/?algo=

sentiment-tass&i=%s’ % i["text"])

response = r.content.decode(’utf-8’)

response_json = json.loads(response)

i["_id"] = i["id"]

#i["analysis"] = response_json

i["sentiment"] = response_json["entries"][0]["sentiments"][0]["marl:

hasPolarity"]

i["polarity"] = response_json["entries"][0]["sentiments"][0]["marl:

polarityValue"]

output.write(json.dumps(i))

#print(i)

output.write(’\n’)

3.4.1.3 EmotionTask

In this task, once we have the data of the previous one, a process similar to the previous one

takes place. The data is sent to the Senpy tool, where the lyrics of the songs are analyzed

by their emotions.

Once this process is finished, they are stored in a temporary file that is inserted in the

next task.

3.4.1.4 Elasticsearch

Elasticsearch is the last task of the workflow. Load the contents of the file into an Elastic-

search index. In this case, it indexes all the data analyzed in music.

Now we can keep the code corresponding to that task.

class Elasticsearch(CopyToIndex):

"""

This task loads JSON data contained in a :py:class:‘luigi.target.Target‘

into an ElasticSearch index.

This task’s input will the target returned by :py:meth:‘˜.Senpy.output‘.

This class uses :py:meth:‘luigi.contrib.esindex.CopyToIndex.run‘.

"""

date = luigi.DateParameter(default=datetime.date.today())

22

3.5. ANALYSIS SYSTEM

filename = luigi.Parameter()

#: the name of the index in ElasticSearch to be updated.

index = luigi.Parameter()

#: the name of the document type.

doc_type = luigi.Parameter()

#: the host running the ElasticSearch service.

host = ’localhost’

#: the port used by the ElasticSearch service.

port = 9200

def requires(self):

"""

This task’s dependencies:

* :py:class:‘˜.SenpyTask‘

:return: object (:py:class:‘luigi.task.Task‘)

"""

return EmotionTask(self.date,self.filename)

3.5 Analysis System

Senpy is responsible for the analysis of feelings and emotions in Python. This server has

been developed by the Intelligent Systems Group (GSI), a group belonging to the Poly-

technic University of Madrid. Specifically the plug in used have been created by Ignacio

Morcuera[6]:

• Sentiment-Tass: This plug-in is used to perform the sentiment analysis. A distinc-

tion is made between positive and negative feelings.

• Emotion-ANEW: This other plugin is used to perform the analysis of emotions.

Available emotions are anger, disgust, negative-fear, joy, neutral-emotion and sadness.

3.6 Index System

This system indexes all the lyrics of songs obtained and analyzed in the previous tasks. It

is composed of Elasticsearch, the search server that connects the lyrics of the songs and

their data with the visualization system.

23

CHAPTER 3. ARCHITECTURE

In our case, we have chosen the easiest and fastest way to add the data to the Elaticsearch

index. The form to do it has been as already explained in the previous point through a task

of Luigi, where you can also see how to do it.

In the same way we choose to be more effective, to make a single index for the four

artists of our project, instead of four, all grouped in the music index.

Finally, in Elasticsearch you can consult the index state of our database through the

following URL:

http://localhost:9200/_cat/indices

We can see the results obtained with the previous URL, in the following figure(3.5).

Figure 3.5: Index

24

3.7. VISUALISATION SYSTEM

3.7 Visualisation System

The last model of our project, but one of the most important parts due to being the part

that the end user visualizes and understands of our project, without which all the above

would make sense [8].

This visualisation system is based on Polymer Web Components2 and is developed in

Sefarad 4.0. The Polymer library [9] is based on the design of Google materials and supports

the creation of new components or widgets. In addition, we have used the D3 library. js

[1] to design new web components.

3.7.1 Mock up

For the realization of the visual part of our project, we previously needed to create a sketch

or mock up, which guides us to make our dashboard. It is important to carry out this

previous task, since although modifications could be made to possible changes of opinion,

it is very useful to be able to start the visualization system.

For our project, we wanted to show the feelings and emotions produced by the lyrics of

the songs on a website, interactively and as comprehensively as possible for the user.

Analyzing the possible solutions, we decided to use different graphics that allow the user

to compare emotions and feelings between different artists, songs, etc.

We also realized the need to show structured information, so we choose a taskbar with

easy access, to be able to scroll through the different views of the application. The reason

is to make a logical scheme for the website.

After making this previous analysis about what we wanted on our website, we used the

draw.io4 tool to make two mock ups, which shows us the main ideas we want on our website.

2https://www.polymer-project.org/1.0/
4http://draw.io

25

CHAPTER 3. ARCHITECTURE

In the figure (3.6) we can see a mock up of the first tab, where a search engine is

displayed on the main songs of our board.

Figure 3.6: Home tab mock-up

26

3.7. VISUALISATION SYSTEM

And in the second figure (3.7), all the collected analyzes are shown, by feelings and

emotions. You can also appreciate the separation that can be made by artists and songs.

Figure 3.7: Songs tab mock-up

3.7.2 Widgets

The widgets provide information depending on the data that is introduced to the songs.

These widgets are web components created using D3.js.

We had to adapt some widgets because the catalog of polymer elements was not enough

to represent the graphics. Next, all created widgets are displayed.

3.7.2.1 Google Sentiment Chart

This widget is used to classify songs by feelings, positive or negative. It is a very useful

widget because mixed with others can be very useful, being able to compare songs along

with other parameters. It admits a series of parameters:

27

CHAPTER 3. ARCHITECTURE

• Query: The parameter used the search box automatically.

• Title: Title: The title is the same as shown in the widget bar.

• Field: It passes the field for which he wants to filter, in this case sentiment.

• Data: the data is entered as a parameter.

Figure 3.8: Google Sentiment Chart

3.7.2.2 Google Singers Chart

The widget described below is very similar to the previous one (3.7.2.1). Classify the songs

by artists instead of their sentiments. In this way, the parameters that the widget supports

are the same, except field, where the artist is passed.

It is important to note, that this widget combined with others like the previous one,

serves us to classify by its artists and at the same time by sentiments. The same with the

rest of widgets.

28

3.7. VISUALISATION SYSTEM

3.7.3 Wheel Sentiment

This widget is formed by a wheel divided by three circles, the main one classified by artists,

within those artists is classified in turn by positive and negative feelings with the colors

green and red respectively. And to know what song is treated in its outermost layer are the

lyrics of the songs, as shown in the figure (3.9). It admits a series of parameters:

• Query: The parameter used the search box automatically.

• Title: Title: The title is the same as shown in the widget bar.

• Field: It passes the field for which he wants to filter, in this case the lyrics of the

songs.

• Data: the data is entered as a parameter.

Figure 3.9: Wheel Sentiment

Like other widgets when filtered by other parameters in other wigets, it reflects those

filters.

29

CHAPTER 3. ARCHITECTURE

3.7.3.1 Spider Emtion

The following widget is used to classify the songs according to the emotions that represent

them. In this case it is a table of axes, where in each axis the predominant emtion is shown.

It admits a series of parameters:

• Query: The parameter used the search box automatically.

• Field: It passes the field for which he wants to filter, in this case the lyrics of the

songs.

• Data: the data is entered as a parameter.

Figure 3.10: Spider Emotion

Like other widgets when filtered by other parameters in other wigets, it reflects those

filters.

30

3.7. VISUALISATION SYSTEM

3.7.3.2 Songs Chart

This widget is one of the most representative, it shows the songs with as much data as

possible. In them the songs are represented by their artist represented by a photograph and

with the name of the same. In addition, the title of the song in particular is shown.

It is hidden the lyrics of the songs in the bottom of the container of each song, is shown

by clicking on the widget. The color of each container varies according to the feeling, being

green if it is positive and red if it is negative. It admits a series of parameters:

• Query: The parameter used the search box automatically.

• Title: Title: The title is the same as shown in the widget bar.

• Data: the data is entered as a parameter.

Figure 3.11: Songs Chart

Like other widgets when filtered by other parameters in other wigets, it reflects those

filters.

31

CHAPTER 3. ARCHITECTURE

3.7.3.3 Song Searcher

This widget is used to filter the data by songs, that is, it is a song search engine in our

data. It admits a series of parameters:

• Query: The parameter used the search box automatically.

• Title: Title: The title is the same as shown in the widget bar.

Figure 3.12: Song Searcher

When doing a search, make a query to the Elasticsearch database. The received data is

filtered and only the selected song is displayed.

3.7.4 Dashboard Tabs

The visualization system uses tabs to separate the tabs, since in each tab different types of

data are shown.

To make the tabs we have used a polymer element, specifically paper tabs, we describe

its function and each of the tabs and their contents.

3.7.4.1 Papers tab

This element organizes the menu in which they can appear or the main tab of our web, or

a secondary tab where all the analysis of the web is collected in depth.

The following figure (3.13) shows the result, where we can see the tab Home tab or

Songs tab.

Figure 3.13: Papers tab

32

3.7. VISUALISATION SYSTEM

3.7.4.2 Home tab

The home tab has been designed to show the user a main window where to see the songs

of the applications.

It has been considered that for the main window, it is easier to use with the following

components:

• Songs Searcher: We use the search engine to find the song that we want to show, since

the search filter is filtered by the title of the song.

• Songs Chart: Which is used to show the data of the songs, in this way we obtain the

letter a photo of the artist, the title and the name of the artist.

3.7.5 Songs tab

This second tab has been designed to show the user a more detailed analysis of the analysis

that the song has had.

In this way we have considered it more convenient to include the following components

in this tab:

• Google Sentiment Chart: In this widget the percentages of the feelings of the param-

eters that we have selected at that moment are shown.

• Google Singers Chart: In this widget the percentages of the singers of the parameters

that we have selected at that moment are shown.

• Wheel Chart: This widget comparatively shows different types of artists classified

according to their feelings.

• Spider Emotion Chart: In this widget comparatively different types of emotions that

represent those songs are shown.

• Songs Chart: Which is used to show the data of the songs, in this way we obtain the

letter a photo of the artist, the title and the name of the artist.

33

CHAPTER 3. ARCHITECTURE

34

CHAPTER4
Case study

4.1 Introduction

In this chapter, we describe the procedure that follows the extraction of data, which results

reflects the analysis of data, the creation of the visualization system and the complete

functioning of our system. Finally, the chapter close with a conclusion of the thesis.

The main actor in our case is the end user who uses our website with the aim of finding

the information and analysis he wants about the lyrics of the songs.

4.2 Extracting data

To relate the extraction of data, as it was said in previous chapters, we have used the

Musixmatch API to perform this task. Once the tool was chosen, we decided what data

we wanted to extract. For this we decided what artists, songs and what period of time we

wanted to measure.

Next, it shows that we finally chose for our project.

35

CHAPTER 4. CASE STUDY

• Artists: It’s about Michael Jackson, Joaqúın Sabina, Julio Iglesias and Extremoduro.

Different artists with different genres recognized internationally and nationally, which

provide musical variety.

• Songs: The chosen songs are based on the following albums, chosen so that they

belong to a similar time and adjusting to the same number of songs per author, to

make a fair study among the four artists.

– Michael Jackson: “Thriller” (1982), “Bad” (1987) and “Dangerous” (1991).

– Joaqúın Sabina: “F́ısica y Qúımica” (1992), “Dı́melo en la calle” (2002) and

“Dos pájaros de un tiro” (2007).

– Julio Iglesias: “De niña a mujer” (1981), “Momentos” (1982) and “Tango”

(1996).

– Extremoduro: “Rock transgresivo” (1989), “Agila” (1996) and “Yo, minoŕıa

absoluta” (2002).

• Time: The period of time chosen varies between 1981 and 2007, although the majority

of songs are between the decades of the 80s and the 90s.

4.3 Analyzing data

After the extraction of the data, as we said before, the turn now falls to the analysis of

them. For this, we had two tasks in our pipeline that we passed to Senpy to perform an

analysis of the letters by sentimients and emotions. The result has been:

• Sentiments: Positive (94) and negative (42).

• Emotions: Joy (37), neutral-emotion (42) and negative-fear (57).

4.4 Indexing data

The next step to the analysis is the storage of said data and its indexation. To do this,

through another task in our pipeline, the data is indexed in Elasticsearch. We decided to

use a single index for our data, since it did not make sense to enter several, being able to

store all the data in a single one, where collecting that data is done easily and quickly.

In our case, for the “music” index, the necessary parameters have been introduced: id,

title of the song, artist, lyrics, feeling, polarity and emotion.

36

4.5. DISPLAYING DATA

4.5 Displaying data

For the visualization of our project, we use a dashboard formed by tabs and interactive

widgets. Once the user accesses our website, he finds the Home tab.

In this figure (4.1) shown below, we see the Home tab, where we wanted to create the

impression of a conventional website with a list of songs and a search engine to find each of

them.

Figure 4.1: Home tab

The first widget, the song searcher, is very useful for the user, there are so many songs

on our website, it is logical to introduce a search engine that filters the name of the song

on the dashboard and shows us only the desired song. The default function is also useful,

which restores the default values.

On the other hand, we consider important the need to show the lyrics of the songs

with their specific title, artist and photo of it. For this we incorporate in the initial tab

the widget created song chart, where the background of the space dedicated to the song is

colored according to the feeling of that song.

In the figure (4.2), (4.3) and (4.4) the main tab of the application are shown, where we

find most of the analysis. In it are introduced the main widgets that help us to observe

results in different ways.

37

CHAPTER 4. CASE STUDY

Figure 4.2: Songs tab part one

In relation to the songs, the need arises in our interactive website to be able to classify all

our songs in positive and negative and in the different artists. For this reason, two widgets

(Google Chart) have been created to classify by sentiment and by singers. The combination

of both is very powerful because we can filter the songs by the artists and their feelings,

which means that we can study each artist in depth.

In this way, we find that Michael Jackson has 61.8% of his positive letters, compared

to 38.2% of negatives. For his part, Joaqúın Sabina is 87.2% compared to 12, 8%. Julio

Iglesias has a ratio of 63.3% to 36.7%. Finally, Extremoduro has 84.8% of positive letters

compared to 15.2%.

38

4.5. DISPLAYING DATA

Figure 4.3: Songs tab part two

In this tab we also include the two widgets that let us compare feelings between the four

artists and their emotions. On the one hand we have the wheel wheel widget that allows us

to compare between different artists, since this filters by artists feelings and also shows us

the lyrics of the songs, so it is very useful. On the other side, we find a radar of emotions,

which shows the emotions that the songs give us. In such a way that we can also see by

artist which ones have more emotions of a given type.

Figure 4.4: Songs tab part three

Finally we show the song chart again which we think is still very useful, since the

visibility of the songs is always of great help. Also as a result of the filter in other widgets,

we can see reflected the letters which we are interested.

39

CHAPTER 4. CASE STUDY

4.6 Conclusions

In this last chapter, we present the steps we have followed for data analysis. In the same way

we have also explained the usefulness of our website, how it can be used and the different

widgets and views used.

In summary, we present the results of the analysis, observing that the artists whose songs

emit a more positive feeling are Joaqúın Sabina and Extremoduro, while, on the other hand,

those who have more negative songs are Michael Jackson and Julio Iglesias. In the same

way, emotions are shared about the artists. So regardless of the genre we can conclude that

the songs represent their own feelings and emotions, since we chose four different groups of

artists to be able to compare them.

40

CHAPTER5
Conclusions and future work

5.1 Introduction

In this last chapter, we discuss the conclusions, achievements, problems and possible future

work on our thesis.

5.2 Conclusions

In the project, we have created a board for the analysis of the emotions and feelings of

the lyric songs based on Web Components, in this way we make the data visual and can

interact with them. The board is formed by widgets to clearly show the data.

This project consists of five modules. The first is the search system that is responsible

for collecting all the data of the songs in a json file. The second module is the orchestration

system, responsible for building the pipeline by executing tasks and dependencies sequen-

tially. The analysis system is the third module responsible for performing the analysis of

these data by feelings and emotions. The fourth module is the indexing system responsible

for collecting the data analyzed in our database. And finally the visualization system that

is responsible for making all this readable to users, and therefore one of the most important

41

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

parts.

The following shows the problems we have faced, the objectives achieved and possible

future work.

5.3 Problems faced

When carrying out our project, not everything went as we expected, then we name the most

important problems that we face:

Space and installation: We chose to do our project on Linux in a Virtual machine, to

which we assigned from the beginning a space in the virtual disk, which later turned

out to be insufficient, so we had to do a disk expansion. On the other hand, the

installation of Sefarad in virtual machines can not be done through the Docker 1 [7]

containers, so it had to be done manually. For this same reason safarad boot has to

be done manually, as was done in previous versions of sefarad.

Creation of the json file: When we made the creation of the Json file that was intro-

duced in the orchestrator, we realized that this needed to have an identifier, so in the

creation script of the Json an identifier was created that assigned a random number

to each song between one and a billion with a probability of repeating numbers barely

existing.

5.4 Achieved goals

The following section analyzes the results obtained and objectives achieved in the develop-

ment of the project:

Design and implementation of a song extraction system: The first and important

objective that we face and without which the project would not make sense, without

the data of the songs, it would be impossible to advance in its development. In this

way we chose Musixmatch as the tool capable of achieving this end, considering it as

the most appropriate to collect the data we needed.

1https://www.docker.com/

42

5.5. FUTURE WORK

Form a pipeline for the analysis of sentimens and emotions: After obtaining the data

from the song extraction system, we needed a system that would organize the tasks

of collecting the Json file, perform the analysis of feelings and emotions and index

it in Elatisearch. To achieve the goal we chose Luigi as the task orchestrator. And

Elasticsearch and Senpy as tools to achieve the objectives of storage and analysis of

the songs respectively.

Design of an interactive dashboard: In order that all the analyzed data can be inter-

preted by the users, it is necessary to create a visualization system, this objective has

been achieved by creating an interactive dashboard with different views and widgets

through Polymer Web Components and the library D3.js.

Evaluate the objectivity of the singers: The last objective of the project achieved thanks

to the previous steps. Using the analyzed data and the board created to show the

different perspectives that compare sentiments and emotions in the different lyrics of

the songs and artists.

5.5 Future work

Although this project has been developed as much as possible, improvements or features

can always be made to the project.

Add more songs and artists: This could be the main issue to be addressed in the future.

It would be useful to analyze the songs that we think may be more relevant to our

case, that is, we would have more data to be able to extract more data and obtain

better results.

Add new widgets: A dashboard has been built with certain widgets. More widgets from

Polymer Web Components and D3.js could be built to show more information about

the data.

Add new features: The project has been focused on the lyrics of the songs and their feel-

ings and emotions. However something similar could be done semantically analyzing

the words that are repeated in the songs, the most relevant, if they are adjectives,

nouns, etc. And an evolutionary comparison over time of the lyrics of the songs in an

artist.

43

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

44

Bibliography

[1] Mike Bostock. D3.js - data-driven documents, October 2017.

[2] G. Vulcu C. A. Iglesias, J. F. S’anchez-Rada and P. Buitelaar. “linked data models for sentiment

and emotion analysis in social networks,” in sentiment analysis in social networks., October

2016.

[3] Zachary Tong Clinton Gormley. “Elasticsearch: The Definitive Guide: A Distributed Real-Time

Search and analytics engine”. O’Reilly Media, January 2015.

[4] Enrique Conde Sánchez. “development of a social media monitoring system based on elas-

ticsearch and web components technologies”, Master’s thesis, ETSI Telecomunicación, June

2016.

[5] Giuseppe Costantino, Francesco Delfino, Gianluca Delli Carri and Massimo Ciociola. Musix-

match, October 2017.

[6] I. Corcuera-Platas J. F. Sánchez-Rada, C. A. Iglesias and O. Araque. “senpy: A pragmatic

linked sentiment analysis framework,” in proceedings dsaa 2016 special track on emotion and

sentiment in intelligent systems and big social data analysis (sentisdata), October 2016.

[7] Adrian Mouat. “Using Docker: Developing and Deploying Software with Containers”. December

2015.

[8] Scott Murray. “Interactive Data Visualization for the Web, 2nd Edition”. O’Reilly Media,

August 2017.

[9] Jarrod Overson and Jason Strimpel. “Developing Web Components: UI from jQuery to Poly-

mer”. February 2015.

[10] Spotify. “Luigi Python module”.

45

BIBLIOGRAPHY

46

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Introduction
	Sefarad
	Visualization
	Polymer Web Components

	ElasticSearch
	Searching

	Luigi
	Senpy
	Musixmatch

	Architecture
	Introduction
	Architecture
	Search System
	Orchestrator System
	Workflow
	FetchDataTask
	SentimentTask
	EmotionTask
	Elasticsearch

	Analysis System
	Index System
	Visualisation System
	Mock up
	Widgets
	Google Sentiment Chart
	Google Singers Chart

	Wheel Sentiment
	Spider Emtion
	Songs Chart
	Song Searcher

	Dashboard Tabs
	Papers tab
	Home tab

	Songs tab

	Case study
	Introduction
	Extracting data
	Analyzing data
	Indexing data
	Displaying data
	Conclusions

	Conclusions and future work
	Introduction
	Conclusions
	Problems faced
	Achieved goals
	Future work

	Bibliography

