
A Metadirectory of Web Components for Mashup

Composition

José Ignacio Fernández-Villamor, Carlos Á. Iglesias, Mercedes Garijo

(Departamento de Ingenieŕıa de Sistemas Telemáticos

Universidad Politécnica de Madrid, Spain

{jifv, cif, mga}@dit.upm.es)

Abstract: Because of the growing availability of third-party APIs, services, widgets
and any other reusable web component, mashup developers now face a vast amount of
candidate components for their developments. Moreover, these components quite often
are scattered in many different repositories and web sites, which makes difficult their
selection or discovery. In this paper, we discuss the problem of component selection in
Service-Oriented Architectures (SOA) and Mashup-Driven Development, and introduce
the Linked Mashups Ontology (LiMOn), a model that allows describing mashups and
their components for integrating and sharing mashup information such as categoriza-
tion or dependencies. The model has allowed the building of an integrated, centralized
metadirectory of web components for query and selection, which has served to evalu-
ate the model. The metadirectory allows accessing various heterogeneous repositories
of mashups and web components while using external information from the Linked
Data cloud, helping mashup development.
Key Words: mashups, services, widgets, components, discovery, integration
Category: H.3.4, H.3.5

1 Introduction

In today’s Web, developers enjoy the availability of plenty of services, data feeds,

widgets and other components that can be reused to build new web applica-

tions. This ecosystem of reusable web components comprises elements such as

data feeds of various domains, telco services, or desktop and mobile widgets.

Additionally, there is a growing set of tools for the creation of mashups such

as MyCocktail1 or mashArt2 that facilitate developers’ combining services for

application construction. Also, Programmable Web3, Yahoo Pipes4, and Opera

widgets5 are examples of repositories that include services and widgets of many

different kinds. They can be queried by users to search for useful applications

and services that they can reuse for mashup composition.

However, because of this mushrooming of web components and mashup plat-

forms, developers face some difficulties when working in this development pro-

cess of mashup construction. First, it is not easy for a developer to find the most

1 http://www.ict-romulus.eu/web/mycocktail
2 https://sites.google.com/site/mashtn/industrial-projects/mashart
3 http://www.programmableweb.com
4 http://pipes.yahoo.com
5 http://widgets.opera.com

Journal of Universal Computer Science, vol. 18, no. 17 (2012), 2407-2431
submitted: 16/1/12, accepted: 29/8/12, appeared: 1/9/12  J.UCS

appropriate component for a mashup being built, as there are many of them

available and the information might be scattered in various repositories in the

web. Second, the components employ different standards and semantics, thus

requiring some study of the documentation. And third, the components often

need to be adapted for their use by the mashup platform in question.

To overcome these limitations, an integrated metadirectory of web compo-

nents for mashup composition is proposed in this paper. The metadirectory

makes use of the Linked Mashups Ontology (LiMOn), a component model we

introduce in this paper, which comprises useful information for querying web

components and searching for the most appropriate ones. Additionally, LiMOn

reuses other underlying standards, such as Web Service Modeling Ontology

(WSMO) [Roman et al., 2005] or the World Wide Web Consortium (W3C)

Widgets standard [Cáceres, 2011,Alario-Hoyos and Wilson, 2010], as low-level

grounding description languages that allow web components to be readily exe-

cutable. These descriptions are built automatically, when possible, in a discovery

phase that has allowed of populating the metadirectory with actual components

from the web.

This paper is structured as follows. Section 2 discusses the problem of choos-

ing web components when developing mashups in Service-Oriented Architectures

(SOA). Section 3 describes LiMOn, the model used to describe and annotate the

components, and discusses how it fits into the framework of component selec-

tion. In Section 4, a metadirectory which makes use of LiMOn is described, as

well as the approach that has been followed to populate the metadirectory with

actual web components. The metadirectory and the data obtained are evaluated

in Section 5. Finally, related works are summarized in Section 6 and some con-

clusions from the research done and some perspectives for research are given in

Section 7.

2 Problem statement

Mashup-Driven Development [Iglesias et al., 2011] proposes reusing web com-

ponents to build new applications. These kinds of combined web applications

are commonly known as mashups, and are combinations of components which

vary from a Representational State Transfer (REST) [Fielding, 2000] service to

a widget, gadget, portlet, or even a web application that shares its informa-

tion as a data feed. Therefore, when developing an application, developers can

choose from a wide range of available components, combining them to obtain a

new working system. Hence developers face the problem of choosing the right

component for the right task. First, the component needs to fit the functional

requirements of the tasks in the newly constructed application. E.g., if a service

for geolocation is sought, a developer first needs to filter out all non-related ser-

vices that do not deal with mapping services or geolocation. And second, the

2408 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

component needs to fit other non-functional requirements, such as trust in the

company behind the component, or certain quality aspects that the component

needs to meet.

Thus, developers need to search for the appropriate component according

to some high-level needs they have. According to the type of component (API,

service, widget. . .) the developers would have to check one registry or another

(e.g. either a widget repository or some service registry). Also, depending on the

features sought in the component, some registries would be more appropriate

than others (e.g. some registries might show information about the semantics

of the service and others not). And again, according to the features sought, it

would be necessary to query external sources to find the component information

(e.g. it might be necessary to look up a components’ vendor at Wikipedia in

order to get an idea of the component’s trustworthiness).

The Software Engineering Institute distinguishes several domains in the man-

agement and development of SOA [Lewis and Smith, 2007]. These domains are

business domains, engineering domains, operations domains and cross-cutting

concerns. Each domain maps to an aspect which is relevant to component selec-

tion when dealing with SOA:

– The business domain comprises all the consequences that a service orien-

tation has on a given organization, application domain, or context. This

includes business aspects such as cost or legal issues when selecting a com-

ponent for its reuse.

– The engineering domain deals with the service-oriented lifecycle. At the time

of selecting a component for reuse, this domain would contain the technical

aspects of a service, i.e. formats, interface, semantic descriptions, and so on.

– The operations domain deals with the operation, evaluation and optimization

of service-oriented systems. Namely, in this domain the aspects that are

involved when selecting a component will be Quality of Service aspects, which

determines the evaluation of a component’s performance.

– Cross-cutting concerns include aspects that are orthogonal to all the do-

mains. The main aspects are trust and social aspects, which affect and de-

termine other aspects in some way or another.

Next, these aspects will be discussed in detail, along with the references found

in the literature.

2.1 Business aspects

Business aspects are any selection criteria that fall into the business domain of

Service-Oriented Architectures. Whenever an aspect of a decision relevant to

2409Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

selecting a service can have an impact on a given organization’s structure, it is

considered by us to be a business aspect.

Cost is the most notable business aspect when selecting a service. [Raj and

Sasipraba, 2010] understands cost as the economic condition of using a service,

and includes it in a Quality of Service model for service selection. Similarly,

[Rehman et al., 2011], [Zeng et al., 2009] and [Li et al., 2010] define frameworks

for comparison of cloud providers that also include cost as one of the selection

aspects. Although some of these works use a broad definition of cost (involving

non-monetary aspects as well), it can be considered a fundamental business

aspect in component selection.

Legal restrictions are also a business aspect regarding component selection.

Very often components are only usable under certain conditions in a reduced

number of countries, which affects the selection process depending on the com-

pany’s activities and targets. [Shimba, 2010] considers legal issues as one chal-

lenge for cloud computing, enumerating the different difficulties that are encoun-

tered because of countries having different regulations and laws on the topic. The

complexity behind this diverse regulation makes legal restrictions hard to model,

which, as will be seen later, might be the reason why most component registries

dismiss legal restrictions.

The vendor and the possible agreements with the consumer company may

influence the decision of component selection. A company often agrees to use

another company’s components under a certain domain. For example, Apple’s

mobile devices started out by provide tight integration with Twitter although

other microblogging services were available, after reaching an agreement that

benefited both companies [Eaton, 2011]. Therefore, most times knowing the spe-

cific vendor that provides the service behind a web component is needed prior

to taking the decision to use it. Thus, the vendor is another business aspect to

consider regarding component selection.

2.2 Trust

According to [Amoroso et al., 1991], software trust is the degree of confidence

that exists that the software will be acceptable for “one’s needs.” This implies

that, after a developer has been convinced about a software component’s spec-

ifications, thanks to some documentation, trust would be the confidence that

these specifications would be met over time. Related properties that have been

identified are popularity, maturity, company trust, and community trust.

Popularity is an indicator of the success of a web component [Mileva et al.,

2010]. Success can be understood in several ways, and different indicators can be

used to measure it. A component that is widely used is considered succesful, while

one with many bugs has a lack of success. However, a component which lacks bug

reports might also lack community support because of a lack of popularity. Thus,

2410 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

popularity is a combination of different indicators that signal the active use by

a big enough community of users. Popularity increases the so-called trusting-

intention [Kutvonen, 2007], or the will to depend on another component with

the involved risks. Therefore, popularity is a relevant metric of the trust aspect.

Maturity is another software feature which increases trust. The topic of ma-

turity is widely covered in the area of Open Source [Polancic et al., 2004] because

of the nature of these kinds of projects—they usually follow an iterative growth,

with frequent releases until they reach some point of maturity [Raymond, 1999].

The Capability Maturity Model (CMM) [Paulk et al., 1993] and the Open Source

Software Maturity Model (OSSMM) [Golden, 2005] are models to improve the

software process’s maturity in companies for traditional software development

and Open Source software development, respectively. These models emphasize

the importance of seeking maturity in software.

Company trust is the critical factor behind the global trustworthiness of a

component. A component is more trustworthy if a trustworthy company is be-

hind it. Many factors are involved in the trust in a company, e.g., company

size, financial equity, and customer service. [Nguyen et al., 2006] identifies com-

munication, cultural understanding, and capabilities, as the three top factors

that determine trust in a software company. Similarly, a survey has for instance

revealed that 75% of users place more trust in companies that use microblog-

ging services such as Twitter [Gershberg, 2010]. All this reveals communication

channels as key factors that determine company trust and thus the trust aspect.

2.3 Quality of Service aspects

Quality of Service in the Internet is traditionally regarded as the combination

of network-imposed delay, jitter, bandwidth and reliability [Ferguson and Hus-

ton, 1998]. This is a typical network-level definition that can be extended to

the application level by considering the metrics that a particular vendor offers

for their commercial components. [Hu et al., 2005] proposes a decision model of

Quality of Service applied to Web Services that can be extended to components.

They propose a model for selecting Web Services according to the metrics of

execution cost, execution time, reliability, and availability. Similarly, [Menasce

and Almeida, 2002] define Quality of Service as a combination of availability,

security, response time, and throughput. We will generalize these terms to avail-

ability, reliability, and performance.

Availability is the percentage of time a web component is operating [Menasce,

2002]. When applying this definition to complex web components, this availabil-

ity depends on the availability of several resources. I.e., in the case of a widget,

both its assets (external scripts and Hypertext Markup Language pages) and

its services must be available for the widget’s availability. [Zhang and Zhang,

2411Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

2005] point out similar problems in the domain of mashups. Availability is an

important aspect when selecting a web component.

Reliability, as a general term in software, is the probability of failure-free oper-

ation of a computer program for a specified time in a specified environment [Musa

et al., 1987]. This definition can be applied to Service-Oriented Architectures by

considering web components as the software elements that are to provide failure-

free operation. [Zhang and Zhang, 2005] state that a reliable web service must

exhibit correctness, fault-tolerance, testability, availability, performance and in-

teroperability. Those are a set of requirements that a service must maintain in

order to consider it failure-free. Other papers [Majer et al., 2009] consider as well

the problem of reliability in more complex components, such as mashups, which

reuse other services, thus depending on third-parties’ reliability and availability.

We identify the performance aspect as a way to encompass execution times,

responsiveness, and throughput issues, noted as important elements when re-

garding Quality of Service [Menasce and Almeida, 2002]. Depending on the na-

ture of a web component, some metrics would make sense and others would not.

For example, the concept of throughput cannot be applied to a web component

such as a widget (but it can be to a service), although its user interaction’s

responsivity can be measured in the same way as a web service’s. These kinds

of issues are regarded as performance aspects.

2.4 Technical aspects

The technical aspects behind selecting a web component involve all the is-

sues related to component operation. Several component description standards

such as Web Service Definition Language (WSDL) [Christensen et al., 2001],

WSMO [Roman et al., 2005] or W3C widgets [Alario-Hoyos and Wilson, 2010]

model the main characteristics that involve operation aspects for specific web

component types such as services or widgets. The operation aspects these stan-

dards consider can be grouped into a few areas: interface, dependencies, and

cross-cutting concerns.

Interface comprises the aspects such as conditions that are involved in the

communication with the component. WSMO employs preconditions and post-

conditions to model a service’s interface, and offers ways to identify formats and

protocols employed in the communication [Lara et al., 2004].

Dependencies include any requirement of external components. Especially,

mashups [Majer et al., 2009] are components that are mainly built out of other

components, such as web services, widgets, or data feeds. Awareness of these de-

pendencies can help knowing about the indirect requirements or use restrictions

(if, e.g., a client-side mashup requires a geolocation service that is not available

in the user’s country).

2412 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

Cross-cutting concerns involve non-functional technical aspects such as secu-

rity, choreography issues, or required standards. Web Services often group these

aspects in the so-called WS-* standards [Alonso, 2004]. Similarly, WSMO allows

defining non-functional properties for a service in order to specify these kinds of

aspects [Toma and Foxvog, 2006]. An interesting cross-cutting concern in SOA

is discoverability, which measures the extent to which the service, service con-

sumers expect to look for, is easily and correctly found [Choi and Kim, 2008]. It

takes place if a component’s capabilities are published in one way or another.

In order to allow web components to be found by developers, their capabilities

need to be announced for an agent to discover them. A textual description of

the component’s functionality is the minimum requirement to make a component

discoverable, although a semantic description allows automatic processing.

2.5 Support and coverage in existing repositories

In the web, we can find several repositories of components that can be reused

for creating new applications. By glancing at these repositories, we can evaluate

the support and coverage of the different aspects that we have identified for

component selection.

A repository will be said to support a property if its schema allows a precise

description of that property. For example, Programmable Web provides a field

to link a component to a WSDL file. A WSDL file is a Web Service standard

description language that allows describing a service’s interface. This allows com-

ponents in Programmable Web to have full support to the interface aspect. The

range of support is from zero (the property is not considered in the repository)

to four (full details of the property can be included in the repository).

On the other hand, a repository provides full coverage of a property if all of

its components make use of the supported fields for that aspect. The coverage

of a property in the repository represents the current usage of the property by

the users, i.e. to what extent users fill those properties. The range goes from

zero (completely missing property) to 5 (used by all components). For instance,

Programmable Web supports WSDL annotated services by providing a field to

reference a WSDL file. However, most APIs in Programmable Web do not make

use of that field, which results in low coverage of the interface aspect. The metric

of coverage thus represents the actual degree of use of a repository’s capabilities.

Table 1 shows the analysis of the support to every aspect in three repositories.

The support that each repository gives to each aspect is marked from zero points

(no support) to four points (full support). We have selected three repositories

that are both heterogeneous and popular. A short description of each of them is

given next.

– Programmable Web is the most popular directory of mashups and APIs on

the web. It is a collaborative directory where users can provide awareness

2413Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

of a mashup or an API. There are several fields that the users can fill in

to provide information about a particular component. APIs such as Google

Maps6 and mashups such as Panoramio7 have their own page where users add

information on related APIs and mashups, or any other useful information.

– Yahoo Pipes is a repository of user-built mashups called “pipes”. Each pipe

is created using an editor developed by Yahoo, which allows users to create

new data feeds out of existing ones. Then, pipes appear listed in the Yahoo

Pipes web site, where users can find, and clone, other pipes and even reuse

them to build new ones.

– Opera Widgets is a repository of widgets that are created by users. Opera

does not provide an editor for this task, and simply allows users to upload

their widgets and publish them in their web site. The web site then provides

a browsing interface so that users can search widgets by category and load

them into their browser.

As already mentioned, coverage is a complementary metric that reveals the

actual degree of use of each aspect. Figure 1 illustrates the coverage for each

repository and aspect. The region inside each graph represents the degree of

coverage for each repository. It is worth noting that both Yahoo Pipes and

Opera Widgets are strict repositories that require all fields to be filled in for

each component. Programmable Web, on the other hand, accepts optional in-

formation, such as the mentioned case of WSDL descriptions. As not all APIs

in Programmable Web are linked to a WSDL file, this reduces the values in

the technical axes. Also, information about legal issues (terms and conditions),

vendor, or popularity (rating for each component) are optional properties in

Programmable Web that are not always filled out. Also, checking the quality

and veracity of the property values is out of the scope.

3 Linked Mashups Ontology

In this section, we describe a model that integrates the properties and fields

that are provided by current component repositories in the web. It is called the

Linked Mashups Ontology (LiMOn), for its approach of bringing Linked Data

to Mashup-Driven Development. Linked Data [Bizer et al., 2009] is an initiative

towards publishing semantically annotated contents for their consumption by

automatic processes, in a way to achieve the vision of the Semantic Web. The

Linked Data initiative suggests using HTTP URIs for identifying resources and

employing standard formats for semantic annotations, such as RDF, in order to

allow web resources being dereferenceable while providing semantic information.

6 http://maps.google.com
7 http://panoramio.com

2414 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

Aspect Property Programmable Web Yahoo Pipes Opera Widgets

Business Cost A field that plainly
indicates whether or
not there are use
fees is indicated (2
points)

All the “pipes” in the
repository are free,
so cost is implicit (4
points)

All the widgets in the
repository are free,
so cost is implicit (4
points)

Legal issues Links to commercial
and free licenses (1
point)

All “pipes” share
the same license (4
points)

All widgets share
the same license (4
points)

Vendor Vendor is provided (4
points)

Author is shown (3
points)

Author is shown (3
points)

Trust Popularity Developers can rate
APIs and mashups
and the number of
mashups that use
an API is shown (4
points)

Number of “cloned
pipes” are shown,
which is an indicator
of popularity (1
point)

Widget users can
vote widgets up and
down (3 points)

Maturity Addition date of a
component is a näıve
indicator of maturity
(1 point)

Creation date of the
“pipe” can be an in-
dicator of maturity
(2 points)

Addition date of a
widget is a näıve in-
dicator of maturity
(1 point)

Company trust Vendor and home
page are shown,
but with no trust
indicators (1 point)

Author is shown, but
with no trust indica-
tors (1 point)

Author is shown, but
with no trust indica-
tors (1 point)

QoS Availability No indicators (0
points)

No indicators (0
points)

No indicators (0
points)

Reliability No indicators (0
points)

No indicators (0
points)

No indicators (0
points)

Performance No indicators (0
points)

No indicators (0
points)

No indicators (0
points)

Technical Interface Yes, through a link to
a WSDL service de-
scription (4 points)

Implicitly provided
through an HTML
form and a well-
known uniform
output for every
“pipe” (4 points)

Yes, by sharing wid-
gets the W3C widget
standard (4 points)

Dependencies Mashups are con-
nected to the APIs
they use (4 points)

“Pipes” are con-
nected with the feeds
they use (4 points)

No information
about dependencies
(0 points)

Cross-cutting
concerns

Information about
SSL use, category,
tags, plus the infor-
mation available in
WSDL (4 points)

Tags and a textual
description are pro-
vided to categorize a
pipe (2 points)

Only a taxonomy and
a textual description
is provided (2 points)

Table 1: Repositories’ support for aspects

2415Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

Figure 1: Repositories’ coverage of aspects

With these considerations in mind, we have defined the ontology8 presented

in Figure 2. Regarding the technical aspect that was introduced in Section 2,

the properties listed next have been included in the model.

– A set of properties allow covering interface aspects. The property description

allows linking to a lower-level component description, such as WSMO, W3C

widgets or WSDL, depending on the nature of the component. The property

endpoint allows linking to the particular Uniform Resource Locator (URL)

where the component runs. Also, the properties of dataFormat and protocol

allow of specifying how the data, if any, is exchanged with the component.

– The property uses is employed to link to reused components. For example,

it can be used to indicate which services or data feeds a mashup reuses.

– Some properties address cross-cutting concerns. The property clientInstall-

Required indicates whether or not the web component requires an additional

component installed client-side to work. The property example allows of ref-

erencing examples of the use of the component’s API. The properties tag

and category allow of linking to tags and categories, respectively, that rep-

resent the functionality of the component. The property api links to the

specification of the component’s programming interface. Finally, the proper-

ties authentication and sslSupport allow of specifying how security over the

component’s data transport is implemented.

8 The full description of the ontology is available at http://www.gsi.dit.upm.es/

~jifv/limon

2416 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

���������	�
����

�
�
�	�
������
���

	�
����

������
������

���	�
�����

�
�
	��
���
� �
�
����
�
�������

���������
���

���
���

���

�	�
��������		 �
�
����
�
�������

����
���
����� �
�
�
�

���� �
������

����
��

�

���
���

����
�
��	 �
��

��

 ���������
�������

!"���	

����
��

#
����$ �
����������
���

�����
�	

������
�
���

 ���

���

!�������
���

���

��

��
�������� ���
����

#��
��������

�
�
�������
���������
����
���	�� ���
�!��

%���
�

���

������
��
����&	��
���

 "��#��

 "
�
�$���

�"

 "
�
�$���

�"

��
�

 "
�
�$���

�"

� �
�
�$� �#

����������

�������
�%� �#

��� �����

 ��
��
��

��
�&� �

��
������

���
'
!� ��� �����

��(�'����

������
�

���''�
���������
�

����

��
���)��

� ���)�
'�� ���������������

���������
������*��
�

������'�����

����)�
�'

� �&�����
+�#��*��
�

�
�����

��������

Figure 2: Linked Mashups Ontology (LiMOn)

The trust aspect comprises popularity and company trust issues, and includes

the properties listed next.

– The rating property serves as an indicator of popularity. It represents the

rating made by users in repositories reflecting their degree of satisfaction

with a particular component.

– The properties of apiForum and apiBlog address the issue of company trust-

worthiness by providing means to reference support facilities (i.e., forums

and blogs) that the vendor provides to component users. Also, the property

provider allows of identifying the vendor of the component, for any company

trust issues involved.

The business aspect comprises costs, and legal and vendor issues, and is

covered by the model through the following properties:

2417Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

– The property usageFees is a cost aspect property that links to any cost

incurred when using the component.

– Regarding legal issues, the property termsAndConditions allows linking to a

document that informs about the conditions for the use of the component.

The property commercialLicense links to a commercial license for the use of

the component, if any. Finally, the property developerKeyRequired indicates

whether or not the component requires creating a developer account prior

to its use.

– The property provider, already mentioned as part of the trust aspects, also

serves to identify the vendor of the component for any business issues in-

volved.

Furthermore, the source of a component is included as a property. In the next

sections, this model will be used to build a metadirectory. This makes it useful to

reference where the component was obtained from, thus requiring a property to

link it to the source repository. Also, regarding the Quality of Service aspect, no

information was found in any repository, so no field was included in the model.

In sum, the component repositories of Yahoo Pipes, Programmable Web,

Opera Widgets, iGoogle Gadgets9, AppStore10, Android Market11, and Ohloh12

were analysed to identify the relevant properties for the model.

Figure 3 shows the connections between the component model and the on-

tologies that have been reused, illustrating how these links can be exploited

thanks to already existing tools. Such tools generally comprise ways of exploit-

ing the Linked Data graph, either by allowing the identification of new relations

between resources or by providing ways to visualize the data.

Dublin Core schema [Weibel et al., 1998] is used to represent basic publishing

metadata in LiMOn. SKOS (Simple Knowledge Organization System) [Miles

and Bechhofer, 2008] is used for modelling categorizations and mapping the

resulting taxonomies, as will be seen in section 4.1.1. CommonTag is employed for

representing tags in the ontology. Semantically-Interlinked Online Communities

(SIOC) [Breslin et al., 2006] is used for representing social sharing aspects such

as blogs or forums that are related to the components. FOAF (Friend of a Friend)

[Brickley and Miller, 2000] ontology is used to express authoring information,

and finally Freebase [Bollacker et al., 2008] and DBPedia [Auer et al., 2007] are

generalistic ontologies which can be used for expressing unambiguous entities for

the actual individuals of the ontology.

9 http://www.google.com/ig/directory
10 http://itunes.apple.com/de/genre/ios/id36
11 https://market.android.com
12 http://www.ohloh.net

2418 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

�����

��������

��	�
��

�
��

����

������
���

����
������
����

Figure 3: Connections between LiMOn and other ontologies

4 Metadirectory of mashups

A metadirectory that makes use of LiMOn has been built. This metadirectory

integrates heterogeneous components that can be potentially used in various web

applications. More specifically, mashup applications, services, and widgets from

the Web are the components that will be included in the metadirectory because

of the repositories that have been targeted, again, Programmable Web, Yahoo

Pipes, and Opera Widgets.

In order to make the components addressable by developers, the metadirec-

tory stores the relevant metadata that can be used by the developers for selecting

components. Additionally, these metadata should be available in the web in or-

der to make it possible to automate the population of the metadirectory with

real components. Usually, web component repositories contain metadata such as

a component’s name, textual description, tags, and categorization. Other specific

properties that depend on the nature of the component can also be found, such as

inputs, endpoints, web service dependencies, and underlying formal descriptions

such as WSMO or WSDL.

4.1 Data harvesting and integration

In this section, we will cover how the metadirectory has been populated with

components from the targeted repositories (i.e. ProgrammableWeb, Yahoo Pipes,

and Opera Widgets) and how the data has been integrated.

We have defined a semantic proxy layer on top of the repositories. For each

repository, we have defined the mappings between their HTML contents of their

2419Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

web resources and the Resource Description Framework (RDF) data they pro-

vide according to the model defined in Section 3. To define these mappings, we

have used the Scraping Ontology13 [Fernández-Villamor et al., 2011]. This ap-

proach lets the system have an RDF view of the unstructured data in the source

repositories. With that, an automated agent crawls the source repositories and

extracts the RDF data, which are then stored in the metadirectory.

Once the metadirectory is populated with components from the web, a uni-

fied categorization scheme is sought in order to provide a homogeneous interface

for querying the metadirectory. This is necessary because of the diversity that is

present in the categorization of the targeted repositories. For instance, compo-

nents retrieved from Programmable Web are already tagged and use their own

categorization scheme. The ones from Yahoo Pipes only have the tags set by the

users. On the other hand, Opera Widgets provides components that are classi-

fied under a closed set of categories. Therefore, the components do not share a

common categorization scheme, which limits the querying capabilities.

To integrate all the categorization schemes, we will define mappings between

the concepts of each taxonomy. This enables querying the metadirectory by us-

ing any of the available categorization schemes without restricting the query

to a particular repository. To achieve this, we will define a new categorization

scheme by clustering the components available in the metadirectory. This auto-

matically built scheme will be mapped to the categorization schemes provided

by Programmable Web and Opera Widgets. Additionally, a mapping between

the Programmable Web scheme and that of Opera Widgets will be manually

defined.

4.1.1 Automatic categorization

In this section, we will describe how to automatically build a categorization sys-

tem that allows users to query the metadirectory. In many cases, components

already belong to a category that was defined in their source repository. As pre-

viously mentioned, both Programmable Web and Opera Widgets provide some

categorization schemes, with categories such as “Tools”, “Mapping”, or “Sports”.

In the case of the Yahoo Pipes repository, only tags are used to categorize each

pipe.

Whenever only tags are used to categorize components, we propose the fol-

lowing method to build a categorization scheme based on the most common

tag combinations in the component space. We will use clustering techniques to

identify the most common categories in the space, and thus to define a new cat-

egorization scheme. The resulting categorization scheme will be mapped to the

other schemes in Section 4.1.2 to provide a uniform interface for querying the

metadirectory.

13 http://lab.gsi.dit.upm.es/scraping.rdf

2420 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

To perform the clustering, components are modeled as a vector representing

their tags:

a = (a1, a2, ..., an), ai ∈ {0, 1} (1)

A weighted Euclidean distance between a pair of components a and b is used

by the clustering algorithm:

d(a, b) =

√

√

√

√

n
∑

i=1

wi · (ai − bi)2 (2)

The weights for each dimension are adjusted according to the popularity of

the tag. This way, less relevant tags will have less weight in the measuring.

According to (1), an example of a simple set of components such as the

following:

foursquare = (mapping, social, games)

googlemaps = (mapping)

facebook = (social)

bluevia = (mapping, telephony, geolocation)

(3)

would be represented by the next vectors:

foursquare = (1, 1, 1, 0, 0)

googlemaps = (1, 0, 0, 0, 0)

facebook = (0, 1, 0, 0, 0)

bluevia = (1, 0, 0, 1, 1)

(4)

According to the popularity of each tag, the set of weights would be the

following:

W = (0.375, 0.250, 0.125, 0.125, 0.125) (5)

and thus some sample distances would be as follows.

d(bluevia, googlemaps) =
√
0.1252 + 0.1252 ≈ 0.1768

d(foursquare, facebook) =
√
0.3752 + 0.1252 ≈ 0.3953

d(facebook, bluevia) =
√
0.3752 + 0.2502 + 0.1252 + 0.1252 ≈ 0.4841

(6)

With this we can compute the similarity between two components in the

metadirectory. By using this similarity measure, we can perform some clustering

to identify which are the most characteristic sets of components in the metadi-

rectory.

A Sammon mapping has been used to represent the components and clus-

ters [Sammon, 1969]. The Sammon’s mapping function allows performing a di-

mensionality reduction on the component space and map the n-dimensional

2421Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

space to a two dimensional one, while attempting to preserve the distances be-

tween the represented vectors. This allowed us to visually estimate the number

of clusters that were present in the system.

4.1.2 Mapping identification

Mappings between categorization schemes are identified automatically using an

algorithm that checks set intersections. Given two categories A and B with the

component sets A and B, respectively, the following mappings are identified

according to the overlap between sets:

– If |A∩B|
max(|A|,|B|) ≥ 0.95, then A and B are considered equivalent categories.

– If |A∩B|
max(|A|,|B|) ≥ 0.85, then A and B are considered close categories.

– If |A−B|
min(|A|,|B|) ≤ 0.05, then A is considered a subcategory of B.

– If |B−A|
min(|A|,|B|) ≤ 0.05, then B is considered a subcategory of A.

These conditions are illustrated in Figure 4. As shown, SKOS ontology con-

cepts are employed to define the mappings between categories. SKOS proposes

a schema for the definition of taxonomies and mappings between them. The

relation skos:exactMatch is employed for categories that are considered equiv-

alent; skos:closeMatch indicates that two categories are very similar and could

be used interchangeably in certain contexts; skos:narrowMatch indicates that

the subject category is a subcategory of the object; skos:broadMatch states

that the subject category is a supercategory of the object.

����� �����

����

Figure 4: Mapping detection among categories

This allowed identifying a set of mappings among the different taxonomies.

Figure 5 shows some of the mappings. The Opera Widgets repository provides no

tags, so mappings with Programmable Web’s taxonomy were defined manually.

As can be seen, some categories are defined as sub- or super-categories of others,

while others are defined as close or exact matches. In the case of the Yahoo

Pipes repository, the previously described method for automatically building a

taxonomy was used. We executed a clustering algorithm to obtain nine different

categories. Then, the resulting categories were applied to Programmable Web’s

2422 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

�����

������

	�
���

�

��

�����

�
����

��������

	���
�

�����

�����

�������

�		

	���
�

�		���
���

	�
���

������

�������
���

��������

�����

����

�
���������

����

�

	���
����������

���
��� ���
����

����!���

 ������
���!�

 �"����
���#�

�!��
����

��

�
����
��� !���

	�
���������

����
��������

$$$$$$ $$$

����%�����
���

����%�����
���

����%���
�
���

����%�����
���

����%�
����
���

����%���
�
���

����%���
�
���

����%�
����
���

����%���
���
���

����%�����
���

����%�&
��
���

����%���
�
���

����%�&
��
���

����%�&
��
���

Figure 5: Mapping among the different categorization schemes

data. The resulting sets were compared to the ones that Programmable Web al-

ready provides as shown in this section, which resulted in the identified relations

among the categories of the different taxonomies.

5 Results and evaluation

The metadirectory contains 10,194 services, 7,032 mashups and 1,804 widgets,

as of a crawling performed in July 2011 on the mentioned repositories of Yahoo

Pipes, Programmable Web, and Opera Widgets.

The metadirectory is used in the context of project OMELETTE (FP7-ICT-

2009-5), in which an integrated environment for the construction of mashups has

been built. A developer can build mashups by combining services and widgets

into different kinds of mashups. For this, the centralized metadirectory contains

the available components that developers can reuse. Therefore, the main use case

2423Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

for the metadirectory is a developer seeking a component that suits a mashup

under development. For this, a browsing interface has been developed, and is

shown in figure 6. Through this interface, the properties defined in LiMOn on-

Figure 6: User interface for browsing the metadirectory

tology can be used for mashup filtering. Additionally, more advanced queries

can be performed thanks to the use of semantic technologies such as SPARQL

Protocol and RDF Query Language (SPARQL).

In order to evaluate the metadirectory, a set of queries have been defined to

check its selection capabilities. Table 2 shows the SPARQL queries that result

for each of the previously stated queries, along with the resulting components

retrieved from the metadirectory. The queries are ones that a developer would

make in order to retrieve the appropriate component for a particular problem.

1. Which free components deal with photos/pictures?. Usually, mashup editors

offer a list of available components organized by categories. This is easily

achievable in the metadirectory by filtering components that do not match

a particular category. Without a metadirectory, this would imply visiting

several repositories and browsing the desired category in order to get a list

of suitable components.

2. What mapping services are provided by Microsoft?. Because of business is-

sues, often developers need to select components based on the provider of

the component. Registries such as Programmable Web provide vendor infor-

mation but do not allow filtering by vendor.

2424 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

3. Which APIs are more commonly used by telco mashups?. Occasionally, de-

velopers need insights on the use of a component in a particular domain.

This query is focused towards telco mashups and the kind of APIs they use.

A query such as this, though simple, is not allowed in the repositories where

the components were extracted from.

4. What commercial mapping services are readily usable?. In some cases, com-

ponent repositories only help provide awareness of a component, i.e. knowl-

edge that the component exists and is available. This populates the metadi-

rectory with components with purely general metadata such as a broad

categorization and components with precise semantic descriptions such as

WSMO descriptions. I.e., some components are already runnable and others

are not. Our metadirectory retrieved services from Yahoo Pipes and trans-

formed the execution forms into WSMO service descriptions. Also, many

components in Programmable Web are linked to their WSDL file. This make

it possible to find readily runnable components in our metadirectory and fil-

ter them in a query.

5. What data sources are more often employed by news mashups?. This query

gives insights into the sources that are employed in the field of digital news.

The metadirectory allows performing the query among applications present

in different repositories.

6. Which mapping APIs are provided by the most trustworthy companies?. This

query attempts to select services according to their trustworthiness. We will

model trust by employing the provider’s number of employees, as an indica-

tor of the company’s size. The query could be reformulated as retrieving all

APIs which belong to the mapping category, sorted by the vendor’s number

of employees. Vendor information is retrieved from DBpedia, which illus-

trates the advantage of using LiMOn for linking information about mashup

components.

In comparison with searching multiple repositories manually, the metadirec-

tory enables:

– Accessing information about components that were originally available in

separate, heterogeneous repositories from the web. As seen, component repos-

itories offer information in their own format, which requires extraction and

integration in a harvesting task. After that integration, the metadirectory

allows querying through a uniform interface.

– Performing complex queries about these components. Usually, component

repositories such as the ones employed are very limited in their querying

capabilities. Although they offer plenty of information, they offer browsing

functionalities rather than complex search interfaces.

2425Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

– Using external information that is available in the Linked Data cloud to com-

plement the information from the source repositories. Information available

in DBpedia or other Linked Data sources can be integrated in queries to the

metadirectory, allowing of extending the queries with data that is present in

other systems.

6 Related work

In the present paper, a model for defining the aspects that are involved in web

component selection for mashup composition has been defined. There are several

approaches for dealing with web components of different kinds, from services

to widgets. There are many initiatives to describe services’ interface to allow

the automation of certain tasks, in the Web Service field [Christensen et al.,

2001] [Roman et al., 2005], or in the REST service area with heavy-weights such

as the Web Application Description Language (WADL) [Hadley, 2006], or more

light-weight approaches such as Microservices [Fernández-Villamor et al., 2010],

WSMO-Lite [Vitvar et al., 2007], Semantically-Annotated REST (SA-REST)

[Sheth et al., 2007], or hRESTS [Wright State University, 2008]. W3C widgets

[Alario-Hoyos and Wilson, 2010] defines a standard for describing widgets. While

these approaches allow describing the inners of these components, they operate at

an abstraction level that is lower than that of our model, thus there are different

standards for each kind of component. Therefore, we make use of them in our

model by allowing the linking of a LiMOn description to a WSDL/WSMO/W3C

widget description.

Furthermore, a metadirectory that integrates several repositories has been

built. The automatic categorization approach allows mapping different catego-

rization schemes. Some research works that perform similar tasks are available

in the current literature. [Arabshian et al., 2012] focuses on the semi-automatic

construction of an ontology out of textual descriptions of Programmable Web’s

components. Although Arabshian et al. do not consider mappings with other

taxonomies, their approach successfully exploits textual descriptions of Pro-

grammable Web’s components to build an ontology. Similarly, [Wang et al.,

2011] mine Programmable Web and build a domain ontology out of the key-

words available in the textual descriptions of the services. This helps to validate

Programmable Web’s categorization scheme. [Blake and Nowlan, 2011] performs

an automatic categorization of services using the internals of WSDL descriptions,

not just the keywords available in the textual descriptions. Neither work explores

mappings with other categorizations or service repositories. Approaches such

as [Bianchini et al., 2010] employ semantic technologies by using category labels

and thesauri to compute semantic distances and mappings between concepts. In

contrast, our approach exploits the information that is present in components’

2426 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

Query SPARQL query Results

Which free com-
ponents deal with
photos/pictures? SELECT ?component

WHERE
{ ?component rdf:type limon:Component;

limon:categorizedBy limon:PhotoCategory;
FILTER NOT EXISTS {

?component limon:usageFees ?fees . } }

Photobucket, Tweet-
Photo, AOL Pictures,
Lockerz, Pixlr, Mood-
stocks, Fonxvard,
Steply, Pixenate,
Fishup, Shutterfly,
Picmember, Exposure-
Manager, PicApp, and
46 more

What mapping ser-
vices are provided by
Microsoft? SELECT ?service

WHERE
{ ?service rdf:type limon:Service;
limon:categorizedBy limon:MappingCategory;
limon:provider <http://www.microsoft.com> . }

Bing Maps

Which APIs are more
commonly used by
telco mashups? SELECT (count(?api) as ?apis) ?api

WHERE {
?mashup limon:uses ?api ;

limon:categorizedBy
limon:TelcoCategory . }

GROUP BY ?api
ORDER BY DESC (?apis)

Twilio (52%), Twitter
(5.7%), Tropo (3.9%),
Facebook (3.6%), other
(34.5%)

What commercial
mapping services are
readily usable? SELECT ?service

WHERE
{ ?service rdf:type limon:Service;

limon:categorizedBy limon:MappingCategory ;
limon:usageFees ?fees ;
limon:describedBy ?wsdl . }

CDYNE IP2Geo, Ar-
cWeb, Postcode Any-
where, PeekaCity,
ShowMyIP, FraudLabs
Mexico Postal Code,
FraudLabs ZIPCode-
World United States

What data sources are
more often employed
by news mashups? SELECT (count(?api) as ?apis) ?api

WHERE {
?mashup limon:uses ?api ;

limon:categorizedBy
limon:NewsCategory ;

?api limon:categorizedBy
limon:FeedCategory . }

GROUP BY ?api
ORDER BY DESC (?apis)

CNN (2.18%), Google
News (1.36%), NY
Times (1.18%),
BBC (1.09%), Ya-
hoo News (0.91%),
others (93.17%)

Which mapping APIs
are provided by the
most trustworthy
companies?

SELECT ?api ?provider ?employees
WHERE {
?api limon:categorizedBy omr:mapping ;

limon:provider ?provider .
?dbpcompany dbpedia-owl:wikiPageExternalLink

?provider ;
dbpedia-owl:numberOfEmployees

?employees . }
ORDER BY ?employees

Nokia Ovi Maps (Nokia:
132,430 employees),
Ericsson Mobile Maps
(Ericsson: 90,260 em-
ployees), Bing Maps
(Microsoft: 89,000
employees), Google
Maps (Google: 24,400
employees), Yahoo
Maps (Yahoo: 13,600
employees), others

Table 2: Evaluation of metadirectory’s interface

2427Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

tags to produce mappings between taxonomies. Unlike most approaches, we do

not make use of semantic technologies. This allows identifying mappings that

are not obviously related from a semantics point of view. Examples of these

mappings are mappings to general concepts such as “other”, which could aggre-

gate many diverse categories with names such as “miscellaneous” or “sports”,

or mapping “RSS” (usually not present in a thesaurus) to “feeds”.

The metadirectory attempts to improve the experience of building mashups

by allowing users to more easily discover useful components. There are ap-

proaches related to component recommendation that are similar to the one pre-

sented in this paper. [Elmeleegy et al., 2008] is a mashup advisor, which also

builds a catalogue of mashup components to exploit in recommendations for

mashup development. They rank components for their use in a mashup under

development, which is outside the scope of our paper. Unlike our work, they

do not consider integration with other component repositories. [Bianchini et al.,

2010], on the other hand, integrates heterogeneous repositories and provides

proactive recommendations during mashup development. Their approach do not

employ tags for category construction, but semantic distances using WordNet’s

thesaurus information on category labels, which allows matching components

with no tagging information but ignores the potential data present in tags. [Pi-

cozzi et al., 2010] analyze proactive component recommendation from the point

of view of the quality of the resulting mashup. The also define a component

quality model that shares properties with our aspect-based framework such as

trust, reliability, or functionality. Finally, [Pietschmann, 2010] is an approach

on top of the CRUISe system [Pietschmann et al., 2009] which provides task-

based recommendation of mashup components based on user-specified mashup

requirements. It employs semantics to define a unified component model for ac-

curate matching out of user requirements, but does not focus on the integration

of such descriptions out of component repositories from the web. As future work,

it would be interesting to research mapping the LiMOn ontology onto their task

ontology.

7 Conclusions and future work

Through this paper, the different challenges that developers face when selecting

components for building a mashup have been summarized. A common framework

has been defined, which allowed of defining Linked Mashups Ontology (LiMOn),

a unified model for components. With this model, several component repositories

have been mined and loaded onto a metadirectory. A clustering method has

been proposed and used to integrate the different taxonomies of the repositories

in order to unify the categorization of the metadirectory. The metadirectory

then offers a unified query interface that allows retrieving components through

2428 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

complex queries, involving components of different nature, making use of external

data from the Linked Data cloud.

Future work involves refining discovery techniques to extend the available

low-level information in services and make readily-executable service descrip-

tions be available in the metadirectory. Namely, these techniques could consist

of crawling the API documentation for concrete patterns that indicate service

endpoints or use examples, which might enable administrators or semi-automatic

tools to build WADL descriptions.

Acknowledgements

Thanks to Pablo Moncada (UPM) for his support as well as to OMELETTE

participants for their valuable feedback. This research project was funded by the

European Commission under the R&D project OMELETTE (FP7-ICT-2009-5).

References

[Alario-Hoyos and Wilson, 2010] Alario-Hoyos, C. and Wilson, S. (2010). Comparison
of the main alternatives to the integration of external tools in different platforms. In
Intl. Conf. of Education, Research and Innovation (ICERI), pages 3466–3476.

[Alonso, 2004] Alonso, G. (2004). Web Services: Concepts, Architectures and Applica-
tions. Springer.

[Amoroso et al., 1991] Amoroso, E., Nguyen, T., Weiss, J., Watson, J., Lapiska, P.,
and Starr, T. (1991). Toward an approach to measuring software trust. In IEEE
Computer Society Symposium on Research in Security and Privacy, pages 198–218.

[Arabshian et al., 2012] Arabshian, K., Danielsen, P., and Afroz, S. (2012). Lexont: A
semi-automatic ontology creation tool for programmable web. In 2012 AAAI Spring
Symposium Series.

[Auer et al., 2007] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and
Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. The Semantic Web,
pages 722–735.

[Bianchini et al., 2010] Bianchini, D., De Antonellis, V., and Melchiori, M. (2010). A
recommendation system for semantic mashup design. In Database and Expert Sys-
tems Applications (DEXA), 2010 Workshop on, pages 159–163. IEEE.

[Bizer et al., 2009] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data—
The story so far. sbc, 14(w3c):9.

[Blake and Nowlan, 2011] Blake, M. B. and Nowlan, M. E. (2011). Knowledge Dis-
covery in Services (KDS): Aggregating Software Services to Discover Enterprise
Mashups. IEEE Transactions on Knowledge and Data Engineering, 23(6):889–901.

[Bollacker et al., 2008] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor,
J. (2008). Freebase: a collaboratively created graph database for structuring human
knowledge. In ACM SIGMOD, pages 1247–1250.

[Breslin et al., 2006] Breslin, J., Decker, S., Harth, A., and Bojars, U. (2006). Sioc: an
approach to connect web-based communities. International Journal of Web Based
Communities, 2(2):133–142.

[Brickley and Miller, 2000] Brickley, D. and Miller, L. (2000). Foaf vocabulary speci-
fication 0.91. Technical report, ILRT Bristol.

[Cáceres, 2011] Cáceres, M. (2011). Widget Packaging and XML Configuration. http:
//www.w3.org/TR/widgets/.

2429Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

[Choi and Kim, 2008] Choi, S. W. and Kim, S. D. (2008). A Quality Model for Eval-
uating Reusability of Services in SOA. Quality, pages 293–298.

[Christensen et al., 2001] Christensen, E., Curbera, F., Meredith, G., Weerawarana,
S., and et al. (2001). Web services description language (WSDL) 1.1.

[Eaton, 2011] Eaton, K. (2011). Facebook Won’t Like This Apple-Twitter Union.
[Elmeleegy et al., 2008] Elmeleegy, H., Ivan, A., Akkiraju, R., and Goodwin, R. (2008).
Mashup advisor: A recommendation tool for mashup development. In Web Services,
2008. ICWS’08. IEEE Intl. Conf. on, pages 337–344. IEEE.

[Ferguson and Huston, 1998] Ferguson, P. and Huston, G. (1998). Quality of Service
in the Internet: Fact, Fiction, or Compromise. AUUGN, page 231.

[Fernández-Villamor et al., 2011] Fernández-Villamor, J. I., Blasco-Garćıa, J., Iglesias,
C. A., and Garijo, M. (2011). A Semantic Scraping Model for Web Resources—
Applying Linked Data to Web Page Screen Scraping. In Third Intl. Conf. on Agents
and Artificial Intelligence.

[Fernández-Villamor et al., 2010] Fernández-Villamor, J. I., Iglesias, C. A., and Gar-
ijo, M. (2010). A vocabulary for the modelling of image search microservices. In
Fifth Intl. Conf. on Evaluation of Novel Approaches to Software Engineering.

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California.

[Gershberg, 2010] Gershberg, M. (2010). Consumers say: ‘In tweets we
trust’. http://www.reuters.com/article/2010/06/23/us-retail-summit-tweets-
idUSTRE65L6C320100623.

[Golden, 2005] Golden, B. (2005). Succeeding with Open Source. Addison-Wesley.
[Hadley, 2006] Hadley, M. (2006). Web application description language. https://
wadl.dev.java.net/wadl20061109.pdf.

[Hu et al., 2005] Hu, J., Guo, C., Wang, H., and Zou, P. (2005). Quality driven web
services selection. In IEEE Intl. Conf. on e-Business Engineering (ICEBE), pages
681–688.

[Iglesias et al., 2011] Iglesias, C. A., Fernández-Villamor, J. I., del Pozo, D., Garulli,
L., and Garćıa, B. (2011). Service Engineering: European research results, chapter
Combining, pages 171–200. Springer.

[Kutvonen, 2007] Kutvonen, L. (2007). Trust aspects in the architecture of interoper-
able systems. In 2nd Intl. workshop on Interoperability solutions to Trust, Security,
Policies and QoS for Enhanced Enterprise Systems (IS-TSPQ).

[Lara et al., 2004] Lara, R., Roman, D., Polleres, A., and Fensel, D. (2004). A concep-
tual comparison of WSMO and OWL-S. Web Services, pages 254–269.

[Lewis and Smith, 2007] Lewis, G. A. and Smith, D. B. (2007). International work-
shop on the foundations of service-oriented architecture (fsoa). Special report
CMU/SEI-2008-SR-011.

[Li et al., 2010] Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). CloudCmp: Com-
paring public cloud providers. In 10th Annual Conference on Internet Measurement,
pages 1–14. ACM.

[Majer et al., 2009] Majer, F., Nussbaumer, M., and Freudenstein, P. (2009). Opera-
tional challenges and solutions for mashups—An experience report. In 2nd Workshop
on Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM).

[Menasce, 2002] Menasce, D. A. (2002). QoS issues in Web services. Internet Com-
puting, IEEE, 6(6):72–75.

[Menasce and Almeida, 2002] Menasce, D. A. and Almeida, V. A. F. (2002). Capacity
Planning for Web Services: Metrics, Models, and Methods. Prentice-Hall.

[Miles and Bechhofer, 2008] Miles, A. and Bechhofer, S. (2008). SKOS simple knowl-
edge organization system reference. W3C Recommendation.

[Mileva et al., 2010] Mileva, Y., Dallmeier, V., and Zeller, A. (2010). Mining API
popularity. Testing—Practice and Research Techniques, pages 173–180.

[Musa et al., 1987] Musa, J. D., Iannino, A., and Okumoto, K. (1987). Software Reli-
ability: Measurement, Prediction, Application. McGraw-Hill.

2430 Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

[Nguyen et al., 2006] Nguyen, P. T., Babar, M. A., and Verner, J. M. (2006). Critical
factors in establishing and maintaining trust in software outsourcing relationships.
In 28th Intl. Conf. on Software Engineering, pages 624–627. ACM.

[Paulk et al., 1993] Paulk, M., Curtis, B., Chrissis, M., and Weber, C. (1993). Capa-
bility maturity model. Software, IEEE, 10(4):18–27.

[Picozzi et al., 2010] Picozzi, M., Rodolfi, M., Cappiello, C., and Matera, M. (2010).
Quality-based recommendations for mashup composition. Current Trends in Web
Engineering, pages 360–371.

[Pietschmann, 2010] Pietschmann, S. (2010). A model-driven development process and
runtime platform for adaptive composite web applications. International Journal on
Advances in Internet Technology, 2(4):277–288.

[Pietschmann et al., 2009] Pietschmann, S., Voigt, M., Rümpel, A., and Meißner, K.
(2009). Cruise: Composition of rich user interface services. Web Engineering, pages
473–476.

[Polancic et al., 2004] Polancic, G., Horvat, R. V., and Rozman, T. (2004). Compar-
ative assessment of open source software using easy accessible data. In 26th Intl.
Conf. on Information Technology Interfaces, 2004. Vol. 1, pages 673–678.

[Raj and Sasipraba, 2010] Raj, R. and Sasipraba, T. (2010). Web service selection
based on qos constraints. In Trendz in Information Sciences Computing (TISC),
pages 156 –162.

[Raymond, 1999] Raymond, E. S. (1999). The Cathedral and the Bazaar. O’Reilly.
[Rehman et al., 2011] Rehman, Z. U., Hussain, F. K., and Hussain, O. K. (2011). To-
wards Multi-criteria Cloud Service Selection. 2011 Fifth Intl. Conf. on Innovative
Mobile and Internet Services in Ubiquitous Computing, pages 44–48.

[Roman et al., 2005] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stoll-
berg, M., Polleres, A., Feier, C., Bussler, C., and Fensel, D. (2005). Web service
modeling ontology. Applied Ontology, 1(1):77–106.

[Sammon, 1969] Sammon, J. W. (1969). A nonlinear mapping for data structure anal-
ysis. IEEE Transactions on Computers, C-18(5):401–409.

[Sheth et al., 2007] Sheth, A., Gomadam, K., and Lathem, J. (2007). Sa-rest: Seman-
tically interoperable and easier-to-use services and mashups. IEEE Internet Com-
puting, 11(6):91–94.

[Shimba, 2010] Shimba, F. (2010). Cloud computing: Strategies for cloud computing
adoption. Master’s thesis, Dublin Institute of Technology.

[Toma and Foxvog, 2006] Toma, I. and Foxvog, D. (2006). Non-functional properties
in web services. WSMO Deliverable.

[Vitvar et al., 2007] Vitvar, T., Kopecky, J., and Fensel, D. (2007). Wsmo-lite:
Lightweight semantic descriptions for services on the web. In Fifth European Con-
ference on Web Services, pages 77–86.

[Wang et al., 2011] Wang, J., Zhang, J., Hung, P. C. K., Li, Z., Liu, J., and He, K.
(2011). Leveraging fragmental semantic data to enhance services discovery. In High
Performance Computing and Communications (HPCC), 2011 IEEE 13th Intl. Conf.
on, pages 687–694. IEEE.

[Weibel et al., 1998] Weibel, S., Kunze, J., Lagoze, C., and Wolf, M. (1998). Dublin
core metadata for resource discovery. Internet Engineering Task Force RFC,
2413:222.

[Wright State University, 2008] Wright State University (2008). HTML Microformat
for Describing RESTful Web Services and APIs. http://knoesis.wright.edu/
research/srl/projects/hRESTs/#hRESTs.

[Zeng et al., 2009] Zeng, W., Zhao, Y., and Zeng, J. (2009). Cloud service and ser-
vice selection algorithm research. In First ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, pages 1045–1048. ACM.

[Zhang and Zhang, 2005] Zhang, J. and Zhang, L. (2005). Criteria analysis and val-
idation of the reliability of Web services-oriented systems. In Intl. Conf. on Web
Services.

2431Fernandez-Villamor J.I., Iglesias C.A., Garijo M.: A Metadirectory ...

